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Samenvatting
– Summary in Dutch –

De laatste jaren kende cloud computing een enorme groei, net als het aantal appli-
caties dat gebruikmaakt van deze cloud. Eén van de belangrijkste voordelen van
cloud computing is dat het de uitrol en het beheer van IT oplossingen voor bedrij-
ven eenvoudiger maakt, aangezien het de uitgaven voor het kopen, onderhouden
en upgraden van hardware en software overbodig maakt. In plaats daarvan kunnen
bedrijven de benodigde hoeveelheid computationele bronnen huren van een cloud-
provider, en een cloudomgeving biedt een bijna oneindige hoeveelheid bronnen,
waardoor applicaties uitgerold in de cloud kunnen schalen gebaseerd op de huidige
of verwachte toekomstige vraag. Voor cloudgebruikers is de kostprijs typisch ge-
baseerd op basis van de hoeveelheid toegewezen bronnen, waardoor een efficiënt
gebruik van de toegewezen bronnen aangewezen is om onnodige huurkosten te
voorkomen. Cloudproviders daarentegen moeten een haalbare toewijzing bepalen
van de gevraagde bronnen over de fysieke hardware, waarbij ze trachten om de be-
nodigde hoeveelheid fysieke hardware te minimaliseren om de operationele kosten
te verminderen, maar tegelijkertijd moeten ze doelstellingen afgesproken met de
cloudgebruikers blijven garanderen.

Een van de belangrijkste kenmerken van cloud computing is multi-tenancy,
aangezien meerdere cloudgebruikers (tenants) typisch gebruikmaken van dezelfde
fysieke hardware. Applicaties uitgerold in een cloudomgeving kunnen echter ook
genieten van de voordelen van multi-tenancy, door meerdere eindgebruikers te
bedienen via een enkele instantie. Multi-tenancy kan dus leiden tot een hogere
schaalbaarheid, en een efficiënter gebruik van de beschikbare computationele bron-
nen, maar een multi-tenant omgeving moet wel zorgen voor een duidelijke schei-
ding van data en performantie tussen de verschillende tenants.

Dit proefschrift heeft tot doel het ontwerpen en bestuderen van technologieën
en technieken die gebruikt kunnen worden voor een efficiënt beheer van bronnen
in een multi-tenant cloudomgeving, zowel vanuit het standpunt van onderliggende
infrastructuur als van de applicaties uitgerold in een cloudomgeving. Concreet
werden vier belangrijke uitdagingen beschouwd:

1. Er is nood aan een manier om applicaties uit te rollen in een cloudomgeving.
Een cloudplatform kan enkele beperkingen opleggen, en sommige cloudom-
gevingen zijn beter geschikt dan anderen voor een bepaald type applicatie.
Bovendien dienen applicaties uitgerold in een cloudomgeving de beschik-
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bare bronnen zo efficiënt mogelijk te gebruiken.

2. Een strategie voor het bereiken van een hoge schaalbaarheid en een hoge
graad van gebruik van middelen is noodzakelijk, maar deze strategie moet
voldoende isolatie garanderen tussen de verschillende tenants. Zowel het
aantal applicaties als de noden voor individuele applicaties zullen in de loop
van de tijd wijzigen, waardoor er wijzigingen nodig zullen zijn in het hui-
dige toewijzingsschema. Migraties van uitgerolde applicaties moeten echter
geminimaliseerd worden, aangezien dergelijke operaties zowel kostelijk als
tijdsintensief zijn.

3. Voor de validatie van resource management strategieën is een praktische
aanpak wenselijk. Evaluatie van dergelijke strategieën door middel van een
echt cloudplatform is echter zowel kostelijk als tijdsrovend. Simulaties kun-
nen gebruikt worden voor de initiële evaluatie, maar op een gegeven mo-
ment moeten experimenten op fysieke hardware ook overwogen worden om
vertrouwen te krijgen in de voorgestelde strategie.

4. Cloud computing evolueert constant, en nieuwe technologieën en modellen
winnen aan populariteit. In deze context is het aangewezen om te onderzoe-
ken hoe de recente evoluties een impact hebben op het beheer van bronnen
in een cloudomgeving.

Om de bovengenoemde uitdagingen aan te pakken, wordt er eerst een aanpak
voor het uitrollen van applicaties in een cloudomgeving opgesteld en geverifieerd
met behulp van twee praktische cases. De voorgestelde aanpak bestaat uit twee
delen, een strategie voor de migratie van applicaties naar een cloudomgeving en
een strategie voor het toevoegen van multi-tenancy aan een bestaande applica-
tie. De voorgestelde aanpak is proactief, aangezien deze mogelijke toekomstige
risico’s identificeert en elimineert, bijvoorbeeld door beveiligingsrisico’s te beper-
ken en de architectuur te analyseren met betrekking tot de schaalbaarheid. Door de
voorgestelde aanpak te volgen, kan het gebruik van de beschikbare cloudbronnen
gemaximaliseerd worden, en de huurkosten geminimaliseerd. De migratie van be-
staande applicaties naar de cloud brengt kosten met zich mee, en sommige delen
van de applicatie zullen aangepast of herschreven moeten worden. De langeter-
mijnvoordelen van een cloudmigratie kunnen echter gemakkelijk opwegen tegen
de kosten nodig voor het implementeren van de beschreven wijzigingen.

Vervolgens wordt er een schaalbaar systeem beschreven voor het beheer van
opslagbronnen in een multi-tenant omgeving. Een multi-tenant omgeving moet
zowel scheiding van data als scheiding van performantie garanderen voor elke te-
nant, en migratie van data in de loop van de tijd moet geminimaliseerd worden
aangezien dit zowel een dure als tijdsrovende operatie is. In de voorgestelde op-
lossing worden de tenants georganiseerd met behulp van een hiërarchisch model,
en wordt er een dynamisch algoritme gebruikt om een haalbare toewijzing van de
data over een set opslagbronnen te bepalen. Het hiërarchisch model maakt de toe-
wijzing van gegevens vanuit het perspectief van de tenant mogelijk, en waarborgt
een duidelijke scheiding van tenants, rekeninghoudend met de individuele eisen.
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Een belangrijke uitdaging bij onderzoek naar resource management binnen
cloudomgevingen is de validatie van nieuwe strategieën in een praktische omge-
ving. Een algemene aanpak wordt voorgesteld, die het belang van experimen-
tele validatie benadrukt. Experimenten uitvoeren op een bestaand cloudplatform
is echter kostelijk en tijdsrovend, en niet altijd mogelijk. Bijgevolg wordt het
ontwerp en de implementatie van ‘Raspberry Pi as a Service’ (RPiaaS) voorge-
steld, een low-cost embedded cloud-testbed dat opgebouwd is uit Raspberry Pi
borden. De voorgestelde aanpak wordt vervolgens geı̈llustreerd door het valide-
ren van het schaalbare opslagsysteem dat eerder werd geı̈ntroduceerd bovenop het
RPiaaS-testbed. De verkregen resultaten van de experimentele evaluatie worden
vergeleken met de resultaten die zijn verkregen met behulp van een op maat ont-
wikkelde simulatietool. Hoewel de resultaten van beide evaluaties erg gelijkaardig
zijn, bood het RPiaaS-testbed de mogelijkheid om andere bruikbare waarden te
meten, en werden er ook nieuwe inzichten geboden met betrekking tot de voorge-
stelde strategie.

Tenslotte wordt een uitgebreid overzicht gepresenteerd van de huidige stand
van zaken met betrekking tot resource management in de brede zin van cloud com-
puting, complementair aan bestaande enquêtes in de literatuur. In dit overzicht ligt
de focus op hoe recent gepubliceerd onderzoek zich aanpast aan de hedendaagse
evoluties binnen cloud computing, meer bepaald de opkomst van nieuwe imple-
mentatiemodellen zoals edge en fog computing, en het gebruik van containers als
een lichtgewicht alternatief voor virtuele machines. Hoewel het merendeel van het
onderzoek zich nog steeds richt op het beheer van virtuele machines binnen een
traditionele cloudomgeving, is het duidelijk dat de recente evoluties vele proble-
men kunnen aanpakken van bestaande benaderingen voor resource management.
Daarom worden, ter afsluiting van dit proefschrift, er nog enkele uitdagingen en
opportuniteiten voor beheer van bronnen in een toekomstige cloud voorgesteld.





Summary

Over recent years, cloud computing has seen an enormous growth, as well as the
number of applications deployed on top of it. One of the main benefits of cloud
computing is that it simplifies the management and deployment of IT solutions for
enterprises, as it eliminates the capital expense of buying, maintaining and upgrad-
ing hardware and software. Instead, enterprises can rent the required amount of
computational resources from a cloud provider, and a cloud environment offers a
near infinite amount of resources, allowing the deployed applications to scale up
or down based on the current or expected future demand. Cloud users are typ-
ically charged based on the amount of allocated resources, introducing the need
for an efficient usage of the allocated resources to avoid unnecessary rental costs.
Cloud providers on the other hand need to determine a feasible allocation of the
requested resources over the physical hardware, minimizing the amount of physi-
cal hardware required to reduce the operational costs while still guaranteeing the
objectives agreed upon with the cloud users.

One of the main characteristics of cloud computing is multi-tenancy, as multi-
ple cloud users (tenants) are typically served by the same set of hardware. Appli-
cations deployed on top of the cloud however can also benefit from the concepts
introduced by multi-tenancy, by serving multiple end users by a single applica-
tion instance. Multi-tenancy therefore can help to achieve a higher scalability, and
a more efficient usage of the available resources, but a multi-tenant environment
should guarantee data and performance isolation between tenants.

This dissertation aims to investigate technologies and management techniques
that enable efficient resource management in a multi-tenant cloud environment,
from the perspective of both the infrastructure and the applications deployed on
top of it. Specifically, four main challenges were considered:

1. An approach for the deployment of applications in the cloud is required.
The cloud platform could introduce some restrictions, and some environ-
ments might be better suited than others for a specific type of application.
Furthermore, applications deployed on top of a cloud environment should
achieve an efficient usage of the available cloud resources.

2. A strategy for achieving high scalability and a high level of resource utiliza-
tion is needed that still guarantees isolation between tenants. The number of
applications as well as the demand for individual applications will change
over time, requiring changes to the current allocation scheme. Migration of
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deployed applications should however be minimized, as such operations are
both costly and time consuming.

3. For the validation of resource management strategies, a practical approach
is desirable. Evaluation of such strategies on top of a real cloud platform
however is both costly and time consuming. Simulations can be used for the
initial evaluation, but at some point experimental evaluation using real hard-
ware should also be considered to gain confidence in the proposed strategy.

4. The cloud is evolving, and new technologies and models are gaining popu-
larity. In this context, it is recommended to study how the recent evolutions
impact resource management in a cloud environment.

To tackle the above challenges, an approach for deploying applications in a
cloud environment is first proposed and verified using two real world use cases.
The proposed approach consists of two main parts, a strategy for migrating ap-
plications to a cloud environment and a strategy for incorporating support for
multi-tenancy in existing applications. The presented approach is proactive, as
it includes identifying and eliminating possible future risks, for example by mit-
igating security risks and analyzing the architecture regarding its scalability. By
following the presented approach, the utilization of the available cloud resources
can be maximized, while minimizing the rental costs. Migrating legacy software
to the cloud comes at a cost, and some application components may need to be
modified or rewritten. However, the long-term benefits of a cloud migration can
easily outweigh the costs of implementing the described changes.

Next, a scalable system for the allocation of storage resources in a multi-tenant
environment is presented. A multi-tenant environment should guarantee both data
separation and performance isolation towards every tenant, and migration of tenant
data over time should be minimized as this is both an expensive and time consum-
ing operation. In the presented solution, tenants are hierarchically structured, and a
dynamic resource allocation algorithm is used to determine a feasible allocation of
the tenant data over a set of storage resources. The hierarchical structure enables
the allocation of data from the tenant’s perspective, guaranteeing a clear isolation
of tenants, and taking custom tenant characteristics into account.

A main challenge with research targeting resource management for cloud en-
vironments is the validation of new strategies in practice. A generic approach is
presented, illustrating the importance of experimental validation. Executing exper-
iments on an existing cloud platform is however both costly and time consuming,
and not always possible. As a result, the design and implementation of Raspberry
Pi as a Service (RPiaaS) is described, a low-cost embedded cloud testbed which
was built using Raspberry Pi nodes. The presented approach is then illustrated by
validating the scalable storage system previously introduced on top of the RPiaaS
testbed. The obtained results from the experimental evaluation are then compared
to the results obtained using a custom developed simulation tool. Although the
results from both evaluations were very similar, the experiments executed on the
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RPiaaS testbed allowed for the measurement of other useful metrics, and also of-
fered some new insights regarding the proposed strategy.

Finally, an extensive overview of the current state of the art regarding resource
management within the broad sense of cloud computing is presented, complemen-
tary to existing surveys in literature. In this overview, the focus is on how recently
published research is adapting to the latest evolutions within cloud computing,
being the rise of new deployment models such as edge and fog computing, and
the use of containers as a lightweight alternative for virtual machines. Although
the majority of research is still focusing on the management of virtual machines
within a traditional cloud environment, it is clear that the recent evolutions could
tackle many issues with existing resource management approaches. As a result,
and to conclude this dissertation, several challenges and opportunities for resource
management in a future cloud are proposed.





1
Introduction

“First to mind when asked what ‘the Cloud’ is, a majority respond it’s either an
actual cloud, the sky, or something related to weather.”

– Citrix Cloud Survey Guide (August 2012)

Cloud computing has seen an enormous growth over recent years, as well as
the number of applications deployed on top of it. We might not realize it, but most
people are already using ‘the Cloud’ on a daily basis. Whether it is for reading
and sending e-mails, for storing and sharing pictures and documents online, or
when using mobile applications, chances are high that some data is stored and/or
processed in the cloud. Nowadays, most modern operating systems installed on
personal computers or mobile devices are even using multiple cloud services un-
der the hood, for basic tasks like the initial activation and registration to more
advanced features such as using built-in voice assistants. As a matter of fact, for
any application that requires an active internet connection, it is very likely that a
cloud environment is involved.

1.1 A Shift to the Cloud

When cloud computing was introduced, one of its main selling points was that it
would simplify the management and deployment of IT solutions for enterprises [1] 1.

1In this dissertation, the bibliography is distributed across the different chapters.
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Table 1.1: Global data center workloads and compute instances. (Source: Cisco Global
Cloud Index: Forecast and Methodology, 2016–2021 [2])

2016 2017 2018 2019 2020 2021

Traditional 42.1M 41.4M 40.8M 39.1M 36.2M 32.9M
Data Center 17% 14% 11% 9% 7% 6%

Cloud 199.4M 262.4M 331.0M 393.3M 459.2M 533.7M
Data Center 83% 86% 89% 91% 93% 94%

Cloud computing eliminates the capital expense of buying, maintaining and up-
grading hardware and software, as well as the cost of maintaining on-site data
centers, and the electricity required for powering and cooling equipment. Instead,
enterprises can rent the required amount of computational resources from a cloud
provider, and all of this can be done with a few clicks, without requiring any human
interaction. The cloud is also an ideal environment for enterprises with growing or
fluctuating demands, as the elasticity offered by the cloud makes it easy to scale
up or down. Billing happens at the end of a predefined period, and is based on the
actual usage, so that enterprises only pay for what they really need, without having
to make a prediction about future growth.

Furthermore, by moving to the cloud, enterprises no longer have to worry about
aspects such as backups and recovery, security and availability, as these are now
the responsibility of the cloud provider. Cloud services are typically offered us-
ing a well defined agreement, consisting of several objectives (e.g. regarding the
guaranteed availability of the cloud services, a maximum allowed response time
for service requests, incident response times, back-up and disaster recovery, etc.),
and it is the provider’s task to comply with these objectives.

Because of these advantages, over recent years there has been a significant shift
towards the cloud [2], as illustrated in Table 1.1 and Figure 1.1. In this table and
the corresponding figure, an estimation is given for the total number of global data
center workloads and compute instances (in millions) per year for both traditional
data center and cloud environments. In 2018, 89% of all workloads and compute
instances executed within a data center were already executed in a cloud envi-
ronment, and it is expected that this ratio will only increase in the future. While
the number of workloads and compute instances inside traditional data center en-
vironments slowly decreases, there is an exponential increase when it comes to
workloads and compute instances executed inside cloud environments, illustrating
the massive growth of cloud applications.

However, this wide adoption of cloud computing introduces several challenges
when it comes to efficient management of the available cloud resources. Con-
sumers that are renting cloud resources from a cloud provider need to ensure that
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Figure 1.1: Global data center workloads and compute instances in millions. (Source:
Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 [2])

they can put the allocated resources to good use to avoid unnecessary rental costs.
Cloud providers on the other hand need to determine a feasible allocation of the
different consumers over their physical hardware, minimizing the required number
of physical servers in order to reduce the energy consumption of the data center,
without violating the objectives agreed upon with the consumers. This results in a
more effective use of the hardware resources, and therefore helps to accommodate
as many consumers as possible, and minimizes the operational costs. A cloud data
center also typically consists of a heterogeneous set of resources, and hosts a wide
variety of applications deployed by multiple consumers, with each application hav-
ing its own requirements and characteristics. Ideally, both the set of resources and
the different applications should be managed in an autonomous way, meaning that
the environment can react to changes by adjusting the current resource allocation
scheme or even migrating existing applications, preferably without requiring any
human interaction. The heterogeneity of both the hardware and software aspects
however increases the difficulty for autonomous management of the often quite
complex cloud environments.
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Figure 1.2: An overview of the typical deployment models used with cloud computing.

1.2 Definitions and Terminology

Before diving into the challenges, this section provides a definition of the most
important concepts used throughout this dissertation.

• Cloud computing: while there are many definitions possible, the National
Institute of Standards and Technology (NIST) published a technical report
in 2011 in which they provided the following general definition [3]: Cloud
computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources that can
be rapidly provisioned and released with minimal management effort or ser-
vice provider interaction. This cloud model is composed of five essential
characteristics, three service models, and four deployment models.

• Cloud service model: a cloud service model describes how providers offer
their services to the consumers. The NIST defined three main service mod-
els for cloud computing, being Infrastructure as a Service (IaaS), Platform
as a Service (PaaS) and Software as a Service (SaaS) [3]. These models
offer an increasing level of abstraction. With IaaS, (often virtual) resources
are leased to the consumer, giving the consumer the highest level of control.
A PaaS provider offers a development environment to application devel-
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opers, which typically consists of a toolkit and standards for the develop-
ment of cloud applications. A SaaS provider offers application software and
databases to the consumers. Apart from some customization options, SaaS
consumers have limited control over the software or cloud environment, and
SaaS applications are typically deployed on top of an IaaS or PaaS cloud
platform.

• Cloud deployment model: a cloud deployment model represents a specific
type of cloud environment, with main characteristics being the ownership,
the size, and the level of access of the cloud environment. The NIST defined
four main deployment models [3]. With a private cloud, the cloud infras-
tructure is provisioned for exclusive use by a single organization comprising
multiple consumers. A community cloud is similar to a private cloud, but
the infrastructure is provisioned for exclusive use by a specific community of
consumers. A public cloud is provisioned for open use by the general pub-
lic, and is usually fully accessible over the public internet. A hybrid cloud is
a composition of two or more distinct cloud infrastructures using different
deployment models. A private cloud is typically limited in size, whereas a
public cloud environment easily consists of ten thousands of servers. Re-
cently, two new deployment models are gaining popularity, being edge and
fog computing, which aim to bring the cloud closer to the end users. These
new models are often used in combination with less powerful devices, such
as mobile devices and Internet of Things (IoT) devices. Figure 1.2 provides
a graphical overview of the most popular cloud deployment models.

• Virtualization: cloud computing is mainly built on top of virtualization, as
cloud providers typically provide virtual resources to the consumers. Vir-
tualization makes an abstraction of physical hardware, turning physical re-
sources into logical ones. Virtualized resources provide identical function-
ality compared to their physical counterparts. They, however, provide more
flexibility, as multiple virtualized resource bundles can be executed on a sin-
gle physical machine. Popular virtualization technologies include the use of
Virtual Machines (VMs) and containers [4].

• Virtual Machine: a VM is an emulation of a computer system. A virtual
machine provides the same functionality of a physical computer, and uses
virtual resources for the execution. Typically, multiple VMs are emulated
on top of a single physical machine, and a hypervisor is used for managing
the allocation and sharing of the physical resources over the different VMs.
A VM typically runs the full software stack, meaning that an Operating
System (OS) is deployed on top of the VM, and the required software is
installed on top of this OS.
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• Container: recently, container technologies have emerged as an alternative
for VMs [4]. A container instance also provides an emulated environment
for executing software, but the major difference with VMs is that the cor-
responding container image typically has no OS installed. Instead, all con-
tainer instances deployed on a single machine are running directly on the
OS kernel of the machine, often referred to as OS-level virtualization. As a
result, container images are much smaller in size. A typical container image
is a few hundreds megabytes, whereas a similar VM with the same appli-
cations installed will easily consume a few gigabytes as it contains the full
OS.

• Multi-tenancy: with multi-tenancy, a set of resources is shared by differ-
ent tenants, in order to achieve a higher level of resource utilization. In this
context, a tenant can either be a single user or a group of users, typically be-
longing to a single organization. With software multi-tenancy for example,
a single application instance is used to serve multiple tenants. Multi-tenancy
is also possible at the infrastructure level, and this is in fact one of the main
characteristics of cloud computing, as the physical resources (e.g. servers
within a data center) are shared by multiple tenants (the consumers).

• Resource Management: resource management is a broad term, which refers
to all required functionality for the allocation, provisioning, profiling, moni-
toring and pricing of (virtual) resources [5]. When deploying applications in
a cloud environment, the consumer needs to determine the required amount
of virtual resources, and the cloud provider needs to determine a feasible
allocation over the set of physical resources available within the data cen-
ter. In an elastic cloud environment, the allocated amount of resources can
change dynamically based on the current demand. By monitoring and pro-
filing the resource utilization, an estimate can be made regarding the future
demand, which can be taken into account for resource scheduling. In a pub-
lic cloud environment, the cloud provider needs to determine the price billed
to the consumers based on the actual resource usage, and the consumer could
charge the end users for using the SaaS applications deployed on top of the
cloud environment.

Apart from the above definitions, Armbrust et al. defined three main actors
within Cloud Computing [6]:

• The cloud provider or infrastructure provider manages a physical data cen-
ter, and offers (typically virtualized) resources to the cloud users, either as
IaaS or PaaS instances.

• The cloud user rents virtual resources from the cloud provider to deploy its
cloud applications, which he provides (typically as SaaS) to the end users.
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• The end user uses the SaaS applications provided by the cloud user. The
end user generates workloads that are processed using cloud resources.

1.3 Challenges

Applications can benefit from the many advantages of cloud computing, with
main benefits being the elimination of up-front costs, the near infinite capacity
on-demand, and pricing based on the actual usage. Deploying applications in a
cloud environment can therefore help to reduce the operational costs, but only if
the application uses the available resources efficiently. Efficient resource manage-
ment is thus of paramount importance, and not only for the cloud user. For the
cloud provider, it can help to minimize the power consumption, as unprovisioned
hardware can be put in standby or even turned off. This contributes to the reduc-
tion of the energy footprint of the data center, which is one of the main goals of
green cloud computing, and can also reduce the operational cost of the data cen-
ter. In addition, when more consumers can be served by the same set of physical
hardware, the cloud provider can offer its instances at a lower price.

This dissertation investigates how cloud resources can be efficiently managed,
from both the perspective of the cloud user who wants to deploy its applications on
top of a cloud environment (application-level) as from the perspective of the cloud
provider who needs to determine a feasible allocation of the requested resources
over the physical hardware (infrastructure-level resource management). In this
context, four main challenges have been addressed in this dissertation.

Challenge #1: Design and deployment of applications in a multi-tenant cloud
environment. Deploying an application inside a cloud environment is slightly dif-
ferent from a deployment within a traditional data center environment. The cloud
platform could introduce some restrictions, requiring several changes to the de-
sign and implementation of the application. Some cloud platforms might also be
better suited than others for hosting a given type of application. A key enabler of
cloud computing is the offered elasticity, meaning that applications or individual
application components can scale up or down based on the actual or expected fu-
ture demand. This however requires that the cloud elasticity is taken into account
during the design of the application, as the application should be able to handle
synchronization and conflicts in data when more than one instance is deployed.
Furthermore, as cloud users are typically charged based on the actual resource
usage, efficient use of available cloud resources is highly recommended to avoid
unnecessary rental costs.

Challenge #2: Achieving high scalability and a high level of resource utiliza-
tion while guaranteeing tenant isolation. When deploying applications on top of
the cloud, the optimal amount of resources needs to be determined to reduce the
rental costs, as well as the preferred geographical location. Given the requirements
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of the different cloud users and their applications, the cloud provider needs to de-
termine an optimal mapping for the requested bundles of resources over its set
of physical hardware, in order to accommodate as many consumers as possible.
In this context, a static allocation scheme can be used for the initial allocation of
cloud resources. However, as the number of applications deployed on top of the
cloud will change over time, as well as the demand for individual applications,
some changes in the allocation scheme might be required to avoid over- or under-
provisioning. This introduces the need for a dynamic allocation scheme, which
aims to achieve a high utilization of the available resources and therefore a high
scalability of the cloud environment. To reduce its operational costs, the cloud
provider will typically try to minimize the amount of provisioned computational
resources, but without violating the objectives described in the agreements with the
cloud users. If the allocation scheme changes over time, some applications might
need to be migrated to a different physical server, which could lead to a downtime.
And if the applications to be migrated are using a large amount of data storage,
the re-allocation of the application data can become both expensive and time con-
suming. Furthermore, as the cloud is typically a multi-tenant environment, the
cloud platform should guarantee sufficient isolation between the different tenants.
A tenant user should not be able to access data belonging to a different tenant, and
the performance of the cloud for a single tenant should not be influenced by other
tenants. In general, an efficient resource allocation scheme should provide enough
flexibility to cope with changes, minimizing migrations over time, and should de-
termine a feasible tradeoff between achieving a high level of resource utilization
and therefore high scalability versus guaranteeing sufficient isolation between the
different tenants.

Challenge #3: Cost-effective and reproducible validation of resource manage-
ment approaches. When designing a resource allocation scheme, or a resource
management approach in general, a major challenge is how to validate this new
approach in practice. Ideally, the proposed solution should be validated using a
real cloud environment, using a realistic data set over a large time period. Unfor-
tunately, running such experiments on top of a cloud environment is both expensive
and time consuming. This is especially true for the design and fine-tuning of new
resource allocation strategies, as this often requires multiple incremental iterations
of experiments using several cloud instances. Especially when experiments fail
during execution, for example due to hardware constraints or a faulty algorithm,
this can quickly ramp up the cost. Many cloud computing environments also have
some important limitations, as cloud users rarely have full control over the under-
lying hardware resources. This level of control over the hardware is often one of
the requirements for resource allocation strategies aiming at the physical hardware
level. As a result, simulations are often used instead for the experimental valida-
tion of resource management approaches. When using a simulator, a full cloud
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environment is emulated in software, and large scenarios can be quickly simulated
within reasonable time. For this type of evaluation, no real cloud hardware is re-
quired, but simulators often have their limitations [7]. In general, simulations can
be effectively used as a prototyping mechanism to provide a rough idea of how a
particular algorithm may perform, but it is very difficult to verify if the simulation
environment is an accurate representation of a real world data center environment.
Therefore, experimental validation using real hardware should also be considered,
but this introduces the need for a testbed that offers enough flexibility and ideally
allows for low-cost and reproducible execution of experiments.

Challenge #4: Adapt to recent evolutions within cloud computing. The world
of information technology is constantly evolving, and so is cloud computing. A
recent trend within cloud computing is the uprise of new types of clouds, such as
edge and fog computing. The cloud is no longer limited to the centrally hosted
data center, accessible from a laptop or desktop computer with a broadband in-
ternet connection, but lightweight devices such as mobile phones and Internet of
Things (IoT) devices can also benefit from the infinite amount of resources of-
fered by the cloud. These devices can offload computationally intensive tasks to
a centrally hosted cloud, and by installing dedicated hardware at the edge of the
network, close to the end user devices, the latency can be reduced, as well as the
consumed network bandwidth towards the public cloud. When it comes to virtual-
ization, containers are gaining popularity, due to the minimal overhead compared
to traditional virtual machines and the offered portability. Traditional resource
management strategies however are typically designed for the allocation and mi-
gration of virtual machines within a traditional cloud environment, so the question
arises how these strategies can be adapted to support these new trends.

1.4 Outline

This dissertation is composed of a number of publications that were realized within
the scope of this PhD. The selected publications provide an integral and consistent
overview of the work performed. The different research contributions are detailed
in Section 1.5 and the complete list of publications that resulted from this work
is presented in Section 1.6. This section provides an overview of the remainder
of this dissertation, and explains how the different chapters are linked together. A
schematic overview of how the chapters (Ch.) and appendices (App.) are related
to each other and to the research contributions is depicted in Figure 1.3. Table 1.2
illustrates how the chapters of this dissertation relate to the challenges listed in
Section 1.3.

Chapter 2 investigates how existing applications can benefit from migration
to a cloud environment. If the application will be used by multiple end users, it
can be beneficial to add multi-tenancy to the application and serve different ten-
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Table 1.2: An overview of the contributions per chapter in this dissertation.

Ch. 2 Ch. 3 Ch. 4 Ch. 5 App. A
Challenge #1 • •
Challenge #2 • • • •
Challenge #3 •
Challenge #4 •

Application Level Infrastructure Level

Chapter 2
Design and Deployment 

of Cloud Applications

Chapter 3 + Appendix A
Dynamic Allocation of 

Cloud Storage

Chapter 4
Validation of Resource 

Management Strategies

Chapter 5
Cloud Resource Management

Multi-Tenancy

Figure 1.3: Schematic overview of the different chapters in this dissertation.

ants by a single application instance, instead of deploying a separate instance for
every tenant. A summary is provided of both the steps required to migrate ex-
isting applications to a public cloud environment, and to incorporate support for
multi-tenancy in these applications. A generic approach is presented and verified
by means of two case studies. Both case studies are subject to stringent secu-
rity and performance constraints, which need to be taken into account during the
migration. Migrating legacy software to the cloud comes at a cost, and some appli-
cation components may need to be modified or rewritten. However, by following
the migration approach presented in this chapter, the benefits of a cloud migration
could outweigh the costs of implementing the described changes, and incorporat-
ing application-level multi-tenancy will result in a higher and more efficient usage
of the available cloud resources, which, in the long term, can lead to a significant
reduction in operational costs.

Once the application is deployed on top of a cloud environment, it can scale
up or down based on the current or expected future demand. This will however
require the (de-)provisioning of additional resources over time. In Chapter 3 a
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generic approach for the dynamic allocation of cloud resources in a multi-tenant
environment is presented, which specifically focuses on the allocation of storage
resources. A multi-tenant environment should guarantee both data separation and
performance isolation towards every tenant, and migration of tenant data over time
should be minimized as this is both an expensive and time consuming operation.
In the presented approach, tenants are hierarchically clustered based on multiple
scenario-specific characteristics, and allocated to storage resources using a hier-
archical bin packing algorithm (static allocation). As the load changes over time,
the system responds to these changes by reallocating storage resources when re-
quired (dynamic reallocation), but will try to minimize the amount of migrated
data and hence the migration cost. The presented approach is generic and can be
implemented either at application level, for example for the allocation of storage
resources for data-intensive applications, or at infrastructure level, for example for
the management of virtual machines and their corresponding virtual disks. An ex-
tension of the approach can be found in Appendix A, in which the focus is on the
allocation of storage resources for data records stored inside relational databases.
The latter can have indexes defined over the data, which speed up search oper-
ations, and the influence on the performance of these operations is investigated
when the records are divided over multiple separate database instances.

Chapter 4 focuses on the validation of resource management approaches de-
signed for cloud environments. As described in the previous section, experimental
validation can be both costly and time consuming, and therefore resource manage-
ment approaches are often only validated using simulations in software. In this
chapter, a general approach for the validation of cloud resource allocation strate-
gies is introduced that is not limited to simulations, and the importance of exper-
imental validation on physical testbeds is illustrated. Furthermore, the design and
implementation of Raspberry Pi as a Service (RPiaaS) is presented, a low-cost em-
bedded testbed that is built using Raspberry Pi nodes, which serves as a miniature
cloud environment. RPiaaS aims to facilitate the step from simulations towards
experimental evaluations on larger cloud testbeds. The presented validation ap-
proach is then illustrated by evaluating the resource allocation strategy introduced
in Chapter 3 on top of the RPiaaS testbed.

The RPiaaS testbed introduced in Chapter 4 was designed using a microservice
architecture, where experiments and all required management services are running
inside containers. Furthermore, the testbed can in fact be seen as an edge envi-
ronment, as it consists of lightweight Raspberry Pi nodes, and it could collaborate
with a different large-scale cloud environment for offloading of computational in-
tensive tasks. Fog and edge computing are relatively new concepts, but are recently
gaining popularity within cloud computing. The majority of resource management
approaches however still focus on the management of virtual machines inside a tra-
ditional (private, public, community or hybrid) cloud environment, so the question
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arises how these strategies can be adapted for the management of a containerized
cloud. Therefore, in Chapter 5 an overview of the current state of the art regard-
ing resource management within the broad sense of cloud computing is provided,
complementary to existing surveys in literature. This chapter investigates how re-
search is adapting to the recent evolutions within the cloud, being the adoption of
container technology and the rise of fog and edge computing. Finally, this dis-
sertation is concluded by identifying several challenges and possible opportunities
for future research.

1.5 Research contributions
In Section 1.3, the problems and challenges for managing resources in a multi-
tenant cloud environment are formulated. They are tackled in the remainder of
this PhD dissertation for which the outline is given in Section 1.4. To conclude,
this section presents an elaborated list of the research contributions made by this
dissertation:

• An approach for deploying multi-tenant applications in a public cloud envi-
ronment. (Chapter 2, mainly addressing Challenge #1)

– A migration strategy, consisting of both the steps required for migrat-
ing legacy applications to a public cloud environment and the steps
required for incorporating support for multi-tenancy in an existing ap-
plication.

– Two case studies based on existing medical software, which illustrate
the presented migration strategy in a practical scenario.

– An overview of the possible advantages and disadvantages of moving
application components to the public cloud, and an evaluation of the
migration costs versus the possible cost savings in the long term.

• Design and implementation of a scalable storage system for the manage-
ment of tenant data in a cloud environment. (Chapter 3, mainly addressing
Challenge #2)

– Design of a Tenant-Defined Storage system, in which tenants are hi-
erarchically clustered based on multiple characteristics, and storage
resources are allocated using a data fusion approach to maximize iso-
lation of tenant data.

– Introduction of two novel algorithms for the allocation of tenant data,
and a dynamic extension of these algorithms for minimizing the num-
ber and amount of migrations over time. The presented algorithms are
based on a well-known heuristic for the bin packing problem [8], but
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are specifically designed for packing items with a hierarchical structure
(referred to as hierarchical bin packing).

– An implementation of the proposed system and the different algo-
rithms, used for fine-tuning and evaluating the performance of the sys-
tem.

– An extensive evaluation of the performance of the algorithms, in which
both the average resource utilization and the number and amount of
migrations over time are measured.

• A general approach for the validation of resource management strategies,
and the introduction of a low-cost embedded cloud testbed. (Chapter 4,
mainly addressing Challenge #3)

– A general approach for the validation of resource management strate-
gies, which illustrates the importance of experimental validation, com-
plementary to evaluation using simulation tools.

– The design and implementation of RPiaaS, a low-cost embedded cloud
testbed built using Raspberry Pi nodes.

– A comparison of the performance and cost of the RPiaaS testbed to
traditional cloud testbeds.

– A case study to illustrate the presented approach, in which the storage
system introduced in Chapter 3 is implemented and evaluated on top
of the RPiaaS testbed, and the experimental results are compared to
those obtained through simulations.

• A survey of recent evolutions within cloud computing, and their impact on
resource management. (Chapter 5, mainly addressing Challenge #4)

– A summary of cloud, edge and fog computing, and the main virtu-
alization technologies that enable them, being virtual machines and
containers.

– An extensive overview of recent research focusing on resource man-
agement within cloud environments, with a special focus on the adop-
tion to recent evolutions.

– The introduction of several challenges and opportunities for resource
management in cloud environments.

1.6 Publications
The research results obtained during this PhD research have been published in
scientific journals and presented at a series of international conferences. The fol-
lowing list provides an overview of these publications.
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2
Migrating Legacy Software to the

Cloud: Approach and Verification by
means of Two Medical Software Use

Cases

In this chapter, we investigate how applications can benefit from deployment in an
elastic cloud environment. Adding multi-tenancy to these applications can help to
achieve a higher scalability at a lower cost. We describe the steps required to mi-
grate existing applications to a public cloud environment, and the steps required to
add multi-tenancy to these applications. This generic approach is then verified by
means of two case studies, a commercial medical communications software pack-
age mainly used within hospitals for nurse call systems and a schedule planner
for managing medical appointments. Both case studies are subject to stringent
security and performance constraints, which need to be taken into account during
the migration. In our evaluation, we estimate the required investment costs and
compare them to the long term benefits of the migration.
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2.1 Introduction

Cloud computing is a technology that enables elastic, on-demand resource provi-
sioning. Over the last few years many companies have used clouds to build new
highly scalable systems. However, legacy applications can also benefit from the
advantages of cloud computing, and there is a general trend for moving applica-
tions to a cloud infrastructure, consolidating hardware, saving costs and allowing
applications to react faster to sudden changes in demands. With the recent evo-
lution of cloud computing [1] and Software as a Service (SaaS) in particular, an
elastic, scalable multi-tenant architecture has gained popularity [2]. Elastic sys-
tems are able to adapt to workload changes by provisioning and de-provisioning
resources in an autonomic manner. With cloud computing, an optimal usage of
available resources is recommended to reduce operating costs, as the infrastructure
provider usually charges for the number of instances used. SaaS is a software de-
livery model in which the software and associated data are centrally hosted on the
cloud, and the end-users are typically accessing the software through the browser
or by using a thin client. As the number of clients grows, a scalable architecture
for both the application and data is needed.

