
Path Integral Policy Improvement with Differential Dynamic Programming

Tom Lefebvre1,2,* and Guillaume Crevecoeur1,2

Abstract— Path Integral Policy Improvement with Covari-
ance Matrix Adaptation (PI2-CMA) is a step-based model-
free reinforcement learning approach that combines statistical
estimation techniques with fundamental results from Stochastic
Optimal Control. Basically, a policy distribution is improved
iteratively using reward weighted averaging of the corre-
sponding rollouts. It was assumed that PI2-CMA somehow
exploited gradient information that was contained by the
reward weighted statistics. To our knowledge we are the first
to expose the principle of this gradient extraction rigorously.
Our findings reveal that PI2-CMA essentially obtains gradient
information similar to the forward and backward passes in the
Differential Dynamic Programming (DDP) method. It is then
straightforward to extend the analogy with DDP by introducing
a feedback term in the policy update. This suggests a novel
algorithm which we coin Path Integral Policy Improvement
with Differential Dynamic Programming (PI2-DDP). The re-
sulting algorithm is similar to the previously proposed Sampled
Differential Dynamic Programming (SaDDP) but we derive the
method independently as a generalization of the framework of
PI2-CMA. Our derivations suggest to implement some small
variations to SaDDP so to increase performance. We validated
our claims on a robot trajectory learning task.

I. INTRODUCTION

Policy Improvement with Path Integrals (PI2) is a recent
step-based model-free continuous state-action reinforcement
learning method that was pioneered by [1]. PI2 boils down to
iteratively improving the mean of a policy distribution using
reward weighted averaging of the corresponding system roll-
outs. The algorithm emerges naturally from the framework
of linearly solvable optimal control [2], [3]. It makes a
connection between value function approximating by solving
a statistical inference problem based on empirical system
rollouts, and direct policy learning [3], [4].

The striking similarity of PI2 with Cross Entropy opti-
mization methods, such as the Covariance Matrix Adaption
Evolutionary Strategy (CMA-ES) [5], was first noticed by
[6]. Their findings suggested a new algorithm, named PI2-
CMA, that additionally adapts the covariance of the policy
distribution, claiming that the covariance matrix evolves to
a matrix that is proportional to the inverse of the problem’s
Hessian [5]. The resulting algorithm can be categorized as
an action perturbed reward weighted averaging approach [7].

To our knowledge we are the first to document that there is
a rigorous connection between above reward weighted strat-
egy and conventional gradient based methods. Essentially,
the reward weighted statistics of the rollouts turn out to be
directly related to the derivates of the value function similarly
to the forward and backward pass in Differential Dynamic
Programming (DDP) [8], [9]. Based on our findings it is
straightforward to deepen the analogy with DDP and extend

1Department of Electrical Energy, Metals, Mechanical Constructions &
Systems, Ghent University, B-9052 Ghent, Belgium.

2EEDT Decision and Control, Flanders Make.
*Corresponding author: tom.lefebvre@ugent.be

the PI2-CMA algorithm with a feedback mechanism. Given
analogy with preceding frameworks, we coin it PI2-DDP.

It turns out that this algorithm is similar to Sampled
Differential Dynamic Programming (SaDDP). An algorithm
that was derived independently in [10]. The authors followed
a more intuitive approach and did not expose the gradient
extraction mechanism rigorously. Our findings suggest some
minor adaptations that improve convergence nonetheless.

The article proceeds as follows. First we set-up the frame-
work of linearly solvable Optimal Control (OC), which is a
special class of OC problems. Within this framework, the
PI2 presents itself almost naturally. In following sections we
derive and validate the proposed PI2-DDP.

II. BACKGROUND

A. Linearly solvable optimal control

Consider a nonlinear control affine continuous state-action
Markov Decision Process with Gaussian transition probabil-
ity, π. Here x ∈ Rn denotes the state and u ∈ Rm the control
action while a and B define the afine map. Throughout we
use ′ to indicate discrete time propagation.

x′ ∼ π = N (a(x) + B(x)u,Σ) (1)

We are interested in finite horizon optimal control prob-
lems which may be expressed using the Bellman equation
(2) for given cost rate, l, and terminal cost, m, at final time
N . Here v represents the value function, j the time instant
and Ep{·} the expected value operator w.r.t. the density p.

vj(x) = min
u
l(x,u) + Eπ{vj+1(x′)}, vN (x) = m(x) (2)

Within described setting, the concept of linearly solvable
optimal control is best understood when we reformulate
the problem above slightly. Rather than searching for an
optimal policy u∗, we take interest in the optimal transition
probability π∗. Note that both problems are equivalent since
π∗ , N (a+Bu∗,Σ). It has been shown [2] that if actuation
is penalized using the Kullback-Leibler (KL) divergence
(DKL) between the actuated and free transition probabilities,
respectively π and p = N (a,Σ), there exists a value function
transformation that linearises (2). Note that for Gaussian
probabilities the divergence reduces to a quadratic control
rate, 1

2u
>Ru, where R ≡ B>Σ−1B, the so called linear

solvability criterion. This condition is understood as govern-
ing the signal-to-noise ratio, i.e. the admissible controls are
similar in magnitude to any disturbances.

l(x, π) = q(x)+DKL(π ‖ p) = q(x)+ 1
2u
>B>Σ−1Bu (3)

The value function will then satisfy

w(x, j) = exp(−q(x))Ep{w(x′, j + 1)} (4)

with w , exp(−v).