Multi-tenancy [3] enables the serving of multiple clients or tenants by a single
application instance. The major benefits include increased utilization of available
hardware resources and improved ease of maintenance and deployment. Without
a multi-tenant architecture, the cost savings using cloud computing are limited
for applications requiring continuous availability, as for every new client (tenant),
a separate Virtual Machine (VM) instance would have to be provisioned. This
instance must then be available at all times, even if it is only used sporadically.
Also, as every tenant has a dedicated instance, some resources would be wasted,
especially for smaller clients. Using a multi-tenant architecture, a SaaS application
could run on few instances that are shared between the different users, and the
number of instances could dynamically grow with the current demand. Smaller
tenants could be co-located on a single instance, minimizing costs and maximizing
resource utilization.

Therefore, when migrating applications to the cloud, it is recommended to
adapt the legacy software to support multi-tenancy. Some changes to the archi-
tecture will be necessary, coming at a one-time cost, but this cost is overruled by
the long-term benefits. Apart from adapting the legacy software for supporting
multi-tenancy, some other changes may be needed to support the migration to a
public or hybrid cloud, as every Platform as a Service (PaaS) or Infrastructure as a
Service (IaaS) provider will have its own limitations and possibilities.

This chapter proposes an approach for both migrating applications to a hybrid
or public cloud, and for incorporating support for multi-tenancy in the existing
software with a minimal overhead. We verify our approach using two different
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case studies of legacy medical applications which are migrated to the cloud, and
discuss the required changes. We describe the advantages and disadvantages of
moving components of the software to the public cloud, and evaluate the migration
costs.

In the next section of this chapter we will discuss related work. Afterward, in
Section 2.3, we will present the approach for both migrating legacy software to the
cloud and adding multi-tenancy. We verify this approach in Section 2.4 and Sec-
tion 2.5 using two different case studies. In Section 2.6, we discuss our approach
and present our evaluation results. In Section 2.7, we state our conclusions and
discuss avenues for future research.

2.2 Related Work

In previous work [4], we described the steps required to migrate an existing .NET-
based application to the Windows Azure public cloud environment, and proposed
a specific approach for adding multi-tenancy to the application. In this chapter,
we propose a generic migration approach for migrating legacy applications to the
cloud. We describe the different steps of our approach in detail, and verify our
approach by means of two case studies. In this chapter we also present an extended
discussion and evaluation based on the results from the two case studies.

An approach for partially migrating applications to the cloud is presented
in [5], together with a model to explore the benefits of a hybrid migration ap-
proach. The approach focuses on identifying components to migrate, taking into
account various rules such as performance and security. We also focus on migra-
tion to a hybrid or public cloud, but extend their approach by going into detail
about the complete migration process, and not only selecting the components to
migrate. We also present an approach for adding multi-tenancy to the application
to optimal benefit from the migration to a public cloud.

When migrating software to the cloud, some choices have to be made. Dif-
ferent cloud computing service models exist, each having its own advantages and
limitations. Figure 2.1 provides an overview of the different cloud service models.
The legacy software could for example be fully migrated to a public cloud, or a
hybrid approach could be used. When it comes to public cloud providers, Cloud-
Cmp [6] offers a system for comparing the performance and cost of the different
providers. For the implementation, the authors use computation, storage and net-
work metrics. For the storage metrics, they selected some benchmark tasks and
measured the response times, throughput, time to consistency and cost per opera-
tion.

Cost savings and other organizational benefits and risks of migration to IaaS
are discussed in [7]. We however don’t limit our approach to migrations to an
IaaS provider, but also consider migrations to a PaaS platform. When using an
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Figure 2.1: An overview of the different cloud service models used in cloud computing.

IaaS provider, the customer has full access to the operating system, middleware
and runtime, hosted on a virtual machine. On the other hand, when using a PaaS
provider, the customer only manages the application and data, which brings some
limitations, such as the selected operating system and supported frameworks and
libraries.

In [8] a checklist is presented that can be used to determine whether applica-
tions are compatible with a chosen PaaS provider. The approach is evaluated by
three case studies where a Java application and two Python applications are mi-
grated to Google App Engine. Three different and representative PaaS platforms
are compared in [9], based on a practical case study, with respect to their support
for SaaS application development. In this chapter, we focus on how complex ap-
plications can be executed on the public cloud, and for our case studies, we go into
detail on migrating two different legacy applications. We don’t limit our work by
determining whether the applications are compatible with the selected provider,
but also describe the different steps required in detail. Furthermore, we describe
how multi-tenancy can be added, making it possible to better utilize individual
application instances.

As our first case study handles a legacy application written in .NET, we se-
lected Windows Azure to host some components of the legacy software. The mi-
gration of an on-premise web application to Windows Azure is described in [10],
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together with a comparison of the application’s performance when deployed to a
traditional Windows server versus its deployment to Windows Azure. While the
cloud migration of a .NET application requires limited effort, Azure has no built-in
support for multi-tenancy, so it must be added during the migration process. In this
chapter, we discuss both the steps needed to migrate an application to the cloud,
and the steps needed to add multi-tenancy to the application.

To support highly customizable SaaS applications, we use a software product
line based customization approach, which we have previously discussed in [11],
[12], [13] and [14]. In this approach, variability is modeled by defining multiple
features and the relations between them. These features are then associated with
separate code modules that are deployed separately. The application is then com-
posed out of these multi-tenant components, resulting in an application that is both
customizable and multi-tenant. For changes that do not impact the performance of
the application, a multi-tenancy enablement layer can be used, which amongst
others can be used for data isolation, feature management and tenant-specific cus-
tomizations [15].

In Appendix A we focus on the scalability of tenant data in multi-tenant appli-
cations and the impact on the performance of the application. The outcome of this
research is used in [16] to build an abstraction layer for achieving high scalability
for the storage of tenant data. This layer uses data allocation algorithms to deter-
mine an acceptable allocation of tenant data to different databases. The presented
solution can be used for decoupling the databases and the management of tenant
data, two of the steps in the approach presented in this chapter.

2.3 Migration Strategy

In this section, we describe both the steps needed to migrate an existing application
to the cloud, and to redesign the application to support multi-tenancy. We start
this section by briefly describing the concept of multi-tier architectures, a popular
software architecture used by many applications, which we will refer to later in
this section. Next we discuss the different steps of our approach, as summarized
in Figure 2.2.

Many applications are designed using a multi-tier architecture, where the ap-
plication is separated into multiple layers. A typical multi-tier architecture consists
of 3 layers: the client layer, the business logic layer and the database layer. We
refer to this basic layered architecture as the 3-Tier architecture. Most layered
applications will have more than 3 layers, as more layers can be easily added to
the architecture if needed. For example, when working with multiple database in-
stances, an extra data access layer can be added between the business logic and
database layer, responsible for load balancing and selecting the correct instance.
Other architectures are possible, but in the remainder of this section, we will start
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Figure 2.2: A summary of the different steps required to migrate an existing application to
the cloud, and to add multi-tenancy to the application. The different steps are described in

detail in sections 2.3.1 and 2.3.2.

from the 3-Tier architecture.

2.3.1 Cloud Migration

The process to migrate an existing application to a public or hybrid cloud can be
summarized in a few steps, illustrated in Figure 2.2a and described below.

2.3.1.1 Selecting Components

The first step during the planning phase should be to select the components of the
software to migrate to the public cloud, as described in [5]. Both components of
the business logic layer and the data access layers can be selected. The selection
can happen based on the quality attributes of the application, to guarantee the re-
quired Quality of Service (QoS) and Service Level Agreements (SLAs). In case
the whole application is being migrated, this step is quite straightforward, but when
only some components of the application are selected, the architecture might need
to be reviewed. Special attention has to be paid to the communication between the
different components, as the communication between the dedicated servers and the
public cloud might need extra security, extra bandwidth, and usage of standardized
protocols. When using a Service-Oriented Architecture (SOA), communication
between the different modules could for instance make use of Simple Object Ac-
cess Protocol (SOAP) or Representational State Transfer (REST) over Hypertext
Transfer Protocol Secure (HTTPS). Possible communication between the client
layer and the components of the business logic layer should also be secured.

Figure 2.3 illustrates an example of the possible communication between the
different components after migration to a hybrid cloud. The components are rep-
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Figure 2.3: An illustrative example of the possible communication between components
after migration to a hybrid cloud. Dark arrows denote communication that should be

secured.

resented by server instances. Dark arrows denote communication where extra at-
tention has to be paid regarding security and available bandwidth.

2.3.1.2 Determining Provider Compatibility

Apart from selecting the components for migration, some extra changes might
be needed for migrating the application to the public cloud. Every public PaaS
provider will typically have its own limitations and possibilities, so during the
planning phase of the migration, it is best to verify that the provider will support
all features of the software. In case no suitable PaaS provider can be found, an IaaS
provider could also be selected to host some components of the application, but this
again results in more maintenance overhead for the application provider. When
comparing different providers, for example by using CloudCmp [6], the balance
should be made between the advantages of the selected provider and the overhead
due to needed changes to the application. Different public cloud providers should
be considered and evaluated, for example by using a small Proof of Concept (PoC),
and the advantages of using a PaaS provider should also be weighted against the
increased control gained when using an IaaS provider.
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2.3.1.3 Determining Impact on Client Network

A side effect of the migration to cloud environments is that communication be-
tween some components of the software might need to pass over the Internet, es-
pecially when migrating the software to a hybrid cloud. As a result, more traffic
bandwidth at the client network might be required. Before deploying the service,
it is important to perform an impact analysis whenever the client configurations
are changed. We have previously covered this in-depth in [17].

2.3.1.4 Scaling the Application

When an instance is overloaded, extra instances can be added (up-scaling) and
removed (down-scaling) in a few steps. This concept is often referred to as the
elasticity of the (public) cloud. Some public cloud providers offer out of the box
load-balancing and/or scaling, other providers only provide limited load-balancing
possibilities, together with an Application Programming Interface (API) to support
up-scaling and down-scaling from within the application.

When selecting the components to migrate, it is a good idea to take into account
the scalability of the application. Components which should be highly scalable
could be good candidates for migration to the public cloud, as this environment
offers a quasi unlimited resource pool. The application should also support decou-
pling of the components and the handling of synchronization and conflicts in data.
Possible bottlenecks should be eliminated, as these could break the whole scala-
bility of the application. Reviewing the architecture of the application to better
support scalability will bring some overhead, but the advantages on the long term
will outweigh this one-time investment.

2.3.2 Multi-Tenancy

In this subsection, the steps required to add multi-tenancy to an existing application
are discussed. These steps are also summarized in Figure 2.2b.

2.3.2.1 Decoupling Databases

As multiple tenants will use the same application instance, each tenant will have
its own application data stored in a shared or dedicated database instance. Using
shared database instances is cheaper, while dedicated databases will lead to better
performance and higher security, but at a higher cost. To connect to the correct
database, a connection string is associated with each tenant. These connection
strings can for example be stored in a shared database.

The application database needs to be decoupled, and support for multi-tenancy
needs to be added to the data tables in case of shared instances. Also, the ap-
plication needs to be modified to support dynamic database binding. An extra
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Figure 2.4: Possible architecture of the application after decoupling the databases.

component can be added to the application, the data access component, respon-
sible for both the correct handling and access control of all data requests by the
application. Figure 2.4 illustrates a possible architecture of the application after
decoupling the databases. The data access component is added to a new layer, the
data access layer, situated between the business logic layer and the database layer.

For the design of the data access layer, the abstraction layer presented in [16]
could be used. This abstraction layer mainly handles the security and isolation of
tenant data, and the scalability of the database layer. In our approach, we partition
tenant data over multiple database instances based on the tenant. By doing so,
tenants can still store their data in a dedicated on-site database instance, for exam-
ple to comply with regulatory policies on data. Partitioning the data based on the
tenant also provides a clear separation of tenant data. For large tenants with a ded-
icated database instance, the performance of the database will not be influenced
by other tenants. As the number of tenants using a shared database instance will
be limited, the possible damage due to an information leakage is also minimized.
Different SLAs can be provided, based on the scenario of a dedicated or shared
database instance.

2.3.2.2 Adding Tenant Configuration Database

A new database, which we refer to as the tenant configuration database, needs to
be added to store general information about all tenants. The connection strings in-
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troduced in the previous steps will be stored in this database, together with specific
information and configuration parameters such as billing and contact information,
and the selection of features for the tenant as described in Section 2.3.2.4. While
this database is shared between all tenants, it only contains minimal information,
and is only accessed sporadically as the information inside this database can be
cached by the application, so it should not become a bottleneck [18] [17].

2.3.2.3 Providing Tenant Configuration Interface

Adding multi-tenancy to the application makes it possible to more flexibly select
the application features used by different clients, as the tenant configuration is
stored in the shared tenant configuration database. It is however also necessary
to create a separate application, the tenant configuration interface, which can be
used by tenant administrators to modify the tenant configuration. This interface
will be used to create, modify and delete tenants in an easy way, and change the
configuration of a single tenant, for example the selection and configuration of
features and the connection string of the tenant.

Ideally, the tenant configuration interface is the only component which has
read/write access to the tenant configuration database, as the legacy application
should only require read access. Figure 2.5 illustrates the changes to the architec-
ture after adding this interface.
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2.3.2.4 Dynamic Feature Selection

An application can have multiple features which will be dynamically loaded at
start-up. As every tenant can have its own selection of features, and a tenant-
specific configuration for these features, a tenant administrator should be able to
select and configure these features using the tenant configuration interface intro-
duced before.

The application itself needs to support the dynamic selection of features. For
example, some features might require additional modules, and the application
needs to support dynamic loading (and unloading) of the corresponding modules.
Also, the user interface of the application might need to be automatically adapted
for the different tenants, based on their configuration, representing the tenant’s
feature selection. The different features might run on the same instance of the
application, or on dedicated machines. In the latter case, feature placement algo-
rithms can be used to determine the optimal solution. We have previously covered
this in [11].

2.3.2.5 Managing Tenant Data, Users and Roles

Every tenant using the application will typically have its own data, users and cus-
tom roles. The users could be stored in a shared common database or in the tenant
database, or the application could support external identity providers. In case the
users are stored in a global shared database, or when an external identity provider is
used, the application could provide single sign-on scenarios. In case the users are
stored in the tenant database, an administrator should be able to create and modify
users and their corresponding roles from within the application. By introducing
multi-tenancy, a tenant administrator role with permissions to create and mod-
ify the tenant configuration using the tenant configuration interface is required,
different from the administration roles within a single tenant. These tenant ad-
ministrators can be stored in the shared tenant configuration database and should
have limited access to the multi-tenant application for every tenant if required.
The management of users and roles could be moved to the tenant configuration
interface, or could stay inside the application, depending on the application’s re-
quirement and the software license model. The question arises how and where to
store the tenant data and the different users and roles. Different approaches are
possible, and we will cover this in-depth in Appendix A.

2.3.2.6 Mitigating Security Risks

A major disadvantage of using multi-tenancy is an increased security risk, as by
definition multiple tenants will use the same application instance. These risks can
be mitigated in multiple ways:
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• Implementing URL-based filtering of application requests, taking into
account the permissions of the user and tenant. Every tenant can have
its own URL, for example by having a customized sub-domain. When a
client wants to access the data of a specific tenant, the access module of the
application needs to verify if the authenticated user and its corresponding
tenant have access to the requested data (the requested URL), to eliminate
unauthorized access.

• Separating the tenant configuration from tenant data. Because the tenant
data is stored in a different database instance as the tenant configuration, it is
easier to configure tenant-specific access at the database level. Each tenant
will have its own connection string, and the associated credentials will only
have access to the tenant’s database.

• Offering single-tenant instances of specific components at a higher cost.
If the above methods are not deemed sufficient, tenants with a huge amount
of confidential data can have single-tenant instances at a higher cost. Having
a dedicated instance clearly improves security, as the tenant’s data is not
only virtually but also physically isolated from other tenants. Because the
connection strings are stored separately for each tenant in the shared tenant
configuration database, these connection strings can either point to a shared
or dedicated database.

2.4 Case Study: Medical Communications System

2.4.1 Introduction

In this section we verify our presented approach using the case study of a Medical
Communications (MC) system. The MC system is responsible for the correct
functioning of all communication peripherals located in a medical environment.
The central functionality of this system is the nurse call system. The basic concept
of a nurse call system is simple: a call device is located in every room. When a
button is pressed on the device, a message is sent to a controller after which nurses
are notified of the call. This concept can be enhanced by using ontologies and
semantic reasoning to identify the urgency of a call or select the nurses to notify
in a more intelligent way [19] [20] [21].

A nurse call system consists of many different elements, installed within a
hospital. These elements include amongst others (i) end user equipment installed
in the rooms, which patients can use to contact hospital personnel, and terminals
used by the personnel; (ii) embedded servers, used to communicate between the
terminals and management servers; and (iii) servers for logging, registration and
visualization. Figure 2.6 illustrates an example of the architecture of a nurse call
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Figure 2.6: An example architecture of a nurse call system, with the communication
between the different elements when a patient makes a call.

system, with the possible communication between the different components when
a patients calls a nurse shown in arrows.

While the center of the MC application is the nurse call system, additional ser-
vices, such as intercom, video over IP, access control and other health services are
being offered as well. Currently, the MC system is installed in multiple locations,
ranging from big hospitals to small nursing homes. The cost of installing dedicated
servers, and the corresponding maintenance is quite high. Migrating a part of the
system to the cloud will minimize the cost, by eliminating the need of many of the
dedicated servers, making it possible for smaller hospitals and and nursing homes
to afford the system. However, considering the medical use case, the MC applica-
tion is subject to stringent security and performance constraints, which need to be
taken into account when the components to migrate to the cloud are selected.

2.4.2 Cloud migration

2.4.2.1 Selecting Components

The MC software consists of two main components: the device manager and the
administration service. The administration service is the main application, and is
used to manage the different features and devices installed within the hospital. The
device manager is a dedicated hardware box, running different modules mainly
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written in C++ for communicating with the different peripherals installed within
the medical environment. The modules for the different features are dynamically
loaded on start-up, and can be configured from the administration service. Fig-
ure 2.7a shows the initial architecture of the application. The device manager and
the different peripherals communicate over Ethernet, using a custom proprietary
secure protocol.

For our PoC, we selected the administration service and its corresponding
database instances for migration to the public cloud. The MC system has a fall-
back mechanism, allowing the device manager to operate standalone in case the
administration service is not available. Because the device manager communi-
cates directly with the devices, migrating this component to the cloud would be
tricky, as the devices need to operate when no connection to the public cloud is
available. Passing all communication between the device manager and the periph-
erals over the public Internet would also result in slow response times, and could
make the system unreliable. However, as most of the processing is done in the
devices, a single device manager will be sufficient to control all devices in a small
or medium environment. If the peripherals could be adjusted to work standalone
when the device manager is unavailable, migrating the device manager could also
be an option in the future, but for this PoC, we started focusing only on decoupling
the administration service.

After adding multi-tenancy to the application and migration to the cloud, a new
component is introduced, the tenant configuration interface. The reviewed archi-
tecture after adding multi-tenancy and migration is shown in Figure 2.7b. Because
every tenant has its own features, the user interface of the administration service
is automatically adapted for the different clients based on the tenant configuration.

2.4.2.2 Determining Provider Compatibility

As the application is written in .NET, migrating the administration service to Mi-
crosoft Azure seemed like an evident choice. Microsoft Azure [22] currently offers
two roles to choose from when creating an instance, web roles and worker roles,
both based on Windows Server. The main difference between these two is that an
instance of a web role runs IIS, while an instance of a worker role does not. In
addition to the type of instances, Azure offers different sizes for both roles [23].
Table 2.1 gives an overview of the different standard instances available on Azure.

Both the administration service and the tenant configuration interface will be
running on an Azure web role. While preparing the application for migration, these
Azure web roles need to be added to the .NET project, and can be tested in the
Azure simulator. When using a third party assembly in the project, this assembly
should be added as a reference to the project, with the Copy Local property set
to true. A nice side effect of this process is that many deprecated libraries were
removed or replaced in the project, making it much easier for developers to locally
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Figure 2.7: Architecture of the application before and after migration to the cloud and
adding support for multi-tenancy.



34 CHAPTER 2

Table 2.1: Overview of standard instances on Windows Azure.

Name Virtual Cores Ram

Extra Small (A0) Shared 768 MB
Small (A1) 1 1.75 GB
Medium (A2) 2 3.5 GB
Large (A3) 4 7 GB
Extra Large (A4) 8 14 GB

install the application, as they no longer needed to configure and install third-
party products on a clean environment before being able to compile and test the
application.

The relational databases will be moved to SQL Azure. As a result, the con-
nection strings inside the application should be altered to point to the SQL Azure
instance. SQL Azure has some limitations compared to a dedicated Microsoft
SQL Server instance, but for most .NET applications, this shouldn’t be an issue.
Once the application is running correctly in the Azure simulator, the project can
be packaged and deployed onto Windows Azure [24] [25].

2.4.2.3 Determining Impact on Client Network

The traffic between the administration service and the device manager now has to
pass the public Internet, and the internal network is also loaded with traffic between
the device manager and the different peripherals. The total amount of traffic is de-
pending on the selection of features, as some of the features might require more
bandwidth. Both the internal network as the public internet connection need to
have sufficient bandwidth to support the MC system to operate. The service de-
scribed in [17] was customized to support this PoC, making it possible to predict
if a custom selection of features would be able to run on the client network. For
this PoC, the different topologies of the client networks were implemented stati-
cally, but we introduced the option to easily replace these static topologies by a
dynamically generated topology, which could be generated by tools using exist-
ing network discovery protocols, such as Neighbor Discovery Protocol (NDP) and
Link Layer Discovery Protocol (LLDP).

2.4.2.4 Scaling the Application

Azure allows the administrator to configure multiple instances with automatic load
balancing, which will be required as the number of tenants grow. Recently, lim-
ited possibilities were added to Azure for automatic scaling, using the Autoscaling
Application Block [26]. Alternatively, the creation and deletion of extra instances
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can be done manually (or in code) by the customer. Some third party products
also exist, like AzureWatch [27], which will handle the scaling automatically, or
the SaaS provider can create a customized system, for example by using advanced
load prediction.

2.4.3 Multi-Tenancy

2.4.3.1 Decoupling Databases

In the initial single-tenant architecture, there is a dedicated relational database
for every instance. The connection string to this database is hard-coded in the
configuration file (Web.config). To support multi-tenancy, we introduced dynamic
connection strings, stored in the Tenant Configuration Database. The connection
string in the configuration file was replaced by a connection string to this shared
database.

To support both shared and dedicated databases, we added an extra column in
the data tables, holding the identification of the tenant (tenantID). By doing so,
the application itself doesn’t need to know if the database is shared or dedicated,
as multiple tenants can share the same connection string. The Data Access Com-
ponent introduced in Section 2.3 is now responsible to select the correct tenant’s
data, for example by filtering on the corresponding tenantID.

2.4.3.2 Adding Tenant Configuration Database

The Tenant Configuration Database is introduced to store the general information
about the different tenants. It holds the connection strings for each tenant, to-
gether with some contact and billing information, and the feature selection for the
tenant. As the administration service only needs to get this information at start-
up, read-only access to this database is sufficient for the main application. This
also eliminates the risk of tenants modifying the configuration of other tenants.
Figure 2.8 illustrates this by giving an overview of the possible communication
between actors and components within the system.

2.4.3.3 Providing Tenant Configuration Interface

A new application is introduced, the Tenant Configuration Interface, used by ten-
ant administrators (like resellers or the application provider) to setup and configure
the different tenants. This application has write access to the tenant configuration
database, but as only tenant administrators have access to this application, there
is no risk of tenants modifying the configuration of other tenants, or even their
own configuration, making the system unusable. For this PoC we didn’t spend
too much time to build a full-blown interface, but in the final version enough time
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Figure 2.8: An overview of the possible communication between actors and the different
components of the medical communications system.

should be spent building this application, as it is a key component in the multi-
tenant application which can dramatically minimize the time needed to configure
and modify new or existing tenants. The tenant configuration interface was de-
signed as a web application running on an Azure Web Role, but to mitigate secu-
rity risks, this interface could also be developed as an internal mobile or desktop
application, accessing the tenant configuration database through web services.

2.4.3.4 Dynamic Feature Selection

The nurse call feature is the core feature of our MC system, but some other fea-
tures are also implemented, for example voice and video calling between different
rooms using Voice over IP (VoIP), and door access control with badges used by
the hospital personnel. The selection of features for a single tenant depends on
the available hardware and peripherals within the hospital, and the available band-
width of both the internal and external network. The selection of features and
general/technical configuration is done by a tenant administrator through the ten-
ant configuration interface, while the tenant-specific configuration of the features
can be done by different tenant users through the administration service. The ini-
tial application (administration service) was designed to support dynamic loading
of the required libraries and modules at start-up. The modules kept running during
the lifetime of the application, but as this application was installed on a dedicated
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instance with a lot of available resources, this was not really an issue. Converting
the application to a multi-tenant application however introduced some new chal-
lenges. As every tenant can have its own selection of features, all features might
need to be loaded on the single machine, and if the multi-tenant application is not
well designed, some features might even be loaded multiple times. To overcome
this issue, some changes are needed to the application:

• The required libraries and modules for a specific tenant are loaded as soon
as a user logs in to the administration service.

• Libraries and modules should be loaded only once, and hence can be shared
between different tenants.

• Loaded libraries and modules should be freed as soon as they are not used
anymore, for example after a timeout, to eliminate the usage of unnecessary
resources.

2.4.3.5 Managing Tenant Data, Users and Roles

As already indicated in Figure 2.8, there are different users and roles used in the
MC system:

• The tenant administrators (application provider, resellers, installers), having
access to the tenant configuration interface. These users and their corre-
sponding roles are stored in the tenant configuration database.

• The tenant users and their corresponding roles (mostly personnel of the dif-
ferent hospitals). Because every tenant can have its own users and roles,
these are stored in the tenant database.

• The patients don’t really require roles, but are in a way guest users of the
system. The peripherals however could count as visualized users with cus-
tomized roles, and can also be stored in the tenant database, together with
the tenant users and roles.

2.4.3.6 Mitigating Security Risks

Some of the security risks and a way to eliminate these risks are already described
in the previous steps. To increase the security, we added URL-filtering to the ap-
plication, and altered the access module to take into account the requested URL
(and hence the identification of the specific tenant) and the authorized user and
its corresponding tenant ID. The traffic between the device manager and the ad-
ministration service and tenant database now passes the public internet and is
secured by using HTTPS over SSL/TLS. Every tenant can have a dedicated tenant
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database, increasing the isolation of data, but this comes at a higher cost. In prac-
tice, big hospitals will typically have a dedicated database, and data from smaller
nursing homes belonging to the same entity (subtenants of the same tenant) will
be co-located in shared databases. This way, we won’t be mixing data from sub-
tenants belonging to different tenants, and isolation of data is always guaranteed
at tenant level.

2.5 Case Study: Medical Appointments Schedule Plan-
ner

2.5.1 Introduction

As a second case study, we migrated a medical appointments schedule planner to
public cloud environments. This planner is used by both patients and medical staff
to manage their appointments. The software was originally developed as a single-
tenant application. Figure 2.9 illustrates the original layered architecture of the
application. The end-users (patients) access the web application through the user
portal, in order to manage their medical appointments. The application is running
on a shared web server, the appointments and patient data are stored in a dedicated
database on a shared database server. Medical staff access the application through
the admin portal in order to approve and review the requested appointments.

As multiple clients started using the software, multiple independent copies of
the software were installed and configured, running different versions, increasing
maintenance complexity. Independent copies were deployed on the same shared
web server and the average load increased over time, resulting in an increase in
page load times due to the large amount of data and the required amount of data
processing by the application. For this case study, we added multi-tenancy to
the application to optimize the utilization of available hardware resources, and
migrated the application to the public cloud environment in order to centralize
the management and to increase the scalability. We deployed the application on
two different cloud providers in order to compare the performance and the ease of
deployment.

2.5.2 Cloud Migration

2.5.2.1 Selecting Components

The schedule planner consists of two main components: the user portal, used by
patients to request medical appointments, and the admin portal, used by medical
staff to approve and review the requested appointments and to manage their sched-
ule. Both patients and medical staff can synchronize their appointments to their
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Figure 2.9: Pre-migration single-tenant architecture of the medical appointments schedule
planner.

personal calendar using one of the available standard calendar formats, and con-
firmations and reminders are sent by email or by text message (SMS). Different
departments are using this portal, but a department may only access patient infor-
mation relevant for their appointments. Patients on the other hand can browse and
request appointments at the different departments.

For this second case study, we selected the whole application for migration to a
public cloud provider. This application is less sensitive for short downtime periods
as the MC application from the previous case study, as both patients and medical
staff have offline copies of their appointments. Therefore, no additional fallback
mechanism is necessary inside the application.

The legacy application was developed to be used by a single medical depart-
ment or an independent doctor (a single tenant), and independent copies of the
software were installed and configured. After adding multi-tenancy to the legacy
application, a single instance of the application is now shared between multiple
tenants, and a new component is introduced, the tenant configuration interface,
with a similar functionality as the interface from the previous case study.

2.5.2.2 Determining Provider Compatibility

The legacy web application is developed using HTML5, Hypertext Preproces-
sor (PHP) and Oracle MySQL for the persistent storage of data, and is executed on
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Table 2.2: Overview of the available T2 instance types on Amazon EC2.

Model Virtual Cores Ram

t2.micro 1 1 GB
t2.small 1 2 GB
t2.medium 2 4 GB

Table 2.3: Overview of the available M3 instance types on Amazon EC2.

Model Virtual Cores Ram

m3.medium 1 3.75 GB
m3.large 2 7.5 GB
m3.xlarge 4 15 GB
m3.2xlarge 8 30 GB

a shared web server. For evaluating our approach, we migrated the application to
both a PaaS and IaaS environment. We selected Google AppEngine [28] as PaaS
provider as they provide a PHP Runtime Environment, and Amazon EC2 [29] as
IaaS provider. Google AppEngine requires more changes to the legacy applica-
tion as it puts more constraints on applications, while Amazon EC2 requires more
maintenance as they provide full control over the virtual machine.

Migrating an application to Amazon EC2 is straightforward. Amazon cur-
rently offers two types of EC2 instances, the T2 instances which are burstable per-
formance instances for development environments and early product experiments,
and the M3 instances, which provide a good balance of compute, memory, and
network resources. The different types of T2 and M3 instances currently available
are listed in Tables 2.2 and 2.3 respectively. For our PoC, we selected a t2.micro
instance running Ubuntu Server 14.04 for both the database and web server. We
configured Apache and MySQL on the instance and deployed the application, and
except from some configuration settings, no changes were required in the applica-
tion.

Migrating the legacy PHP application to Google AppEngine on the other hand
required multiple changes to the application as summarized in Table 2.4. First of
all, as Google offers Cloud SQL instead of MySQL, some changes are required in
the application to connect to the Cloud SQL database instance [30]. The original
MySQL database can be exported to a file using a SQL dump, and this file can
be used to import the data into a new Cloud SQL database instance. The mysqli
extension introduced with PHP version 5.0.0 can still be used to connect to the
database, but the connection string differs from a traditional connection string as



MIGRATING LEGACY SOFTWARE TO THE CLOUD 41

Table 2.4: Overview of the most important changes for migration to Google AppEngine.

Item Description

Relational Data Migrate MySQL databases to Google Cloud SQL and
modify connection strings

Temporary Files Replace local file storage by storage buckets on Google
Cloud Storage

URL Rewriting Replace mod rewrite by a custom PHP script providing
similar functionality

illustrated in [30].
In AppEngine, the local file system that the application is deployed to is not

writable. However, if the application needs to write and read files at runtime,
AppEngine provides a built-in Google Cloud Storage (GCS) stream wrapper that
allows many of the standard PHP file system functions. A PHP application running
on AppEngine can read and write files by using buckets as illustrated in [31]. The
legacy application was developed using the Smarty PHP Template engine [32],
which requires different physical file directories for reading and writing templates
and configuration files. As a result, the Smarty engine needs to be reconfigured to
use the GCS for storing the compiled templates and files. One major difference
between writing to a local disk and writing to GCS is that GCS does not support
modifying or appending to a file after closing it. Instead, a new file can be created
with the same name, which overwrites the original. For the Smarty PHP Template
engine however this is not really an issue as it only creates temporary files which
are not modified after creation. Using buckets to store temporary files can have an
influence on the performance of the application. There is no straightforward way
to measure this impact, as local file storage is not supported by Google AppEngine.
In Section 2.6 we however do compare the performance of the application running
on Google AppEngine with other environments which are using traditional file
storage.

Finally, the legacy application implemented URL rewriting by invoking the
mod rewrite module of Apache. As Google AppEngine does not support this
module, this functionality has to be simulated through the use of a PHP script
referenced from the application’s configuration file (app.yaml) that will in turn
load the desired script, as described in [33]. The overhead introduced by this script
is minimal, as it just parses the requested Uniform Resource Identifier (URI) and
executes a simple conditional statement. Google however recommends to rewrite
the application to operate without the mod rewrite module, but this requires
more effort as more changes to the source code are required.

Once the application is running correctly in the simulated environment of
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Google App Engine Launcher (part of the Google App Engine SDK), it can be
deployed onto the public cloud.

2.5.2.3 Determining Impact on Client Network

As the original application was already designed to be accessed over the web, and
the full application is migrated to the cloud, there is no real impact on the client
network after migration to the public cloud.

2.5.2.4 Scaling the Application

Amazon offers CloudWatch [34] to monitor Amazon Web Services (AWS) cloud
resources and applications. This service provides a clear insight in the current de-
mand using different metrics such as CPU utilization, data transfers and disk usage
activity. Application developers can also create custom metrics, and customize au-
tomated actions and alarms. For a production-ready application on Amazon EC2,
CloudWatch can be used to provide compliance with specific SLA targets, and to
handle the automated scaling of both the computational resources.

Google AppEngine on the other hand has built-in support for high scalabil-
ity. An application running on AppEngine can be deployed on multiple instances
and instances are automatically created or removed depending on the current load.
No action is required from the developer, but the developer has more limited con-
trol than with Amazon EC2. During our experiments as described in Section 2.6,
multiple instances were automatically created.

2.5.3 Multi-Tenancy

After adding multi-tenancy to the application, the original architecture was slightly
modified. Figure 2.10 illustrates the modified architecture after adding multi-
tenancy and migration to a public cloud provider. These modifications are dis-
cussed in detail in the remainder of this section.

2.5.3.1 Decoupling Databases

In the initial single-tenant architecture, every tenant has a dedicated MySQL data-
base on a shared database server. In order to support multi-tenancy, we introduced
dynamic connection strings, as in the previous case study. All users are however
stored in a single database, separated from the tenant databases. By doing so,
a single user can access multiple tenants, and multiple copies of the same user
object are eliminated.

As with the previous case study, we added an extra column to the data tables,
holding the identification of the tenant (tenantID). By doing so, the application
supports both shared and dedicated database instances, and multiple tenants can
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Figure 2.10: Revised architecture of the schedule planner after adding multi-tenancy to the
application and migration to the public cloud.

share a single database. The data access component of the data access layer was
modified to support the dynamic behavior of the tenant databases, and to filter
tenant data based on the tenantID. This filtering is required in order to provide
transparent isolation of tenant data, especially when multiple tenants are sharing a
single database instance.

2.5.3.2 Adding Tenant Configuration Database

The shared Tenant Configuration Database contains general information about the
different tenants, and a connection string to the database instance where the tenant
data is stored. This database is small in size, which is why it is also used to store
the different user objects. However, should this database ever become a bottle-
neck, the user data can easily be decoupled from the general tenant information,
as separate connection strings are used for the user database and the tenant con-
figuration database. For our PoC these connection strings refer to the same tenant
configuration database instance.

2.5.3.3 Providing Tenant Configuration Interface

A tenant configuration interface was added to the application, and is used to man-
age the different tenants. As in the previous case study, this configuration interface



44 CHAPTER 2

communicates directly with the tenant configuration database.

2.5.3.4 Dynamic Feature Selection

Tenants can have optional features enabled, for example notifications by text mes-
sages or export options to different calendar formats. A tenant administrator can
configure these features through the tenant configuration interface. The feature
configuration is stored in the tenant configuration database together with the gen-
eral tenant information, and both the application’s user portal and admin portal
take the feature selection of the selected tenant into account.

2.5.3.5 Managing Tenant Data, Users and Roles

The user objects are stored in the shared tenant configuration database, the roles
are stored together with the tenant data in a tenant database instance. This instance
can either be a dedicated database instance or an instance that is shared between
multiple tenants. Relevant medical information belonging to a certain patient is
stored together with the role in the tenant database. By doing so, sensitive patient
data is inaccessible by other tenants, as all data queries are filtered based on the
tenantID by the data access component.

By using a single database instance to store all user objects, multiple roles for
different tenants can be created for a single user object. This allows for a single
sign-on, where the user object is loaded when the user logs in on the application,
and the relevant roles are loaded when the user wants to access one of the tenant’s
restricted pages.

2.5.3.6 Mitigating Security Risks

As mentioned above, sensitive data belonging to a certain patient is stored together
with the user role in the tenant database. As all data queries are filtered by the data
access object based on the tenantID, queries can never return data belonging to
different tenants.

Communication between a client computer and the web server is encrypted,
as all communication uses HTTPS over SSL. This was already the case with the
legacy application.

2.6 Discussion and Evaluation

Moving applications to the cloud and adding multi-tenancy introduces new oppor-
tunities for our presented use cases. First of all, there is the increased flexibility
and elasticity. When the workload on the application increases, new instances can
be created and deployed automatically. Similarly, when the workload decreases,
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instances can again be removed. For new customers, deployment times decrease as
there is no need to physically install a new server. By using a PaaS platform instead
of IaaS, there is no need to install, configure and manage the guest OS, further re-
ducing the deployment times. The hardware maintenance cost is also eliminated
as the virtual machines running in the cloud are automatically migrated when the
hardware fails. Combining multi-tenancy and migration to a public cloud makes
maintenance easier, as the software is deployed centrally, and no on-site interven-
tion is needed, for example to install patches or updates. Adding multi-tenancy to
the application also improves the efficiency of resource utilization, decreasing the
costs, and eliminates the need for installing and configuring independent copies
of the same software, sometimes running different versions of the software. In
this section, we will highlight some of the major advantages of the migration, and
compare them with the overhead of the migration.