The optimal π∗ satisfies [11]

π∗(x′|x) =
N (x′|a,Σ)w′(x′)∫
N (y|a,Σ)w′(y)dy

(5)

Above relation is mathematically elegant but not practical.
For further development, we are interested in recovering
an expression for the optimal policy u∗ instead of π∗.
We may invoke expression (5) and recall that by definition
π∗ = N (a + Bu∗,Σ). The idea is now simply to compare
the expected value of both expressions. Since that a is
independent of y and π is a probability density function,
we can place a under the integral. It follows that

a + Bu∗ =

∫
yπ∗(y|x)dy⇒ Bu∗ =

∫
(y−a)w′(y)N (a,Σ)dy∫

w′(y)N (a,Σ)dy

Remark that the inverse of B is ill defined so that we have
to use a pseudo inverse. We find that only B† = R−1B>Σ−1

yields a satisfying1 result. The resulting policy u∗ satisfies

u∗ = R−1B>Σ−1 Ep{(x′ − a)w′}
Ep{w′}

(6)

This peculiar result suggests that we can estimate policy
u∗ from system rollouts obtained with the free dynamics p.

B. Policy Improvement with Path Integrals
Kappen et al. were the first to realise that (6) can be

practised to compute an optimal policy by means of statistical
estimation techniques. Their approach can be considered as
the first Policy Improvement with Path Integrals (PI2) but was
quite sample intensive and so scalability became an issue.
In [1], Theodoreau et al. suggested to iterate the procedure
so that with each iteration a better estimate is retrieved. As
a result sampling could be coarser. Their procedure boils
down to the following. In the first generation, K rollouts
are generated with free dynamics a to obtain a first policy
estimate u(1). In future generations g+ 1, the free dynamics
are updated as a(g+1) ← a + Bu(g+1) where u(g+1) is
updated as u(g+1) ← u(g) +k(g) and the process is repeated.
Here k(g) is like a feedforward update and is calculated
according to (6). Modifying the free dynamics also requires
to update the cost, q(g+1) ← q + 1

2u
(g+1)>Ru(g+1).

We emphasize that within the PI2 framework, the stochas-
tic policy perturbation is deliberate since the aim is to
learn from random trials where the noise affects the ac-
tion space. The linear solvability criterion then reduces to
B>(BΣuB>)−1B> = R. In order to enforce linear solvabil-
ity we have Σu , R−1. One can observe that for generation
g+ 1, described process is equivalent with sampling u from
N (u

(g)
j + k

(g)
j ,Σu) and updating the policy as u(g+1) =

1
K

∑
k u

k
j ≈ u

(g)
j + k

(g)
j . This seems to overcomplicate

matters but will turn out to yield insight later on.
As mentioned, the feedforward k(g) is calculated using (6)

k
(g)
j = R−1B>j Σ−1

j

E(g)
p

{(
x′−a(g)

j

)
wj+1

}
E

(g)
p {wj+1}

(7)

1To see this, substitute (3) in (2), express the first order optimality criteria
and solve for u yielding u = −R−1B>Σ−1

∫
(y−a)N (a+Bu,Σ)v′(y)dy
1−
∫
N (a+Bu,Σ)v′(y)dy ,

(we use the linear solvability criteria) suggesting that B† = R−1B>Σ−1.

Repeated application of the recursion rule for w (4) and
estimating the expected value operators with rollouts, yields
following approximate expressions. Here s is defined as
exp(−r(τ kj+1:N)) and r is the cost-to-go function, operating
on rollouts k encoded by τ kj:N = {xkj:N ,ukj:N}, see (10).

Ep {wj+1} ≈ 1
K

∑
k s
(
τ kj+1:N

)
(8)

and (with ∆ = R−1B>Σ−1(y − a))

Ep {∆j · wj+1} ≈ 1
K

∑
k Dk

jd
k
j s
(
τ kj+1:N

)
(9)

where D = R−1B>Σ−1 and dj = xj+1 − aj .
The cost-to-go function is defined as

r
(
τ kj:N

)
= m(xkN) +

∑N−1
l=j q(xkl) +

∑N−1
l=j

1
2u

k>
l Rukl

(10)
Finally remark that dkj = Bkj ·δukj , where δukj = ukj−u

(g)
j

since the drift between observed and expected dynamics is
caused by the noise and that DB = R−1B>Σ−1B = I con-
sidering that R and Σ are related according to B>Σ−1B = R
as these results only hold true in the linearly solvable context.

These results can be combined into the following expres-
sion for the time dependent updates k

(g)
j

k
(g)
j =

∑
k

skj+1∑
k s

k
j+1

δukj =
∑
k p

k
j+1δu

k
j (11)

where skj is shorthand notation for s(τ kj:N).
In the current form this algorithm may be interpreted as

a reward weighted averaging of random policies. To our
knowledge this is also the first discrete time derivation of the
PI2 algorithm as the derivation in [1] was within a continuous
time setting. It is interesting to note that the continuous time
version [1] initiates the weights (11) at j rather than at j+1.
We may argue that the policy at time instant j will only
affect future time steps and that hence the weights should
only contain future information.

Algorithm 1 discrete time PI2-CMA

1: initialise
{
u

(0)
j ,k

(0)
j

}N−1

j=0
≡ 0 and

{
Σ

(0)
u,j

}N−1

j=0
≡ R−1

2: for g = 1, 2, 3, ... do
3: for k = 1, 2, 3, ...,K do
4: set xk0 = x0

5: for j = 0, 1, 2, ..., N − 1 do
6: sample ukj from N

(
u

(g)
j + k

(g)
j ,Σ

(g)
u,j

)
7: collect running cost qkj + 1

2u
k>
j Rukj

8: end for
9: collect terminal cost mk

N
10: end for
11: calculate cost-to-go values

{
r̃kj
}K,N
k=1,j=1

12: calculate probability weights
{
pkj
}K,N
k=1,j=1

13: for j = 0, 1, 2, ..., N − 1 do
14: k

(g+1)
j ←

∑
k p

k
j+1δu

k
j

15: Σ
(g+1)
j ←

∑
k p

k
j+1δu

k
j δu

k>
j

16: u
(g+1)
j ← 1

K

∑
k u

k
j

17: end for
18: end for

C. Improvements

Since the algorithm was first introduced, two improve-
ments have been made. Firstly, an optimal baseline can be
defined w.r.t. the cost-to-go values rkj . So to differentiate
good from bad random updates, one modifies rkj to

r̃kj = β
rkj −min rkj

max rkj −min rkj
(12)

where β is a sensitivity parameter.
The latter modification was already suggested by [1].

More recently, Stulp et al. [6] proposed to update the policy
perturbation covariance, Σu, according to

Σ
(g+1)
u,j ←

∑
k
pkj+1δu

k
j δu

k>
j (13)

based on structural similarities with the Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES) (see [5] for a
good introduction). Supposedly Σ

(g+1)
u,j would then converge

to a matrix proportional to the inverse Hessian of the value
function, the learning rate improved correspondingly.

These modifications result into PI2-CMA. This method
was originally intended for parametrised policies. We refrain
from those here. Pseudocode is provided in algorithm 1.

III. DERIVATION OF PI2-DDP FROM FIRST PRINCIPLES

In this section we detail the derivation of PI2-DDP. First
we provide a brief resume of the standard DDP method.
Next we elaborate on the gradient extraction mechanism
that, as we found, is inherent to PI2-CMA. Based on these
preliminary results, we will then derive PI2-DDP.

A. Differential Dynamic Programming

First consider the following definition of the Q-function

Qj(x,u) = l(x,u) + Eπ{vj+1(x′)} (14)

Now assume that we dispose of a nominal policy u(g) and
corresponding trajectory x(g). In proximity of these nominal
trajectories, we may approximate the Q-function using a
second order Taylor model. Note that we abbreviate the
couple {x,u} to the state-action τ , for notational brevity.

∆Q(∆τ) ≈ 1

2

[
1

∆τ

]> [
0 g>τ
gτ Hτ

] [
1

∆τ

]
(15)

Here ∆τ represents a local deviation between a given and
the nominal trajectory, i.e. τ and τ (g) =

{
x(g),u(g)

}
. Here

gτ and Hτ are defined as the gradient and Hessian of the
Q-function (partial derivatives are indicated with subscripts)

gτ =

[
gx

gu

]
Hτ =

[
Hxx Hxu

Hux Huu

]
(16)

The key principle in DDP is to solve for ∆u as a function
of an unknown ∆x, i.e. ∆u = −H−1

uugu − H−1
uuHux∆x.

Note that this is equal to a simultaneous feedforward and
-backward update, say ∆u = k + K∆x. Based on this idea
an iterative scheme can be designed. In a forward step, one
updates the policy as

u
(g+1)
j = u

(g)
j + k

(g)
j + K

(g)
j

(
x

(g+1)
j − x

(g)
j

)
(17)

whilst in a backward recursion step, estimates for the Hes-
sian and gradient are obtained in proximity of the updated
nominal state-action trajectory, τ (g+1) =

{
x(g+1),u(g+1)

}
.