2.6.1 Increased flexibility and elasticity

As the amount of available resources in the cloud is quasi unlimited, application
developers don’t have to worry about selecting the right amount of resources to
host the software. Novel multi-tenant applications can start with a single instance,
and the number of instances can grow as the workload increases. In cloud com-
puting, elasticity is defined as the degree to which a system is able to adapt to
workload changes by provisioning and de-provisioning resources in an autonomic
manner, such that at each point in time the available resources match the current
demand as closely as possible. In our approach, we have presented some possi-
bilities for building elastic applications in the step of Scaling the Application. For
the two case studies, we also started with a single instance, and determined the
possibilities to scale the application as the demand grows.

2.6.2 Decreased deployment time

The addition of multi-tenancy to the application and migration to a public cloud
yields a significant decrease in deployment times, especially for new tenants. Ta-
bles 2.5 and 2.6 illustrate this for the MC software case study by giving an estima-
tion of the needed deployment time for a new tenant, respectively before and after
the migration process.

Before migration, a physical server was installed and configured on-site for
every new tenant, together with the device manager and peripherals. A local copy
of the administration service was installed and configured on the dedicated phys-
ical server together with a SQL Server instance. A total of 6 person-days was
required to perform the installation and configuration of both the server and the
device manager and peripherals.
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Table 2.5: Initial configuration of new tenant before migration: time estimation for the MC
software case study.

Task Time

Install and configure on-site server for application 1 day
Deploy administration service on on-site server 1 day
Configure SQL server and initial tenant database 1 day
Configure on-site hardware (device manager and peripherals) 2 days
Verification and testing 1 day

Table 2.6: Initial configuration of new tenant after migration: time estimation for the MC
software case study.

Task Time

Create new tenant and initial tenant database 1 hour
Impact analysis on client network (automated) 1 hour
Configure on-site hardware (device manager and peripherals) 2 days
Verification and testing 1 day

After migration, the initial configuration time is largely reduced. Only the de-
vice manager and peripherals need to be installed, and the configuration of the
device manager can be done remotely by using the multi-tenant administration
service running on the cloud. As only a new tenant needs to be created, no lo-
cal copy of the administration service needs to be installed and configured. An
estimated total of 3.5 person-days is required for the initial setup after migration,
mainly for the installation and configuration of the on-site device manager and the
peripherals, and for full testing.

Migrating the device manager to the cloud could further reduce the deployment
time, but this however introduces additional challenges which were mentioned
before in Section 2.4.2.1. For completeness, Table 2.7 shows an estimation of the
initial deployment of the application on Microsoft Azure. This initial deployment
needs to be done only once, and not for every new tenant.

2.6.3 Ease of Maintenance

Having the core of the MC software, the administration service, hosted in the pub-
lic cloud makes maintenance a lot easier, as installers no longer need to go on-site
to make small configuration changes. Eventually, one could argue that having Vir-
tual Private Network (VPN) connections to the customer sites could also bypass
this, but this requires a VPN setup to the hospitals, or public access to the internal
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Table 2.7: Initial deployment after migration: time estimation for the MC software case
study.

Task Time

Deploy administration service on Azure 2 hours
Deploy tenant configuration interface on Azure 2 hours
Create initial databases on SQL Azure 2 hours
Create tenant administrators 2 hours

network, which again introduces some security risks, and requires a stable exter-
nal connection at the client side. Having a single multi-tenant application also
has the advantage that every tenant uses the same version of the software, and
software updates can be deployed centrally, for all tenants at once. For installing
software updates, a second instance can be deployed and configured in an isolated
environment on the public cloud, and switched with the current instance once the
configuration and testing is done. Software updates and patches for the device
managers can be pushed from the central administration service, as under normal
circumstances, the device manager has a persistent connection to the administra-
tion service and will frequently check for updates.

For our second case study, the schedule planner, deploying the multi-tenant
application on the public cloud results in similar benefits. Before adding multi-
tenancy to the application, different independent versions were deployed, and up-
dating and maintaining the application became harder as the number of tenants
grew. After migration to the cloud, only one copy of the multi-tenant application
is running on multiple instances in the cloud, and all tenants are running the latest
software of the application.

2.6.4 Migration Cost

Migrating software to the cloud and adding multi-tenancy to the application comes
at a cost. The architecture and code might need to be changed, and the software
needs to be tested thoroughly. Extra attention needs to be paid to the security
aspect, as the whole application or some components are now hosted remotely. For
the MC software, we spent a total of six person-months to implement the changes
described before in Section 2.4. For a production ready application in the cloud,
an estimated additional 14 person-months would be required, as summarized in
Table 2.8. The remaining tasks mainly focus on adapting the cloud application
to support the existing SLAs, investigating possibilities for automatic backup and
restore, providing training for installers and full testing.

For the schedule planner, our second case study, only two person-months were
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Table 2.8: Tasks to be done for a production ready application in the cloud: time
estimation for the MC software case study..

Task Time

Azure-specific tasks 3 person-months
Explore monitoring options
Define backup and restore strategies
Verify SLA constraints on Azure
Adapt cost model

Administration Service 8 person-months
Improve security of service and features
Make complete mapping for all features
Migrate remaining features to Azure
Add support for newest hardware nodes
Study impact of shared vs. dedicated database instances
Other remaining issues

Impact Analyzer 1 person-month
Support dynamic generated topologies

Other tasks 2 person-months
Training and development courses for developers
Training for installers, retailers, clients
Full testing of application

required to implement the changes described in Section 2.5, as this application is
less complex than the MC software. Adding multi-tenancy to the legacy appli-
cation required a bit less than two person-months. For the migration to Amazon
EC2 only 1 day was sufficient, whereas for Google AppEngine a few person-days
were necessary to implement the required changes. For a production ready appli-
cation in the cloud, an estimated additional 4 person-months would be required,
for finishing the application and full testing.

2.6.5 Remaining Risks

As some components are now hosted on a public cloud, there is an increased se-
curity risk. For our first case study, the MC software, extra attention should be
paid to the new risks introduced by moving the software to the public cloud. A
side-effect of the migration is that the Administration Service is now hosted in the
public cloud, and could become a bottleneck if the number of tenants grows sig-
nificantly. Therefore, extra attention should also be paid to the scalability of this
service. For our second case study, the main security risk is due to the addition of
multi-tenancy, so the application needs to guarantee isolation of sensitive data, for
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example by restricting all queries to filter data based on the tenantID.

2.6.6 Change in Cost Model

Migrating the software to the cloud brings a change in the cost-model of the MC
software. Before the migration, the software and hardware was typically sold as a
single package, including the necessary hardware, licenses for the software, initial
installation and configuration. As most public providers work with monthly fees,
the application provider should adapt the cost-model to reflect this cost model.
Instead of selling a one-time license for the software, the end users can pay a
monthly fee, depending on the size of the tenant, covering the hosting on Azure
and future software changes and updates. The Tenant Configuration Interface can
be designed to support this cost-model, and could be linked to the financial soft-
ware. This change in cost model introduces a new opportunity by expanding the
customer market, as smaller clients (for example small nursing homes) are now
able to start using the software at a lower cost, as the costs of implementing the
system can now easier be spread over time, less hardware is required on-premise,
and computational resources are shared between multiple tenants.

The schedule planner software was already being sold using a license-based
cost model. Adding multi-tenancy and migrating the application to the cloud in-
troduces no visible changes in cost model. Sales prices could however drop as
utilization of available resources is optimized by adding multi-tenancy to the ap-
plication, and the infrastructure cost is reduced by using a public cloud provider.

2.6.7 Performance Comparison

The performance of an application running on the cloud depends on both the se-
lected cloud provider and the selected instance type. We selected the second case
study, the medical appointments schedule planner, for evaluating the performance
of the selected cloud providers, as this application is fully migrated to the public
cloud, whereas the MC application is only partially migrated, making the perfor-
mance depend on more factors such as the on-site client network topology and
capacity and on-site available hardware.

In order to evaluate the performance of the medical appointments schedule
planner, we deployed the application to four different environments, as summa-
rized in Table 2.9. We measured the average page generation time, which is the
time needed for the PHP interpreter to generate the page, for different pages of
the application. This metric does not take into account the network latency, as the
generation time is measured at the server side by the PHP interpreter itself. We
also measured the end-to-end transaction time, this is the total load time as per-
ceived by the client, as this metric does include the network latency. The schedule
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Table 2.9: An overview of the different deployment environments. The mentioned cost
values are valid at the time of submission of this article.

Label Description Estimated cost

local A dedicated virtual machine with
1GB Ram and 1vCPU, running on
a physical linux server with a
Linux server with an Intel Core i7
CPU (2.80 GHz) with 8 GiB of
memory.

±20.00 USD/month + one-time
infrastructure cost

shared The shared web server on which
the legacy application was running
before migration to the public
cloud.

1.82 USD/month

EC2 Amazon EC2 t2.micro instance 14.28 USD/month
AppEngine Instance running on Google

AppEngine
depends on usage

Table 2.10: Average page generation times (in seconds) and standard deviations for 3 test
pages over 50 iterations.

local shared EC2 AppEngine

y σ y σ y σ y σ

Page 1 0.19588 0.00596 3.20709 0.81836 0.19557 0.00437 6.28543 0.84406
Page 2 0.20555 0.00688 3.00282 0.23948 0.19974 0.00372 6.38447 0.91441
Page 3 0.02882 0.00216 0.33663 0.03426 0.02183 0.00039 1.38429 0.56244
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Figure 2.11: A comparison of the average page generation times for 3 test pages over 50
iterations.
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Table 2.11: Average end-to-end transaction times (in seconds) and standard deviations for
3 test pages over 50 iterations.

local shared EC2 AppEngine

y σ y σ y σ y σ

Page 1 0.39160 0.01721 3.39200 0.74018 0.54840 0.10075 6.68200 0.79333
Page 2 0.37520 0.00934 3.11800 0.23113 0.47580 0.08840 7.03000 0.83211
Page 3 0.22260 0.00439 0.43580 0.03662 0.40920 0.03746 1.57200 0.56211
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Figure 2.12: A comparison of the average end-to-end transaction times for 3 test pages
over 50 iterations.

planner application was configured with a custom database based on data from ex-
isting production databases, combining historical data from different tenants over
the last 3 years. We selected three specific pages for this experiment. The first two
pages perform complex merge operations on the tenant data, as these pages were
reported by existing users as being too slow. The third page is a normal page with
an average load time. The experiments were executed on the cloud platforms in
January 2015. Table 2.10 provides the measured average page generation times
together with the standard deviations for the selected test pages over 50 iterations,
and Figure 2.11 illustrates the same results graphically. Table 2.11 and Figure 2.12
are similar, but for the end-to end transaction times.

As can be seen from these results the Amazon EC2 Engine provides a good
performance, as it is even faster than the local VM, even though we used the light-
est instance available, a t2.micro instance. The Google AppEngine on the other
hand is rather slow, as it takes up to 7 seconds to generate one of the selected heavy
pages. A possible explanation for this is that PHP support by Google AppEngine is
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still experimental, and the engine is not yet optimized for PHP. We however would
like to note that the performance of Google AppEngine has already improved con-
siderably over the last months, as in September 2014 the similar experiments were
executed, and the same page could then take up to 45 seconds to generate. For a
production ready application in the cloud, Amazon EC2 will however be selected
to host the application, as it currently is a clear winner in the executed experi-
ments.

2.7 Conclusions

Cloud computing and multi-tenancy allow providers to improve the scalability of
applications while reducing hosting costs. In this chapter, we presented a generic
approach for migrating legacy software to the public cloud, and adding multi-
tenancy to the application. We described the different steps needed to convert the
dedicated application to a cloud application, and the steps required to add multi-
tenancy to the application. We verified our approach using two case studies from
medical software: medical communications software and a medical appointments
schedule planner. For the MC software, we migrated some components to a public
cloud provider, creating a hybrid cloud, whereas for the schedule planner, we did
a full migration of the legacy software to two different public cloud providers.

Migrating an application to the public cloud only requires a limited number
of changes, while the conversion from a single-tenant to a multi-tenant applica-
tion requires more steps as the latter requires limited changes to the application
architecture. These modifications are however necessary to fully benefit from the
opportunities of public cloud computing. We presented a proactive approach by
identifying and eliminating possible future risks, for example by mitigating secu-
rity risks and analyzing the architecture regarding its scalability.

In our evaluation, we described the advantages of both the cloud migration
and the addition of multi-tenancy, and took into account the costs of the migra-
tion and remaining risks. After migrating the MC software, the time needed for
the initial creation of a new tenant is strongly reduced (from 6 to an estimated 3.5
person-days, including the initial setup of the dedicated hardware), and mainte-
nance has become much easier after migration. The reduction in initial costs and
management costs also enables supporting smaller clients for which the costs used
to be prohibitive. Supporting these additional clients may present new business
opportunities in the long-term.

For scenarios where the performance is critical, different public cloud providers
should be considered and evaluated, and within a single provider different instance
types might exist. For our second use case, Amazon EC2 has a clear advantage
over Google AppEngine for running the schedule planner, and yielded even bet-
ter results than a dedicated virtual machine on a physical Linux server. The ad-
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vantages of using a PaaS provider should also be weighted against the increased
control gained when using an IaaS provider.

Migrating legacy software to the cloud comes at a cost, and some application
components may need to be modified or rewritten. However, by following the
multi-step migration approach presented in this chapter, the benefits of a cloud
migration could outweigh the costs of implementing the described changes, as can
be seen in the evaluation section of this chapter.
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3
A Dynamic Tenant-Defined Storage

System for Efficient Resource
Management in Cloud Applications

In Chapter 2, we investigated how applications can benefit from deployment in
a multi-tenant cloud environment. To achieve high scalability, these applications
can benefit from the concepts introduced by Software-Defined Storage (SDS), by
managing the allocation of data storage from the tenant’s perspective. A multi-
tenant application should guarantee both data separation and performance iso-
lation towards every tenant, and migration of tenant data over time should be
minimized as this is both an expensive and time consuming operation. This is also
applicable at the infrastructure level, as cloud applications are often deployed in-
side virtual machines that are using virtual disks as storage. Both the number of
virtual disks and their corresponding sizes will grow over time, introducing the
need for a dynamic storage allocation approach. In this chapter, we present a
generic, dynamic and extensible system for the management of storage resources.
In the presented approach, tenants are hierarchically clustered based on multiple
scenario-specific characteristics, and allocated to storage resources using a hier-
archical bin packing algorithm (static allocation). As the load changes over time,
the system responds to these changes by reallocating storage resources when re-
quired (dynamic reallocation). We evaluate both the static and dynamic behavior
of our system. An extension for the presented system can be found in Appendix A,
in which we focus on the distribution of database records over multiple relational
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database instances.
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3.1 Introduction
Cloud computing enables short-term elastic usage of system resources such as pro-
cessing power and storage, eliminating up-front costs and providing near infinite
capacity on-demand [1]. With public cloud computing, infrastructure providers
usually apply a cloud pricing model in which the customer is charged based on
the actual resource usage (pay-as-you-go pricing model), making optimal usage of
the available resources desirable. Multi-tenancy [2] refers to a set of features that
enables the sharing of a common set of resources among customers, referred to
as tenants. Adding multi-tenancy to cloud applications aids to minimize operation
costs as resources are being shared, and also offers higher scalability as there is
an increased utilization of the available resources [3–5]. The multi-tenant appli-
cation can run on a small number of instances that are shared between tenants,
and smaller tenants can be co-located on a single instance. In fact, cloud com-
puting itself is a form of multi-tenancy, as all common cloud computing models
rely on sharing of resources among multiple clients. Moreover, a mapping can be
made between the different models of cloud computing and the different levels of
multi-tenancy, as illustrated in Figure 3.1.

A typical multi-tenant cloud application consists of multiple types of resources,
such as the computational resources used to execute the application’s logic, net-
work resources to provide sufficient bandwidth and storage resources required to
store the application’s persistent (tenant) data. Software-Defined Storage (SDS) [6]
is an evolving concept for the management of data storage from the software’s per-
spective, independent of the underlying hardware. An SDS system manages the
policy-based provisioning of data storage, and virtualization is often used to provi-
sion the required resources. Multi-tenant applications running on the public cloud
can benefit from the concepts introduced by SDS by managing the allocation of
tenant data from the tenant’s perspective, taking custom tenant policies and pref-
erences into account. Within the cloud, customers currently often have no way to
specify their requirements regarding the storage of sensitive tenant data, introduc-
ing the need for an extensible storage system for multi-tenant cloud applications.
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Figure 3.1: Mapping between the different models of cloud computing and the different
levels of multi-tenancy.

Besides the intelligent provisioning and management of resources, realloca-
tion of data over time should also be minimized. This is especially true for envi-
ronments in which the application servers are geographically distributed, making
migration of data both expensive and time consuming. Furthermore, although re-
sources are being shared among multiple tenants, the storage system should behave
like a private instance towards every tenant by guaranteeing both data separation
and performance isolation [4].

In this chapter we present an implementation of an SDS system for the man-
agement of storage resources in multi-tenant cloud environments, which we refer
to as Tenant-Defined Storage (TDS). The system allocates storage from the ten-
ant’s perspective, using novel bin packing approximation algorithms which are
optimized for both the static and dynamic allocation. An elastic cloud already pro-
vides a good basis for hosting scalable multi-tenant applications that can adapt to
changes in demand over time. The allocation of data, especially sensitive tenant
data, in compliance with regulatory policies however remains a key hurdle [7, 8].
Tenant data can be stringent to certain data assurance policies in order to meet legal
and business data archival requirements, but often customers have no way to spec-
ify their requirements. The TDS system should be flexible enough to support these
and other policies and constraints, such as guaranteeing the selected Service-Level
Agreement (SLA).

In most scenarios, storage resources will be tightly coupled to computational
resources. A multi-tenant application running on the cloud could for example con-
sist of multiple Virtual Machine (VM) instances. Initially, a single datacenter or
even a single VM could be used to execute the application, but as the number of
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Figure 3.2: Example mapping of tenants to provisioned computational and storage
resources for a distributed multi-tenant application running in the cloud.

tenants and therefore the load on the VM increases over time, multiple geograph-
ically distributed instances could be provisioned. This might however require the
migration of existing VMs to a different location, resulting in the migration of
some blob storage, the provisioned virtual disks. Figure 3.2 illustrates this con-
cept. In this example, computational resources are represented by hardware (HW
in the figure), these are the physical servers hosting the VMs, and storage resources
are represented by disks (HDD), storing the virtual disk images. A tenant user lo-
cated in the US is redirected to a provisioned VM in the North Central US Data
Center, whereas for the European tenant user resources are provisioned in the West
Europe Data Center. The tenant data should be stored close to the selected appli-
cation server, preferably in the same data center, to minimize network latencies.

The remainder of this chapter is structured as follows. In the next section, we
discuss related work within the field. Next, in Section 3.3 we provide a general
overview of the TDS system and discuss the major design decisions. In Sec-
tion 3.4 we introduce several static and dynamic bin packing algorithms for the
(re)allocation of tenant storage. In Section 3.5 we define the relevant evaluation
metrics and present the most significant evaluation results and discuss these in Sec-
tion 3.6. Finally, in Section 3.7 we state our conclusions and discuss avenues for
future research.



DYNAMIC TENANT-DEFINED STORAGE 63

3.2 Related Work

3.2.1 Previous Work

In previous work [9, 10], we designed a data management framework which can
be used to extend existing multi-tenant cloud applications in order to achieve high
scalability of the database layer. This database layer consists of multiple relational
databases, and the framework manages the distribution and retrieval of tenant data
over the available instances. Furthermore, it guarantees the correct functioning of
complex data queries, as aggregate data could be distributed over multiple database
instances. In this chapter, we focus on the design of a TDS system for managing
the allocation of blob storage instead of relational data, which has been briefly
introduced in [11]. Allocating blob storage instead of relational data leads to a
very different approach for the allocation of tenant data, with a strong focus on data
isolation (as this is an important aspect of multi-tenancy), and the design of a new
algorithm based on bin packing techniques. In this chapter we also focus on the
supervised clustering of tenants and the migration of tenant data over time and we
introduce two novel bin packing approximation algorithms which are optimized
for both the static and dynamic allocation of tenant data, together with an extended
evaluation.

3.2.2 Data Assurance Policies

Data assurance policies can be used to meet legal and business data archival re-
quirements for both persistent data and records management. Compliance with
regulatory policies on data however remains a key hurdle to cloud computing [7,
8]. According to the authors, cloud providers often fail to meet the required poli-
cies, and often users have no way to specify their requirements. The authors
show how storage services such as AppScale and Cassandra could be extended
to support the data handling requirements. Jun Li et al. [12, 13] propose a policy
management service that offers scalable management of data assurance policies
attached to data objects stored in a cloud environment. With GEODAC [14], the
authors provide a policy framework that enables the expression of both the ser-
vice providers’ capabilities and customers’ requirements, and enforcement of the
agreed-upon policies in service providers’ environments.

It is not our goal to develop a new policy framework, but as data assurance
policies add additional constraints on the allocation of tenant data, the cloud based
TDS system presented in this chapter should be flexible enough to support such
and other tenant specific data policies.
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3.2.3 Software-Defined and Scalable Storage

Ceph [15] is a distributed object store and file system designed to provide ex-
cellent performance, reliability and scalability. The system stores client data as
objects within storage pools, and uses the CRUSH [16] algorithm to allocate the
objects over placement groups. This algorithm also uses a hierarchical structure,
called the hierarchical cluster map, but this hierarchical structure is used to man-
age the storage devices, which are the leaves of the tree. The main difference with
our solution is that CRUSH will distribute data using a pseudo-random function.
Each object is mapped to a list of devices on which to store object replica, approx-
imating a uniform probability distribution. We however want to distribute data
based on tenant-specific parameters, where every tenant is mapped to a single stor-
age device, taking into account custom tenant policy restrictions. This results in a
high isolation of tenant data, which is an important requirement for multi-tenancy.
When a single tenant is too big to fit a single storage device, the tenant is split into
smaller subtenants following the approach of Section 3.4.2.3.

In [17] the performance of a data cluster based on the Ceph platform with
geographically separated nodes is evaluated. The authors focus on achieving high
availability, by allocating copies of the data over multiple distributed storage nodes,
and measuring the required bandwidth. We mainly focus on the scalability of ten-
ant data and less on high-availability, but the solution proposed in their paper can
be used to extend our system to support distributed high-availability.

In the context of SDS, FlexStore [18] is a Software-Defined Energy Adap-
tive Storage Framework that aims to reduce energy usage of the storage resources
while guaranteeing the required performance. The framework consists of a pol-
icy engine to enforce the required policies by adjusting the allocation of storage
resources. In [19] the authors present an implementation of a Software-Defined
Storage Service in a heterogeneous environment. For their Proof of Concept, they
integrate HDFC, Ceph and Swift together with a management cloud service run-
ning on OpenStack.

Most scalable storage systems follow the data fission approach, as we will de-
scribe in detail in Section 3.3.3. For the tenant-based provisioning of data storage,
we however prefer the data fusion approach, as we want to cluster related tenants
together based on their location and other tenant-specific attributes. As a result, in
this chapter we will present a new approach for managing tenant data, based on
bin packing. A highly scalable storage solution such as Ceph could however be
used for the provisioning of the independent storage pools within a single location.

Although related, SDS is not the same as a Content Delivery Network (CDN).
The goal of a CDN is to deliver content to end-users with high availability and high
performance. CDN operators either use distributed dedicated servers to replicate
and deliver the content, or they make use of a hybrid model, often using Peer-
to-Peer (P2P) technology. SDS on the other hand is based on similar concepts
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as Software-Defined Networking (SDN), and its main goal is to provide a virtual
storage system towards the applications, by abstracting the logical storage services
and capabilities from the underlying physical storage systems. An SDS system
handles the provisioning and allocation of the application data, taking into account
custom data policies, for example based on legal requirements or the selected SLA.
The TDS system presented in this chapter is an SDS system, but optimized for the
allocation of tenant data in multi-tenant cloud systems.

3.2.4 Bin Packing

The problem of allocating cloud resources can be seen as a bin packing prob-
lem. Quite often bin packing approximation algorithms are being used for cloud
resource provisioning [20–22]. In [23] for example, the authors present an ap-
proach for the adaptive provisioning of cloud resources within a datacenter using
bin packing approximation algorithms. In [24], a family of sharing-aware online
algorithms for the provisioning of cloud resources are proposed, which are based
on existing bin packing approximation algorithms but with a focus on the sharing
of volatile resources such as memory.

The TDS system proposed in this chapter also invokes an approximation al-
gorithm for the bin packing problem, but we focus on the management of storage
resources, which introduces some additional objectives such as minimizing the
number of migrations. Our system is not limited to a single datacenter, but in-
stead we make a clear distinction between inexpensive migrations within a single
datacenter, and costly migrations between geographically distributed datacenters.
Furthermore, we present a hierarchical system, in which tenants are first organized
in a hierarchical structure, and as a result our system uses a hierarchical variant of
existing bin packing algorithms, which we will refer to as hierarchical bin packing.

In [25], the authors also introduce a hierarchical bin packing approach for the
management of virtual machines within a cloud environment. They however ex-
press the current demand as means with standard deviations, instead of given scalar
variables, which is a good approach for the management of resources such as CPU
load and network bandwidth. Because of this, the authors formulate the problem as
a multi-capacity stochastic bin packing problem, and propose a heuristic method
to solve this NP-hard problem. As we mainly focus on storage resources, we can
work with scalar variables (as the exact usage is known at any moment), but our
system can similarly be extended to support other types of resources if required.

In [26] a hierarchical variant of the bin packing problem is studied in which the
items to be packed are structured as the leaves of a tree. Just as with classical bin
packing, this is an NP-hard problem, but the authors provide approximation algo-
rithms for several cases. Furthermore, in [27] the authors provide some comments
on the hierarchical bin packing problem by investigating an existing algorithm, but
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Figure 3.3: General overview of the Tenant-Defined Storage system.

they also only handle cases in which the items to be packed into bins are the leaves
of a tree. In our approach, after the hierarchical clustering of tenants, some inter-
nal nodes can also have a certain size. As a result, in this chapter we will present
two novel approximation algorithms for the hierarchical bin packing problem, in
which the items to be packed are not restricted to the leaf nodes, and compare them
to existing algorithms in terms of efficiency.

3.3 Design of a Tenant-Defined Storage System

3.3.1 General Overview

The TDS system aims to automatically allocate and reallocate the storage re-
sources required by the different tenants. Figure 3.3 presents a general overview
of the system. When a tenant user accesses the multi-tenant application, he first
connects to a load balancer (1 in the figure) in order to select one of the available
server instances located in a nearby data center (2). To retrieve the application
data, the selected application server needs to connect to the corresponding storage
pool where the tenant’s data is stored (3). This storage pool should be close to the
application server, preferable within the same data center. In an elastic cloud envi-
ronment, both the application servers and storage pools can be provisioned on the
fly. The management and provisioning of these resources is the main task of the
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elasticity manager (4). To achieve high scalability, this component monitors and
evaluates the current load on the provisioned application server instances. As the
load increases, additional instances will be provisioned to avoid overload. Simi-
larly, the component also monitors the usage of the provisioned storage pools. If
the usage of a single storage pool reaches a certain threshold, an additional stor-
age pool is provisioned and some of the existing tenant data will be reallocated
before the storage pool runs out of space. On the other hand, if the load on the
application servers or the usage of the storage pools decreases significantly, one or
more application servers and/or storage pools should be de-provisioned, requiring
the reallocation of some of the tenants, in order to minimize the operating costs.
Whenever tenants are reallocated, the elasticity manager also notifies the load bal-
ancer (5) to guarantee the correct routing of incoming requests.

In the remainder of this chapter, we will focus on the design of the elastic-
ity manager. Every tenant puts a certain load on the system, requiring a spe-
cific amount of resources. This load can be expressed as the required number
of CPU cycles, the required amount of memory, storage, or a combination. We
however focus on storage resources, as these introduce additional constraints for
the (re)allocation such as minimizing the amount of migrations or the total migra-
tion size. In this context, the primary task of the elasticity manager is to, given
a certain set of tenants with tenant-specific characteristics, find a feasible alloca-
tion of tenant data over the set of available storage resources (static allocation).
Furthermore, as the amount of tenant data grows over time, reallocation might be
required (dynamic allocation), and especially for geographically distributed stor-
age resources, the total amount of data to reallocate (reallocation size) should be
minimized as this is both expensive and time consuming.

3.3.2 Hierarchical Clustering of Tenants

In our solution, tenants are hierarchically organized using a tree structure, which
we refer to as the tenant tree. There are several reasons to do so. First of all, multi-
tenant applications are often used by a number of organizations, the tenants. Large
organizations however tend to consist of multiple independent divisions, introduc-
ing the need for subtenants or even sub-subtenants and the tenant tree inherently
supports this hierarchical structure. Secondly, when the tenants using the applica-
tion are geographically distributed, it might be good practice to cluster them based
on their location, and resources can be allocated from a resource pool close to the
tenant. Tenants could also be clustered based on other characteristics, e.g. the
selected SLA or other regulatory policies concerning the storage of sensitive data,
and these characteristics could define the required type of (physical) hardware. In
general, tenants can be clustered based on multiple characteristics, depending on
the requirements of the tenant, the possibilities of the application and the infras-
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Figure 3.4: Example partial tenant set with their selected characteristics and a part of the
corresponding tenant tree. In the tenant tree, tenants are clustered based on multiple

characteristics, with more significant characteristics such as the selected SLA at a higher
level in the tree structure.

tructure. The goal of the TDS system is to cluster related tenants together while
minimizing migrations over time.

In the resulting tenant tree, the most significant characteristics appear at the
highest levels of the tree structure, as higher levels have a higher impact on the
clustering of tenants. Figure 3.4 illustrates this concept. In the left bottom cor-
ner of this figure some example tenants using the application are listed, together
with their relevant characteristics. The remainder of the figure illustrates a part of
the corresponding tenant tree. In this example, tenants are first clustered based on
their SLA, allowing the infrastructure provider to assign tenants to different types
of storage resource pools, for example by using high-end hardware with improved
replication and higher availability for more stringent SLAs. Next, the tenants are
clustered based on their geographical location, allowing the provider to allocate
tenants to a resource pool close to their location to minimize network delays. Fi-
nally, tenants are clustered based on their internal structure. The conversion from
the tenants table to the tenant tree is straightforward and can be achieved by using
simple data queries. Once a feasible allocation scheme has been found, the map-
ping from clusters of tenants towards a geographical location and required type of
storage pool is calculated by determining the mayors for every cluster, as we will
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explain in detail in Section 3.4.3.3.

3.3.3 Data Fusion vs Data Fission

When allocating storage resources, for example when developing scalable database
systems, there are 2 commonly used approaches, often referred to as data fusion
and data fission [28]. The difference between both is how the data is distributed
over the available instances. Data fusion refers to the approach where multiple
small data granules are combined to provide stringent transactional guarantees on
larger data granules, and is often used to achieve better scalability. Data fission or
partitioning on the other hand is another approach for achieving high scalability,
by splitting large data blocks into relatively independent shards or partitions and
providing transactional guarantees only on these shards. Figure 3.5 illustrates both
approaches.

Most scalable database systems and data storage solutions such as Ceph [15]
follow the data fission approach. The TDS system however aims to cluster related
tenants together on a single instance, which is related to the data fusion approach.
There are several reasons to do so. First of all, one of the most important aspects
of multi-tenancy is the isolation of tenants, for both performance and security.
Although multiple tenants share a common set of resources, the instance should
always behave as a dedicated instance towards the tenant. By using the data fusion
approach, when a large tenant puts a heavy load on the application, the impact will
be limited to a single instance, and only few tenants sharing the same instance can
be affected. This is opposed to the data fission approach in which all tenants using
the application would potentially be impacted. In case of a security leak on one of
the instances, the impact is similarly contained to a single instance. Furthermore,
when tenants and storage resources are geographically distributed, it would be bad
practice to divide data belonging to a single tenant over multiple physical locations,
as this will result in high response times when data needs to be aggregated. On the
other hand, the data fission approach could still be used within a single resource
pool, for example by using Ceph, but on the meta level the data fusion approach is
best suited.

3.3.4 Elasticity Manager

Once the tenant tree is constructed, the main task of the elasticity manager is to
determine a feasible allocation of the tenants over the available resource pools.
After the initial allocation, tenants can however grow in size, requiring reallocation
of some of the tenants, either within a single resource pool or between multiple
geographically distributed locations. The elasticity manager needs to support this
behavior, introducing the need for a dynamic system and thus dynamic algorithms
for the (re)allocation of tenants.
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Figure 3.6 illustrates the functionality of the elasticity manager. As can be seen
in this figure, the component invokes a dynamic resource allocation algorithm for
the allocation of the different tenants, based on the information of the input tenant
tree. Re-evaluation can be triggered by certain events, for example when a new
tenant is added to or removed from an existing application, or when some of the
provisioned instances are overloaded or underloaded because of an increase or
decrease in size of some of the existing tenants.

3.3.5 Resource Allocation Algorithm

Although linear programming could be used to find an optimal solution for the re-
source allocation problem, its applicability in real systems is often limited due to
the complexity. Every additional constraint increases the complexity of the math-
ematical model, and possibilities for customization are often limited due to the
need for linear expressions. Furthermore, large datasets containing a high num-
ber of items often result in high (and sometimes unacceptable) execution times.
Another possible solution would be to design a permutation based algorithm for
finding a (pseudo-)optimal solution, which iterates over all possible allocations.
These type of algorithms offer higher flexibility, but at the cost of even higher
execution times [9, 10].

The management of storage resources (or cloud resources in general) can also
be seen as a bin packing problem, in which the tenants are the items to be packed
inside multiple resource pools, the bins, and the objective is to minimize the num-
ber of bins in order to minimize operational costs. As the bin packing problem is
an NP-hard problem, we prefer to use an approximation algorithm as these often
find an acceptable solution within limited time.

As mentioned before, related tenants should be clustered together based on the
tenant tree. When using bin packing, this introduces the need for an approxima-
tion algorithm for the hierarchical bin packing problem. In the next section, we
introduce two novel approximation algorithms for the static allocation of tenant
data, each having its own advantages and applicability for certain scenarios, and a
dynamic extension for the dynamic reallocation.

3.4 Dynamic Resource Allocation

The goal of the resource allocation algorithms is to find a feasible distribution
of the different tenants over a set of resource pools. When using bin packing
techniques, the tenants (each having their own size) correspond to the items to be
packed into the bins, being the resource pools.
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3.4.1 Problem Formulation and the FFD Strategy

The bin packing problem can be formulated as follows: Given a list of n tenants,
each having their own tenant size ai (1 ≤ i ≤ n), and a single resource pool S of
size V . The goal is to find a finite number of resource pools B and a B-partition
S1 ∪ ... ∪ SB of the set {1, ..., n} so that

∑
i∈Sk

ai ≤ V for all k = 1, .., B. A
possible solution for this problem is optimal if it has a minimal value for B.

The bin packing problem can also be formulated as an Integer Linear Program-
ming (ILP) model [29], by introducing two binary decision variables:

yi =

{
0 if bin i is used
1 otherwise (i = 1..u)

xij =

{
0 if item j ∈ bin i
1 otherwise (i = 1..u, j = 1..n)

In the above formulas, u corresponds to the upper bound on the optimal solution
value (e.g. the value found by an approximation algorithm). The objective of the
ILP is to find:

B = min

u∑
i=1

yi

subject to:
n∑

j=1

ajxij ≤ V yi (i = 1..u),

u∑
i=1

xij = 1 (j = 1..n),

yi ∈ 0, 1 (i = 1..u),
xij ∈ 0, 1 (i = 1..u, j = 1..n).

The bin packing problem is an NP-hard problem, but there exist some simple
yet very efficient approximation algorithms, such as the First-Fit Decreasing (FFD)
strategy. This algorithm first sorts the set of items, based on their size, in decreas-
ing order and then it adds each item to the first available bin that can accommodate
the item. If no bin is found, it adds a new bin to the set, and adds the item to this
new bin. It has been proven [30] that the algorithm will always find a solution in
which there are no more than 11/9×OPT +1 bins, in which OPT is the number
of bins in the optimal solution.

The formal model is sufficient for the static allocation of unrelated tenants, but
when applied to a hierarchical dynamic system, two additional objectives can be
introduced:



DYNAMIC TENANT-DEFINED STORAGE 73

1. As tenants are hierarchically structured, related tenants (e.g. siblings of the
same parent node) should be allocated together when possible.

2. For a dynamic system, migrations over time should be minimized, as we
mainly focus on the allocation of storage resources.

The FFD strategy is not suitable for the implementation of the elasticity man-
ager of the TDS system, as it is not adjusted to take into account our additional
objectives regarding the dynamic behavior of the system. In the evaluation sec-
tion however, we compare the hierarchical bin packing algorithms to both the FFD
strategy and an implementation of the ILP model, as this offers some interesting
insights about the overhead of the different algorithms in terms of number of bins
and the average bin usage.

3.4.2 Hierarchical Bin Packing

When the items to be packed are hierarchically organized, the bin packing prob-
lem is often referred to as hierarchical bin packing [25–27]. For our system, we
designed two novel approximation algorithms for this problem, based on the FFD
strategy and existing tree methods. Before introducing the algorithms, we first de-
fine the structure of a tree node. In the tenant tree, every node (both internal nodes
and leafs) is represented by the structure shown in Figure 3.7.

In the representation of a single node, the nodeSize property returns the size of
the current node (without child nodes), whereas the treeSize() method returns the
calculated total size of the subtree with the current node as root. Nodes can either
be virtual (nodeSize = 0), used for structuring the tenants, or they can represent
a single tenant (nodeSize ≥ 0). In the example of Figure 3.4, Europe is a virtual
node, whereas Office 2 and Company X represent tenants using the application.