Alternatively, if we abstain from the forward propagation
step, we set the feedback gain K = 0, which yields the
following update (which basically corresponds with a second
order single shooting method).

u
(g+1)
j = u

(g)
j + k

(g)
j (18)

The resemblance with PI2-CMA is remarkable. Moreover,
assessing the construction of k

(g)
j in (11) and considering

that δukj are distributed according the inverse Hessian, its
plausible to assume that their exists a one-on-one relation
between (11) and DDP feedforward k

(g)
j = −H−1

uugu.

B. Mechanism of gradient extraction in PI2-CMA

Following the derivation of the PI2-CMA in section II-
B, we found that the policy update was the outcome of an
optimization procedure at time instant j. Consequently the
weights only contained information about future time steps.

In order to establish a rigorous connection with gradient
based algorithms, we require the weights to contain infor-
mation about the current time instant as well. Henceforth
we shall consider the modified PI2 update with time shifted
weights (as is standard in continuous time PI2) and focus on
the state-action vector rather than on the policy alone

δτ j ←
∑
k

s(τkj:N)∑
k s(τkj:N)

δτ kj (19)

Let us first consider the normalizers. According to the
linearly solvable optimal control framework, it holds that

1
K

∑
k s
(
τ kj:N

)
≈ exp (−Qj(τ̃ j)) (20)

Here the nominal trajectory τ̃ can be estimated from the
system rollouts as E{τ} ≈ 1

K

∑
k τ

k (that is equal to τ (g+1)

after executing generation g + 1). Remark that it would
be particularly convenient if we could somehow rewrite the
numerators as a function of Q as well. We can do this using
a trick, rewriting the term 1

K s
k as a difference of sums

1
K s

k = 1
K

∑K
k=1 s

k − 1
K

∑K
l=1,l 6=k s

l

≈ exp (−Q (τ̃))− K−1
K exp

(
−Q

(
τ̃ k
)) (21)

where τ̃ k is now estimated as 1
K−1

∑
l 6=k τ

l.
Combination of these results reveals that the weights, pk,

contain an approximated Q-function difference

pk ≈ 1− K−1
K exp

(
Q (τ̃)−Q

(
τ̃ k
))

≈ 1− K−1
K exp

(
−∆Q

(
∆τ̃ k

)) (22)

Here ∆τ̃ k is the difference between the nominal trajectory
estimates, i.e. τ̃ k − τ̃ . Note that from the definitions of τ̃
and τ̃ k it follows that Kτ̃ − (K − 1)τ = τ̃ k. Rearranging
for τ̃ k yields τ̃ k = − 1

K−1τ
k + K

K−1 τ̃ so that we have that
∆τ̃ k = − 1

K−1δτ
k. Clearly we can estimate the function

difference using a second order approximation

∆Q
(

∆τ̃ k
)
≈ ∆Q

(
− 1
γ δτ

k
)

=
1

2

[
1
δτ k

]> [0 − 1
γg
>
τ

− 1
γgτ

1
γ2 Hτ

] [
1
δτ k

] (23)

where we introduce γ = K − 1 for notational brevity.
Now we invoke that by definition the sum of all weights,

pk, should be equal to 1 and substitute above relations
into the identity 1 =

∑
k p

k. Abbreviating δτ k to ξk, and
assuming that ξ is sampled from some Gaussian N (0,Ψτ),
then yields that, where Bτ = (Ψ−1

τ + 1
γ2 Hτ)−1 ≈ Ψτ

1 ≈
∑
k

(
1− γ

1+γ exp
(
−∆Q

(
− 1
γ ξ

k
)))

≈ (1 + γ)− γ
∫

exp
(
−∆Q

(
− 1
γ ξ
))
N (0,Ψτ)dξ

= (1 + γ)− η · γ
∫
N
(

1
γBτgτ ,Bτ

)
dξ

(24)
Remark that the integral is equal to 1 which on its turn

implies that the normalizer η simply vanishes. These obser-
vations are key to reveal the principle of gradient extraction
as we found is inherent to the reward weighted statistics.

Let us first consider the (extended) update δτ , it follows

δτ =
∑
k p

kδτ k

≈ (1 + γ)EN (0,Ψτ){ξ} − γEN (1
γBτgτ ,Bτ){ξ}

≈ −Bτgτ ≈ −Ψτgτ

(25)

Similarly, for the (extended) covariance update, we find

Σ(g+1)
τ =

∑
k p

kδτ kδτ k>

≈ γEN (0,Ψτ)

{
ξξ>

}
− γ2

1+γEN (1
γBτgτ ,Bτ)

{
ξξ>

}
≈ γΨτ − γ2

1+γBτ − 1
1+γBτgτg

>
τ Bτ

(26)
Here we used that 1

1+γ

∑
ξkξk> yields biased estimates of

the covariance, i.e. γ
1+γΨτ instead of Ψτ .