Tenants however are not restricted to leaf nodes, as some internal nodes can
also represent a tenant (with a certain size). This could for example happen when
a company is divided into multiple departments, but there is also a central admin-
istration managing the whole company, represented in the tenant tree as a parent
node with different leaf nodes for the different departments. Another reason to
have internal nodes with a certain size is to support the splitting of nodes when a
single node is too big to fit a single bin, as we will explain in Section 3.4.2.3.

3.4.2.1 The Hierarchical First-Fit Decreasing Strategy

The pseudo-code of the first algorithm, which we will refer to as the Hierarchical
First-Fit Decreasing (HFFD) strategy, is presented in Algorithm 1. This algorithm
takes a pointer to the root node as input parameter, instead of a list of tenants, and
a pointer to an (initially empty) list of bins, required for the recursion. Note that
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struct Node {

  String name;  // Tenant identifier

  Node[] children;  // Array of child nodes

  double nodeSize;  // Size of current node

 // (without children)

  double treeSize();  // Size of (sub)tree

 // with current node as root

  Node[] separate();  // Returns a list containing 

 // the current node without

 // children, and all child

 // nodes as subtrees

  Node* parent(int l); // Returns the (grand-)parent 

 // node at the selected level

 // of the tenant tree, e.g.

 // when l=0 the root node 

 // will be returned

};

Figure 3.7: Structure of a single node within the tenant tree.

the bins parameter is a reference, meaning that there is only one list of bins, and
the reference is shared between all recursive calls.

If the whole (sub)tree can be allocated to a single bin, the algorithm will do so,
in a similar way as the FFD strategy. Note however that in this case the (sub)tree
will not be split and allocated over multiple bins. If the (sub)tree does not fit a sin-
gle bin, all child subtrees are sorted in decreasing order based on their treeSize(),
together with the current root node based on its nodeSize. For this, the separate()
method of the node structure is very useful, as it returns a list of all subtrees to-
gether with the root as a leaf node, which can then easily be sorted based on the
treeSize(). The algorithm is then invoked recursively for every Node inside this
sorted list, together with the pointer to the list of existing bins.

3.4.2.2 The Hierarchical Greedy Decreasing Strategy

Although the HFFD strategy is already feasible for many scenarios, we also pro-
pose a second algorithm, which we refer to as the Hierarchical Greedy Decreas-
ing (HGD) strategy. The pseudo-code of this algorithm is presented in Algo-
rithm 2. The algorithm is very similar to the HFFD strategy, but the main dif-
ference lies within the allocation of the (sub)tree to a bin. Instead of looking for
a suitable existing bin, the (sub)tree is always added to a new bin, which is then
added to the list of bins.
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algorithm 1: The Hierarchical First-Fit Decreasing (HFFD) Strategy

Input: V , Node∗ root, S[]∗ bins
Output: bins

if root.treeSize() ≤ V then
for bin in bins do

if root.treeSize() fits in bin then
Add whole (sub)tree to existing bin
Break the loop

end if
end for
if root.treeSize() did not fit in any available bin then

Add whole (sub)tree to a new bin, and add bin to bins
end if

else
for node in (sort root.separate() in decreasing order) do

Invoke algorithm with node as root and bins as input parameters (recursive
call)

end for
end if

algorithm 2: The Hierarchical Greedy Decreasing (HGD) Strategy

Input: V , Node∗ root, S[]∗ bins
Output: bins

if root.treeSize() ≤ V then
Add whole (sub)tree to a new bin, and add bin to bins

else
for node in (sort root.separate() in decreasing order) do

Invoke algorithm with node as root and bins as input parameters (recursive
call)

end for
end if

The HGD strategy will generally divide the tenants over more bins than when
using the FFD or HFFD strategy, hence the term greedy. This however results
in fewer reallocations and smaller migration sizes over time, together with an in-
creased level of tenant isolation, making this algorithm very suitable for supporting
higher (often referred to as “gold”) SLAs.

3.4.2.3 Support for Big Nodes

The presented algorithms work fine if all nodes have a nodeSize ≤ V , meaning
that all nodes fit into a single bin. In some cases however, there might exist some
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Update original node X, 
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Figure 3.8: Fixing the tenant tree before invoking the algorithm by splitting “big” nodes.

bigger nodes which don’t fit a single bin. As a result, the tenant tree is first modi-
fied before invoking the algorithm. During this pre-processing step, big nodes are
split into multiple small nodes as illustrated in Figure 3.8.

3.4.3 Migration Strategy

The hierarchical bin packing algorithms can be used for the static allocation of
storage resources in a cloud system, as they minimize the required amount of re-
sources while taking into account the hierarchical structure of the tenants. In a
dynamic scenario however, tenant sizes grow and shrink over time, and at some
point the system might need to reallocate some of the tenants in order to avoid
over- or under-usage of the resource pools.

In the remainder of this section, we will first introduce two additional param-
eters useful for implementing this dynamic behavior. Next, we describe how we
adjusted the static hierarchical algorithms to further reduce the migration sizes.
We conclude this section by describing how migrations are determined between
consecutive (re)allocations.

3.4.3.1 Allocation Factor (AF) and Reallocation Delta (RD)

To implement the dynamic behavior, two additional parameters are introduced:



DYNAMIC TENANT-DEFINED STORAGE 77

• The Allocation Factor (AF), with 0 < AF < 1.

• The Reallocation Delta (RD), with 0 < RD < 0.5.

The first parameter AF indicates the maximum allowed usage of a single stor-
age resource pool during (re)allocation. In this context, the usage of a bin is defined
as the amount of resources currently used over the total amount that the bin can
accommodate. The AF can therefore be seen as a margin, and without this param-
eter the allocation algorithms could fill a single bin up to 100%, resulting in an
overflow as soon as one of the tenants increases in size. If a single resource pool
has a maximum size of MAX , the bin packing algorithms introduced before will
be invoked with V = AF ×MAX for the size of a single bin, meaning that there
is still some place left in the bins after the allocation.

The second parameter, RD, is used for reallocations. As mentioned before,
reallocation can either be triggered by adding or removing a tenant (with a certain
size), or when a single bin is either over- or underloaded. It is a delta value,
meaning that reallocation will be automatically triggered by the TDS system as
soon as one of the resource pools reaches a usage that is either ≥ (AF + RD) ×
MAX (overloaded) or ≤ (AF −RD)×MAX (underloaded). A lower value for
this parameter will trigger reallocation faster, and the value should be low enough
to avoid overflows as data should be migrated before the bin reaches a usage of
100%.

To summarize, while the MAX value refers to the maximum number of data
blocks that a single bin can accommodate, the AF and RD parameters are used
during the (re)allocation of tenant data and the system continuously monitors all
bins to detect any overloaded or underloaded instances. For example, if AF = 0.7

andRD = 0.2 then during every reallocation the system will try to fill every single
bin up to 70%, while reallocation will be triggered when a single bin reaches a
usage that is either ≥ 90% or ≤ 50%. The only exception happens during the first
iterations, when the total amount of data blocks is limited (≤ 0.5 ×MAX), and
therefore underflows are temporary allowed as otherwise it would be impossible
to find a feasible allocation scheme.

3.4.3.2 Dynamic Extension for the Bin Packing Algorithms

The hierarchical bin packing algorithms, together with the two additional param-
eters could already be used for implementing the elasticity manager. Whenever
a bin triggers reallocation, the elasticity manager can re-invoke the algorithm us-
ing the whole tenant tree, and calculate the migrations. The algorithms however
are not yet optimized for minimizing the migration sizes, as by following this ap-
proach tenants who are allocated to a bin that is not yet over- or underloaded might
also get reallocated as the algorithm tries to minimize the total number of bins.
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A possible and effective solution for this problem is to only invoke the algo-
rithm for tenants assigned to one of the over- or underloaded bins. This can be
easily achieved using the following steps:

1. Generate a list containing all tenants that are allocated to either an over- or
underloaded bin.

2. Filter the set of bins by removing all under- and overloaded bins.

3. Invoke the bin packing algorithm, with both the set of tenants to reallocate
and the filtered set of bins as input parameters.

By invoking the algorithm with the filtered set of bins, tenants that need to be
reallocated can still be allocated to an existing bin (except for the greedy strategy,
as this strategy will always assign the tenants to a new bin), but existing tenants
that don’t require reallocation will remain in the previously assigned bin.

This dynamic extension can be applied to all bin packing algorithms, and
we will refer to the dynamic variant of the bin packing algorithms as the dFFD,
dHFFD and dHGD strategies. As we will illustrate in the next section, using the
dynamic variant will generally result in a significant decrease in migration sizes.

3.4.3.3 Determining the Migrations

Whenever reallocation is triggered, the TDS system will re-invoke the selected
(dynamic) allocation algorithm in order to determine a new feasible distribution of
tenant data over the available resource pools. The new distribution will be likely
different from the old one, and some tenants might need to be migrated between
resource pools. The TDS should be able to migrate these tenants as efficiently as
possible, minimizing the total amount of data that should be migrated.

When calculating the migrations, we make a distinction between expensive mi-
grations, for example between geographical distributed locations, and inexpensive
migrations within a single location. Within a single location, migrations are fast
as data can be migrated within the internal backbone network, typically having a
very high bandwidth, and most infrastructure providers will charge no costs for the
consumed bandwidth. Between two locations however, migrations will consume
more time as there is less available bandwidth, and the provider might charge for
the consumed bandwidth.

In order to calculate the shortest migration path, we added the concept of may-
ors to the bins. Within the tenant tree, every tenant is connected to the root node
through a set of parent nodes. We can retrieve this set of parent nodes by using the
parent(int l) method of the Node structure defined before. A single bin contains
one or more nodes of the tenant tree. Within a single bin, we define the mayor for
a given level of the tenant tree as the most important node (biggest total size), by
using Algorithm 3.



DYNAMIC TENANT-DEFINED STORAGE 79

algorithm 3: Calculating the mayor on the selected level of the tenant tree for a given bin

Input: S ∗ bin, int level
Output: Node ∗mayor

Initialize Map < Node∗, int > parents
for node in bin do
parents[node.parent[level]]+ = node.nodeSize

end for
Return key from parents with the biggest value

If we invoke this algorithm for all levels of the tenant tree, we have a list of
mayors per level for the bin. This list defines the characteristics of the bin, if
we apply this to the example of Figure 3.4, the level 1 mayor defines the type of
hardware required to support the SLA and the mayors from level 2 and 3 define
the geographical location. To calculate the migrations we compare the mayors
for every tenant in every bin for the ‘old’ allocation scheme (before re-invoking
the allocation algorithm) and the ‘new’ allocation scheme. If a single tenant is
assigned to another level 1 mayor after reallocation this signifies that the tenant is
migrated to a different resource pool, for example running on different hardware.
If we repeat this for all levels, we can construct a list of all tenants that are migrated
on level 1, level 2, and so on.

Calculating the mayors per level allows us to make a distinction between costly
and inexpensive migrations and the goal of the TDS system is to minimize the mi-
gration sizes at the top levels. For example, if we take the tenant tree of Figure 3.4,
and the physical locations are defined by the continent (level 2), we know that level
1 and level 2 migrations are expensive, whilst the other migrations are inexpensive
as these happen within a single location.

Figure 3.9 illustrates this concept applied to a small example scenario. In this
example, all tenants are initially allocated to a single bin. As the two tenants
located in Belgium together account for the biggest part of the bin, the mayors for
this bin are Europe (L1) and Belgium (L2). When some tenants increase in size, the
bin reaches a usage higher than 0.9 (= AF + RD) and reallocation is triggered.
After re-invoking the data allocation algorithm, the tenants are now distributed
over 2 bins instead of one, and for the newly provisioned bin the mayors are North
America and the United States. If we iterate over all tenants, only tenant Z has
different mayors after reallocation. As the L1 mayors are different, a L1 migration
is required and the tenant will be migrated from a data center in Europe to a data
center in North-America.
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Figure 3.9: Calculating the migrations after some tenants increase in size: example
scenario with MAX = 100, AF = 0.6 and RD = 0.3.
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3.5 Evaluation Results

3.5.1 Evaluation Metrics

The primary goal of the system is to determine a feasible allocation of tenant data
over the available resource pools. In order to minimize the operational costs, a
feasible allocation should aim to minimize the number of instances (bins). Fur-
thermore, as we focus on a dynamic system, the number of migrations over time
should also be minimized. These two metrics however don’t always go together,
as more bins will generally result in fewer migrations and vice versa. Finally, we
also look at the average distance within the bins, to find out if the system is able to
cluster related tenants together (isolation of tenants). In summary, we focused on
the following evaluation metrics, which correspond to the objectives described in
Section 3.4.1:

• Average Bin Usage (static allocation)
As more bins will mostly result in higher operational costs, the goal of the
system is to minimize the number of bins required. For a single bin, we
define the bin usage as the sum of the items over the maximum bin size
(MAX). If we do this for all bins, we can calculate the average bin usage:

binusage =

B∑
k=1

∑
i∈Sk

ai

MAX

B
=

n∑
i=1

ai

B ×MAX

In the above formula, ai (1 ≤ i ≤ n) is the size of tenant i, and Sk (1 ≤
k ≤ B) corresponds to a single bin. A higher value for this metric will result
in less bins, and an efficient algorithm should achieve an average bin usage
close to the selected AF .

• Migration Size (dynamic allocation)
Whenever data is reallocated, we calculate the total migration size, which
corresponds to the sum of the sizes for all tenants that are migrated. To
normalize the results, we also calculate the relative migration sizes, defined
as the migration size during each iteration over the total amount of data in
the last iteration. For the dynamic behavior of our system, this is the most
significant metric.

• Average Bin Distance (hierarchical clustering)
The system is designed to cluster related tenants together (e.g. siblings of
the same parent node), to achieve both data and performance isolation. In
the tenant tree, we define the distance between two tenants as the number of
edges between the two nodes following the shortest path. The bin distance
for a single bin is then defined as the average distance between all tenants
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allocated to this bin. If we calculate this for all bins, we can calculate the
average bin distance, and a lower value indicates a better clustering and/or
isolation of tenants, as a value of 0 for this metric implies that every tenant
is allocated to a dedicated bin.

• Ratio of Shared Bins (tenant isolation)
The last evaluation metric is the ratio of shared bins, which corresponds to
the number of bins accommodating multiple tenants over the total number
of bins. This metric provides some insights about the degree of tenant isola-
tion, as a lower value for this metric indicates a higher number of dedicated
storage instances.

3.5.2 Evaluation Setup

We evaluated the different algorithms using the simulator presented in [31]. The
simulator is built on top of the elasticity manager of the presented SDS system, but
works with a simulated cloud environment. The simulator calculates both the allo-
cations, migrations and average bin distance for every iteration of a given dataset.

3.5.2.1 Case Studies

For our experiments, we used two case studies based on real-life datasets. The
first case study is the implementation of a population register, in which for every
inhabitant a single data block is stored. The dataset for this case study is based on
the yearly population of every town in Flanders, over a period of 7 years, which
can be found on the official website of Flanders [32]. In this scenario, every town
represents a tenant (with the number of inhabitants corresponding to the number of
data blocks that need to be allocated), and the tenants are hierarchically organized
based on their geographical location, with the capital city, region and province on
the path from the leaf node to the root of the tenant tree. Including the internal
nodes, the whole tenant tree for this scenario consists of 946 nodes.

Our second scenario is similar to the first, but the dataset is based on the num-
ber of fixed broadband subscribers per country worldwide over the last 16 years,
which is available from the World Bank Open Data [33]. For this dataset, every
country represents a tenant with the number of subscribers as the required amount
of data blocks, and the tenant tree is also based on the geographical location and
consists of 222 nodes.

While both scenarios look very similar, there is an important difference. The
first scenario is a good example of a slow-growing dataset, as the total amount
of inhabitants increases slowly over time, whereas the second scenario is a good
example of a fast-growing dataset with exponential growth. These two datasets
cover a broad spectrum of possible scenarios. The slow-growing dataset resembles
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Table 3.1: Overview of both datasets

Slow-Growing Dataset Fast-Growing Dataset

Internal nodes
L0 1 (root) 1 (root)
L1 9 (provinces) 7 (continents)
L2 43 (regions)
L3 50 (subregions)
L4 254 (main cities)

Leaf nodes
589 (towns, L5) 214 (countries, L2)

Total nodes 946 222

Iterations
Timespan ± 7 years ± 16 years
Iterations monthly daily
Total iterations 85 5697

Instance physical location defined by
region (L2) continent (L1)

Evaluated values for configurable parameters
MAX 5× 106, 106, 5× 105, 105 5× 108, 108, 5× 107, 107,

5× 104, 104, 5× 103 5× 106, 106, 5× 105

AF ±RD 0.5± 0.1, 0.2, 0.3, 0.4 idem as slow-growing dataset
0.6± 0.1, 0.2, 0.3
0.7± 0.1, 0.2

the expected growth of an established application with a fixed number of tenants
with an initial size, and the tenant sizes grow slowly over time. The fast-growing
dataset on the other hand resembles a novel popular application, where all tenants
have an initial size of 0, and in the initial years not only the individual tenant sizes
grow, but also the total number of tenants.

Table 3.1 provides an overview of both datasets but before running the pre-
processing step described in Section 3.4.2.3, as this step might introduce addi-
tional levels and internal nodes to guarantee that every node can be allocated to a
single bin. Figure 3.10 illustrates the total size of both datasets over time. In the
remainder of this section, we will refer to both datasets as the slow-growing and
fast-growing dataset respectively.
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Figure 3.10: Total number of data blocks for both datasets over time.
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Table 3.2: Valid combinations of AF and RD for the fast-growing dataset using all values
for MAX

AF
0.5 0.6 0.7 0.8

RD

0.1 3 3 3 7
0.2 3 3 7
0.3 3 7
0.4 7

3.5.2.2 Configurable Parameters

For our evaluation, we not only selected different values for the allocation factor
(AF ) and reallocation delta (RD) described in Section 3.4.3.1, but also for the
capacity of a single bin (MAX). For the evaluated case studies, the value MAX

refers to the maximum number of data blocks a single storage volume can ac-
commodate, and by selecting different values for the configurable parameters, we
cover a very broad spectrum of possible scenarios. An overview of the evaluated
values for all parameters is also provided in Table 3.1.

3.5.3 Influence of Configurable Parameters on the Risk of Over-
flows

While the value of MAX will be defined by the scenario (and type of hardware
used), the values for AF and RD can be adjusted. However, not all combinations
will be usable. First of all, it should be clear that AF +RD < 1, as otherwise the
bins would get overfull. But even when this constraint is not violated, the system
could still result in overflows, for example when there is an exponential growth in
size, resulting in one or more overfull bins before the migration is finished.

To determine the optimal values for both parameters, we ran several experi-
ments using the values described in Table 3.1. Table 3.2 provides an overview of
the results.

As can be seen from these results, there were no overflows using daily itera-
tions when AF + RD ≤ 0.8. We however like to note that when MAX ≥ 106

there were no overflows at all, even for AF +RD = 0.9. The value of AF +RD

should be as high as possible, as lower values would lead to more bins being used
and therefore a waste of resources. In the remainder of this section, we will fo-
cus on two combinations for AF and RD which were valid configurations for all
algorithms and sizes, 0.5± 0.3 and 0.7± 0.1.
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3.5.4 Average Bin Usage

For the static allocation, the bin usage is the most important metric as the pri-
mary goal of the algorithm is to minimize the number of storage bins in order
to minimize the operational costs. For this metric, we compare the efficiency of
our algorithms to the FFD strategy, which we use as benchmark as discussed in
Section 3.4.1.

Figure 3.11 illustrates the average bin usage (over all iterations) using the fast-
growing dataset, with AF ±RD = 0.5±0.3 and 0.7±0.1 for the different values
of MAX . Figure 3.12 is similar, but illustrates the average bin usage (over all
evaluated values for MAX) for the different iterations of the dataset. As can be
seen from Figure 3.11, most algorithms will achieve a lower bin usage when using
larger bins, which can be explained by the fact that when using larger bins it will be
harder to fill the bin and therefore the possibility of wasting more space inside the
bin increases. One exception happens when using the dHGD algorithm, for which
the bin usage slightly increases when MAX > 108. This is because when using
such large bins, the total number of bins required for allocating all data is limited,
and due to the greedy behavior of the dHGD algorithm every subtree is already
allocated to a dedicated bin during the first iterations after which no reallocations
happen, as we will see clearly in Section 3.5.5, resulting in a higher bin usage.
Note that in the plots we only include the dynamic versions of both hierarchical
algorithms, as described in Section 3.4.3.2, as the results for the non-dynamic
algorithms are almost identical to their dynamic counterparts. In general, dHFFD
achieves an average bin usage close to the selected AF , just as FFD, whereas for
dHGD the overhead is much bigger (as expected).

Figure 3.13 on the other hand shows the total number of bins using the fast-
growing dataset for 2 different values of MAX . The results also include the to-
tal number of bins found by solving the ILP model introduced in Section 3.4.1,
implemented using IBM CPLEX Optimization Studio 12.7 [34] with bin size
V = (AF + RD) × MAX , the maximum allowed bin usage before realloca-
tion would be triggered. These results also confirm that the dHFFD algorithm
achieves very similar results as the FFD algorithm, and the overhead in number of
bins is relatively small compared to the optimal solution. We would like to note
that dHGD, dHFFD and FFD are invoked with bin size V = AF ×MAX during
every reallocation, which explains the difference in overhead between both figures.

3.5.5 Percentage of Migrations and Migration Sizes

Figure 3.14 shows the percentage of migrations (number of migrations over the
number of iterations) using the fast-growing dataset, for all evaluated values of
MAX . Figure 3.15 shows the average relative migration sizes using the fast-
growing dataset, only taking into account iterations in which there actually was a
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Figure 3.11: Average bin usage over all iterations using the fast-growing dataset for the
different values of MAX .
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Figure 3.13: Total number of bins using the fast-growing dataset for the different
iterations.
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migration. As can be seen in Figure 3.14, not every iteration will trigger a migra-
tion. By only including actual migrations in Figure 3.15 we get a good estimate
about the average amount of data that is migrated during every actual reallocation.

For the HFFD algorithm, migrations are nicely spread over time (not visible
in the figures but our experiments confirm this), and the average migration size is
already very small thanks to the clustering of related tenants. Furthermore, there
are more inexpensive migrations (L2 + L3) than expensive migrations (L1). The
dynamic version of this algorithm, dHFFD, reduces the average migration sizes
by a factor 10. The dHGD strategy strongly reduces the number of migrations
compared to dHFFD, and there are no L2 or L3 migrations as the algorithm forces
the allocation of tenants to a dedicated instance.

3.5.6 Bin Distance and Ratio of Shared Bins

As mentioned before, the TDS system was designed to cluster related tenants to-
gether to have a clear separation of tenants. To evaluate this, we measured the
average bin distances over the different iterations for the different algorithms over
all executed experiments. Figure 3.16 illustrates the results for the slow-growing
dataset over the different iterations. For this metric, the slow-growing dataset is
the most interesting dataset as the tenant tree consists of more levels than the ten-
ant tree of the fast-growing dataset. Figure 3.17 on the other hand illustrates the
average ratio of shared bins for all algorithms over all values for MAX using the
fast-growing dataset.

As can be seen from Figure 3.16, the dHFFD algorithm is already performing
quite well, as it quickly reaches an average bin distance below 3, signifying that
most bins only contain siblings. The dHGD algorithm on the other hand further
reduces the average bin distance, but again at the cost of additional bins. Further-
more, both algorithms have a positive effect on the degree of tenant isolation, as
can be seen in Figure 3.17.

3.6 Discussion

The FFD strategy is a simple yet efficient approximation algorithm for the bin
packing problem, but it does not take the hierarchical structure of the tenants into
account. When working with multi-tenant scenarios, clustering of related tenants
is important as this will improve both the isolation of performance and tenant data.
To achieve this clustering, we introduced two novel hierarchical algorithms for
the bin packing problem, HFFD and a greedy variant HGD, and their dynamic
counterparts, dHFFD and dHGD. Both algorithms are very similar, but HFFD is
designed to minimize the number of bins (similar to FFD), whereas HGD aims
to minimize the number of migrations over time. Furthermore, we introduced a
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Figure 3.16: Average bin distance for the slow-growing dataset over the different
iterations.

dynamic extension for both algorithms to reduce the migration sizes.
The evaluation results confirm that for the static allocation, dHFFD has a sim-

ilar bin usage as FFD, whereas dHGD has a much lower bin usage but reduces
the number of migrations significantly, and the dynamic variant of the algorithms
reduces the migration sizes by about a factor 10. Both dynamic algorithms achieve
very low average migration sizes, as on average during every actual migration less
than 0.01% of the total amount of data is migrated using either dHFFD or dHGD.
When using the greedy algorithm, the number of migrations is very low, as less
than 0.2% of the iterations triggered a migration (meaning that on average there
was a migration every +500 days), compared to 20% of the iterations triggering a
migration (+5 days) when using dHFFD.

The size of a single bin (MAX) will be defined by the scenario and type of
hardware used, and in general smaller bins result in higher average bin usages
and smaller migration sizes, but they require a lower value for AF + RD when
using fixed iterations (for example every day) to avoid overflows. Determining
the optimal value for AF + RD in a continuous real-time, real-world scenario
is however quite complicated as there are many influencing factors such as the
network bandwidth and the future load. Some of them, e.g. the future increase
in usage of the different storage instances, are unknown in advance. For a safe
scenario with no chance of overflows however, the following approach can be
followed.

There are two important factors for the maximum increase in size of a sin-
gle storage volume over time. The first one is the maximum upstream network
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Figure 3.17: Average ratio of shared bins using the fast-growing dataset for the different
bin sizes.
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bandwidth towards the storage instance (typically expressed in Mbps). The sec-
ond factor is the maximum write speed of the storage volume (in MB per second),
determined by the type of storage (e.g. traditional hard drives will have a lower
maximum write speed than solid state drives) and the used technology (e.g. a pre-
mium SAN will have a much higher maximum write speed than a single disk).
Both values can be measured, and the maximum increase per second for a single
storage volume is the minimum of both values. We will refer to this parameter as
MI .

The TDS system periodically checks the usage of each bin to determine if re-
allocation is required, and we will denote the time period between two consecutive
iterations as δt. An overflow will occur when at time t the bin usage is lower than
AF + RD, while at time t + δt the bin usage is higher than 1 (or 100%). The
maximum value for AF + RD can therefore be calculated using the following
formula:

(1− (AF +RD)max)×MAX =MI × δt

In other words the maximum value for AF +RD corresponds to:

(AF +RD)max = 1− MI × δt
MAX

For example, if we are using storage instances with unlimited network band-
width but a maximum write speed of 100 blocks per second, a single bin has a
maximum capacity of 106 blocks, and the system polls all storage instances every
1000 seconds, then the maximum value for AF +RD corresponds to:

(AR+RD)max = 1− 100× 1000

106
= 0.9

Once the system detects an overfull bin, the storage instance can be locked in
a read-only state and every change in tenant data can be written to a temporary
standby swap storage location. In the meantime, the system can determine a new
allocation scheme and migration strategy, followed by the migration of some of
the data. Once the data is fully transferred, the changes stored on the temporary
swap can be applied to the tenant data. This method is very similar to the approach
often used for live migration of virtual machines, such as VMware VMotion [35].

The choice of which algorithm to use for the implementation of the elasticity
manager is strongly dependent on the scenario. For most scenarios, dHFFD is the
preferred algorithm, as it will reduce the operational costs by minimizing the num-
ber of bins, and both the number of migrations as the migration sizes are accept-
able. dHGD on the other hand is useful for scenarios in which higher performance
is preferred above lower operational costs, as it strongly reduces the number of mi-
grations but at the cost of provisioning additional storage instances. For example,
when developing real-time applications with stringent requirements, dHGD is pre-
ferred, as migrations can be both expensive and time-consuming. A combination
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is also possible, for example when the developed application supports multiple
SLAs. In this scenario, dHGD can be used to allocate tenants with higher SLAs,
as the cost of provisioning additional instances is compensated by the higher fees
for the selected SLA, whereas dHFFD can be used for tenants which prefer a lower
SLA at a lower price.

3.7 Conclusions
In this chapter we presented a cloud-based storage system for managing the dy-
namic allocation of tenant data, which we refer to as the Tenant-Defined Storage
system. The system is designed to allocate tenant data from the tenant’s perspec-
tive, guaranteeing a clear isolation of tenants, and taking custom tenant character-
istics into account. In the presented approach, tenants are hierarchically structured
using a tree structure, the tenant tree, and the elasticity manager of the system in-
vokes a dynamic resource allocation algorithm to determine a feasible allocation
of tenant data over a set of storage resources.

The problem of allocating storage resources for tenant data can be seen as a bin
packing problem. As the tenants are hierarchically structured, we introduced two
novel hierarchical bin packing approximation algorithms together with a dynamic
extension for both algorithms. Similar to the FFD strategy both algorithms are very
fast and lightweight, which makes them good candidates for the implementation
of a highly scalable TDS system.

Although both algorithms are very similar, they achieve very different results
for the static and dynamic allocation of tenant data. dHFFD is optimized for static
allocation, as it achieves an average utilization of the provisioned storage instances
close to the selected AF, and the overhead in number of bins is very small com-
pared to FFD. For dynamic allocation, migrations over time are nicely spread.
During every actual migration on average less than 0.01% of the total amount
of data is migrated, consisting for the major part of non-expensive data migra-
tions which can happen within a single data center. The dHGD algorithm on the
other hand reduces the number of migrations by a factor 100 compared to dHFFD,
making it a valid alternative for real-time scenarios with stringent performance
constraints, but this comes at the price of a lower average bin usage and therefore
higher operational costs as more storage resources need to be provisioned.
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4
Efficient Resource Management in the

Cloud: From Simulation to
Experimental Validation using a
Low-Cost Raspberry Pi Testbed

In Chapter 3 we introduced a dynamic strategy for the allocation of storage re-
sources within multi-tenant cloud environments. The proposed strategy was val-
idated through simulations using a custom developed simulation tool. Resource
management strategies however should also consider experimental evaluation us-
ing real hardware, as these experiments often result in new insights or they could
be used to to more accurately tune the simulation parameters. Unfortunately, run-
ning experiments on the public cloud is both costly and time-consuming. This
chapter describes a general approach for the validation of cloud resource alloca-
tion strategies, illustrating the importance of experimental validation on physical
testbeds. Furthermore, the design and implementation of RPiaaS, a low-cost em-
bedded testbed built using Raspberry Pi nodes, is presented. RPiaaS aims to facil-
itate the step from simulations towards experimental evaluations on larger cloud
testbeds, and is designed using a microservice architecture, where experiments
and all required management services are running inside containers. The intro-
duced validation approach is then illustrated by evaluating the resource allocation
strategy introduced in Chapter 3 on top of the RPiaaS testbed.



102 CHAPTER 4

? ? ?

P.-J. Maenhaut, B. Volckaert, V. Ongenae and F. De Turck

Published in Wiley Journal of Software: Practice and Experience (SPE),
Volume 49, Issue 3, pages 449–477, March 2019.

4.1 Introduction

The carbon footprint of data centers increases further as ever more services are
hosted in the cloud, leveraging the need for an efficient management of the avail-
able resources. By consolidating cloud applications on few physical servers, the
remaining servers can be put in standby, resulting in not only a lower energy foot-
print but also in lower operational costs. Furthermore, efficient resource man-
agement can result in higher scalability, as there is a more optimal usage of the
available resources.

Over the recent years, a lot of research has been carried out regarding the ef-
ficient allocation of cloud resources [1–3], resulting in multiple novel resource
allocation strategies. The evaluation of these new strategies however is often per-
formed using only simulations [4], for example by using CloudSim [5] or the more
recently developed DISSECT-CF simulator [6]. Although simulators are an impor-
tant tool for the development and evaluation of new protocols and algorithms for
cloud resource management, they have their limitations [7]. CloudSim for exam-
ple has recently received some critiques [4], for its oversimplified model of I/O
processing, the limited communication models, its inaccuracy of communication
models and a lack of support for Quality of Service. Furthermore, when using
CloudSim, custom extensions are often required, such as CloudSimSDN [8] for
validation of SDN-based strategies or ContainerCloudSim [9] for modeling and
simulating containers. Simulations are also not standardized, and the applicabil-
ity of a simulation is strongly dependent on the design of a good data set which
corresponds to real world usage, making validation using simulations challenging.
According to Barker et al. [10], simulations can be effectively used as a prototyp-
ing mechanism to provide a rough idea of how a particular algorithm may perform,
but it is very difficult to verify if the simulation environment is an accurate repre-
sentation of a real world data centre environment. Furthermore, real world data
centres are constantly evolving, and are subject to both planned and unplanned
changes. If a simulation model is verified at a particular point in time, this will no
longer hold if the simulation is rerun at a later point in time.

Therefore, while cloud simulators can be used for the initial evaluation of large
batches of experiments, experimental evaluation using real hardware should also
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be considered at some point, as these experiments often result in new insights.
The evaluated experimental setup could for example introduce additional hard-
ware constraints, which were not taken into account during the design of a new
algorithm or simulation tool, or the experiments could be used to more accurately
tune the simulation parameters. The use case described in Section 4.6 illustrates
this, as the executed experimental evaluation not only allowed for measuring dif-
ferent useful metrics such as the execution times, but also led to important changes
to the evaluated allocation strategies. When a new technology emerges, both the
simulation tool as the testing environment will require changes to support this tech-
nology. However, there is an important difference. As a typical testing environ-
ment consists of a set of virtual machines or containers running a common Linux
distribution, chances are higher that the required software components are already
available, well-documented and tested for this environment. When using a sim-
ulation however, the required extensions might still need to be developed, which
requires a deep understanding of the underlying mechanics of the simulation tool.

Unfortunately, running experiments on the public cloud is both costly and time-
consuming. This is especially true for the design and fine-tuning of new resource
allocation strategies, as this often requires multiple incremental iterations of ex-
periments using several cloud instances. Especially when experiments fail during
execution, for example due to hardware constraints or a faulty algorithm, this can
quickly ramp up the cost. Public cloud computing also has some important limita-
tions, as customers rarely have full control over the underlying hardware resources.
This level of control over the hardware is often one of the requirements for resource
allocation strategies aiming at the physical hardware level [11, 12]. Users typically
have limited control over the physical allocation of the provisioned virtual nodes,
and public clouds have their own resource allocation strategies and provisioning
mechanisms deeply ‘baked in’. A faulty resource allocation experiment could also
result in a crash of the environment, which is why it is unlikely that public cloud
providers would ever allow this level of access. Therefore, experiments focusing
on resource allocation should be executed within an experimental environment,
instead of a stable public cloud environment.

When it comes to private or community clouds, large-scale academic testbed
environments such as the ones described in Section 4.2.1 are developed in order
to support experimentation in a wide variety of research domains and with in-
creased realism compared to simulations. Although these environments allow for
large-scale system validation and offer valuable toolsets for experimentation, they
have limited infrastructure resource availability as they are heavily used by re-
searchers worldwide, as well as considerable software and hardware maintenance
costs. Typically, these testbeds are used for large and mature validation tests and
are less suited for small, repetitive tests with highly frequent updates. These envi-
ronments are typically also rack-mounted and therefore impractical for off-premise
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demonstration purposes.
In this chapter, a general approach for the experimental validation of novel

cloud resource allocation strategies is presented, together with the design of a low-
cost and energy efficient embedded cloud testbed built using Raspberry Pi nodes.
This testbed offers an inexpensive and easy-to-use environment for the initial ex-
perimental validation of resource allocation strategies, before moving the experi-
ments to a large-scale cloud testbed. The developed software is designed using a
microservice architecture, and provides a REST interface for monitoring all rele-
vant metrics, together with a web-based interface for automated configuration and
deployment. The testbed is designed to facilitate the step towards experimental
evaluation, without the need for having to dive deep into the complex details of the
available testbeds.

The remainder of this chapter is structured as follows. The next section pro-
vides an overview of related work within the field. In Section 4.3, a general ap-
proach for the experimental validation of novel cloud resource allocation strategies
is described, highlighting the importance of experimental validation. Section 4.4
introduces the embedded Raspberry Pi testbed, which is evaluated in terms of per-
formance and costs in Section 4.5. In Section 4.6 we illustrate our approach by
using the Raspberry Pi testbed for the validation of a custom resource allocation
strategy focusing on the allocation of hierarchically structured tenant data. We fin-
ish this chapter with our conclusions and avenues for future work in Section 4.7.

4.2 Related Work

This section consists of two subsections. First, we provide a brief overview of ex-
isting cloud testbeds that could be used for the experimental validation of resource
allocation strategies. This overview includes both platforms that could be used for
configuring a new cloud testbed as well as existing large-scale infrastructures that
are available to researchers to build their own clouds. Next, we take a look at other
microcloud testbeds that have been built using Raspberry Pi nodes and illustrate
the main differences with the testbed described in Section 4.4.

4.2.1 Cloud testbeds

A summary of large-scale testbeds is provided in Table 4.1. The Taiwan UniCloud
testbed [13] is a community-driven hybrid cloud platform for academics in Taiwan.
The main goal of UniCloud is to leverage resources in multiple clouds among dif-
ferent organizations to cope with sudden changes in demand. A self-managing
cloud can join the platform to share its resources, while benefitting from other
clouds with scale-out capabilities. The proposed platform provides a web portal
to operate each cloud via a uniform interface, as well as federated computation
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Table 4.1: Overview of large-scale cloud testbeds.

Testbed Type Intended Use

UniCloud [13] Hybrid cloud platform Leverage resources in
multiple clouds among
different organizations
to cope with sudden
changes in demand.

CloudLab [11] Distributed cloud
infrastructure

Build own cloud for
experimenting with
cloud architectures, with
a deep level of control
over the hardware.

Chameleon Cloud [12] Cloud infrastructure Create a customized
cloud using pre-defined
or custom software
stacks.

Virtual Wall [14] Large-scale generic test
environment

Advanced network,
distributed software and
service emulation and
evaluation.

Hyperdrive [15] Highly reconfigurable
cloud testbed

Assessing the practical
impact of attacks and
mitigations on cloud
systems.
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and storage, by adopting the RESTful APIs of the cloud platforms. Furthermore,
the platform supports SLA-based resource provisioning based on the retrieved re-
source monitoring information. While the architecture of UniCloud is similar to
the architecture of Raspberry Pi as a Service (RPiaaS), an important difference
is that RPiaaS does not adopt existing APIs, but instead uses a lightweight agent
that is installed as a microservice on each node, in order to retrieve the current
resource information. The UniCloud platform also tackles inter-cloud issues such
as creating VLANs over WAN and live migration across clouds, which could be
useful when extending our system to support federation among geographically dis-
tributed clusters. One drawback of UniCloud is that users still have to build their
own cloud environment(s) to integrate in the platform, which is both costly and
time consuming. By adopting the Application Programming Interfaces (APIs) of
RPiaaS into the UniCloud platform, it would be possible to add RPiaaS clusters to
the UniCloud hybrid cloud platform.

CloudLab [11] is a large-scale distributed infrastructure consisting of almost
15000 cores, distributed across three sites around the United States. It allows
researchers to experiment with cloud architectures and the new applications that
they enable. It allows a deep level of control over the hardware, such as control
and visibility over the virtualization, storage and network layers. CloudLab itself
however is not a cloud, but it allows researchers to build their own clouds in an
environment that provides a high degree of realism. The Chameleon Cloud [12]
is similar to CloudLab, as this is a large-scale cloud testbed consisting of 18000
processor cores across more than 500 cloud nodes with 5 petabytes of storage.
Researchers can use the Chameleon testbed to create a customized cloud using
either pre-defined or custom software stacks. It provides bare-metal access in or-
der to design, develop, and experiment with innovative virtualization technologies
that are not deployed in today’s clouds. It also provides a rich set of instrumen-
tation tools, allowing researchers to profile and view their custom environments
in a highly granulated way, with detailed traces for all processes. Another ex-
ample is the iLab.t Virtual Wall [14], a large-scale generic test environment for
advanced network, distributed software and service emulation and evaluation. The
Virtual Wall consists of over 4000 cores across more than 400 physical servers,
which are fully configurable both in terms of their software installation and net-
work topology. CloudLab, the Chameleon Cloud and the iLab.t Virtual Wall allow
researchers to create their own cloud, which can be used for the large-scale experi-
mental validation of resource management strategies. However, as we will discuss
in Section 4.3, these testbeds are more suitable for larger, mature validation tests
and less for initial experiments with a high chance of failure.

Hyperdrive [15] is a highly reconfigurable cloud testbed for experimentally as-
sessing the practical impact of attacks and mitigations on realistic cloud systems,
by providing assisted infrastructure setup and configuration. To achieve this, it
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Table 4.2: Overview of testbeds built using Raspberry Pi nodes.

Testbed Node Model Summary

Abrahamsson et al. [16] Raspberry Pi 1 Cloud cluster with master
node providing
configuration and
registration.

Pahl et al. [17] Raspberry Pi 1 Edge PaaS cloud running
Docker for use with IoT
devices.

Glasgow RPi Cloud [18] Raspberry Pi 1 Scale model for cloud
computing, using LXC
containers.

Glasgow RPi Cloud [19] Raspberry Pi 2 & 3 Updated version, used for
evaluating cloud simulators.

Kecskemeti et al. [20] Raspberry Pi 2 Small-scale cluster used for
evaluating DISSECT-CF
simulator.

uses a management server that is in charge of the deployment of the hypervisor
and the customized images over the platforms. This management server consists
of a DHCP server, TFTP Server, HTTP Server, MQTT Server, cloud images and
a minimal live Linux OS containing the deployment shell script. The client ma-
chines boot over the network using a Preboot Execution Environment (PXE) and
fetch the Debian live OS. The architecture of Hyperdrive is very similar to RPiaaS,
as the RPiaaS testbed also consists of a management node responsible for the de-
ployment, and several worker nodes who are booting over the network, in order
to provide a highly configurable testbed. The main difference with Hyperdrive is
that RPiaaS provides a generic cloud testbed that is designed for the validation
of resource allocation strategies, whereas the Hyperdrive testbed is tailored for
experiments focusing on cloud security attacks and defenses.

4.2.2 Raspberry Pi testbeds

To facilitate the step towards experimental validation, a low-cost Raspberry Pi
testbed was built, which can be used for the initial small-scale experimental valida-
tion of novel cloud resource allocation strategies. Several other projects exist that
have been using Raspberry Pi nodes for building a small-scale cloud testbed, as
summarized in Table 4.2. Abrahamsson et al. [16] for example have built a Rasp-
berry Pi cloud cluster consisting of 300 nodes. This cloud is built using Raspberry
Pi 1 model B nodes, which is one of the first commercially available Raspberry
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models, powered by an ARM 700Mhz CPU and having a maximum of 512 MB of
RAM on a single chip. In the testbed, a custom operating system based on Debian
is copied onto all individual SD cards, and every node establishes a connection
with a master Raspberry Pi node. During startup, the nodes request the configu-
ration files from this master node, and finally they register with the cluster. The
master node handles all requests to register and unregister nodes, and monitors all
nodes that are currently registered. The testbed was used for implementing a dis-
tributed storage system, in which all nodes mount a volume over NFS on a central
NAS which is connected to the master node. Updating all memory cards individ-
ually however is a cumbersome and time-consuming process, especially given the
relatively large number of nodes in the testbed.

Pahl et al. [17] have extended the initial research of Abrahamsson et al. [16]
by describing the architecture for an edge PaaS cloud consisting of Raspberry Pi
nodes. Combined with IoT devices, computation can then be brought to the edge
of the cloud (the Raspberry Pi testbed), instead of sending all data to a central
cloud. The authors also use Raspberry Pi 1 model B nodes, and in the proposed
architecture every node is running the Docker service to host containers. A Debian
7 image was used to support the core middleware services such as storage and
cluster management. For the cluster management, a custom dedicated tool was
built for the low-level configuration, monitoring and maintenance of the nodes. A
master node handles the (de)registration of the nodes. For the storage management,
the authors investigated OpenStack Swift, but as this is quite resource demanding,
they eventually also used a central NAS similar to the setup of Abrahamsson et
al. [16].

The Glasgow Raspberry Pi Cloud [18] aims to build a scale model for cloud
computing infrastructures. This cloud consists of 56 Raspberry Pi 1 nodes running
the Raspbian operating system installed on the SD card and every node is hosting
three Linux Containers (LXC’s) in order to emulate every layer of a cloud stack.

The main differences with the Raspberry Pi testbed described in Section 4.4
are that (i) we focus on building a generic IaaS cloud testbed for the validation
of resource allocation strategies, (ii) in which all nodes are mounting a root file
system using a network share instead of having the operating system installed on
the memory card, and (iii) instead of (de)registering nodes, the master node uses
a minimal configuration file containing a list of all nodes in the cluster(s). By
using a network share as the root file system, updating the cluster, for example
when upgrading the kernel or operating system, is a lot easier as there is no need
to update every memory card individually. Furthermore, we also use Docker for
hosting the experiments and the required agent services on the different nodes.
Our testbed is built using the Raspberry Pi 3 model B, which has a more powerful
1.2GHz 64-bit quad-core ARMv8 CPU and 1GB of RAM, and therefore is better
suited for hosting multiple Docker containers.



FROM SIMULATION TO EXPERIMENTAL VALIDATION 109

More recently, the developers of the Glasgow Raspberry Pi Cloud have up-
dated their cloud testbed by replacing the Raspberry Pi nodes by the newer Rasp-
berry Pi 2 and 3 models, and they have used the updated testbed to compare the
performance against the corresponding CloudSim models [19]. Their main con-
clusions are that CloudSim requires a richer set of input features, and that it needs
a more complex model for inter-node communication for distributed applications.
Therefore, according to the authors, CloudSim currently lacks sufficient accuracy
for such experiments, illustrating the importance of experimental validation. The
same authors also used their Raspberry Pi Cloud for evaluating two other cloud
simulators, GreenCloud and Mininet [21]. For this comparative study they used
a cross validation method to compare the predicted performance from both sim-
ulators against the actual performance of the Raspberry Pi testbed. According
to their findings, the GreenCloud simulator currently does not predict the energy
consumption for a micro data center accurately. Mininet on the other hand offers
reasonable accuracy in modelling the network performance.

The developer of the DISSECT-CF simulator has recently introduced new
models and extensions to estimate the behavior of newer components such as Rasp-
berry Pi nodes in the simulator [20]. In this paper, a Raspberry Pi based cloud is
simulated by using the new models. Using a Hadoop-based application scenario,
the results from the simulator are compared to results obtained through a real-life
system, both environments consisting of 12 Raspberry Pi 2 model B nodes. The
authors claim that the results for this experiment are very similar, with a low mean
absolute error when using the new models, but further improvements for the sim-
ulator are currently still under development.

4.3 Validation of Resource Allocation Strategies

4.3.1 General Approach

When developing a new resource allocation strategy, several steps can be distin-
guished. Figure 4.1 summarizes the general steps for the design, implementation
and validation of novel cloud resource allocation strategies. Initially, a new strat-
egy is designed and implemented. This can be an iterative process, as during the
implementation additional constraints may be introduced, requiring modifications
to the original design (feedback arrow 1 in the figure). Once the implementation
is finished, the strategy should be validated by means of simulations, experimen-
tal evaluations on a cloud testbed, or ideally a combination of both. Simulations
are often a good start, as these are less costly and less time consuming than ex-
perimental evaluations. They can vary from simple unit tests or batch scripts to
full simulations of a cloud environment, for example by using one of the simula-
tors listed in [7]. During these simulations, new optimizations can be discovered,
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ValidationDesign

Design Implementation Simulation
(Small-scale) 
Experimental 

evaluation

(Large-scale) 
Experimental 

evaluation

Time

1 2 3 4

days months to years

$ $$$Cost

Figure 4.1: General workflow for the design, implementation and validation of cloud
resource allocation strategies.

or unforeseen limitations, again requiring changes to the implementation and/or
design of the strategy (feedback arrow 2).

Experimental evaluation using real hardware should also be considered as
these experiments often result in new insights, and might again require changes
to the design and/or implementation (feedback arrow 3). The evaluated setup
could for example introduce additional hardware constraints which were not taken
into account before, or the experimental results could be used to more accurately
fine-tune the configurable parameters. Experiments on physical hardware how-
ever are both costly and time-consuming. This is especially true for the design and
fine-tuning of new resource allocation strategies, as these often require multiple
incremental iterations of experiments using multiple cloud instances. When the
executed experiments fail during the execution, for example due to hardware con-
straints or a faulty algorithm, these experiments can become very costly. There-
fore, experiments on relative small-scale testbeds, are initially preferred before
doing large-scale experiments.

Although a single powerful server with several virtual machines could be used
as a small-scale testbed, this method has some important limitations. First of all,
the scalability is limited, as the number of virtual machines that can run in parallel
is restricted by the amount of available resources. Ideally, the server should par-
tition its resources into equal shares, and the virtual machines should be clearly
isolated so that they do not influence each other. Furthermore, the virtual ma-
chines are interconnected using a virtual network, and the customization options
for this network are defined by the used virtualization software. Free hypervisors
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often have limited features, and are generally installed on top of an operating sys-
tem, resulting in a noticeable overhead. Commercial bare-metal hypervisors on the
other hand come with high licensing costs on top of the required investment for the
server hardware. The small-scale testbed introduced in this chapter solves these is-
sues, as it offers a clear isolation between the hosts, allows for a full customization
of the network topology, and offers a higher scalability at a lower cost.

Ideally, the new strategy can also be validated on a large-scale testbed. This
can for example be done using large-scale academic testbed environments such
as the testbeds described in Section 4.2.1. These environments allow for large-
scale validation of new strategies, but often have limited resource availability and
considerable software and hardware maintenance costs. Alternatively, the new
strategy could also be validated using a commercial public cloud provider. Public
cloud providers often use either a cost model with a fixed price per instance, or
a cost based on the actual usage, making experimental validation using a large
number of nodes very costly. Therefore, these large-scale private or public testbeds
should be used for large and mature validation tests, and are less suited for small
repetitive tests with highly frequent updates.

One possible issue with the presented workflow is that different persons, with a
different technical background, might be required during the different steps. While
a new strategy is typically designed by a researcher (for example with a mathemat-
ical background when the strategy is based on a mathematical model), he or she
might require the help of a developer to implement the strategy in a proof-of-
concept or within a selected simulation tool. For executing the experiment on a
real testbed, a system engineer might be required who has sufficient knowledge
about the physical hardware and network topology, in order to get the developed
experiment running smoothly on the selected testbed.

4.3.2 Experimental Validation in Practice

Over recent years a lot of research has been done regarding the efficient manage-
ment of resources in cloud environments. Table 4.3 provides a coarse overview of
recent research focusing on resource allocation, and how the described strategies
are evaluated (e.g. by means of simulations, small-scale or large-scale experiments
or a combination of both). This list consists of publications related to resource
management within cloud environments, found using the IEEE Xplore Digital Li-
brary [22], which are published between 2015 and 2017. Most of the listed strate-
gies focus on the (static and/or dynamic) allocation of virtual machines, which are
often defined by the required amount of CPU cycles, RAM memory, disk space
and network bandwidth. Some strategies also take into account the estimated or
actual power consumption and required compliance to custom service level agree-
ments.
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In this list, it is remarkable that only two strategies were validated by means
of experiments on a small-scale testbed, whereas all others were validated through
simulations, by using CloudSim or custom developed simulation software. Espe-
cially when a custom simulator is used, the quality and credibility of the evaluation
results is largely depending on the quality of the simulation software, but more than
often sufficient details about how the simulator was implemented are not available.

4.3.3 Towards Embedded Experimental Evaluation

The Raspberry Pi testbed presented in the next section is designed to facilitate
the step towards embedded experimentation, by providing a low-cost and easy-
to-use small-scale testbed for the initial experimental evaluation of new resource
allocation strategies. As illustrated in Table 4.3, most strategies developed within
the recent years focus on allocating virtual machines (often referred to as virtual
machine packing), and the different resources that are required for hosting the
virtual machines (typically CPU, memory, storage and network bandwidth). By
providing a simple REST interface for monitoring these resources, the developed
algorithms can be easily plugged into the testbed, without having to dive deep into
the complex details of advanced cloud platforms such as OpenStack. Instead of
virtual machines, the testbed is designed for allocating containers, and the testbed
is a perfect fit for validation of strategies aiming at container placement. Container
technology has a significantly smaller overhead compared to traditional virtual ma-
chines, as the containers are executed directly on the Linux kernel, and the latest
Raspberry Pi 3 model B is powerful enough to host multiple containers. Further-
more, when the experiments are designed to be executed within containers, the
step towards large-scale testbeds is much easier if these testbeds also offer support
for the same container technology, which should not be an issue as most popu-
lar container technologies such as Docker can be easily installed on all common
operating systems.

4.4 The Raspberry Pi testbed

This section describes the design of the Raspberry Pi testbed, together with RPiaaS,
which is used for managing and monitoring the testbed. An initial version of the
testbed running RPiaaS was presented during the IEEE INFOCOM 2017 confer-
ence [35], but the design and implementation have changed significantly since. All
required management services are now running inside Docker containers and all
configuration files required by these services are now automatically generated by
the master node. In our initial cluster, a Raspberry Pi node was used as master
node, and the initial configuration of all services was a time-consuming process.
Thanks to the portability of the Docker containers, any Unix-based host can now
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Table 4.3: Recent research focusing on cloud resource management.
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be used as master node, and the initial setup time is heavily reduced as only a
central base image and a single configuration file describing the testbed topology
need to be created. The developed source code of RPiaaS has been made available
to the general public through GitHub [36], and we encourage fellow researchers
within the field to try out and customize the code for their own research projects.

4.4.1 Requirements

When building a cloud testbed for the experimental validation of resource alloca-
tion strategies, the following requirements should be supported:

• Easy rollout of custom images: the Raspberry Pi compute modules are
designed to boot the operating system from a memory card installed on the
board. In this scenario, updating the operating system on all nodes can be
a very cumbersome and time-consuming task, as every memory card needs
to be removed, flashed and re-installed. When building a cloud testbed, it
should be possible to update the software on the different nodes centrally
and only once, and the testbed should then provide a mechanism to deploy
this image on all nodes.

• Easy access towards the current and historical resource usage data:
many resource allocation strategies take decisions based on the actual and/or
historical resource usage, in order to select the best suitable node for host-
ing a certain service. If the testbed provides an easy interface towards this
type of information, it should be straightforward to implement the developed
algorithms on top of the testbed.

• Minimal management overhead: for managing and monitoring the dif-
ferent nodes within the testbed, some additional software will be required
that needs to be installed on all nodes. This software should be lightweight,
with a low resource usage, leaving enough spare resources on the nodes for
executing the experiments.

• Easy to customize or extend: every experiment will have different require-
ments, and it is not straightforward to take into account all possible require-
ments during the design of the testbed. However, by designing the testbed
software in a clean and modular way, it should be easy to extend or cus-
tomize the testbed to support a wide variety of possible scenarios.

The Raspberry Pi testbed presented in this chapter was designed to support all
requirements listed above. For an easy deployment of custom images, the nodes
are configured to boot using the network instead of an internal memory card. The
testbed provides a dashboard and REST API to monitor the current and historical



FROM SIMULATION TO EXPERIMENTAL VALIDATION 115

Example topology, can be modified if required
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- Cluster Master Service (CMS)
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- PXE client
- NFS client
- Cluster Agent
   Service (CAS)

Figure 4.2: Illustrative topology for the Raspberry Pi testbed, consisting of multiple
clusters of around 5 nodes.

resource usage. To support this, on every node of the testbed a lightweight service
is installed, which is monitoring the local resource usage. The testbed software
consists of multiple microservices which are running inside containers, facilitating
the deployment of the management services on a heterogeneity of hardware and
operating systems, and making it straightforward to customize the software for a
wide range of experiments as individual services can be easily replaced.

4.4.2 Architecture

Figure 4.2 provides a coarse overview of a possible Raspberry Pi testbed topology.
The testbed consists of multiple worker nodes, aggregated in small clusters of 5
nodes. The testbed was built using the latest Raspberry Pi 3 model B nodes, but
any Raspberry Pi model could be used as worker node. Each node in the cluster
is interconnected using an Ethernet switch, and the worker nodes are managed
through a master node. This master node could either be a Raspberry Pi or any
device such as a laptop or desktop running a suitable Linux distribution and the
required master services. For managing and monitoring the cluster, RPiaaS was
developed, which consists of 2 main components:

• The Cluster Agent Service (CAS), which is deployed onto all worker nodes
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and is used to retrieve usage information about the node and to control ex-
periments on this node, and

• The Cluster Management Service (CMS), which is deployed on the mas-
ter node and is providing access towards the full testbed through an API, to-
gether with a web-based dashboard for monitoring and managing the worker
nodes.

On the master node, the following services are required:

• A DHCP server, which will be used to provision IP addresses to the different
worker nodes,

• A DNS server, which will be used by all nodes in the cluster,

• A TFTP server, used for network booting,

• An NFS server, as all nodes will mount the root file system using a network
share,

• The Cluster Management Service (CMS), providing user-friendly access
towards the nodes, and

• A NoSQL database system for storage of historical resource usage data.

Every worker node is running the lightweight CAS for communication with the
master node. This service is implemented using Node.js and provides a RESTful
API to monitor the resource usage on the node, and to control experiments on the
node. The master node is running the CMS, which is implemented using Node.js,
Python, HTML, JavaScript and Bash scripting. This service provides a RESTful
API towards the whole testbed, together with a web-based dashboard. Table 4.4
summarizes the available API methods which can be used for monitoring the re-
source utilization on the different worker nodes. In the given path, {c} should
be replaced by the cluster identifier, whereas {n} corresponds to a worker node
identifier. Each cluster, and every node inside the cluster should have an unique
identifier. All GET requests return a JSON object containing the requested infor-
mation. Before retrieving information about the cluster or individual nodes, the
ping method should be invoked first to determine if the selected cluster or worker
node is online.

Figure 4.3 shows a small part of the testbed, whereas Figure 4.4 presents a
partial screen capture of the dashboard provided by the CMS. The CMS polls all
worker nodes using a configurable time interval (e.g. every 60 seconds). During
this update, the current resource utilization (CPU load, memory usage and local
disk usage) is retrieved from the worker nodes using the RESTful API. This in-
formation is then stored in a central database on the master node. By doing so
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Table 4.4: Overview of API methods which can be used for monitoring the resource
utilization.

Method Path Description

GET /info Overview of configured clusters

GET /{c}/info General information about cluster, including a
list of worker nodes

GET /{c}/{n}/ping Check if selected node is accessible
/{c}/{n}/all Returns all information described below
/{c}/{n}/uptime Returns both the system and CAS uptime (in

seconds)
/{c}/{n}/usage/cpu Returns the actual CPU usage per core together

with some information about the CPU
/{c}/{n}/usage/memory Returns the actual memory (RAM) usage
/{c}/{n}/usage/disk Returns the actual disk usage (based on /data

directory)

Worker Nodes - Standard Cluster
5x Raspberry Pi 3 model B+ 
powered by USB hub

Master Node
Raspberry Pi 3 model B+ with 
7" RPi touch display for monitoring

Worker Nodes – SDN Cluster 
3x Raspberry Pi 3 model B+ 
Zodiac FX OpenFlow switch

Ethernet Switch
TP-Link TL-SG108E 8-Port Gigabit 
managed Ethernet switch

Figure 4.3: A part of the Raspberry Pi testbed, consisting of 2 standard clusters with 5
worker nodes and 1 SDN enabled cluster with 3 worker nodes and a Zodiac FX SDN

Controller. In this setup, a Raspberry Pi 3 is used as master node.
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Figure 4.4: Partial screen capture of the dashboard provided by the CMS.
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Figure 4.5: Overview of the different RPiaaS microservices, which are running inside
Docker containers.

not only the actual resource usage can be displayed on the management interface,
but also the historical usage over time for each worker node individually. Both the
CMS and CAS are lightweight, consuming a low amount of system resources, as
will be illustrated in Section 4.5. Due to the modular design, both services can also
be easily extended or customized in order to support a wide range of experiments.

4.4.3 Microservices and Containers

Both RPiaaS services, together with all other required services (e.g. DHCP, NFS)
are running as microservices within Docker containers, and all services are de-
ployed using a custom Docker-compose file. This makes it straightforward to de-
ploy RPiaaS on a wide variety of operating systems, and the containers can even
be deployed in a Swarm using Kubernetes or Docker Swarm. Separate Docker-
compose files are available for deployment on either ARM-based systems (e.g.
when a Raspberry Pi is used as master node), or x86/x64-based systems (e.g. for
deploying the master services on a Linux-based desktop). Figure 4.5 provides an
overview of the different microservices, which are running inside separate Docker
containers. The RPiaaS setup consists of 5 different containers:

• rpiaas-cms is a Docker container running the RPiaaS CMS described above.
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This container is using the latest node image as base image, and a single
JSON file is used for the configuration of the testbed. The CMS provides
a user-friendly dashboard, together with an API towards the whole testbed.
Furthermore, all configuration files required for the other microservices can
be automatically generated from within the CMS.

• rpiaas-mongo is a Docker container running a MongoDB instance, used for
storing the historical resource usage data.

• The rpiaas-dnsmasq container hosts an dnsmasq instance, responsible for
providing DNS, DHCP and TFTP towards the different nodes. As this con-
tainer needs to listen to DHCP requests on the physical network interface, it
is configured to run in the host network mode.

• The rpiaas-nfs container hosts an instance of nfs-kernel-server, a popular
implementation of an NFS server, and is used for serving the base image
towards all nodes of the testbed.

• rpiaas-cas is a Docker container running the RPiaaS CAS. This is the only
service that needs to be deployed onto all nodes, whereas all other services
are only deployed on the master node.

While several containers require a custom configuration file, only a single
JSON file is required for the initial configuration of the cluster. The CMS container
then automatically generates all required configuration files for the other contain-
ers. These configuration files can be downloaded using the web-based dashboard,
or they can be retrieved by a script using simple curl or wget requests. Therefore,
when launching the services on the master node for the first time, initially only
the rpiaas-cms container needs to be started, to get the configuration files for the
other containers. The configuration files need to be saved in the appropriate direc-
tories, after which the other containers can be launched. These steps can be easily
automated, for example by using a bash script.

It is worth noting that RPiaaS will only be fully functional on a Unix-based Op-
erating System, as the rpiaas-dnsmasq container requires the host network mode.
This means that the container shares the network adapter(s) with the physical host.
In some Docker distributions, e.g. Docker for Windows or MacOS, the Docker
daemon is running inside a virtual machine. As a result, the network interfaces
will not be bridged on the physical network adapter(s), but on a virtual network
interface connected to the host network using an internal NAT network.

4.4.4 Booting the Worker Nodes

The latest Raspberry Pi 3 model B offers (experimental) support for network boot-
ing, using a PXE. However, as older nodes (e.g the original Raspberry Pi and the
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Figure 4.6: A (simplified) comparison of both boot modes. Network booting is only
supported on the latest Raspberry Pi 3 model B, and is still experimental.

Raspberry Pi 2 model B) don’t support this feature, support for two different boot
modes was added, as illustrated in Figure 4.6:

• A full network boot, in which the worker node loads the kernel and boot
files from a TFTP server. After loading the kernel and required boot files,
the root file system is mounted as an NFS network share. For these worker
nodes, the internal SD memory card is only used as local storage (e.g. for
storing containers) and neither boot files nor an operating system are located
on the memory card.

• Boot from the local memory card, using a network share as root file system.
In this mode, the kernel and boot files need to be copied onto a small FAT32
boot partition of the SD card (e.g. 100MB in size). On this boot partition, the
config.txt (which is the main configuration file used on a Raspberry Pi upon
booting, replacing the BIOS found on conventional computers) is configured
to mount the root file system using an NFS network share. After loading the
kernel and boot files, the worker node continues to load the operating system
using NFS, similar to the previous boot mode. The remainder of the memory
card is formatted as a second ext4 partition, to be used as local storage.

The only difference between both modes is how the kernel and boot files are



122 CHAPTER 4

loaded. When doing a full network boot (only supported on the Raspberry Pi 3)
these are loaded from a TFTP server, making it very easy to update the kernel
on all worker nodes as the files are centralized. In the second boot mode, the
kernel and other boot files need to be copied onto the memory card, so in order to
update the kernel all memory cards need to be updated. Both boot modes however
mount the root file system using an NFS network share. As a result, the base
image (containing the operating system and required packages) can be updated or
modified centrally without the need for removing all memory cards (as long as
the new base image uses the same kernel). Section 4.4.5 summarizes the required
steps for creating both the boot partition (TFTP or local memory card) and the base
image (NFS) in detail.

Using an NFS share as root file system is not something typical for traditional
cloud environments, but it is worth noting that cloud data centers do something
similar as the physical servers inside a data center typically use iSCSI for mounting
LUNs over the network, in order to separate the storage from the computational
resources. In this scenario however, the storage network is typically separated
from the VM network, and often uses dedicated switches with high-speed fiber
connections to achieve a maximum disk throughput. Within the RPiaaS testbed,
we could have used iSCSI instead of NFS for mounting the root file system, but
this would lead to a more complex setup and configuration, and a higher overhead
on the master node. We also did not separate the storage network, but as we
will discuss later in this chapter the overhead introduced by NFS will be minimal,
because the containers used by the executed experiments will be stored on the local
memory card instead of the NFS share.

4.4.5 Preparing a Base Image

In order to create a base image that can be used by all worker nodes, a standalone
Raspberry Pi node can be used. After installation of the preferred operating sys-
tem and all required packages, a full copy of the root filesystem can be transferred
over SSH using rsync, for example by executing the command from Listing 4.1 on
the master node. In this example, the root folder from the standalone worker node
(with IP address node ip) is copied using rsync to the /nfs/base/ folder on the mas-
ter node (where the command is executed). Once the root file system is transferred,
the /boot partition of the standalone node can be copied to either the directory on
the master node used for TFTP, or to a temporary folder from which we can copy
the files back to the boot partition when preparing the memory card for network
booting. After copying the files from the /boot partition, the cmdline.txt should be
modified as illustrated in Listing 4.2, in order to tell the worker node(s) to mount
the root file system using NFS. Note that neither the NFS server or the NFS root
path are configured within this file, as these settings are automatically retrieved
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Listing 4.1: Transfer the root file system using rsync

$ r s y n c −xa −−p r o g r e s s roo t@node ip : / / n f s / ba se /

Listing 4.2: Contents of cmdline.txt on the /boot partition

dwc otg . l p m e n a b l e =0 c o n s o l e = s e r i a l 0 ,115200
c o n s o l e = t t y 1 i p =dhcp r o o t = / dev / n f s rw r o o t w a i t
e l e v a t o r = d e a d l i n e

from the DHCP server upon booting.

Although the CAS can be executed directly on the operating system of the
Raspberry Pi, we prefer to install Docker on the worker node(s) and to launch the
CAS inside a Docker container. By doing so, other experiments can also be exe-
cuted inside containers on the nodes, and the worker nodes can even be configured
as a Docker cluster. Docker is officially supported on many common operating sys-
tems such as Raspbian and can be easily installed on a Raspberry Pi using a single
command. It is also recommended to install Docker-compose, as this tool makes
it easy to deploy multiple containers at once using a single YAML file. There are
various ways to install the Docker-compose tool, but the easiest way is to install
this tool using pip, a Python based package manager. Listing 4.3 summarizes the
commands used for installing both Docker and Docker-compose.

Docker however will fail to start containers when these are stored on an NFS-
based file system, as the default OverlayFS storage driver only works with an ext4
or xfs backing filesystem [37]. When starting a container, the Docker daemon
will be unable to create an overlay mount for the container, and will return an er-
ror message. A workaround could be to use the devicemapper as storage driver
instead [38], but this is strongly discouraged by the Docker documentation as it
requires configuring direct-lvm in order to avoid very poor performance [39]. Fur-
thermore, it would be bad practice to store all containers on the NFS partition,

Listing 4.3: Installing Docker and Docker-compose on a Raspberry Pi

$ c u r l −sSL h t t p s : / / g e t . do ck e r . com | sh
$ ap t−g e t −y i n s t a l l python−p i p
$ p i p i n s t a l l Docker−compose
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Listing 4.4: Contents of /etc/docker/daemon.json to configure Docker to store all files
inside the /data/docker folder

{
” s t o r a g e−d r i v e r ” : ” o v e r l a y 2 ” ,
” g raph ” : ” / d a t a / do ck e r ”

}

Listing 4.5: Contents of /etc/fstab when using network booting with a local memory card

p roc / p roc p roc d e f a u l t s 0 0
/ dev / mmcblk0p1 / boo t v f a t d e f a u l t s 0 2
/ dev / mmcblk0p2 / d a t a e x t 4 d e f a u l t s , noa t ime 0 1

as by doing so the network connection between the worker nodes and the master
node could quickly become a bottleneck. A better solution is to configure Docker
to store all containers and images (and other related files) on the local memory
card instead, for example inside the /data/docker folder. This can be easily done
by modifying the Docker daemon file (/etc/docker/daemon.json) as illustrated in
Listing 4.4.

After transferring the root file system and copying the /boot partition, the mem-
ory card of the standalone node can be replaced by a memory card containing either
a single ext4 partition, or a small boot partition containing the contents from the
copied /boot folder and the remainder of the memory card formatted as a second
ext4 partition, depending on which boot mode from Section 4.4.4 is used. Before
booting the worker node, the /etc/fstab file, containing the necessary information
to automate the process of mounting partitions, needs to be modified in order to
mount the ext4 partition as /data folder on the worker node(s). For example, when
using the boot mode with a boot partition on the local memory card, this file can
be configured as illustrated in Listing 4.5.

All worker nodes can use a separate copy of the transferred root NFS folder
on the master node as root file system, or they can share the same folder. When
the executed experiments are running inside Docker containers (which are stored
on the local memory card if configured using Listing 4.4), there should be no
issues when sharing the NFS folder, but in this scenario it is recommended to
create a folder inside /data or even an extra partition on the memory card for
storing temporary files such as the /var/log folder. The new folder can then be
linked using a UNIX soft link, or when using an additional partition it can be
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automatically mounted by modifying the /etc/fstab file.

4.5 Performance and Cost Comparison

In this section, we evaluate the performance of the RPiaaS testbed described in
Section 4.4, using three benchmark experiments focusing on the CPU perfor-
mance, disk I/O and memory bandwidth respectively. For each experiment, two
versions were implemented: the first is designed to be executed directly on the
operating system of the host, whereas for the second version the experiment is
executed within a Docker container. Both versions were executed on 4 different
environments, being a single Raspberry Pi 3 node, a worker node of the RPiaaS
testbed (running the CAS and managed through the CMS), a VM running on a
private cloud, and a VM hosted on the Amazon EC2 public cloud environment.
These experiments not only provide insights into the performance of Raspberry Pi
testbed compared to traditional cloud environments, but they also provide useful
insights regarding the overhead introduced by the RPiaaS platform, as well as the
overhead introduced by using containers. At the end of this section, we also com-
pare the costs of the RPiaaS testbed to a public and private cloud environment in
terms of CAPEX and OPEX.

4.5.1 Benchmark Experiments
4.5.1.1 CPU Performance

The first executed experiment is a CPU benchmark, which is based on the calcula-
tion of prime numbers, using the open source Sysbench [40] benchmark suite. In
this benchmark, all numbers between 3 and a given maximum number max prime
are checked to find out if they are prime numbers, and the total number of prime
numbers is returned, as shown in Listing 4.6. This operation is repeated 10000
times, using a given number of threads. The total execution time is measured, as
well as the time required per operation.

4.5.1.2 Disk I/O Performance

The second experiment measures the performance of disk I/O, again using the Sys-
bench [40] benchmark suite. In this test, a predefined number of files are created,
up to a given total file size. Some random reads and writes are then executed with
an average read/write ratio of 1.5, after which the files are deleted again. As with
the previous experiment, this benchmark is also executed using a given number
of threads. The total execution time is measured, as well as the time required per
operation and the average disk I/O speed.
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Listing 4.6: Relevant code from the Sysbench CPU benchmark

f o r ( c = 3 ; c < max prime ; c ++) {
t = s q r t ( ( dou b l e ) c ) ;
f o r ( l = 2 ; l <= t ; l ++) {

i f ( c % l == 0)
b r e a k ;

}
i f ( l > t )

n ++;
}

Listing 4.7: Overview of the different copy methods used within the mbw benchmark

/∗ F i r s t method (MEMCPY) ∗ /
memcpy ( b , a , a r r a y b y t e s ) ;

/∗ Second method (MCBLOCK) ∗ /
f o r ( t = a r r a y b y t e s ; t >= b l o c k s i z e ;

t −= b l o c k s i z e , aa += b l o c k s i z e )
bb = memcpy ( bb , aa , b l o c k s i z e ) ;

/∗ T h i r d method (DUMB) ∗ /
f o r ( t = 0 ; t < a s i z e ; t ++)

b [ t ] = a [ t ] ;

4.5.1.3 Memory Copy Bandwidth

The final experiment measures the memory copy bandwidth, using the open source
tool mbw [41]. In this benchmark, an array of a configurable amount of bytes
is copied from one variable to another, using three distinct methods. The first
method uses memcpy to copy the whole array, the second method also uses mem-
cpy but splits the array in blocks of equal size, and the last method copies the array
element-wise, as illustrated in Listing 4.7. Each operation is repeated 100 times,
and afterwards the measured memory bandwidth is returned for each method indi-
vidually.

4.5.2 Evaluation Setup

The different benchmarks described above were executed on 4 different environ-
ments, as summarized in Table 4.5. For the Raspberry Pi based environments, the
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Table 4.5: Overview of the evaluated environments.

Raspberry Pi
3

RPiaaS node ESX VM EC2 t2.micro

Host OS Raspbian Stretch Lite Ubuntu Server 16.04 LTS

CPU ARM Cortex-A53 1 vCPU 1 vCPU
1.2GHz (4 cores) (4 cores) (1 core)

Memory 1GB LPDDR2 (900 MHz) 1GB vRAM

Storage 1 node with 4GB 10GB 30GB
MicroSDHC Class 4 on SSD EBS storage
1 node with 64GB

MicroSDXC Class 10 UHS 1

same Raspberry Pi 3 model B is used for both the standalone Raspberry Pi node as
the RPiaaS worker node. Two different nodes were configured for both environ-
ments, each using a different type of memory card in order to measure the impact
on the performance. The first node is using an older MicroSDHC Class 4 mem-
ory card, whereas the second node has a MicroSDXC Class 10 with UHS speed
class 1 installed. For reference, Table 4.6 provides an overview of the different SD
memory card classes available today.

The ESX VM is hosted on a private cloud running VMWare ESX on an IBM
BladeCenter H Chassis 8852, consisting of 12 IBM HS22V 7871 blade servers
with a 2.67GHz Intel Xeon CPU and 144GB DDR3 RAM each. For the public
cloud environment, an EC2 t2.micro instance was selected as this is still one of the
most popular instances available today for general purpose computing. By default,
the EC2 t2.micro instance uses the Amazon Elastic Block Store (EBS) [42] for
persistent storage, and EBS volumes are automatically replicated in order to offer
high availability and durability.

Every benchmark experiment was executed using both versions: the first ver-
sion is executed directly on the operating system of the host, and the second ver-
sion is executed inside a Docker container. The experiments were first executed on
the Raspberry Pi-based environments, and afterwards on the traditional VM envi-
ronments. Migrating the experiments to the public/private cloud environment was
straightforward, especially when using the container-based version, thanks to the
portability of the Docker system.



128 CHAPTER 4

Table 4.6: Overview of SD memory card classes available today.