C. PI2-DDP

In the previous section, we demonstrated how the PI2-
CMA reward weighted rollout statistics are directly related
to the gradient information of the local Q-function. This
process is remarkably similar to the forward and backward
passes of the DDP method. Dislike DDP, PI2-CMA does not
engage a feedback strategy to update the policy. Based on
exposed gradient extraction principle, we may introduce such
a feedback term and update the policy according to the DDP
direction in (17). In order to provide a smooth derivation we
have to make two preliminary assumptions. The necessary
conditions for those assumptions to hold true will emerge
when we detail our calculations. The first assumption is that
Ψτ ≈ Σ

(g)
τ and the second assumption is that Σ

(g)
τ ≈ H−1

τ .
First let us attribute a similar block matrix structure to

Σ
(g)
τ in analogy with what we did earlier for Hτ

Σ(g)
τ =

[
Σxx Σxu

Σux Σuu

]
(27)

Invoking the first assumption and (25) yields that

gτ ≈ −Σ(g)−1

τ δτ (28)

whilst according to the second assumption it holds that

gu ≈ −Huuδu−Huxδx (29)

Substituting above expression in (17) delivers

∆u ≈ δu + H−1
uuHuxδx−H−1

uuHux∆x (30)

where we may use that H−1
uuHux ≈ −ΣuxΣ−1

xx due to the
general block matrix inversion lemma [12], ultimately to
arrive at the following feedback based update mechanism

∆u = δu− ΣuxΣ−1
xxδx︸ ︷︷ ︸

k

+ ΣuxΣ−1
xx︸ ︷︷ ︸

K

∆x (31)

1) Discussion of the first assumption: If we engage above
update rule when we execute a learning batch, the following
holds true for the rollout trajectories.

τ k = τ (g+1) + ξk →

{
x(g+1) + ζk

u(g+1) + K(g)ζk + εk
(32)

Recall that ε ∼ N (0,Σu) is a stochastic policy pertur-
bation and ζ ∼ N (0,Ψxx) is the accumulated deviation of
the state due to perturbed actions at preceding time instants.
Provisionally we assume that Ψxx ≈ Σxx. It follows that

Ψux = cov
{
ux>

}
= Gcov

{
ζζ>

}
= Σux

Ψuu = cov
{
uu>

}
= cov

{
εε>

}
+ Gcov

{
ζζ>

}
G>

= Σu + ΣuxΣ−1
xxΣxu

(33)
These observations reveal that the feedback mechanism

itself is indispensable to obtain correlated state-action tra-
jectories which on its turn is necessary since otherwise Ψτ

would be a block diagonal matrix and the update principle
would collapse to PI2-CMA. To reassure that Ψuu ≈ Σuu

holds true, note that Σu = Σuu − ΣuxΣ−1
xxΣxu. The

latter observation directly suggests following perturbation
covariance matrix update scheme

Σ
(g+1)
u,j ← Σuu − ΣuxΣ−1

xxΣxu (34)

It is left to prove that this procedure also generates
state trajectories that are perturbed according to N (0,Σxx).
Note that the initial state is not affected by the feedback
mechanism, hence if left unattended its value is deterministic.
This observation suggests that we should sample xk0 from
N (x0,Σ

(g)
xx,0). We argue that this choice initiates an uncer-

tainty propagation mechanism that generates state trajectories
with the desired stochastic properties [13].

2) Discussion of the second assumption: To illustrate that
Σ

(g)
τ converges to H−1

τ we can simply substitute our first
assumption in (26). In proximity of the optimum (gτ ≈ 0),
this generates a matrix sequence (26) that converges to λH−1

τ

with λ converging to 0. To see this one may substitute λH−1
τ

for Στ . The generating matrix sequence then reduces to a
scalar sequence for λ that satisfies

λ← γλ− γ4

(1+γ)(λ+γ2)λ (35)

For λ < γ2/(γ2 − 1) this sequence converges to 0. Close
to 0, the convergence rate of λ is equal to γ/(γ + 1).

We may emphasize that the covariance matrix update
scheme exhibits memory as is. Further damping of the
covariance update scheme, as in state-of-the-art CMA Evo-
lutionary Strategies [5], will be disadvantageous. This was
observed empirically by the authors in [6]. A possible
practice might be to damp the inverse Hessian estimates
exponentially. This increases the convergence rate to K−α

K .

Σ(g+1)
τ = (1− α)Σ(g)

τ + α
∑
k p

kδτ kδτ k> (36)

D. Remarks

Based on exposed gradient extraction principles we can
deepen insight in the behaviour of PI2 inspired methods.

Firstly, the use of the optimal base lining heuristic scales
the derivative information contained by the reward weighted
rollout statistics in section III-B by a factor β/∆r, which
is equivalent to rescaling the optimization problem with
the same factor. However, as we have demonstrated that
PI2-CMA and PI2-DDP essentially behave as second order
gradient algorithms, the policy updates are scale invariant
and the choice of β is indeed relatively uncritical [6].

Secondly, it turned out that Σ
(g)
τ converges to λH−1

τ rather
than H−1

τ . This means that δτ ≈ −λH−1
τ gτ . As a result the

update in (31) is scaled by a factor λ < 1. (Note that ∆x

depends on the perturbation covariance matrix, Σ
(g)
u , which

is also scaled by a factor λ (34).). Resultingly, λ seems to be
a line-search parameter inherent to PI2. In order to avoid that
λ converges prematurely, we may superimpose a noise term
to the update Σ

(g)
u,j , e.g. λexpR−1, as the perturbed policy is

the only source of stochasticity. Note that λexp can be made
adaptive in correspondence with the general convergence.

Σ(g+1)
u ← Σuu − ΣuxΣ−1

xxΣxu + λexpR−1 (37)

We may also choose to introduce a line search parameter
scaling the feedforward as λlsk

(g)
j . Also note that if we set

K = 0, (31) and (34) reduce to PI2-CMA, since then the
state-action rollouts become uncorrelated implying Σux = 0.

To prevent ill conditioning when we calculate the inverse
matrices Σ−1

uu and Σ−1
xx , required by the updates (11)-(34),

we use a simple regularization heuristic, A† ≈ (A+λrgI)−1.
Pseudocode of the ensemble is provided in algorithm 2.

E. Previous derivation

The present algorithm was derived independently by the
authors in [10], predating our derivation. The authors did
however not detail the gradient extraction principles nor
did they really present the algorithm as a natural extension
of PI2-CMA, and coined the method Sampled Differential
Dynamic Programming (SaDDP). As a result they do not
introduce a term −ΣuxΣ−1

xxδx
k
j to compensate for the gra-

dient gx but proposed alternatively to bias ∆x on x(g+1)

where x(g+1) is updated according to x(g+1) ← x(g) + δx.
Remarkably, this is equivalent to (31) when λfb = 1. The
authors also argued that optimal search directions were
distributed according to N (0,H−1

uu) which resulted in the
same update as in (34), we believe that it is simply necessary
to sustain the covariance convergence scheme. Related to this

last aspect, we also found that distributing the initial rollouts
states, xk0 , according to N (xk0 ,Σ

(g)
xx,0) is necessary for the

same reason. The latter suggestion was not included in [10].

IV. NUMERICAL ASSESSMENT

We have evaluated the PI2 framework for a robot trajectory
learning task. We focus the discussion on the learning rates
of the different PI2 inspired algorithms and detail some of
the rationale behind our hyperparameter choices based on
exposed gradient extraction principles.

A. Problem description
We set-up a small benchmark learning task. Our goal is

to learn an optimal policy that manipulates a toy model of a
PUMA 560 robot arm in between two end-effector positions,
see Fig. 1. The policy corresponds with direct motor com-
mands. Since it is generally hard to learn policies for unstable
dynamics, we assumed perfect gravity compensation in our
simulation environment. This is similar to assuming that we
are generating reference trajectories to a low level controller.
The robotic manipulator was modelled using general rigid-
body dynamics, i.e. q̈ = M(q)−1u −M(q)−1c(q, q̇). The
robot state is defined as x = (q, q̇). Dynamics are discretised
using Euler’s method with a time step of ∆t = 20ms.

We consider a finite horizon optimal control problem
with time horizon T = 0.5s and N = 25, terminal
cost m(x) = 1

2‖x − x∗N‖2M, state cost rate q(x) =
1
2‖x − x∗N‖2Q and control cost rate 1

2‖u‖
2
R. Matrices M, Q

and R are defined respectively as 109diag(1, 10, 1, 1, 1, 1),
diag(5 ·104, 10, 10, 10, 10, 10) and diag(10, 10, 10). Design-
ing a well-shaped objective landscape was quite laborious
and considered as a task that requires expertise. We will not
elaborate on any of the design choices that we have made.