SD Class UHS Class Minimum write
speed

Maximum write
speed

Class 2 - 2 MB/sec 25 MB/sec
Class 4 - 4 MB/sec 25 MB/sec
Class 6 - 6 MB/sec 25 MB/sec
Class 10 - 10 MB/sec 25 MB/sec

UHS 1 10 MB/sec 104 MB/sec
UHS 3 30 MB/sec 312 MB/sec

4.5.3 Evaluation Results

4.5.3.1 CPU Performance

Figure 4.7 illustrates the average execution times of the CPU benchmark for all
environments, without and with using Docker containers (ct corresponds to the
version with containers). For the Raspberry Pi environments, only the results from
the nodes using a Class 10 memory card are included. The reason for this is that the
results for the nodes with a Class 4 memory card installed are identical, implying
that the type of memory card used for persistent storage has no influence on the
CPU performance.

As can be seen from this figure, the performance of the standalone Raspberry
Pi and the RPiaaS node are near identical, meaning that the RPiaaS CAS has no im-
pact on the CPU performance of the worker nodes. Using containers however does
add a small overhead (5−10%) for the Raspberry Pi environments, as these nodes
have a much less powerful CPU compared the traditional cloud environments. The
overhead is most noticeable when using a small number of threads. This can be
easily explained by the fact that the Sysbench CPU experiment is designed to al-
ways use the first physical cores on the CPU, and therefore the experiments are
always sharing the first core on which the Docker daemon is running. The figures
also illustrate that the CPUs of the traditional VMs appear to be around 10 times
faster than the CPU of a Raspberry Pi 3, which is an important metric when scaling
up experiments before executing them on a large cloud testbed. Finally, the num-
ber of threads has no influence on the performance of the EC2 t2.micro instance,
which is expected as this type of instance only has a single core.

4.5.3.2 Disk I/O Performance

Figure 4.8 illustrates the average disk I/O speed for all evaluated environments.
Some important observations can be made from these results. First of all, for the
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Raspberry Pi environments, the nodes using a Class 4 memory card have signif-
icant fluctuations in the measured disk I/O speed, whereas for the nodes with a
Class 10 memory card the disk I/O speed appears to be more or less constant. For
these environments, RPiaaS also adds some overhead, which is most noticeable
for the nodes using the older Class 4 memory cards. For the RPiaaS nodes, some
of the data needs to pass over the network to be processed, as the root filesystem is
mounted on an NFS share whereas the data from the experiment is written on the
local memory card. For the Raspberry Pi environments, using containers however
seems to have little impact on the average disk I/O speed, especially for the nodes
with a Class 10 memory card. From these results, it is clear that it is worth up-
grading to a higher class of memory cards, as these memory cards not only offer
higher read/write speeds but also less fluctuations in performance.

For the private cloud environment, using containers however introduces a small
overhead, especially when using a lower number of threads. For the public cloud
environment, the measured results might appear odd at first. According to the
figure, it seems like the EC2 instance is only performing well when using 1 or 2
threads and no containers. In all other scenarios, the EC2 instance appears to have
an average disk I/O speed similar to an SD memory card. This conclusion how-
ever is incorrect, as in reality neither using containers or increasing the number of
threads will have an impact on the disk I/O speed. The real explanation for these
results is that Amazon has some built-in limits regarding its AWS services [43], to
prevent users from clogging up resources. For the EBS storage for example, the
number of allowed IOPS is limited to 2 ∗ 105. When this limit is exceeded, the
performance of the instance is heavily reduced. One iteration of the Sysbench Disk
I/O experiment however already performs more than 2 ∗ 106 I/O operations, and
all experiments are executed consecutively. Therefore, the defined IOPS limit is
quickly reached when executing the experiments. To overcome this limit, individ-
ual disk I/O operations could be aggregated into fewer larger operations as much
as possible, but this is out of scope for this chapter. It is however worth noting
that, when designing experiments for execution on AWS, the service limits should
be kept in mind to avoid strange results or even failure of experiments which were
running smoothly on other types of testbeds.

4.5.3.3 Memory Copy Bandwidth

Figure 4.9 and Figure 4.10 illustrate the average memory copy bandwidth for the
Raspberry Pi environments and the traditional VM environments respectively, us-
ing the different copy methods as described in Listing 4.7. For the Raspberry Pi
environments, only the results from the nodes with a Class 10 memory card are
included, as the results from the nodes using a Class 4 memory card were similar.
As with the CPU benchmark, the type of memory card seems to have no direct
impact on the memory bandwidth.
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For the Raspberry Pi environments, the results for the standalone node are near
identical to the results obtained from the RPiaaS node. Furthermore, when using
containers there is a reduction in the measured memory bandwidth of around 25%,
but only when using the MEMCPY method. For the other methods, neither RPiaaS
or using containers have an influence on the performance. The size of the array to
be copied also seems to have no impact on the average memory bandwidth. For
the traditional VM environments however, smaller arrays will result in a higher
bandwidth. This can be explained by the fact that traditional VMs will have larger
memory caches at higher levels, whereas the Raspberry Pi will be forced to write
all data directly to the DDR2 RAM. Using containers seems to introduce no no-
ticeable overhead for the traditional VM environments.

4.5.4 Cost Evaluation

While building a private cloud environment or renting public cloud instances for a
longer time interval could quickly become very expensive, building a Raspberry Pi
Cluster is much more inexpensive. Table 4.7 illustrates this, as the total price for
building a single cluster consisting of 5 worker nodes is less than 500 USD. This
cost estimation includes the casing, a 64GB memory card for every node, UTP
cables and even a network switch. The total cost can even be further reduced. The
stackable casing for example is only a nice to have feature, but not at all necessary.
Instead of a 64GB microSDXC card, a microSDHC memory card with a smaller
capacity could also be used. As illustrated in the previous section, it is strongly
recommended to use memory cards of a higher SD class, as this will result in a sig-
nificant improvement of the disk I/O speed. The included gigabit network switch
is also a bit overkill as the Raspberry Pi nodes only have a 10/100Mbps Ether-
net port, and in fact any 100Mbps Ethernet switch could be used. We however
preferred the TP-Link TL-SG108E for 2 main reasons. First of all, this switch is
managed, meaning that it is possible to define custom Virtual LANs and throttle
the bandwidth when required, and it is also possible to monitor the actual network
usage on the network switch. Secondly, by using a gigabit switch, a desktop com-
puter with a gigabit Ethernet connection can be used as master node, which comes
in handy when multiple worker nodes need to perform a large amount of disk I/O
operations on the NFS share.

Apart from the small CAPEX, the Raspberry Pi cluster also has a very lim-
ited OPEX, as the Raspberry Pi nodes have very low energy usage. All worker
nodes are powered by a single 6-port USB hub, which has a maximum current of
650mA and is suitable for an input voltage between 100V and 240V. The Ether-
net switch has an input of 220V at 300mA max. These two combined result in a
maximum current of 0.95A at 220V, or 209W. In other words, the maximum total
energy consumption for a 5 node cluster is about half the usage of a single desktop
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Figure 4.9: Average memory copy bandwidth for the Raspberry Pi environments with a
Class 10 memory card.
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Figure 4.10: Average memory copy bandwidth for the traditional VM environments.
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Table 4.7: (CAPEX) Cost of a single cluster (5 worker nodes) in USD.

Item Unit Price Amount Total

Raspberry Pi 3 35 5 175
64GB microSDXC Class 10 25 5 125
Anidées 6-port USB hub 45 1 45
Multi-Pi Stackable Case 15 3 45
Micro USB (power) cable 5 5 25
Ethernet Cable 100MBps 5 5 25
TP-Link TL-SG108E 8-port Gigabit
Ethernet Switch

35 1 35

Total price (in USD) ± 475

computer with a 450W power supply at 220V. Furthermore, as there are almost
no peripherals connected, the actual power usage will be even significant lower, as
the USB-hub has a maximum output of 2.5A per USB port, while a Raspberry Pi
node without peripherals will only use about 1 to 1.5A. We verified this using a
smart plug, and the actual energy consumption for a single cluster (including the
Ethernet switch) was between 10W and 15W at 220V. Therefore, it is safe to con-
clude that the Raspberry Pi cluster is not only low-cost, but also has limited energy
consumption, meaning that there is no risk of elevated energy bills when running
experiments for multiple days or even months or years.

Building a private cloud is far more expensive, as a single server quickly costs
around 2000 USD, excluding any licensing costs, and has a much higher energy
consumption (around 500 to 1200W). When no hardware is available, renting in-
stances on a public cloud could be a good alternative, but renting a single t2.micro
instance on Amazon EC2 already has a cost of about 10 USD per month.

4.5.5 Discussion

In this section, the presented Raspberry Pi testbed was evaluated using 3 bench-
mark experiments on 4 environments. Each experiment was executed two times,
once directly on the guest operating system and once inside a Docker container.
The RPiaaS testbed turned out to be a great tool for the initial evaluation, as once
the experiments were running on this environment, the transition to the public and
private cloud environment was straightforward, and the same experiments were
running on these environments in no time. This is especially true for the version
running inside Docker containers, as the only required change was the base image
used by the containers. Traditional VM environments require an x86/x64-based
image, whereas the Raspberry Pi containers are using an armhf-based image. The
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migration however can be easily done by modifying a single line inside the Docker
files. The Raspberry Pi testbed therefore is a great tool for the initial development
of cloud-based experiments, as when using the testbed failure of experiments is not
critical, and experiments can easily be re-executed several times, without incurring
high costs. On the private and public cloud however, failure of an experiment is
much more of a problem, due to the high cost and/or limited access to these envi-
ronments. When the experiment executes successfully on the Raspberry Pi cluster,
chances are much lower that the same experiment will fail on a traditional cloud
testbed. Before running experiments on a public cloud environment however, it is
important to take service limits enforced by the provider into account, in order to
avoid strange results or even failure of experiments which were running smoothly
on other types of testbeds.

Regarding the performance, it is clear that RPiaaS introduces no overhead re-
garding the CPU and memory performance. It does however introduce some over-
head regarding the disk I/O speed, which is due to the fact that the root system is
mounted on a network share, and data might need to be transferred over the net-
work when performing I/O operations on the locally installed memory card. The
overhead however can be minimized by using a higher class of memory card. In
general, for experiments focusing on storage, using a higher class memory card
is strongly recommended, as the small additional cost is easily outweighed by
the performance gains. RPiaaS consists of several microservices running inside
Docker containers, and it is also recommended to run the experiments inside con-
tainers, as this makes it easier to migrate the experiments to other testbeds after-
wards. Using containers on the Raspberry Pi 3 however introduces a small over-
head regarding the CPU performance, which is most noticeable when only a few
threads are used. Furthermore, there is also a noticeable overhead regarding the
memory copy bandwidth, but only for one out of the three evaluated memory copy
methods. For the traditional VM environments, using containers has no significant
impact on either the CPU, disk or memory performance.

During the design of RPiaaS, one of our requirements was that the services
should introduce little to no overhead, and the results illustrate that we managed
to achieve this requirement. When comparing the results from the Raspberry Pi
based environments to the results from the private and public cloud environment,
it is clear that the traditional VMs offer much better performance regarding CPU,
memory and disk I/O. This might seem like a limitation, but when using the Rasp-
berry Pi cluster for the validation of resource management strategies, this can be
easily overcome by scaling down the evaluation scenario by an appropriate factor.
This was in fact the intended purpose, as the Raspberry Pi testbed should be used
initially for executing small-scale experiments, and afterwards a larger version of
these experiments can be executed on a larger and more powerful cloud testbed.

Although we did not run into any issues when using a cluster with up to 15
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Figure 4.11: An illustrative hierarchically distributed architecture consisting of 3 levels for
supporting large-scale clusters. This topology follows the same distributed management
approach as many existing Internet services such as DHCP and DNS. If a single master

node can manage a maximum of 15 worker nodes, then this topology can already support
up to 3375 worker nodes.

Raspberry Pi worker nodes, even when using a Raspberry Pi instead of a Linux
desktop as master node, the master node can become a bottleneck when using
hundreds or thousands of worker nodes. First of all, the network bandwidth will
be a limiting factor, as the worker nodes mount the root file system using an NFS
share. The RPiaaS testbed however is designed to execute experiments in Docker
containers, and these containers are stored on the local memory card of the Rasp-
berry Pi nodes. As a result, the network bandwidth overhead introduced by NFS
is minimal as we will illustrate in Section 4.6. Apart from this, the NFS server
could have a limit on the number of concurrent NFS connections possible. This
limit will mainly be defined by the number of available ports on the master node, as
each NFS connection will create a new socket using a random port. Apart from the
limitations introduced by the network, the master node also monitors the worker
nodes, which consumes some computational resources. As the number of worker
nodes increases, more resources will be consumed, and especially when the con-
figured update interval is small, it is possible that the master node is no longer able
to process all retrieved information between two consecutive updates.

When using a large number of worker nodes however, multiple master nodes
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can be used, with each master node responsible for monitoring and providing the
required services towards a subset of the worker nodes. The different master nodes
can even be managed by another master node, creating a hierarchical management
structure with a single master at the root. By doing so, there is no limit on the
number of nodes, and the monitoring data from the different master nodes could
be aggregated to have a full overview of the testbed. For large environments, even
more levels can be added in between, as illustrated in Figure 4.11. If the maximum
number of nodes that can be managed by a single master node is known (M ), then
the maximum number of worker nodes in the cluster equals ML with L being the
number of levels in the hierarchical tree. For example, if a single master node can
manage a maximum of 15 worker nodes, then the maximum number of worker
nodes is 153 or 3375 when using the 3-level topology of Figure 4.11.

Regarding the costs, it is clear that the Raspberry Pi testbed is both low-cost
and has a very low energy footprint. Therefore, it should not be a problem to exe-
cute experiments that need to run for several days or even weeks to months. Run-
ning these experiments on a public cloud testbed could quickly become expensive,
and building a private cloud requires a high initial investment. Furthermore, the
Raspberry Pi cluster is very portable, and is an ideal tool for demo purposes, as
a 15-node cluster easily fits into a single flight case. The whole testbed is also
fan-less and therefore silent, in contrast to traditional servers which are typically
located in a data center with limited access, and which are producing a high level
of noise while requiring specialized cooling equipment.

4.6 Case Study

To illustrate the approach introduced in Section 4.3, a resource allocation strategy
focusing on the management of hierarchically structured tenant data is evaluated
in this section, using a custom simulation tool as well as a practical implemen-
tation using the RPiaaS testbed described in Section 4.4. A comparison is made
between the results obtained through simulations and experiments on the RPiaaS
testbed. The RPiaaS experiments not only allowed for measuring other useful met-
rics, but also lead to new insights regarding the migration strategy, illustrating the
importance of experimental validation.

4.6.1 Context

The management of tenant data within cloud applications is subject to stringent
constraints regarding the reallocation of existing tenant data. Migration of existing
data is both costly, due to the required bandwidth for performing the migrations,
as time consuming. As a result, the number of migrations and the migration sizes
over time should be minimized. The allocation of tenant data over multiple storage
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Table 4.8: Overview of the evaluated allocation strategies.

Abbreviation Name Description

FFD First-Fit Decreasing Heuristic for the bin packing
problem - this algorithm
serves as a baseline.

HFFD Hierarchical First-Fit
Decreasing

Adaption of the FFD
algorithm for the hierarchical
bin packing problem.

dHFFD Dynamic Hierarchical
First-Fit Decreasing

Dynamic version of the
HFFD strategy.

instances can in fact be seen as a bin packing problem, and existing bin packing
algorithms could be used to solve the data allocation problem.

Traditional solutions for the bin packing problem handle the items to be packed
as individual items with no relations between them. The First-Fit Decreasing
(FFD) strategy for example sorts all individual items in decreasing order, and al-
locates each item to the first available bin that fits the item. This will result in a
high average bin usage, using a minimal number of bins, but it will not necessarily
minimize the amount and size of migrations.

When the tenants however are hierarchically structured, the allocation problem
can be seen as a hierarchical bin packing problem, which goal is to minimize
the number of bins while keeping related items, e.g. siblings belonging to the
same parent node, together as much as possible. There are multiple reasons to
organize the tenants using a hierarchical structure [25]. Tenants for example can
be organized based on their geographical location, in order to allocate each tenant
in a region close to its physical location.

In our previous work [25] we introduced a dynamic storage system for the al-
location of hierarchically structured tenant data, together with several novel strate-
gies for the hierarchical bin packing problem. The system invokes the selected
strategy for the initial allocation of the tenant data, and reinvokes the strategy
whenever some of the data needs to be reallocated. It uses three parameters: the
bin size (MAX), an allocation factor (AF ) and reallocation delta (RD). The
MAX parameter is defined by the type of node, and corresponds to the maxi-
mum amount of data that can be stored on a single node. The AF parameter
(0 < AF < 1) is used during (re)allocations, as the selected strategy will try to fill
each bin (node) up to AF ×MAX . The RD (0 < RD < 0.5) parameter is used
to trigger reallocations, as the system will reallocate tenant data when one of the
nodes holds either less than (AF − RD)×MAX (= underloaded node) or more
than (AF +RD)×MAX data (= overloaded node).
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Table 4.8 lists the selected data (re)allocation strategies which will be evaluated
in this section. FFD is an implementation of the First-Fit Decreasing heuristic, and
will serve as a baseline for our evaluations. HFFD is a newly developed heuris-
tic for the hierarchical bin packing problem. When one of the nodes is under- or
overloaded, either all items can be reallocated (by executing the algorithm on the
full input set), or only the items located within the under- and overloaded node(s)
can be reallocated. The HFFD strategy will reallocate all items, whereas dHHFD
will only migrate items that are located on the underloaded and overloaded in-
stances. Note that these items can be migrated to one of the existing worker nodes,
the dynamic version of the algorithm only ensures that no other items are being
migrated.

4.6.2 Simulations

After the design and implementation of the resource allocation strategies, we ran
a wide range of experiments using a custom simulation tool [44]. The simulation
tool virtualizes a set of nodes, and allocates the tenant data based on a given input
data set using the selected allocation strategy. The simulation tool measures both
the bin usage for each active node as well as the expected migration sizes. The
migration sizes give a good indication about the time required for the migrations,
as a bigger value for this metric will result in an increase of the migration time.
It would be interesting to calculate the actual time required for each migration,
but this is not straightforward when using simulations. Multiple factors need to be
taken account, such as the maximum number of migrations that can be executed
in parallel, the available network bandwidth and the disk I/O speed of the worker
nodes. However, when using physical hardware instead of a simulation tool, the
actual migration times can be easily measured.

Using the simulation tool, we ran several experiments using different values
for the configurable parameters MAX , AF and RD. An in-depth explanation
of these parameters and the full simulation results can be found in [25], but in
Section 4.6.4 we will highlight some of the most interesting results and compare
them to the results obtained through experimental evaluation.

4.6.3 Experimental Evaluation

In order to evaluate the strategies on physical hardware, we implemented a dis-
tributed data storage system which can be executed on the RPiaaS testbed. This
storage system consists of two main components, which are designed as microser-
vices running inside Docker containers:

• The storage agent runs on all worker nodes and is responsible for managing
the tenant data located on the selected node.
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Table 4.9: Overview of the main operations of the storage agent.

Method Path Data Description

GET /get/{name} - Download file with given {name}
POST /update {name} (string),

{size} (int)
Update file with given {name} to
the provided {size}

POST /transfer {name} (string),
{source} (string)

Transfer the file with given {name}
from the {source} node to this
node

POST /delete {name} (string) Delete file with given {name} from
this node

• The storage master runs on the master node and manages tenant data using
the storage agents on the worker nodes. This component invokes the selected
allocation strategy whenever reallocation of data is required.

Both components were implemented using a combination of Node.js and
Python code, and the allocation strategies were implemented as pluggable modules
using C++. Although the hierarchical bin packing problem is NP-hard, the imple-
mented strategies are heuristics that are able to find a feasible allocation scheme for
the evaluated datasets within a few seconds. The storage agent provides a REST
interface with four main operations to manage the local tenant data, as listed in
Table 4.9. The /update method is used to update a file on the node. When the
file does not exist, a new file is created on the node, otherwise the existing file is
appended or truncated to the new size by adding or removing random bytes. The
/transfer method transfers a file directly from another worker node using the
/get method, and saves it to this node. When the transfer has completed, the
/delete method is invoked on the source node to remove the original file. The
storage master keeps track of all data located on the worker nodes and monitors
these nodes. When one of the nodes triggers reallocation, the storage master in-
vokes the selected strategy and migrates the tenant data using the REST interfaces
of the storage agents.

For the actual reallocation of data, the system calculates the minimal migra-
tion path between the old allocation scheme and the new allocation scheme. After
calculating the migration path, the system executes all required data migrations.
We initially implemented the system to perform all data migrations in parallel,
but this however lead to the crashing of some of the worker nodes as during the
migrations these nodes ran out of free space. More concrete, this happens when
an existing node contains items that will be migrated, while at the same time the
node would receive items from other nodes. To avoid running out of space, the
execution order for the migrations is important, as these nodes should first migrate
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/data partition of worker node

Data that remains on this node 
during the current migrations

Data that will be migrated from 
this node to other nodes

Data that will be 
migrated from other 
nodes to this node

2

1

Free 
space

New items should be migrated to this 
node after the existing data has been 
migrated, to avoid running out of free 
space

Existing items should be 
migrated away from this node 
before adding new items

Figure 4.12: When executing the required migrations, it is important to first migrate the
existing items away from the node before migrating new items to this node, to avoid that

the node runs out of free space.

existing items to other nodes, before transferring items from other nodes, as il-
lustrated in Figure 4.12. This issue did not occur during the simulations, as with
the simulation tool all migrations are executed instantaneously. A possible solu-
tion could determine an optimal execution order for all migrations, but this could
lead to a deadlock situation in which two or more existing nodes are waiting for
each other to complete. An alternative solution is to partition the set of required
migrations into two subsets: the first subset contains all migrations to new nodes
(nodes that were not allocated before), and the second set contains all migrations
to existing nodes. The first set of migrations is executed first, freeing up some
space on the existing nodes, before the second set is executed. After implementing
this behaviour, all experiments executed successfully, while avoiding the risk of a
deadlock situation.

The worker nodes have a memory card of 64GB installed. The Docker con-
tainers however consume some space, resulting in about 60GB of free space on the
local memory card which can be filled by tenant data. However, due to the lim-
ited network bandwidth and disk I/O speed of the raspberry Pi nodes, we reduced
the size of the /data partition to 10GB in order to speed up our experiments. By
doing so, it takes less than one hour to fill up the /data partition on a single node
instead of several hours, and the execution time of a single experiment is reduced
from several days to several hours. Furthermore, we created a separate /docker
partition on the memory card to store all Docker-related files (mainly images and
containers) so that these files are not taken into account when calculating the disk
usage.

During the execution of the experiments, both the bin usage for every active
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Figure 4.13: Total size (in GB) of the resized dataset over the different iterations.

node is calculated after every iteration, as well as the time required for executing
all required migrations.

4.6.4 Results Comparison

For both the simulations and the experiments on the RPiaaS testbed, a dataset
was used consisting of 214 tenants which are hierarchically organised using their
geographical location. The dataset consists of 193 iterations, and during each
iteration the size of all tenants is updated. Figure 4.13 illustrates the total size of the
dataset over the different iterations. This dataset is the Fast-Growing dataset that
was used in [25], but it was resized to fit onto our RPiaaS testbed which consists
of 15 nodes with a 10GB /data partition. For this case study, the experiments were
executed with a bin size of 10GB (MAX), and AF ±RD = 0.6± 0.25.

Figure 4.14 shows the average, minimum and maximum bin usage (disk uti-
lization) over the different iterations as obtained by the simulation tool, whereas
Figure 4.15 shows the measured results from the experimental evaluation on the
RPiaaS testbed after partitioning the migrations as described in the previous sub-
section. The values obtained through RPiaaS are slightly higher due to the over-
head introduced by the filesystem, but apart from this the results are near identical
to the results obtained by the simulation tool. This overhead however is something
that needs to be taken into account when selecting the value for the reallocation
delta (RD).

Figure 4.16a and Figure 4.16b illustrate the cumulative migration size (in GB)
as obtained by the simulation tool and our initial (crashed) experiments respec-
tively, whereas Figure 4.16c shows the cumulative migration time which was mea-
sured during the execution on the RPiaaS testbed after applying the solution de-
scribed in the previous subsection. As can be seen from these results, the initial
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Figure 4.14: Minimum, average and maximum bin usage over the different iterations
(simulations).
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experiments crashed during the execution of a large migration. After partitioning
the migrations into two sets, this issue was resolved, and the obtained results (not
included in Figure 4.16) were identical to the simulation results of Figure 4.16a.
The HFFD strategy reduces the total migration size by ±25% compared to the
baseline FFD strategy, whereas for the dHFFD strategy the migration sizes are re-
duced by ±66%. The migration times however are only reduced by ±10% and
±50% respectively, which illustrates that the migration times do not necessarily
have a linear relationship with the migration sizes. This is due to various factors
such as the maximum I/O speed, the available network bandwidth, and the num-
ber of migrations that can be executed in parallel. Furthermore, the migrations
are now divided into two sets based on their destination, and other partitioning
methods might yield other results.

4.6.5 Discussion

In this section, we illustrated the approach introduced in Section 4.3 using a case
study focusing on the allocation of hierarchically structured tenant data. After the
design and implementation of the various allocation strategies, several simulations
were executed using a custom simulation tool as well as an experimental evaluation
using the RPiaaS testbed described in Section 4.4. For the executed experiments,
we used a fast-growing dataset containing the size of 214 tenants over 193 iter-
ations. During each iteration, the size of every tenant in the dataset is updated,
and whenever one of the worker nodes is either under- or overloaded, the selected
allocation strategy is invoked resulting in a migration of some of the data.

The simulation tool outputs (among other information) the bin usage for each
active node over the different iterations, as well as the total migration size. Cal-
culating the actual time required for these migrations however is not feasible with
the simulation tool. In order to calculate the migration times, various factors such
as the disk I/O speed, the available bandwidth and the number of migrations that
can be executed in parallel should be taken into account. However, when execut-
ing the experiment on a physical testbed, the actual migration times can easily be
measured.

Regarding the bin usage, the results obtained through simulations and the re-
sults measured during execution on the RPiaaS testbed are near identical. The
experimental results however are slightly higher due to the overhead introduced
by the file system. When comparing the migration sizes obtained through simu-
lations to the actual migration times, there is a visible difference. Although the
migration sizes are reduced by a factor of 3 when using the dynamic version of our
custom algorithm, the actual migration times are only reduced by a factor 2, due
to the limited network bandwidth and disk I/O speed of the nodes.

When implementing the experiments for the RPiaaS testbed, we initially ran
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Figure 4.16: Cumulative migration size and migration time over the different iterations.
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into an issue which led to the crashing of some experiments. During the initial
design of the allocation strategies, no assumptions were made regarding the order
of migrations during reallocation, but during the experiments it became clear that
this order is important to avoid that some nodes are running out of space. This
issue was not visible during the simulations, therefore illustrating the importance
of experimental validation. Furthermore, as some changes were required to the de-
sign and implementation, we had to run several iterations of the same experiments,
which would have been quite costly if we immediately executed our experiments
on a large-scale cloud testbed.

During the execution of the experiments, we also monitored the consumed
network bandwidth on the master node. The consumed network bandwidth was
minimal (less than 100 kbps on average), and mainly consisted of commands sent
to the storage agents for managing the tenant data. This again illustrates that the
overhead introduced by using NFS on the worker nodes is minimal, due to the fact
that all containers and related files are stored on the local memory card.

Execution of the experiments on a large-scale cloud testbed is now straightfor-
ward, thanks to the container-based microservice architecture. For a large-scale
evaluation, several cloud nodes are required with a basic Linux distribution and
Docker installed. All developed microservice containers for this experiment were
implemented for multiple architectures, and can therefore be executed on tradi-
tional Unix-based environments. On the worker nodes, only the RPiaaS CAS and
the storage agent services need to be deployed. As all migrations are executed di-
rectly between nodes, the master services can be deployed locally, as long as this
node can reach the worker nodes to send the appropriate commands for monitoring
the nodes and allocating the tenant data.

4.7 Conclusions and Future Work

This chapter presents a general workflow for the design, implementation and val-
idation of cloud resource allocation strategies. Furthermore, it introduces RPiaaS,
a low-cost embedded cloud testbed which was built using Raspberry Pi nodes.
Although at some point experimental validation of new resource allocation strate-
gies should also be considered, many novel strategies are often only validated by
means of simulations. This is mainly due to the high cost, complexity and limited
access of traditional private and public cloud environments. When executing ex-
periments on these cloud environments, failure of experiments should be avoided,
and therefore these environments should only be used for mature, large-scale tests.
The presented RPiaaS testbed is a good alternative for the development and initial
evaluation of novel cloud resource allocation strategies.

The RPiaaS testbed consists of two main components, the CMS which is run-
ning on the master node and used for managing and monitoring the testbed, and
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the CAS which is deployed on all worker nodes and is used to retrieve informa-
tion about the current resource usage. Some other services are also required on
the master node, for providing DHCP and DNS towards the worker nodes, and
network booting the nodes. RPiaaS is designed using a microservice architecture,
in which all services are running inside Docker containers. This not only makes it
straightforward to deploy all required services at once, but it also allows to deploy
the master services on a wide variety of systems and operating systems. For a
small-scale setup, the master services could for example be deployed onto a Rasp-
berry Pi node, but when working with larger testbeds consisting of a higher number
of nodes, a Linux-based desktop could be used instead.

During startup, the worker nodes mount an NFS folder as root file system,
which makes customizing the cluster easy and fast as there is no need to update
individual worker nodes. A single base image containing the preferred operating
system and all software required for the experiments needs to be prepared only
once, after which all worker nodes in the cluster can use this base image. Further-
more, by using Docker on all worker nodes, experiments can be easily deployed
onto a single or multiple worker nodes, and the cluster can even be managed using
Docker Swarm or transformed into a Kubernetes cluster.

During the design of RPiaaS, one of the goals was to minimize the overhead
introduced by the RPiaaS services on the worker nodes. Using containers and/or
having to deploy a custom agent service on the worker nodes could introduce some
overhead. Several benchmark experiments however illustrated that the overhead
is negligible, as the obtained results were near identical when executed directly
on the operating system or inside a Docker container, as well as when executed
on a standalone Raspberry Pi node or a RPiaaS worker node that is running the
CAS and managed through the CMS. Compared to a traditional VM, it is clear
that a Raspberry Pi node has much lower performance, but this should not be an
issue. When using the RPiaaS testbed, this means that the experiments should
be downscaled by an appropriate factor. The obtained results presented in this
chapter can help to define this factor, or when using other types of testbeds, a
similar experiment can be executed to gain insights regarding the performance.

The described workflow is illustrated using a case study focusing on the allo-
cation of hierarchically structured tenant data. For this case study, three different
resource allocation strategies were implemented and evaluated using both a cus-
tom simulation tool and the RPiaaS testbed. The results from both evaluations are
very similar, but the experimental evaluation on the RPiaaS testbed allowed for
measurement of other metrics, while also offering some new insights regarding
the evaluated strategy. The RPiaaS testbed proved to be a very useful tool for the
evaluation. The initial execution of the experiments failed, requiring modifications
to the design and implementation, and several iterations of the same experiments
to solve all issues. If the experiments would have been executed directly on a
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large-scale testbed, this process would have been very costly or might even have
been impossible due to the limited availability of these environments.

Although the RPiaaS cluster was initially designed for the validation of re-
source allocation strategies, it can be used in a wide variety of cloud-based exper-
iments due to the generic and modular design. The RPiaaS cluster can in fact be
seen as an embedded edge or fog testbed. Recently we started adding low-cost
SDN-based switches to the clusters, and in the near future we will also start using
the RPiaaS testbed as an inexpensive tool for SDN-based experimental research.
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5
Resource Management in a

Containerized Cloud: Status and
Challenges

Recently, new deployment models such as fog and edge computing have gained
maturity, bringing the cloud closer to the end user. The RPiaaS testbed presented
in Chapter 4 can in fact be seen as an embedded edge or fog testbed. Further-
more, it was designed using a microservice architecture, where experiments and
all required management services are running inside containers. Containers are
gaining popularity as virtualization technology, due to the minimal overhead com-
pared to traditional virtual machines and the offered portability. Traditional re-
source management strategies however are typically designed for the allocation
and migration of virtual machines in a traditional cloud environment, so the ques-
tion arises how these strategies can be adapted for the management of a con-
tainerized cloud. In this chapter, we provide an overview of the current state of the
art regarding resource management within the broad sense of cloud computing,
complementary to existing surveys in literature. We investigate how research is
adapting to the recent evolutions within the cloud, being the adoption of container
technology and the rise of fog and edge computing, and identify several challenges
and possible opportunities for future research.

? ? ?
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5.1 Introduction

Over recent years, cloud computing has become an important aspect of our daily
life. Nowadays, the cloud is often used for storing personal and/or professional
data, such as documents, pictures and even backups. It also facilitates online col-
laboration, as the stored documents are accessible from any device and location,
as long as an internet connection is available. But apart from online data storage,
many novel applications have been developed on top of the cloud. These applica-
tions are often available as online applications, which can be accessed through a
custom app or directly through the web browser. The term cloud computing has
a broad meaning: it not only refers to the online applications and services hosted
in the cloud, but also to the underlying frameworks and technologies that enable
them.

One of the key enablers of cloud computing is the so-called elasticity, which al-
lows cloud applications to dynamically adjust the amount of provisioned resources
based on the current and/or expected future demand. Given the increasing popu-
larity and amount of cloud applications, efficient resource management is of great
importance, as it can not only result in higher scalability of the cloud environment,
but also in lower operational costs. Efficient resource management can be benefi-
cial for multiple actors. For the cloud infrastructure provider, it aids to minimize
the power consumption, as unprovisioned hardware can be put in standby or even
turned off. This also helps to reduce the energy footprint of the data center, which
is one of the main goals of green cloud computing. For the consumer, efficient re-
source management helps to minimize the rental costs. When multiple consumers
share the same physical hardware, the provider can offer its instances at a lower
price.

As a result, resource management within cloud environments has been a ma-
jor research topic since the introduction of cloud computing. A typical research
objective is to minimize the amount of provisioned computational resources, in
order to lower the operational costs, without violating the objectives described in
so-called Service Level Agreements (SLAs). An example of this is Virtual Ma-
chine (VM) packing, which aims to consolidate virtual servers onto a minimal
number of physical machines. Multiple resource allocation strategies have been
developed by both academics and industry, often resulting in open source and/or
commercial products. A popular example is Swift [1], a highly scalable cloud stor-
age system, which is integrated into the OpenStack cloud stack, and OpenStack [2]
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itself, an open-source framework for building a private cloud environment, which
has multiple resource management functions built in.

A recent trend within cloud computing is the uprise of new types of clouds,
such as edge and fog computing [3, 4]. The cloud is no longer limited to the
centrally hosted data center, accessible from a laptop or desktop computer with a
broadband internet connection, but lightweight devices such as mobile phones and
Internet of Things (IoT) devices can also benefit from the near infinite amount of
resources offered by the cloud. These devices can offload computational intensive
tasks to a centrally hosted cloud, and by installing dedicated hardware at the edge
of the network, close to the end user devices, the latency can be reduced, as well
as the consumed network bandwidth towards the public cloud.

When it comes to virtualization, a key enabler for cloud computing, container
technology has recently gained popularity, thanks to the minimal overhead com-
pared to traditional VMs, and the great portability it offers [5, 6]. Not only can
containers be easily migrated between different cloud environments, they can also
be moved to the edge of the cloud, and for example be deployed onto less power-
ful ARM hardware located within IoT devices. This facilitates offloading within
a cloud environment, as developers can now easily reconfigure which services are
running locally or in the cloud, without paying the heavy penalty of traditional VM
migrations.

In this chapter, we investigate how recent research related to cloud resource
management is adapting to support these new technologies. This survey is com-
plementary to existing surveys in literature, as most previously published surveys
only handle resource management within traditional cloud environments [5–15]
or only consider virtual machines as virtualization technology [3, 9–12, 14, 15].
Furthermore, as illustrated in Section 5.3.1, a majority of surveys focus on a spe-
cific aspect of resource management such as resource scheduling or dynamic spot
pricing. This chapter covers the broad range of resource management, and is not
limited to a single cloud type or virtualization technology. The remainder of this
chapter is structured as follows. In the next section, we introduce all relevant
concepts and technologies related to resource management in containerized cloud
environments. In Section 5.3 we provide an overview of recent research related
to resource management, and identify several challenges and opportunities in Sec-
tion 5.4. We finish this chapter by presenting our conclusions in Section 5.5.

5.2 Overview

In this section, we provide an overview of all relevant concepts and technologies
related to resource management in containerized cloud environments. First, we
start with a brief summary of cloud, edge and fog computing. Next, we elaborate
on virtualization, as this is one of the key enablers for cloud computing, and intro-
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duce containerization (OS-level virtualization) as an alternative for VMs. Finally,
we describe all main functions related to the management of cloud resources.

5.2.1 Cloud, Edge and Fog Computing
5.2.1.1 Traditional Cloud Computing

With cloud computing, different deployment models can be distinguished. The
National Institute of Standards and Technology (NIST) defined four main deploy-
ment models [16]:

• In a Private Cloud, the cloud infrastructure is provisioned for exclusive use
by a single organization comprising multiple consumers.

• A Community Cloud is similar to a private cloud, but the infrastructure is
provisioned for exclusive use by a specific community of consumers.

• A Public Cloud is provisioned for open use by the general public, and is
usually fully accessible over the public internet.

• A Hybrid Cloud is a composition of two or more distinct cloud infrastruc-
tures.

Applications can either be deployed within a single cloud, or using multiple
clouds. To avoid vendor lock-in, one can for example choose to deploy its applica-
tion using different public cloud platforms offered by different providers. Another
example is a hybrid cloud which consists of a private cloud and a public cloud. In
this model, the main application is typically deployed on the private cloud, and the
public cloud is used for executing computational intensive tasks, or to support the
private cloud when the demand for computing capacity spikes. The latter case is
often referred to as Cloud Bursting.