Algorithm 2 PI2-DDP

1: initialise
{
u

(0)
j

}N−1

j=0
≡ 0 and

{
Σ

(0)
u,j

}N−1

j=0
≡ R−1

2: for g = 1, 2, 3, ... do
3: for k = 1, 2, 3, ...,K do
4: sample xk0 ∼ N

(
x0,Σ

(g)
xx,0

)
5: for j = 0, 1, 2, ..., N − 1 do
6: sample ukj from

N
(
u

(g)
j + λlsk

(g)
j + K

(g)
j

(
xkj − x

(g)
j

)
,Σ

(g)
u,j

)
7: collect running cost qkj + 1

2u
k>
j Rukj

8: end for
9: collect terminal cost mk

N
10: end for
11: calculate cost-to-go values

{
r̃kj
}K,N
k=1,j=1

12: calculate reward weights
{
pkj
}K,N
k=1,j=1

13: for j = 0, 1, 2, ..., N − 1 do
14: Σ

(g+1)
τ ,j ← (1− α)Σ

(g)
τ ,j + α

∑
k p

k
j δτ

k
j δτ

k>
j

15: K
(g+1)
j ← ΣxuΣ†xx

16: k
(g+1)
j ←

∑
k p

k
j

(
δukj −K

(g+1)
j δxkj

)
17: Σ

(g+1)
u,j ← Σuu − ΣuxΣ†xxΣxu + λexpR−1

18: τ
(g+1)
j ← 1

K

∑
τ kj

19: end for
20: end for

B. Setting of the hyperparameters
In order to choose β, one may consider that the optimal

base-line heuristic in (12) alters the derivations in III-B in
such a way that, δτ ≈ − β

∆rΣτgτ . In preliminary iterations
where Στ 6= H−1

τ , it acts like a line-search parameter. This
means that β should be similar in magnitude to what can
be expected of ∆r. We set β = 106. Parameter α was
set to 1

2 as we found that larger values resulted into too
noisy Hessian estimates and that smaller values corrupted
the learning rate. The number of rollouts K should be large
enough to assure enough information is contained within the
rollouts to determine the gradient, i.e. K > z = n + m.
Ideally K should exceed the information that is contained in
both the gradient and the Hessian, i.e. z

2

2 + z
2 + z. We found

this to be overly conservative given (26). We set K = 15.

C. Discussion
In Fig. 2, we provide mean learning rates for all PI2

inspired algorithms for a total of 30 experiments. We make
an additional distinction between PI2-DDP v1 and PI2-DDP
v2. The first version, like SaDDP, does not perturb x0 whilst
the second version does according to N (0,Σ

(g)
xx,0).

Note that we have made a distinction between the means
of the 15 best and 15 worst attempts. That is because it turned
out that all variations of the PI2 framework are prone to a
large variance in between distinct attempts. Unfortunately
our simulation results do not reflect similar improvements
as were documented in [10]. We may argue that the effect
of feedback is less pronounced for this particular test case.
Nonetheless one may observe that the PI2-DDP v2 outper-
forms all other variations and performs as PI2 in worst case.

We emphasize that λexp takes on an important role, given
that it regulates the rate at which the covariance matrix
vanishes. During our experiments we found that keeping λexp

fixed may result in fast initial learning rates but degraded
final convergence which is again in correspondence with III-
D. Therefore we adopted following trust region inspired up-
date heuristic. If the current exploration rate yields satisfying
results, we increase the exploration magnitude slightly. In
case that the policy is worse then the previous, we decrease
its magnitude. Here v(g) represents the accumulated cost over
a noise free rollout with feedback policy u(g) + G(g)∆x.

if v(g) > v(g−1), λexp ← max{10−3, 0.9 · λexp}
else if v(g) < 0.9 · v(g−1), λexp ← min{1, 1.1 · λexp}

(38)
In addition we can choose to reinitialize the next iteration

with the old policy if v(g) > v(g−1). This implies that we
disregard information contained by an entire rollout batch.

Fig. 3 portrays mean learning curves for different im-
plementations of the exploration heuristic in (38). The

start end

Fig. 1: Start and end positions for the learning task.

0 50 100 150

iteration

106

108

1010

co
st

15 worst out of 30

100 150

1

2

3
108

0 50 100 150

iteration

106

108

1010

co
st

15 best out of 30

PI²-DDP v1

PI²-DDP v2

PI²-CMA

PI²

Fig. 2: Learning rates for all PI2 algorithms, β = 106.

0 100 200

iteration

105

1010

co
st

5 worst out of 10

normal
adaptive v1
adaptive v2

0 100 200

iteration

105

1010

co
st

5 best out of 10

Fig. 3: Learning rates for different exploration strategies.

0 50 100 150 200 250

iteration

10-2

100

ex
p

adaptive v1
adaptive v2

Fig. 4: Evolution of λexp for different exploration strategies.

implementation referred to as adaptive v1 indicates that
exploration is adaptive but the policy is updated anyhow,
the adaptive v2 implementation additionally reinitialized the
policy to the policy from the previous generation. Following
observations can be made. The fixed implementation exhibits
significant oscillatory behaviour in later generations. It is
clear that the magnitude of the noise becomes relatively too
large w.r.t. to the objective landscape and the improvement
procedure becomes more or less random. Secondly we can
observe that there is still a high performance variance be-
tween the three considered exploration heuristics. Although
this is significantly less the case for adaptive v2. Studying
the evolution of λexp in Fig. 4 reveals that adaptive v2
explores more aggressively during the early generations and
settles down faster in later generations. As a result the perfor-
mance variance is reduced significantly. So it appears to be
a rewarding strategy to disregard a policy update entirely,
therewith rendering an entire rollout batch useless, if the
corresponding cost-to-go is larger than that of the previous
generation. These preliminary results suggest that adaptive
schemes may significantly improve the learning rate and may
be considered in future work for all hyperparameters.

For visual confirmation, Fig. 5 provides snapshots of the
learned optimal trajectory.

Fig. 5: Snapshots taken along the learned optimal trajectory.

V. CONCLUSION

We presented a step-based model-free reinforcement learn-
ing algorithm which we coined Path Integral Policy Improve-
ment with Differential Dynamic Programming, connecting
the Path Integral Policy Improvement with Covariance Ma-
trix Adaptation (PI2-CMA) method with the Differential
Dynamic Programming (DDP) algorithm. Our main contri-
bution is that we have demonstrated rigorously how first and
second order derivative information of the value function
is extracted by calculating the reward weighted statistics of
system rollouts in accordance with PI2-CMA.

This process is similar to the forward and backward passes
in the state-of-the-art Differential Dynamic Programming
(DDP) method. Based on these findings it is straightforward
to develop an algorithm in analogy with DDP using the
gradient extraction mechanism of PI2-CMA. As a result
we obtain a step-based model-free reinforcement learning
algorithm with feedback based policy improvement. Our
numerical experiments suggest that the introduction of a
feedback term does improve the learning rate. We emphasize
that the method is entirely model-free and hence has an
attractive implementational threshold that will require limited
storage capabilities of the embedded hardware.

The most important application is envisioned within the
guided policy search framework [14] where recently the
PI2-CMA method was applied to learn a series of local
controllers model-free [15]. Other applications might involve
learning a local controller superimposed on a traditional
model based controller.

Nevertheless our numerical experiments also indicate that
the method is still prone to sources of stochasticity resulting
in large performance variances, that need to be attended in
future work. Amongst which are the complicated mecha-
nism behind the covariance matrix adaptation (adopted from
CMA) and the fact that our most performant exploration
heuristic disregards the information contained by entire roll-
out batches that did not result into an improved policy. Future
work should focus both in the theoretical assessment of
the gradient extraction principle and on the development of
improved covariance matrix adaptation schemes and more
advanced adaptation schemes for the hyperparameters.

REFERENCES

[1] E. Theodorou, J. Buchli, and S. Schaal. A generalized path integral
control approach to reinforcement learning. Journal of Machine
Learning Research, 11(Nov):3137–3181, 2010.

[2] E. Todorov. Linearly-solvable markov decision problems. In Advances
in neural information processing systems, pages 1369–1376, 2007.

[3] H. Kappen, W. Wiegerinck, and B. van den Broek. A path integral
approach to agent planning. Autonomous Agents and Multi-Agent
Systems, 2007.

[4] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. Reinforcement
learning of motor skills in high dimensions: A path integral approach.
In 2010 IEEE International Conference on Robotics and Automation,
pages 2397–2403. IEEE, 2010.

[5] N. Hansen. The cma evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772, 2016.

[6] F. Stulp and O. Sigaud. Path integral policy improvement with
covariance matrix adaptation. arXiv preprint arXiv:1206.4621, 2012.

[7] Freek Stulp and Olivier Sigaud. Policy Improvement Methods: Be-
tween Black-Box Optimization and Episodic Reinforcement Learning.
34 pages, October 2012.

[8] W. Li and E. Todorov. Iterative linear quadratic regulator design for
nonlinear biological movement systems. In ICINCO (1), pages 222–
229, 2004.

[9] D. Mayne. A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems. International Journal
of Control, 3(1):85–95, 1966.

[10] J. Rajamäki, K. Naderi, V. Kyrki, and P. Hämäläinen. Sampled
differential dynamic programming. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1402–
1409, Oct 2016.

[11] E. Theodorou, D. Krishnamurthy, and E. Todorov. From information
theoretic dualities to path integral and kullback-leibler control: Contin-
uous and discrete time formulations. In The Sixteenth Yale Workshop
on Adaptive and Learning Systems, 2013.

[12] K. Petersen, M. Pedersen, et al. The matrix cookbook. Technical
University of Denmark, 7(15):510, 2008.

[13] E. Todorov. General duality between optimal control and estimation.
In Decision and Control, 2008. CDC 2008. 47th IEEE Conference on,
pages 4286–4292. IEEE, 2008.

[14] S. Levine and P. Abbeel. Learning neural network policies with
guided policy search under unknown dynamics. In Advances in Neural
Information Processing Systems, pages 1071–1079, 2014.

[15] Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, and
S. Levine. Path integral guided policy search. In 2017 IEEE
international conference on robotics and automation (ICRA), pages
3381–3388. IEEE, 2017.