Within the context of public cloud computing, three main service models can
be distinguished, as defined by the NIST [16]:

• Infrastructure as a Service (IaaS): in this model, the provider offers (typ-
ically virtual) computational resources to the consumer, for example as Vir-
tual Machines. The consumer does not manage or control the underlying
cloud infrastructure, but does have control over operating systems, storage,
deployed applications and possibly limited control over the network (e.g.
for defining firewall rules).

• Platform as a Service (PaaS): in this model, the provider offers a set of
languages, libraries, services, and tools to the consumer to deploy its appli-
cations. In contrast to IaaS, the consumer typically has no control over the
operating system and storage, but can control the deployed applications and
applicable configuration settings for the hosting environment.



RESOURCE MANAGEMENT IN A CONTAINERIZED CLOUD 161

• Software as a Service (SaaS): in this model, applications running on a
cloud infrastructure are offered to the consumer. These applications are typ-
ically deployed on top of an IaaS or PaaS environment. The consumer has
no control over the underlying infrastructure and software, except for limited
application specific customization.

In the above definitions, a provider offers services to a consumer. The term
provider however has a broad sense, and Armbrust et al. defined three main actors
within Cloud Computing [17]:

• The Cloud Provider or infrastructure provider manages a physical data cen-
ter, and offers (typically virtualized) resources to the cloud users, either as
IaaS or PaaS instances.

• The Cloud User rents virtual resources from the cloud provider to deploy its
cloud applications, which he provides (typically as SaaS) to the end users.

• The End User uses the SaaS applications provided by the cloud user. The
end user generates workloads that are processed using cloud resources.

5.2.1.2 Fog and Edge Computing

Access to the cloud is not limited to traditional devices such as servers, desktops
and laptops. With Mobile Cloud Computing (also referred to as Mobile Edge
Computing), mobile devices collaborate with a cloud environment for offloading
of tasks. As these devices are usually connected using a less reliable connection
with limited bandwidth, and are often battery powered, some tasks will be exe-
cuted directly on the device, whereas other tasks will be transferred to the cloud.
Executing tasks on the device can reduce the network congestion and lower the
latency, but will increase the energy consumption of the device. Offloading tasks
to the cloud on the contrary can decrease the energy consumption, and can also
decrease the execution time for computational intensive tasks. Mobile edge com-
puting can in fact be seen as a special case of Edge Computing. Edge Computing
and Fog Computing are related terms, which aim to bring the cloud closer to the
end user [18, 19].

• With Fog Computing, dedicated fog nodes (e.g. gateways, devices, com-
puters or micro data centers) are deployed at the edge of the network, typi-
cally inside the LAN of the edge devices. These nodes gather data from the
edge devices, and will often perform some (pre-)processing of the gathered
data, instead of transferring all tasks to the central cloud environment. Do-
ing so can help to reduce the network congestion towards the central cloud,
and can also help to reduce the response time.
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Edge Devices

Fog Nodes

Cloud Environment

Figure 5.1: Relationship between traditional cloud computing, fog computing and edge
computing. Fog nodes bring the cloud closer to the end user, and the edge devices can

offload computational intensive tasks to the central cloud.
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• With Edge Computing, the edge devices that are collecting the data do
some processing and analysis themselves. This however will increase the
energy consumption of the devices, but when the devices are connected us-
ing a limited connection, this can help to reduce the latency and network
congestion inside the local network. With edge computing, a typical re-
search question is to determine which tasks should be executed on the local
device, and which tasks should be offloaded to the fog or cloud environment.

An example topology for fog and edge computing is illustrated in Figure 5.1,
as well as the relationships between the different environment. Both edge and fog
computing typically aim to reduce the latency and the load on the cloud, and are
often used in the context of IoT, in which large amounts of data are collected for
analysis and processing [19–23].

5.2.2 Virtualization

Cloud computing is mainly built on top of virtualization, as cloud users typically
rent virtual resources from the cloud providers. A typical form of virtualization is
the use of VMs, in which multiple VMs are emulated on top of a so-called hyper-
visor. A VM runs the full software stack, meaning that an Operating System (OS)
is deployed on top of the VM, and the required software is installed on top of this
OS. When deploying a VM, the cloud user can either start from scratch and cre-
ate a new virtual machine, install the preferred OS and all required binaries and
libraries, or a pre-configured template can be used for deploying a new VM which
already contains the operating system and a typical software stack (e.g. a web
server). In the latter case, the cloud user only needs to customize the packages, and
deploy its application on top. Because the full OS is installed on the virtual disk
of the VM, this virtual disk is easily a few gigabytes in size. This makes migra-
tion of VMs challenging, especially when moving the VM to a different physical
location, as the whole virtual disk needs to transferred. When migrating a VM,
the machine can first be turned off, which facilitates the migration process as there
are almost no risks such as losing state or consistency, but there will be a notice-
able downtime. Most hypervisors however also support the migration of running
virtual machines between different physical machines, without disconnecting the
client or application, referred to as live migration. Live migrations will also in-
clude some downtime of the VM, but when this is not noticeable by the end users,
the migration is called a seamless live migration.

Recently, container technologies have emerged as a more lightweight alterna-
tive for VMs [24–27]. The major difference with VMs is that a container typically
has no operating system installed, but instead all containers deployed on a single
machine are running directly on the operating system kernel (OS-level virtualiza-
tion). As a result, containers are much smaller in size, and a typical container file
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is a few hundreds megabytes, whereas a similar VM with the same applications
installed will typically be a few gigabytes. To launch a new container, the user
can either start from a base image (e.g. an Ubuntu-flavored base image or an offi-
cial NodeJS base image) and install and configure all required software packages,
or he can create a new container based on a pre-configured image that is pulled
from a central repository, with most of the required software already installed and
configured.

OS-level virtualization (also referred to as containerization) has existed for
some time, with LXC [28] being one of the first popular container engines. LXC
was initially released in 2008, but in 2013 Docker [29] was released as a suc-
cessor for LXC, and quickly became one of the most popular container engines.
Initial releases of Docker were still using LXC as default execution environment,
but in later releases Docker replaced LXC with its own library. To facilitate the
deployment, Docker containers can be published to Docker Hub [30], a publicly
available, centrally hosted repository for storing fully configured container im-
ages, or organizations can configure their own private Docker image repository.
Docker however only offers tools for deploying and managing containers on top
of a single physical machine. For the management and deployment of container-
ized applications over a cluster of Docker servers, a container orchestration system
such as Kubernetes [31] is required. Docker initially offered its own orchestration
tools, called Docker Swarm mode, which offered limited functionality for manag-
ing container clusters [32]. In 2017, the team behind Docker however announced
native Kubernetes support, and recommended Kubernetes as orchestration tool for
enterprise environments [33].

As containers are lightweight, they are often used for deployment of applica-
tions that are designed using a Service-Oriented Architecture (SOA). With SOA,
an application is decomposed into several collaborating services, and every service
can be deployed into a separate container. This allows for fine-grained scalability,
as each service can be scaled up or down individually, instead of scaling the whole
application as a whole. In multi-cloud environments, the use of lightweight con-
tainers also offers multiple opportunities for achieving high scalability and cost-
efficient deployments, thanks to the offered portability [34].

A combination of both virtualization technologies is possible, for example
when deploying a container engine on top of VMs hosted on a cloud environ-
ment [26, 35]. In this scenario, the application is deployed inside a container, and
the container runtime is running on top of the guest OS of the VM. VMs typi-
cally offer a higher level of isolation and security, while containers have a lower
virtualization overhead, and a hybrid model could combine the advantages of both
technologies. Figure 5.2 provides an overview of the typical models for deploy-
ment of an application or service within a virtualized environment. For VM-based
deployments, the hypervisor can either run directly on the hardware (bare-metal
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Figure 5.2: Comparison between the different models for deployment within a virtualized
environment. The application or service can be either deployed inside a VM, a container,

or a container hosted in a VM.

virtualization), or on top of the host OS.

5.2.3 Resource Management

Resource management is a broad term, which refers to all required functionalities
related to the allocation, provisioning and pricing of (virtual) resources. For the
deployment of cloud applications, the minimal required amount of resources needs
to be determined, and in an elastic cloud environment the allocated amount of
resources can change dynamically based on the current demand. Furthermore, by
monitoring and profiling the applications or the resources, an estimate can be made
regarding the future demand. In a public cloud environment, the cloud provider
needs to determine the price billed to the cloud users based on the actual resource
usage, and the cloud user can charge the end users for using the SaaS applications.

5.2.3.1 Management Objectives

With public cloud computing, cloud providers need to satisfy the SLAs agreed
upon with the cloud users regarding the provisioning of virtual infrastructure. Such
a SLA can consist of multiple constraints (which must always be satisfied) and
objectives (which should be satisfied). A typical management objective is a spec-
ified monthly uptime percentage for the virtual instances, or a maximum allowed
response time for the cloud environment. The provider can choose to offer its
infrastructure to all cloud users using a single SLA, or can pursue service differ-
entiation by offering different service levels to the customers. The provider could
also choose to apply different objectives during different operational conditions,
for example by guaranteeing different objectives during low load or overload.
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The cloud user can also have a SLA with the end-users, consisting of objectives
regarding the offered services (typically as SaaS). To comply with these objectives,
the cloud user may seek to exploit the elasticity property of the cloud environment.
The cloud user could for example over-provision resources in order to guarantee
the objectives, or could try to minimize the operational costs but with the risk of
violating the SLA with the end users.

5.2.3.2 Resource Allocation, Provisioning and Scheduling

In an optimal scenario, every cloud application would be deployed in a location
close to the end users in order to minimize latency, on hardware that is powerful
enough to guarantee compliance with the selected SLAs, and on a dedicated server
to maximize performance isolation. This scenario however would lead to high op-
erational costs and energy consumption, and a waste of resources as most of the
time the provisioned server instances would be in an idle state. Resource alloca-
tion strategies aim to solve this issue, by packing multiple applications belonging
to different customers onto the same physical hardware, while guaranteeing per-
formance and data isolation and compliance with SLA requirements. Resource
management consists of multiple tasks, with the main tasks being the allocation,
provisioning and scheduling of (virtual) resources.

• Resource Allocation refers to the allocation (reservation) of a pool of re-
sources (e.g. computational resources, network bandwidth and storage) for
a given consumer.

• Resource Provisioning on the other hand is the effective provisioning of (a
part of) the allocated resources in order to execute a given task. A typical
example of resource provisioning is the deployment of a new virtual ma-
chine by the consumer, which uses a subset of the allocated CPU, network
and storage resources.

• When executing a large batch of tasks in the cloud, Resource Scheduling
aims to find a feasible execution order for these tasks, making optimal usage
of the available resources while respecting the deadlines defined for each
individual task.

• Resource Orchestration is a broad term, that includes both scheduling,
management and provisioning of additional resources. Orchestrators typi-
cally manage complex cross-domain processes, and aim to meet the defined
objectives, for example meeting the application performance goals while
minimizing costs and maximizing performance.

Resource allocation, provisioning, scheduling and orchestration are closely re-
lated, and are the main building blocks for application elasticity within a cloud
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environment. When allocating resources, a further distinction can be made be-
tween static and dynamic allocation.

• With a Static Resource Allocation strategy, the required amount of re-
sources is determined during deployment, and the allocation of resources
does not change during the lifetime of the deployed applications. Static re-
source allocation however can lead to under- or over-provisioning, when the
amount of allocated resources is not in line with the current demand.

• With Dynamic Resource Allocation, the amount of allocated resources can
change during execution, in order to meet the current demand. Dynamic
resource allocation can lead to a higher utilization of the physical resources,
and allows for server consolidation in order to reduce the operating costs.

Dynamic resource allocation is often seen as the most efficient means to al-
locate hardware resources in a data center [36]. However, dynamic resource al-
location typically involves migration of running applications, which leads to an
overhead and possible service disruptions.

5.2.3.3 Monitoring and Profiling

When allocating resources, a distinction can be made between reactivity and proac-
tivity:

• With a Reactive control mechanism, the amount of allocated resources is
adjusted over time in response to a detected change in demand.

• With a Proactive control mechanism, the amount of allocated resources is
adjusted based on a predicted change in demand.

For proactive control mechanisms, a prediction of the demand is often made
using historical measurements. This is typically done using Demand Profiling,
and can happen either at the application level, when predicting the demand for
individual applications, or at the infrastructure (data center) level, when predict-
ing the global demand within the cloud environment. Apart from estimating the
demand, an estimation can also be made regarding the state of the physical and
virtualized resources, often referred to as Resource Utilization Estimation. An
estimation can be made for the different types of resources, such as compute, net-
work, storage and power resources, and these estimations serve as input for both
the monitoring and scheduling processes.

By Monitoring the actual resource utilization, the provider can detect if the
current allocation scheme fits the current demand. In an elastic cloud environment,
additional resources can be provisioned on the fly if there is an overutilization of
the provisioned resources (under-provisioning), and when more resources are al-
located than required (over-provisioning), a certain amount of resources can be
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deallocated to decrease the operational costs. Monitoring processes can also be
used to determine failure of certain components. Furthermore, monitoring infor-
mation can provide useful input for both demand profiling and resource utilization
estimation.

5.2.3.4 Resource Pricing

Especially with public cloud computing, the cloud user or end user will be charged
based on its usage of the cloud resources or cloud services. In this context, a
distinction can be made between application pricing and infrastructure pricing [9].

• With Application Pricing, the cloud user determines the price for the ser-
vices (typically offered as SaaS applications) provided to the end users.

• With (Virtual) Infrastructure Pricing, the cloud provider determines the
price charged for the virtual resources rented to the cloud users.

For application pricing, the cloud user could either provide its application at
a fixed price (e.g. a monthly incurring bill, with the price based on the number
of active users) or he could charge the cloud user based on the actual usage (e.g.
the total amount of bandwidth or data storage used by the consumer). With public
cloud computing, cloud providers traditionally use a Static Pricing scheme to
cover the infrastructure and operational costs of the data center. With static pricing,
the cloud users are charged a fixed price based on either the number of virtual
instances, the actual resource usage, or a combination of both. The cloud provider
can for example charge a fixed price for each instantiated virtual machine, together
with a variable price based on the amount of consumed network bandwidth and/or
additional storage. Recently, Dynamic Pricing schemes are gaining popularity
as an alternative to static pricing, mainly to increase the utilization of the data
center [10, 37–40]. With dynamic pricing, the cloud provider can for example
lease its resources at a lower price when the demand is low, and increase the prices
as the demand increases. Another example of dynamic pricing is spot pricing, in
which the cloud provider offers dynamically priced resources at a lower price, but
with less guarantee of availability [10]. Dynamic pricing can also be based on an
auction-based pricing model, in which multiple cloud users bid for a bundle of
virtual cloud resources [38, 39]. The cloud provider will then select a set of cloud
users, the winners, and needs to determine a feasible allocation over its physical
hardware.

5.3 State of the Art
This section provides an overview of recent research (published between 2015
and 2018) focusing on resource management within cloud environments. We se-
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lected this time period as this chapter extends the survey previously published
by Jennings and Stadler [9], which already provides an extensive overview of
research related to resource management published before 2015. We reviewed
over 150 research papers from five main publishers, namely ACM, Elsevier, IEEE,
Springer and Wiley. A majority of the reviewed articles were published in ei-
ther ACM Transactions on Internet Technology (TOIT) [41], IEEE Transactions
on Cloud Computing (TCC) [42], IEEE Transactions on Parallel and Distributed
Systems (TPDS) [43], IEEE Transactions on Network and Service Management
(TNSM) [44], Springer Journal of Network and Systems Management (JNSM) [45]
or Wiley Journal of Software: Practice and Experience (SPE) [46].

In the remainder of this section, a brief summary of previous surveys focusing
on resource management is first provided. We then categorize the research within
three main areas, as illustrated in Figure 5.3. For each category, a summary of the
most relevant research is provided for each resource management functional ele-
ment. Table 5.1 provides a mapping from all research items (excluding surveys) to
the covered resource management functional elements. As can be seen from this
table, some publications can be attributed to multiple categories and/or functional
elements. For these items, we selected the most relevant category and/or element,
and in the remainder of this section these items are included in the correspond-
ing subsection. For each research item, we also added attributes to denote the
used cloud type, the scope and the virtual allocation entity. Table 5.2 provides an
overview of all applicable attributes, and the abbreviations used in the remainder
of this section.

5.3.1 Previous Surveys

Table 5.3 provides an overview of previous surveys related to resource manage-
ment within cloud environments. In 2015, Jennings and Stadler published an ex-
tensive overview of resource management within the public cloud [9]. In their
survey, the authors introduce a conceptual framework for cloud resource manage-
ment consisting of multiple functional elements, and classify related research into
eight functional areas. Furthermore, they characterize cloud provisioning schemes
based on the placement approach (static, dynamic, network aware and/or energy
aware) and the control architecture (centralized, hierarchical or distributed). The
framework is illustrated in Figure 5.4. In this figure, we added a mapping from the
different resource management functional elements to the categories used in this
chapter, namely Elasticity, Profiling and Pricing.

Yousafzai et al. extended the research of Jennings and Stadler by introducing
a taxonomy for categorizing cloud resource allocation schemes [14]. The intro-
duced taxonomy is based on multiple attributes, being the optimization objective,
the design approach, the target resource allocation type, the applied optimization
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Profiling and Pricing).

Table 5.1: Mapping from all research items (excluding surveys) to the resource
management functional elements of Figure 5.3.

WM Workload Management, AEP Application Elasticity and Provisioning, GPS Global
Provisioning and Scheduling, LPS Local Provisioning and Scheduling, ADP Application

Demand Profiling, IDP (Virtual) Infrastructure Demand Profiling, Est Resource Utilization
Estimation, Mon Monitoring, APr Dynamic Application Pricing, IPr Dynamic Virtual

Infrastructure Pricing.

—Elasticity— —Profiling— Pricing

Publication Year W
M

A
E

P

G
PS

L
PS

A
D

P

ID
P

E
st

M
on

A
Pr

IP
r

Aazam et al. [47] 2015 3 3 3 3

AbdelBaky et al. [48] 2015 3

Amannejad et al. [49] 2015 3 3

Chiang et al. [50] 2015 3

Dabbagh et al. [51] 2015 3 3 3 3

Dhakate et al. [52] 2015 3

Huang et al. [53] 2015 3 3

Jin et al. [54] 2015 3

Katsalis et al. [55] 2015 3

Kumbhare et al. [56] 2015 3 3

—Continued on next page—
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Table 5.1: Mapping from all research items (excluding surveys) to the resource
management functional elements of Figure 5.3 (continued).

Publication Year W
M

A
E

P

G
PS

L
PS

A
D

P

ID
P

E
st

M
on

A
Pr

IP
r

Lee et al. [57] 2015 3 3

Liu et al. [58] 2015 3 3

Mashayekhy et al. [38] 2015 3 3

Moens et al. [59] 2015 3

Mukherjee et al. [60] 2015 3

Petri et al. [61] 2015 3 3

Sharma et al. [62] 2015 3

Stankovski et al. [63] 2015 3 3

Wang et al. [64] 2015 3 3

Wuhib et al. [65] 2015 3 3 3 3

Zhang et al. [66] 2015 3

Aazam et al. [67] 2016 3 3

Ayoubi et al. [68] 2016 3 3

Choi et al. [69] 2016 3 3

D.C. Rodrigues et al. [70] 2016 3

Dai et al. [71] 2016 3

Elgazzar et al. [72] 2016 3

Espling et al. [73] 2016 3

Goudarzi et al. [74] 2016 3 3 3

Huang et al. [75] 2016 3

Kang et al. [76] 2016 3

Khatua et al. [77] 2016 3

Mashayekhy et al. [39] 2016 3 3

Mishra et al. [78] 2016 3

Nakagawa et al. [79] 2016 3 3 3

Pantazoglou et al. [80] 2016 3

Righi et al. [81] 2016 3

Salah et al. [82] 2016 3

Sharma et al. [26] 2016 3

Wajid et al. [83] 2016 3 3

Wan et al. [84] 2016 3 3

Wanis et al. [85] 2016 3 3

Wolke et al. [36] 2016 3 3 3

Wu et al. [86] 2016 3

Xu et al. [87] 2016 3 3

Zhou et al. [88] 2016 3

Awada et al. [89] 2017 3

Awada et al. [90] 2017 3

Babaioff et al. [91] 2017 3 3 3

Chard et al. [92] 2017 3 3

Chi et al. [37] 2017 3 3

Dalmazo et al. [93] 2017 3

—Continued on next page—
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Table 5.1: Mapping from all research items (excluding surveys) to the resource
management functional elements of Figure 5.3 (continued).

Publication Year W
M

A
E

P

G
PS

L
PS

A
D

P

ID
P

E
st

M
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A
Pr
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r

Hai et al. [94] 2017 3 3 3

Hoque et al. [95] 2017 3

Jin et al. [96] 2017 3

Khasnabish et al. [97] 2017 3 3

Li et al. [98] 2017 3

Li et al. [99] 2017 3

Lloyd et al. [100] 2017 3

Maenhaut et al. [101] 2017 3 3

Mebrek et al. [102] 2017 3

Mechtri et al. [103] 2017 3

Merzoug et al. [104] 2017 3

Mireslami et al. [105] 2017 3

Nardelli et al. [106] 2017 3

Nitu et al. [107] 2017 3

Paya et al. [108] 2017 3

Rankothge et al. [109] 2017 3 3

Tang et al. [110] 2017 3 3

Xu et al. [111] 2017 3 3

Yang et al. [112] 2017 3

Yi et al. [113] 2017 3 3

Yu et al. [114] 2017 3

Zhang et al. [115] 2017 3 3 3

Alam et al. [116] 2018 3

Aral et al. [117] 2018 3 3

Atrey et al. [118] 2018 3 3 3

Barkat et al. [119] 2018 3

Balos et al. [120] 2018 3 3 3 3

Barrameda et al. [121] 2018 3 3 3

Borjigin et al. [122] 2018 3 3

Bouet et al. [123] 2018 3 3

Cheng et al. [124] 2018 3

Diaz-Montes et al. [125] 2018 3 3 3

Gill et al. [126] 2018 3

Guo et al. [127] 2018 3 3 3

Guo et al. [128] 2018 3 3

Guo et al. [129] 2018 3

Hauser et al. [130] 2018 3 3 3 3

Heidari et al. [131] 2018 3

Jia et al. [132] 2018 3

Jia et al. [133] 2018 3 3 3

Khabbaz et al. [134] 2018 3 3

Lahmann et al. [135] 2018 3

—Continued on next page—
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Table 5.1: Mapping from all research items (excluding surveys) to the resource
management functional elements of Figure 5.3 (continued).

Publication Year W
M

A
E

P

G
PS

L
PS

A
D

P

ID
P

E
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M
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A
Pr
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r

Lin et al. [136] 2018 3 3

Mikavica et al. [40] 2018 3

Nawrocki et al. [137] 2018 3 3

Prakash et al. [35] 2018 3 3 3

Prats et al. [138] 2018 3 3 3 3

Rahimi et al. [139] 2018 3 3 3

Sahni et al. [140] 2018 3 3

Santos et al. [21] 2018 3 3

Scheuner et al. [141] 2018 3 3

Simonis [142] 2018 3 3

S. Sofia et al. [143] 2018 3 3 3

Takahashi et al. [144] 2018 3 3

Tesfatsion et al. [27] 2018 3 3

Trihinas et al. [145] 2018 3

Wang et al. [146] 2018 3

Wei et al. [147] 2018 3 3

Xie et al. [148] 2018 3 3

Yao et al. [23] 2018 3 3

Zhang et al. [149] 2018 3 3

Zhang et al. [150] 2018 3 3

method, the utility function, the processing mode, and the target instances. Poul-
lie et al. also focus on the allocation of resources, and present an overview of
multi-resource allocation schemes for data centers [13].

Other surveys are mainly focusing on scheduling and orchestration [5–8, 12,
15]. Bittencourt et al. for example introduce a taxonomy for scheduling in tradi-
tional cloud environments [7]. Masdari et al. also investigate the topic of schedul-
ing, but their main focus is on scheduling schemes based on particle swarm op-
timization [12]. Herrera and Botero focus on Network Functions Virtualization
(NFV), and present an overview of allocation and scheduling schemes for vir-
tual network functions [131]. Rodriguez et al. recently published an extensive
overview of orchestration systems specific for container-based clusters [6]. Simi-
larly, Pahl et al. provide an overview of recent research focusing on the orchestra-
tion of containers [5].

When it comes to resource pricing, Kumar et al. provide an overview of dy-
namic (spot) pricing within traditional clouds [10]. The authors categorize differ-
ent spot pricing models in three main categories, namely economics based models
(auction-based or game theory based), statistics based models and optimization
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Table 5.2: Overview of the attributes used in this section.

Cloud Type Traditional Cloud (TC) The item applies to traditional cloud
types. These can be either public,
private, community clouds or a
combination (hybrid clouds).

Fog Computing (FC) The item applies to Fog Computing.
Edge Computing (EC) The item applies to Edge Computing,

which includes Mobile Edge
Computing.

Scope Single Cloud (SC) The research focuses on resource
management within a single cloud
environment.

Multi-Cloud (MC) The research handles resource
management in a multi-cloud
environment.

Entity Virtual Machine (VM) Virtual machines are used as
virtualization technology.

Container (CT) Containers are used as virtualization
technology.

based models.
Recently, Mouradian et al. published an extensive survey on fog comput-

ing [4]. In their survey, the authors provide some comments regarding resource
allocation, scheduling and pricing in the context of fog and edge computing. Their
survey however is not limited to resource management, but instead aims to provide
a general overview of all aspects of fog computing. The authors for example also
discuss several possible architectures within fog computing.

As can be seen from this overview, previously published surveys either focus
on a specific aspect of resource management, or a specific cloud type. Most sur-
veys cover resource management within traditional cloud environments, and do
not yet consider containers as an alternative for VMs. In this chapter however, our
goal is to cover the broad range of resource management, and we also do not limit
ourselves to a single cloud type or virtualization technology.

5.3.2 Resource Elasticity

Table 5.4 provides an overview of recent work with a main focus on the allocation,
provisioning and scheduling of cloud resources and the scheduling and manage-
ment of user workloads. In this table, we categorized the research items based on
the attributes of Table 5.2.



176 CHAPTER 5

Table 5.3: Overview of previous surveys focusing on resource management within cloud
environments.

Function Cloud Type Entity

Publication Year E
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st
ic

ity

Pr
ofi

lin
g

Pr
ic

in
g

Tr
ad

iti
on

al

Fo
g

E
dg

e

V
M

C
on

ta
in

er

Jennings & Stadler [9] 2015 3 3 3 3 3

Mann [11] 2015 3 3 3 3

Yi et al. [3] 2015 3 3 3 3 3

Zhan et al. [15] 2015 3 3 3 3

Herrera & Botero [8] 2016 3 3 3 3

Masdari et al. [12] 2017 3 3 3

Yousafzai et al. [14] 2017 3 3 3

Bittencourt et al. [7] 2018 3 3 3 3

Kumar et al. [10] 2018 3 3 3 3

Mouradian et al. [4] 2018 3 3 3 3 3 3

Pahl et al. [5] 2018 3 3 3

Poullie et al. [13] 2018 3 3 3 3

Rodriguez & Buyya [6] 2018 3 3 3 3

Table 5.4: Overview of recent research with a main focus on resource elasticity (allocation
and provisioning, scheduling and/or workload management).

WM Workload Management, AEP Application Elasticity and Provisioning, GPS Global
Provisioning and Scheduling, LPS Local Provisioning and Scheduling, TC Traditional

Cloud, FC Fog Computing, EC Edge Computing, SC Single Cloud, MC Multi-Cloud, VM
Virtual Machine, CT Container.

Function Cloud Type Scope Entity

Publication Year W
M
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G
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L
PS
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FC E
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SC M
C
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C
T

AbdelBaky et al. [48] 2015 3 3 3

Amannejad et al. [49] 2015 3 3 3 3 3 3

Chiang et al. [50] 2015 3 3 3 3

Katsalis et al. [55] 2015 3 3 3 3

Kumbhare et al. [56] 2015 3 3 3 3 3

Liu et al. [58] 2015 3 3 3 3

Moens et al. [59] 2015 3 3 3 3

Mukherjee et al. [60] 2015 3 3 3 3

Stankovski et al. [63] 2015 3 3 3 3

Wuhib et al. [65] 2015 3 3 3

Zhang et al. [66] 2015 3 3 3

Ayoubi et al. [68] 2016 3 3 3 3 3

—Continued on next page—
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Table 5.4: Overview of recent research with a main focus on resource elasticity
(continued).

Publication Year W
M

A
E

P

G
PS

L
PS

T
C

FC E
C

SC M
C

V
M

C
T

Choi et al. [69] 2016 3 3 3 3

Dai et al. [71] 2016 3 3 3 3

Elgazzar et al. [72] 2016 3 3 3 3 3

Espling et al. [73] 2016 3 3 3 3

Goudarzi et al. [74] 2016 3 3 3 3

Huang et al. [75] 2016 3 3 3 3

Kang et al. [76] 2016 3 3 3 3

Khatua et al. [77] 2016 3 3 3 3

Mishra et al. [78] 2016 3 3 3 3

Nakagawa et al. [79] 2016 3 3 3 3

Pantazoglou et al. [80] 2016 3 3 3 3

Righi et al. [81] 2016 3 3 3 3

Salah et al. [82] 2016 3 3 3 3

Sharma et al. [26] 2016 3 3 3 3 3

Wajid et al. [83] 2016 3 3 3 3

Wolke et al. [36] 2016 3 3 3 3

Wu et al. [86] 2016 3 3 3 3

Xu et al. [87] 2016 3 3 3 3 3

Awada et al. [89] 2017 3 3 3 3

Awada et al. [90] 2017 3 3 3 3

Hoque et al. [95] 2017 3 3 3 3

Jin et al. [96] 2017 3 3 3 3

Khasnabish et al. [97] 2017 3 3 3

Li et al. [98] 2017 3 3 3 3

Li et al. [99] 2017 3 3 3 3

Maenhaut et al. [101] 2017 3 3 3 3

Mebrek et al. [102] 2017 3 3 3 3 3

Mechtri et al. [103] 2017 3 3 3 3

Merzoug et al. [104] 2017 3 3 3 3

Mireslami et al. [105] 2017 3 3 3 3

Nardelli et al. [106] 2017 3 3 3 3 3

Nitu et al. [107] 2017 3 3 3 3 3

Paya et al. [108] 2017 3 3 3 3

Rankothge et al. [109] 2017 3 3 3 3 3

Xu et al. [111] 2017 3 3 3 3

Yang et al. [112] 2017 3 3 3 3

Yu et al. [114] 2017 3 3 3

Zhang et al. [115] 2017 3 3 3 3 3

Alam et al. [116] 2018 3 3 3 3 3 3

Aral et al. [117] 2018 3 3 3 3 3 3

Atrey et al. [118] 2018 3 3 3 3 3

Barkat et al. [119] 2018 3 3 3 3

—Continued on next page—



178 CHAPTER 5

Table 5.4: Overview of recent research with a main focus on resource elasticity
(continued).

Publication Year W
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P

G
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L
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C

FC E
C
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T

Barrameda et al. [121] 2018 3 3 3 3 3 3

Bouet et al. [123] 2018 3 3 3 3 3 3

Cheng et al. [124] 2018 3 3 3 3

Diaz-Montes et al. [125] 2018 3 3 3 3 3 3

Gill et al. [126] 2018 3 3 3 3

Guo et al. [127] 2018 3 3 3 3 3

Guo et al. [128] 2018 3 3 3 3 3

Guo et al. [129] 2018 3 3 3 3

Heidari et al. [131] 2018 3 3 3 3

Jia et al. [132] 2018 3 3 3

Jia et al. [133] 2018 3 3 3 3

Khabbaz et al. [134] 2018 3 3 3 3 3

Lahmann et al. [135] 2018 3 3 3 3 3

Lin et al. [136] 2018 3 3 3 3 3 3

Nawrocki et al. [137] 2018 3 3 3 3 3

Prakash et al. [35] 2018 3 3 3 3 3

Rahimi et al. [139] 2018 3 3 3 3 3 3

Sahni et al. [140] 2018 3 3 3 3 3

Santos et al. [21] 2018 3 3 3 3 3 3

Simonis [142] 2018 3 3 3 3 3

S. Sofia et al. [143] 2018 3 3 3 3 3 3

Takahashi et al. [144] 2018 3 3 3 3 3 3

Tesfatsion et al. [27] 2018 3 3 3 3 3

Wang et al. [146] 2018 3 3 3

Wei et al. [147] 2018 3 3 3 3

Xie et al. [148] 2018 3 3 3 3

Yao et al. [23] 2018 3 3 3 3 3 3

Zhang et al. [149] 2018 3 3 3 3 3

5.3.2.1 Workload Management

The scheduling of workloads within a cloud environment differs from schedul-
ing on traditional distributed systems, due to the on-demand resource provision-
ing and the pay-as-you-go pricing model which is often used by infrastructure
providers [140]. The workloads being scheduled are often bound by multiple
constraints, such as strict deadlines for individual tasks [126, 128, 134, 140],
while also considering task dependencies [124]. Sahni and Vidyarthi propose a
dynamic cost-effective deadline-constrained heuristic algorithm for scheduling of
scientific workflows in a public cloud environment [140]. The proposed algo-
rithm aims to minimize the costs, while taking into account the VM performance
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variability and instance acquisition delay to identify a just-in-time schedule for a
deadline-constrained workflow. Guo et al. also introduce a strategy for schedul-
ing of deadline-constrained scientific workflows, but within multi-cloud environ-
ments [128]. The presented strategy aims to minimize the execution cost of the
workflow, while meeting the defined deadline. Khabbaz et al. propose a deadline-
aware scheduling scheme [134], but their focus is on improving the data center’s
Quality of Service (QoS) performance, by considering the request blocking prob-
ability and the data center’s response time. Sathya Sofia and GaneshKumar on the
other hand introduce a multi-objective task scheduling strategy based on a non-
dominated sorting genetic algorithm [143]. The authors use a neural network for
predicting the required amount of VM resources, based on the characteristics of
the tasks and the resource features. Cheng et al. present a system for resource
provisioning and scheduling with task dependencies, based on deep reinforcement
learning [124]. The proposed solution also invokes a deep Q-learning-based two-
stage resource provisioning and task scheduling processor, for the automatic gen-
eration of long-term decisions. Gill et al. argue that few existing resource schedul-
ing algorithms consider cost and execution time constraints [126]. As a result, the
authors present a novel strategy for the scheduling of workloads on the available
cloud resources, based on Particle Swarm Optimization. According to Kumbhare
et al., traditional stream processing systems often use simple scaling techniques
with elastic cloud resources to handle variable data rates, which can have a signifi-
cant impact on the application QoS [56]. To tackle this issue, the authors introduce
the concept of dynamic dataflows for the scheduling of high-velocity data streams
with low latency in the cloud. These dataflows use alternate tasks as additional
control over the dataflow’s cost and QoS. Xu et al. note that inside data centers,
there exist a vast amount of delay-tolerant jobs, such as background and mainte-
nance jobs [111]. As a result, the authors propose a scheme for the provisioning of
both delay sensitive and delay-tolerant jobs, that aims to minimize the total opera-
tional costs, while still guaranteeing the required QoS for the delay sensitive jobs,
and achieving a desirable delay performance for the delay-tolerant jobs.

Big-data computing applications can also benefit from the elasticity of cloud
environments [131, 142, 148]. Such applications typically demand concurrent data
transfers among the computing nodes, and it is important to determine an optimal
transfer schedule in order to achieve a maximum throughput. Xie and Jia how-
ever claim that some existing methods cannot achieve this, as they often ignore
link bandwidths and the diversity of data replicas and paths [148]. As a result, the
authors propose a max-throughput data transfer scheduling approach that aims to
minimize the data retrieval time. Large amounts of data generated by internet and
enterprise applications are often stored in the form of graphs. To process such data,
graph processing systems are typically used. In this context, Heidari and Buyya
propose two dynamic repartitioning-based algorithms for scheduling of large-scale
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graphs in a cloud environment [131]. The proposed algorithms consider network
factors in order to reduce the costs. The authors also introduce a novel classifica-
tion for graph algorithms and graph processing systems, which can aid to select
the best strategy for processing a given input graph.

In a federated multi-cloud environment, different types of resources that may
be geographically distributed can be collectively exposed as a single elastic infras-
tructure. By doing so, the execution of application workflows with heterogeneous
and dynamic requirements can be optimized, and the federated multi-cloud can
tackle larger scale problems. Diaz-Montes et al. introduce a framework for man-
aging the end-to-end execution of data-intensive application workflows within a
federated cloud [125]. The proposed framework also supports dynamic federa-
tion, in which computational sites can join or leave on the fly, and the framework
can recover from failures happening within a site.

For scheduling of workloads that are executed inside containers, Kang et
al. propose a brokering system that aims to minimize the energy consumption,
while guaranteeing an acceptable performance level [76]. The authors also pro-
pose a new metric, called Power consumption Per Application (ppA), and the pro-
posed system applies workload clustering using the k-medoids algorithm. Simo-
nis presents a container-based architecture for big-data applications, that allows
for interoperability across data providers, integrators and users [142]. By using
self-contained containers, the presented architecture allows for horizontal scale-
out, high reliability and maintainability. Takahashi et al. introduce a portable load
balancer for Kubernetes clusters, which is usable in any environment, and hence
facilitates the integration of web services [144].

Highlights for workload management: Workloads that are being executed in
a cloud environment are often bound by multiple constraints, which should be
taken into account by the scheduling strategy to guarantee the required QoS. In
recent years, several strategies have been proposed, but most of them focus on
the execution of workflows inside VM instances, for example by predicting the
minimal amount of VM resources for a given set of tasks. In a federated multi-
cloud environment, geographically distributed resources can be exposed as a single
elastic infrastructure, to optimize the execution of application workflows and to
tackle large scale problems. An important challenge in this context is support for
dynamic federation, meaning that computational sites should be able to join or
leave on the fly, and the used framework should be able to cope with such changes.
Executing workloads inside containers offers great portability and scalability as
the virtualization overhead is much smaller compared to traditional VMs.
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5.3.2.2 Application Elasticity and Provisioning

Applications deployed in a cloud environment can benefit from the offered elastic-
ity by adjusting the provisioned amount of resources based on the current demand.
Additional instances can be deployed on the fly, and a load balancer will typically
be used to distribute the load over the available instances. Cloud applications how-
ever are often stringent to given Service-Level Objectives (SLOs), agreed upon
between the cloud user and the application end user. In order to satisfy a given
service level objective, the minimal amount of cloud resources required for the
given task needs to be determined. Salah et al. present an analytical model, based
on Markov chains, to predict the minimal number of VMs required for satisfying
a given SLO performance requirement [82]. Their model takes the offered work-
load and number of VM instances as input, together with the capacity of each VM
instance. The model not only returns the minimal number of VMs required for
the workload, but also the required number of load balancers needed for achieving
proper elasticity. Mireslami et al. present a multi-objective cost-effective algo-
rithm for minimizing the deployment cost while meeting the QoS performance re-
quirements [105]. The proposed algorithm offers the cloud user an optimal choice
when deploying a web application in a traditional cloud environment. Righi et
al. introduce a fully-organizing PaaS-level elasticity model, designed specifically
for running High-Performance Computing (HPC) applications in the cloud [81].
Their model does not require any user intervention or modifications to the appli-
cation’s source code, but (de-)allocates VMs using an aging-based approach to
avoid unnecessary VM re-configurations. The model also uses asynchronism for
creating and terminating VMs in order to minimize the execution time of the HPC
applications.

In a mobile cloud environment, mobile devices can transfer resource-intensive
computations to a more resourceful computing infrastructure, such as a public
cloud environment. Multiple offloading approaches exist, often focusing on differ-
ent objectives or following a different approach [23, 72, 121, 137, 149]. Nawrocki
and Sniezynsky for example propose an agent-based architecture with learning
possibilities, based on supervised and reinforcement learning, to optimally sched-
ule services and tasks between the mobile device and the cloud [137]. Elgazzar
et al. propose a framework for cloud-assisted mobile service provisioning, which
aims to assist mobile devices in delivering reliable services [72]. The presented
framework supports dynamic offloading, based on the current resource utilization
and network conditions, while satisfying the user-defined energy constraints. Bar-
rameda and Samaan focus on the costs, and present a statistical cost model for of-
floading in a mobile cloud environment [121]. In this cost model, the application
is modelled as a tree structure for representing dependencies and relations among
the application modules. The cost for each module is then modelled as a cumula-
tive distribution function that is statistically estimated through profiling. Zhang et
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al. on the other hand investigate the topic of energy-efficient task offloading, and
propose an algorithm that aims to minimize the energy consumption on the mobile
devices while still guaranteeing deadlines [149]. Somehow related, Mebrek et al.
also focus on the energy efficiency, but in the context of a multi-tier IoT-fog-cloud
environment, and the authors present a model for the power consumption and de-
lay for IoT applications within both fog and traditional cloud environments [102].
Similarly, Yao and Ansari present an approach for offloading and resource provi-
sioning in an IoT-fog environment, but the authors aim to minimize the VM rental
cost for the fog environment while still guaranteeing QoS requirements.

In multi-cloud environments, applications or individual components should
be deployed in the environment that is best suited. Cloud providers may offer their
services using different pricing models, and some models may be more suitable for
either short term or long term tasks. For the storage of data in heterogeneous multi-
cloud environments, Zhang et al. introduce a data hosting scheme which aims to
help the cloud user by selecting the most suitable cloud environment, together with
an appropriate redundancy strategy for achieving high availability [66]. The pro-
posed solution considers the used pricing strategy, the availability requirements
and the data access patterns. For deploying applications in a multi-cloud envi-
ronment, Khatua et al. introduce several algorithms which aim to determine the
optimal amount of resources to be reserved, while minimizing the total cost by se-
lecting the most appropriate pricing model. Xu et al. focus on scientific workflows,
and present an energy-aware resource allocation method for the dynamic deploy-
ment and scheduling of VMs across multiple cloud computing platforms [87].

For applications running in a multi-tiered (layered) cloud environment,
which for example could consists of an edge, a fog and a central cloud layer, Alam
et al. present a layered modular and scalable architecture that aims to increase the
efficiency of the applications [116]. The proposed architecture collects and ana-
lyzes data at the most efficient and logical place, balances the load, and pushes
computation and intelligence to the appropriate layers. Furthermore, the proposed
architecture uses Docker containers, which simplifies the management and enables
distributed deployments. Similarly, Santos et al. propose a framework for the au-
tonomous management and orchestration of IoT applications in an edge-fog-cloud
environment [21]. The authors introduce a Peer-to-Peer fog protocol for the ex-
change of application service provisioning information between fog nodes. Rahimi
et al. focus on multi-tiered mobile cloud environments, and present a framework
for modeling mobile applications as location-time workflows, in which user mobil-
ity patterns are translated to mobile service usage patterns [139]. These workflows
are then mapped to the appropriate cloud resources using an efficient heuristic
algorithm. Bouet and Conan also focus on multi-tiered mobile cloud environ-
ments, and propose a geo-clustering approach for optimizing the edge computing
resources [123]. The authors introduce an algorithm that provides a partition of



RESOURCE MANAGEMENT IN A CONTAINERIZED CLOUD 183

mobile edge computing clusters, which consolidates as many communications as
possible at the edge.

Highlights for application elasticity and provisioning: Applications deployed
in a cloud environment can be stringent to given SLOs. To satisfy these objec-
tives, the required amount of resources needs to be determined. Multiple predic-
tion models have been presented, but most of them focus on the deployment of
applications inside VMs, which differs from deployment inside containers as VM
re-configurations are typically costly and should hence be avoided. With mobile
cloud, edge and fog computing, less powerful devices can transfer computational
intensive tasks to another environment. This requires an offloading approach, that
could for example focus on energy efficiency or minimizing the operational costs.
For these environments, containers offer clear benefits, as they facilitate the man-
agement and allow for distributed deployments. In multi-cloud environments, the
application or individual components should be deployed in the optimal environ-
ment, for example to balance the load or to minimize the operational costs.

5.3.2.3 Local Provisioning and Scheduling

With traditional cloud computing, multiple VMs are typically deployed onto a sin-
gle server, and a hypervisor is used for allocating the virtual resources on top of
the physical hardware. Zhang et al. argue that when VMs deployed onto the same
physical server compete for memory, the performance of the applications deterio-
rates, especially for memory-intensive applications [115]. To tackle this issue, the
authors propose an approach for optimizing the memory control using a balloon
driver for server consolidation. Li et al. on the other hand argue that in virtualized
environments, the accuracy of CPU proportional sharing and the responsiveness
of I/O processing are heavily dependent on the proportion of the allocated CPU
resources [98]. The authors illustrate that an inaccurate CPU share ratio, together
with CPU proportion dependent I/O responsiveness, can affect the performance
of the hypervisor. This could lead to unstable performance and therefore could
violate SLA requirements. As a result, the authors propose a novel scheduling
scheme that achieves accurate CPU proportional sharing and predictable I/O re-
sponsiveness. Katsalis et al. also focus on CPU sharing, and present several CPU
provisioning algorithms for service differentiation in cloud environments [55]. The
algorithms are based on dynamic weighted round robin, and guarantee CPU ser-
vice shares in clusters of servers. The authors illustrate that the presented solu-
tion provides service differentiation objectives, without requiring any knowledge
about the arrival and service process statistics. Mukherjee et al. argue that, while
resource management methods may manage application performance by control-
ling the sharing of processing time and input-output rates, there is generally no
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management of contention for virtualization kernel resources or for the memory
hierarchy and subsystems [60]. Such contention however can have a significant im-
pact on the application performance. As a result, the authors present an approach
for detecting contention for shared platform resources in virtualized environments.
Amennejad et al. illustrate that when VMs compete for shared physical machine
resources, the web services deployed on these VMs could suffer performance is-
sues [49]. Cloud users however typically have only access to VM-level metrics
and application-level metrics, but these metrics are often not useful for detecting
inter-VM contention. As a result, the authors propose a machine-learning based
interference detection technique to predict whether a given transaction being pro-
cessed by a web service is suffering from interference. The proposed technique
only relies on web transaction response times, and does not require any access to
performance metrics of the physical resources.

For container-based deployments, Nakagawa and Oikawa argue that the de-
ployed containers often consume much more memory than expected [79]. Al-
though there are several methods to prevent such memory overuse, most existing
methods have their shortcomings such as an increase in operational costs, or the
detection of false-positives. In their paper, the authors propose a new memory
management method for container-based virtualization environments. The pro-
posed method detects containers that have a sign of memory overuse, and puts a
limitation on the allowed memory consumption for these containers. Lahmann et
al. investigate if VM resource allocation schemes are appropriate for container
deployments [135]. Specifically, they focus on the gaps between memory allo-
cation and memory utilization for application deployments in container clusters.
Sharma et al. study the differences between hardware virtualization (VMs) and
OS virtualization (containers) regarding performance, manageability and software
development [26]. According to their findings, containers promise bare metal per-
formance, but they may suffer from performance interference as they share the
underlying OS kernel. Unlike VMs which typically have strict resource limits,
containers also allow for soft limits, which can be helpful in over-commitment
scenarios as they can make use of underutilized resources allocated to other con-
tainers. Tesfatsion et al. also study the differences between VMs and containers,
but with a focus on the virtualization overhead [27]. According to the presented
results, no single virtualization technology is a clear winner, but each platform has
its advantages and shortcomings. Containers for example offer a lower virtual-
ization overhead, but can raise security issues due to the lower level of isolation.
Both Tesfatsion and Sharma however note that a hybrid form, in which contain-
ers are deployed on top of VMs, could offer promising solutions that combine the
advantages of both virtualization technologies.

However, when containers are provisioned inside VMs, the guest OS manages
virtual resources inside a VM, whereas the hypervisor manages the physical re-
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sources distributed among the VMs. As a result, two control centers are managing
the set of resources used by the containers. The hypervisor typically takes con-
trol actions such as memory ballooning, which allows a host system to artificially
enlarge its memory pool by reclaiming unused memory allocated to other virtual
machines, or withdrawal of a virtual CPU to manage over-provisioning, without
being aware of the effects of those actions on individual containers deployed in-
side the VM. Prakash et al. illustrate that such actions can have unpredictable and
non-deterministic effects on the nested containers [35]. To tackle this issue, the au-
thors propose a policy driven controller that smooths over the effects of hypervisor
actions on the nested containers.

Highlights for local provisioning and scheduling: With hardware virtualization,
a hypervisor will strictly allocate resources to the deployed VMs. The deployed
VMs however can compete for the shared physical resources, but the hypervisor
should detect and prevent this to not violate SLA requirements. With OS level
virtualization, the underlying OS kernel is shared, and containers can use unuti-
lized resources allocated to other containers. These soft limits should be taken
into account, as they can have unpredictable effects on other unrelated containers
deployed on the same physical hardware. Each virtualization technology clearly
has its advantages and limitations, and deploying containers inside VMs could
combine the advantages of both technologies, but this introduces challenges for
resource management as two control centers are managing the set of resources
used by the containers.

5.3.2.4 Global Provisioning and Scheduling

As illustrated in Table 5.4, the majority of research is focusing on the global provi-
sioning and scheduling of cloud resources. When it comes to resource allocation,
the used scheme can be either static or dynamic, with the latter indicating that the
amount of resources allocated for a specific task can change over time. In this con-
text, Wolke et al. did an experimental study on the benefits of dynamic resource
allocation for the allocation of VMs [36]. According to their findings, reactive or
proactive control mechanisms do not always decrease the average server demand,
but instead can lead to a high number of migrations, which negatively impacts the
response times and could even lead to network congestion. The authors note that in
general, live VM migrations should be exceptional, and capacity planning via opti-
mization should be used instead of dynamic allocation, especially in environments
with long-running and predictable application workloads. Somewhat related, Wu
et al. study the overhead introduced by launching new Virtual Machines in the
context of Cloud bursting [86]. According to their findings, this overhead is not
constant, but instead depends on the physical resource utilization (e.g. CPU and
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I/O device utilization) at the time when the VM is launched. This variation in over-
head can have a significant impact on cloud bursting strategies. As a result, they
introduce a VM launching overhead reference model based on operational data,
which could help to decide when and where a new VM should be launched.

Global provisioning and scheduling often includes VM consolidation [73, 75,
78, 96, 107, 119, 129], which typically aims to pack the virtual machines onto
few physical servers in order to reduce the operational costs. Huang et al. for
example present a framework for VM consolidation that aims to achieve a balance
among multiple objectives [75], which can also be used in a context that requires
minimal system re-configurations. Similarly, Guo et al. present an approach for
the real-time adaptive placement of VMs in large data centers. The authors use
a shadow routing based approach, which allows for a large variety of objectives
and constraints to be treated within a common framework. When consolidating
VMs, both the relationships and possible interference between collocated VMs,
as well as the tightness of packing should also be taken into account. Espling et
al. for example introduce an approach for the placement of VMs with an inter-
nal service structure, component relationships and placement constraints between
them [73]. Jin et al. present an approach that takes into account the possible inter-
ference between collocated VMs, as this interference can have a negative impact
on the performance of the deployed applications. Mishra et al. on the other hand
present a study on the tightness of VM packing [78]. A tight packing approach
can lead to future issues as there is no room to expand, whereas provisioning VMs
for their peak usage can result in wasted resources as peaks occur infrequently and
typically for a short time. Liu et al. however prefer an aggressive resource provi-
sioning approach [58], by initially over-provisioning resources and later reducing
the amount of resources if needed. Doing so can increase the performance by re-
ducing the adaption time, while limiting SLO violations when dealing with rapidly
increasing workloads. On the physical servers hosting the VMs, some resources
could be left unused and therefore wasted when they are insufficient for hosting a
new VM. In this context, Nitu et al. propose a consolidation strategy that dynam-
ically divides a VM into smaller ‘pieces’, so that each piece fits into the available
‘holes’ on the servers [107].

Some provisioning and scheduling schemes have been proposed that focus on
the deployment of containers in a cloud environment [48, 69, 89, 90, 95, 106].
Awada and Barker for example present a cloud-based container management ser-
vice framework, that offers the required functionalities for orchestrating container-
ized applications [90]. Their framework takes into account the heterogeneous re-
quirements of the applications, and jointly optimizes sets of containerized applica-
tions and resource pools within a cloud environment. The authors also presented
an extension of their framework for use in multi-region cloud container-instance
clusters [89]. Abdelbaky et al. also focus on a multi-cloud environment, and in-
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troduce a framework that enables the deployment and management of containers
across multiple hybrid clouds and clusters [48]. Their framework takes into ac-
count the objectives and constraints of both the cloud provider and cloud user, and
uses a constraint-programming model for selecting the required resources. For the
deployment of containers within VMs, Nardelli et al. introduce a strategy for the
elastic provisioning of VMs required for deploying the containers [106]. Hoque et
al. analyzed different container orchestration tools, and present a framework for
the orchestration of containers within a fog cloud environment [95].

Highlights for global provisioning and scheduling: The allocation of resources
can be either static or dynamic. A dynamic allocation strategy could lead to a
higher efficiency, but the introduced reconfiguration overhead should not be ne-
glected. Therefore, using a dynamic allocation strategy will not always be benefi-
cial, especially when provisioning VMs. The (re)allocation of VMs often includes
VM consolidation, which aims to pack the VMs onto few physical servers. Dur-
ing the VM consolidation process, the tightness of packing plays an important
role, and possible relationships between VMs should be taken into account. When
deploying containers, an orchestrator is typically used to optimize the allocation
scheme over the available resources.

5.3.3 Resource Profiling

Table 5.5 provides an overview of recent work related to application or infras-
tructure demand profiling, resource utilization estimation and/or monitoring. This
table is quite limited in size, as it only includes items with a main focus on pro-
filing. In this table, we categorized the research items based on the attributes of
Table 5.2.

5.3.3.1 Application Demand Profiling

When deploying applications in an IaaS cloud environment, both the quantity and
type of VM resources need to be determined. Application demand profiling can be
used for assessing demand patterns for individual applications, which can be used
as input for workload management and application pricing. In this context, Lloyd
et al. introduce a workload cost prediction methodology which harnesses operat-
ing system time accounting principles to support equivalent workload performance
using alternate virtual machine types [100]. By using resource utilization check-
points, the total resource utilization profile is captured for service oriented appli-
cation workloads executed across a pool of VM. Based on the obtained workload
profiles, the estimated cost is calculated, which could help cloud users for find-
ing alternate infrastructures that afford lower hosting costs while offering equal or
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Table 5.5: Overview of recent research with a main focus on profiling (application and
infrastructure demand profiling, resource utilization estimation and/or monitoring).

ADP Application Demand Profiling, IDP (Virtual) Infrastructure Demand Profiling, Est
Resource Utilization Estimation, Mon Monitoring, TC Traditional Cloud, FC Fog

Computing, EC Edge Computing, SC Single Cloud, MC Multi-Cloud, VM Virtual Machine,
CT Container.

Function Cloud Type Scope Entity

Publication Year A
D

P

ID
P

E
st

M
on

T
C

FC E
C

SC M
C

V
M

C
T

Dabbagh et al. [51] 2015 3 3 3 3 3 3 3

Dhakate et al. [52] 2015 3 3 3 3 3

Rodrigues et al. [70] 2016 3 3 3 3

Zhou et al. [88] 2016 3 3 3 3

Chard et al. [92] 2017 3 3 3 3

Dalmazo et al. [93] 2017 3 3 3 3

Lloyd et al. [100] 2017 3 3 3 3

Balos et al. [120] 2018 3 3 3 3 3 3

Hauser et al. [130] 2018 3 3 3 3 3 3 3

Prats et al. [138] 2018 3 3 3 3 3

Scheuner et al. [141] 2018 3 3 3 3

Trihinas et al. [145] 2018 3 3 3 3 3

better performance. Somewhat related, Prats et al. introduce an approach for the
automatic generation of workload profiles [138]. The authors examine and model
application behavior by finding phases of similar behavior in the workloads. In the
presented approach, resource monitoring data is first passed through conditional
restricted Boltzmann machines to generate a low-dimensional and time-aware vec-
tor. This vector is then passed through clustering methods such as k-means and
hidden Markov models to detect the similar behavior phases.

Chard et al. introduce a middleware for the profiling, prediction and provision-
ing of applications in a cloud environment [92]. The authors have developed an
automated profiling service that is able to derive approximate profiles for appli-
cations executed on different environments. Based on these profiles, the expected
cost is calculated for executing a particular workload in a dynamic cloud market,
with the aim of computing bids that are based on probabilistic-durability guar-
antees. Once the results from profiling and market prediction are obtained, the
middleware provisions infrastructure and manages it throughout the course of the
workload execution.

Due to the immense growth in the cloud computing market and the resulting
wide diversity of cloud services, micro-benchmarks could be used for identifying
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the best performing cloud services. As a result, Scheuner and Leitner have devel-
oped a cloud benchmarking methodology that uses micro-benchmarks to profile
applications, in order to predict how an application performs on a wide range of
cloud services [141]. The authors validated their approach using several metrics
and micro-benchmarks with two applications from different domain. Although
micro-benchmarking is a useful approach, the results illustrate that only few se-
lected micro-benchmarks are relevant when estimating the performance of a par-
ticular application.

Within the context of scientific computing, Balos et al. present an analytical
model that matches scientific applications to effective cloud instances for achiev-
ing high application performance [120]. The model constructs two vectors, an
application vector consisting of application performance components and a cloud
vector comprising cloud-instance performance components. By profiling both the
application and cloud instances, an inner product of both vectors is calculated to
produce an application-to-cloud score, which represents the application’s execu-
tion time on the selected cloud instance.

Highlights for application demand profiling: Application demand profiling can
be useful for estimating the required amount of resources, as well as the expected
operational costs. In a public cloud market, profiling applications can also be used
to determine the best suited environment. Applications can either be profiled as
a whole, or micro-benchmarks can be used to predict how an application would
perform.

5.3.3.2 Monitoring, Infrastructure Demand Profiling and Resource Utiliza-
tion Estimation

Da Cunha Rodriguez et al. present a general overview of cloud monitoring [70].
According to the authors, cloud monitoring systems play a crucial role for sup-
porting scalability, elasticity, and migrations within a cloud environment. They
also provide a comparison among relevant cloud monitoring solutions, focusing
on abilities such as the accuracy, autonomy and comprehensiveness.

For automatic resource provisioning, the deployed applications, services and
the underlying platforms need to be continuously monitored at multiple levels and
time intervals. Trihinas et al. however argue that current cloud monitoring tools
are either bound to specific cloud platforms, or have limited portability to provide
elasticity support [145]. The authors describe several challenges for monitoring
elastically adaptive multi-cloud services, and introduce an automated, modular,
multi-layer and portable cloud monitoring framework. The presented framework
can automatically adapt when elasticity actions are enforced to either the cloud
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service or to the monitoring topology, and can recover from faults introduced in
the monitoring configuration.

Hauser and Wesner present an approach for monitoring resource statistics on
the physical infrastructure level [130], to provide the required information for pro-
filing of the physical resources. Based on the monitoring information, a resource
utilization profile is provided to the cloud middleware and customer. Such a pro-
file consists of both a static (e.g. number of CPU cores) and dynamic part (e.g.
current utilization), and is generated using statistical computations like histograms
and Markov chains.

Dabbagh et al. propose an energy-aware resource provisioning framework that
predicts future workloads [51]. Based on monitoring information, the proposed
framework predicts the number of future VM requests, along with the amount of
CPU and memory resources associated with each of these requests, and provides
accurate estimations of the number of physical machines required. By putting
unused physical machines to sleep, the framework also reduces the energy con-
sumption of the cloud data center. Although the proposed solution is based on
the provisioning of VMs, the authors note that their framework could easily be
adapted for estimating the number of physical machines required for the provi-
sioning of containers.

Monitoring can also play an important role for achieving high availability and
reliability. As the public cloud is a multi-tenant environment, failure of a single
physical component can have a significant impact on a large number of tenants. To
increase cloud reliability, Zhou et al. present a recovery approach based on check-
point images, which consist of service checkpoint images and delta checkpoint
images [88].

Dhakate and Godbole propose an architecture for monitoring, testing, report-
ing and alerting of an entire cloud environment [52]. The required monitoring
software is packed inside Docker containers, which can be deployed directly from
the Docker Hub repository. The authors also developed a dashboard that provides
a general overview of the health status of the whole cloud environment.

Highlights for monitoring, infrastructure demand profiling and resource uti-
lization estimation: Monitoring systems play a crucial role for supporting scal-
ability, elasticity, and migrations within a cloud environment. Together with re-
source utilization estimation, a resource utilization profile can be generated. Mon-
itoring can also aid in achieving high availability and reliability. When the moni-
toring system detects a failure, it can initiate a recovery approach, or alert the cloud
provider.



RESOURCE MANAGEMENT IN A CONTAINERIZED CLOUD 191

Table 5.6: Overview of recent research with a main focus on resource pricing.
APr Dynamic Application Pricing, IPr Dynamic Virtual Infrastructure Pricing. TC
Traditional Cloud, FC Fog Computing, EC Edge Computing, SC Single Cloud, MC

Multi-Cloud, VM Virtual Machine, CT Container.

Function Cloud Type Scope Entity

Publication Year A
Pr

IP
r

T
C

FC E
C

SC M
C

V
M

C
T

Aazam et al. [47] 2015 3 3 3 3 3

Huang et al. [53] 2015 3 3 3 3

Jin et al. [54] 2015 3 3 3 3

Lee et al. [57] 2015 3 3 3 3 3 3

Mashayekhy et al. [38] 2015 3 3 3 3

Petri et al. [61] 2015 3 3 3 3

Sharma et al. [62] 2015 3 3 3

Wang et al. [64] 2015 3 3 3

Aazam et al. [67] 2016 3 3 3 3

Mashayekhy et al. [39] 2016 3 3 3 3

Wan et al. [84] 2016 3 3 3

Wanis et al. [85] 2016 3 3 3 3 3

Babaioff et al. [91] 2017 3 3 3 3 3

Chi et al. [37] 2017 3 3 3 3

Hai et al. [94] 2017 3 3 3 3 3

Tang et al. [110] 2017 3 3 3 3 3

Yi et al. [113] 2017 3 3 3 3 3

Borjigin et al. [122] 2018 3 3 3

Mikavica et al. [40] 2018 3 3 3 3

Zhang et al. [150] 2018 3 3 3

5.3.4 Resource Pricing

Table 5.6 provides an overview of recent research focusing on resource pricing. In
this table, we categorized the research items based on the attributes of Table 5.2.
As most items focus on (virtual) infrastructure pricing, in the remainder of this
section, we will only discuss this functional element. We will first provide a brief
overview of research built on top of static pricing models, followed by research
focusing on dynamic pricing models.

5.3.4.1 Static Pricing

In the IaaS market, virtual resources are typically priced using a pay-per-use pric-
ing model, and the granularity of usage for such pricing is often at virtual machine
level. However, a majority of applications running on top of VMs struggle to
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fully utilize the allocated amount of resources, leading to a waste of unused re-
sources [54, 57] and are therefore not cost-efficient due to these coarse-grained
pricing schemes.

Jin et al. investigate an optimized fine-grained and fair pricing scheme [54].
The authors address two main issues: the profits of resource providers and cus-
tomers often contradict mutually, and the VM maintenance overhead like startup
costs are often too huge to be neglected. The presented solution not only derives
an optimal price in the acceptable price range, that satisfies both customers and
providers, but also finds a best-fill billing cycle to maximize social welfare. Lee
et al. also propose a resource management mechanism for fine-grained resource
sharing, which allows for real pay-per-use pricing [57]. Their mechanism consists
of a container-based resource allocator, and a real-usage based pricing scheme. By
using containers instead of virtual machines, a higher resource utilization can be
achieved and the authors also illustrate that the proposed mechanism can achieve
a near-optimal cost efficiency.

Tang et al. investigate the problem of joint pricing and capacity planning in
the IaaS provider market [110]. The authors study two models, in the first model
there is a single IaaS provider (monopoly market), whereas the second model con-
siders multiple IaaS providers. For the monopoly market model, the authors pro-
pose a method for determining the optimal amount of end-user requests to admit
and number of VMs to lease for SaaS providers, based on the current resource
price charged by the IaaS provider. For the model with multiple IaaS providers,
the authors propose an iterative game-theory based algorithm for finding the so-
called Nash equilibrum. Borjigin et al. also present an approach for finding the
Nash equilibrum, but within NFV markets [122]. The presented double-auction
approach aims to maximize the profits for all participants, being the brokers, the
cloud users and the cloud providers.

Yi et al. argue that cloud users with small and short demands, typically cannot
find an instance type offered by a cloud provider that fits their needs or fully uti-
lizes the purchased instance-hours [113]. On the other hand, cloud providers are
faced with the challenge of consolidating small, short jobs, which exhibit strong
dynamics, to effectively improve resource utilization. To address these issues, the
authors propose a novel group buying mechanism that organizes jobs with com-
plementary resource demands into groups, and allocates them to container group
buying deals predefined by cloud providers. Each group buying deal offers a re-
source pool for all the jobs in the deal, which can be implemented as a virtual
machine or a physical server. By running each job inside a container, the proposed
solution allows for flexible resource sharing among the different users in the same
group buying deal, while improving resource utilization for the cloud providers.
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Highlights for static virtual infrastructure pricing: Static pricing models are
often based on the number of provisioned VMs. A majority of applications how-
ever struggle to fully utilize the allocated amount of resources, leading to a waste
of unused resources. A fine-grained pricing model could tackle this issue, present-
ing an interesting opportunity for the deployment of applications inside containers.
Small and short tasks can be executed in containers, which can then be grouped
and allocated to VMs. A group buying approach can be used for acquiring the
required set of VMs.

5.3.4.2 Dynamic Pricing

When using a dynamic, auction-based pricing model, multiple cloud users bid
for a bundle of typically heterogeneous cloud instances. The cloud provider will
then select a set of cloud users, and needs to determine a feasible allocation over
its set of physical machines. A major issue with dynamic auction-based pricing
is that cloud users are typically self-interested, meaning that they want to maxi-
mize their own utility. The cloud users could untruthfully alter their requests, for
example by requesting several sets of resources different from their actual need,
in order to manipulate the outcomes of the bidding and to gain an unfair advan-
tage [38, 64, 67]. To tackle this issue, Mashayekhy et al. [38] propose a resource
management mechanism that consists of three phases: winner determination, pro-
visioning and allocation, and pricing. In the winner determination phase, the cloud
provider decides which users receive the requested bundles. In the provisioning
and allocation phase, VM instances are provisioned to the winning users. In the
pricing phase, the cloud provider dynamically determines the price that the win-
ning users should pay for their requests. The authors claim that their solution
is strategy-proof, meaning that cloud users have no incentives to lie about their
requested bundles and their valuations. In [39], the authors propose an auction-
based online mechanism for VM provisioning, allocation and pricing in clouds
that considers several types of resources. The proposed mechanism allocates VM
instances to selected users for the period they are requested for, and ensures that
users will continue using their VM instances for the requested period. In addition,
the mechanism determines the price users have to pay for using the allocated re-
sources. The authors prove that the mechanism is incentive-compatible, meaning
that it gives incentives to users to reveal their actual requests.

Cloud data centers often consist of heterogeneous infrastructure, and the cloud
provider could adapt the offered prices based on the used hardware. Zhang et al.
for example present an approach for the pricing of cloud storage for data centers
consisting of multiple storage tiers that offer distinct characteristics [150]. The
approach is based on a two-stage auction process for requesting storage capacity
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and accesses with given latency requirements. The presented solution provides a
hybrid storage and access optimization framework, which aims to maximize the
cloud provider’s net profit over multiple dimensions.

When the current demand is low, cloud providers can offer their services at
a lower price, e.g. Amazon’s spot instances. Recently, Amazon introduced a
new variety of spot instances, namely spot block instances [151]. These instances
run continuously for a finite duration (1 to 6 hours). Pricing is based on the re-
quested duration and the available resources, and spot block prices are typically
30 to 45% less than on-demand prices. Mikavica et al. analyze two auction-based
pricing mechanisms, namely uniform price auction and generalized second-price
auction, for pricing the cloud provider’s idle resources in the form of spot block
instances [40]. Furthermore, the authors propose a model for spot block price
determination under these pricing mechanisms. The presented results show that,
regardless of the chosen auction mechanism and bidding strategy, spot block in-
stances are a cost-effective solution that embodies advantages of both on-demand
instances and spot instances. Wan et al. on the other hand present a reactive pricing
algorithm, allowing the cloud provider to determine the server price based on the
actual resource demand [84]. The presented approach takes into account the re-
newable energy, spot power price and the battery level, and dynamically tunes the
server price in response to state changes. The authors focus on pricing of physical
servers, but the presented approach can easily be extended for pricing of VMs.

In a multi-cloud environment, service and resource providers can co-exist in
a market where the relationship between clients and services depends on the na-
ture of the application and can be subject to a variety of different QoS constraints.
Deciding whether a cloud provider should host a service in the long-term would be
influenced by parameters such as the service price, the QoS guarantees required by
the customers, the deployment costs and the constraints. In this context, Petri et al.
introduce a market model to support federated clouds and investigate its efficiency
using two real application scenarios [61]. The authors also identify a cost-decision
based mechanism to determine when tasks should be outsourced to external sites
in the federation. Wang et al. also focus on multi-cloud environments, by introduc-
ing an intelligent economic approach for dynamic resource allocation, which can
be used for the trading of various kinds of resources among multiple consumers
and providers [64]. The presented approach is based on intelligent combinato-
rial double auction, and includes a price formation mechanism, consisting of price
prediction and matching. The authors also propose a reputation system to exclude
dishonest participants, as well as a paddy field algorithm for selecting the winners.

In a federated cloud environment, services can be provided through two or
more clouds, which is often done using a middleware entity, called a cloud bro-
ker. Such cloud broker is responsible for reserving and managing the resources,
discovering services according to the customer’s demands, SLA negotiation, and
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match-making between the involved service provider and the customer. Aazam et
al. present a holistic brokerage model to manage on-demand and advanced ser-
vice reservation, pricing and reimbursement [67]. The authors consider dynamic
management of customer’s characteristics as well as taking into account historical
records when evaluating the economics related factors. Futhermore, they provide
a mechanism of incentives and penalties, which helps to establish trust between
the cloud users and service providers.

Highlights for dynamic virtual infrastructure pricing: With a dynamic,
auction-based pricing model, multiple cloud users bid for a bundle of cloud re-
sources. A major issue with this is that the cloud users can alter their requests in
order to manipulate the bidding outcomes. To tackle this issue, the cloud provider
could give incentives to the users to reveal their actual requests. In federated and
other multi-cloud environments, a broker is typically used for reserving and man-
aging resources. When allocating resources, this broker could take into account
the actual prices offered by the different environments, in order to minimize the
costs.

5.4 Challenges and Opportunities

Virtualization is the fundamental technology that powers cloud computing, and
the majority of cloud providers are still providing virtual resources in the form of
VMs to the cloud users. As a result, the majority of research about resource man-
agement in cloud environments is focusing on the different aspects related to the
provisioning, profiling and pricing of such VMs. Container technology however is
gaining popularity, as it offers a more lightweight alternative to traditional VMs.
Apart from this new virtualization technology, new cloud models are emerging,
bringing the cloud closer to the end user, which is especially useful for devices
with a limited network connection, or for low-latency applications. In this section,
we identify several challenges and opportunities for resource management in cloud
environments, mainly related to these recent trends.

5.4.1 Dynamic resource allocation for containerized applica-
tions

Dynamic resource allocation for VMs will not always be beneficial for the cloud
environment, due to the costly nature of VM migrations [36]. Existing dynamic
resource allocation approaches therefore often put a heavy penalty on such mi-
grations to avoid unnecessary VM re-configurations. However, as containers are
much more lightweight and portable, live migrations of containers will have a
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much smaller overhead compared to VM migrations. Especially when the ap-
plication is designed using a service oriented architecture with mainly stateless
microservices running inside the containers, migration of running containers and
scaling up or down individual services should be straightforward.

In this context, it would be interesting to see how existing dynamic allocation
strategies designed for the allocation of VMs perform when handling containers.
Lahmann et al. already did some initial research [135], but with a main focus on
memory allocation and memory utilization. When containers are deployed inside
VMs, a static resource allocation strategy could be used for the provisioning of
the virtual machines, combined with a dynamic strategy for the deployment of
containers inside VMs.

5.4.2 Cloud management systems for bare-metal containers

When containers are deployed inside VMs, actions taken by the hypervisor can
have unpredictable and non-deterministic effects on the nested containers [35].
Virtual machines also introduce a noticeable overhead, as they typically run a full
software stack. When running containers directly on the OS of the physical ma-
chine, this overhead could be eliminated, which could lead to a higher scalability,
efficiency and a higher resource utilization. This however introduces the need for
a cloud management system that manages the allocation of containers on the phys-
ical hardware.

A bare-metal cloud container management system should not only provide the
required functionalities for allocation and provisioning of containers, but should
also guarantee sufficient security and isolation between the different tenants.
Achieving a clear isolation however is challenging, as containers share the under-
lying OS kernel [26]. Furthermore, such a system should also monitor the actual
amount of resources used over time by the deployed containers, in order to charge
the customers based on the actual resource usage. Unlike VMs, containers often
have soft limits, meaning that the actual usage can be different from the allocated
amount of resources [26, 79]. This presents opportunities for achieving a higher
overall resource utilization, but the management system should also have built-in
functionalities for preventing starvation when highly demanding containers clog
up all available resources.

5.4.3 Management of a hybrid edge/fog/cloud environment

In a hybrid edge-fog-cloud environment, resources that may be geographically dis-
tributed can be collectively exposed as a single elastic infrastructure. This however
introduces the need for a framework that coordinates the management of resources
among the different environments. While there is already some initial research
available [152], many research challenges are still remaining.
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To achieve an efficient deployment of applications in such an environment, a
feasible location for each component needs to be determined [116], ideally in an
autonomous way. The use of portable containers can facilitate the management
and migration of the components. For components deployed in a public cloud en-
vironment, security challenges introduced by the multi-tenant cloud environment
should also be addressed [153, 154]. The hybrid environment should also allow
for auditing in order to create reliable and secure cloud services [155].

5.4.4 Experimental validation of resource management strate-
gies

Resource management strategies are often only validated by means of simula-
tions [156], for example by using CloudSim [157], in which the whole cloud com-
puting environment is modeled and simulated in software. This is mainly because
of the nature of the research, as resource allocation strategies for example are often
designed for managing large sets of applications within large cloud environments.
Experimental validation using real cloud hardware would not only be costly as it
would require multiple cloud instances for a relative long time period, the valida-
tion process would also be time-consuming.

The rise of new cloud types such as fog cloud environments, as well as the
adoption of container technology however can facilitate the validation of resource
management strategies. Using low-cost hardware, a small-scale test bed could be
built for the initial validation. A Raspberry Pi for example is already powerful
enough to host several containers. By combining experiments on a small-scale test
bed with simulations using large-scale scenarios, the research would not only gain
credibility, but an implementation of the proposed solution on real hardware would
also illustrate that the resource management strategy works in practice.

5.5 Conclusions
In this chapter, we presented an overview of recent research, published between
2015 and 2018, with a main focus on resource management within cloud environ-
ments. We especially investigated how cloud resource management is adapting to
support newly introduced trends, such as containers as the virtualization technol-
ogy and the rise of fog and edge computing. We categorized the research items
based on the main resource management functional element, and provided a brief
summary for each element. While the majority of recent research is still focusing
on the management of virtual machines in a traditional single cloud environment,
we identified several interesting opportunities for resource management in a fu-
ture fully containerized multi-tiered edge-fog-cloud, which could overcome many
shortcomings of today’s cloud environments.
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6
Conclusions and Future Work

“There’s no way that 1 company exists in a year.”

–Tom Siebel, Founder of Siebel CRM Systems (2001)

In this dissertation, several approaches have been proposed for the efficient
management of resources in a multi-tenant cloud environment, from both the per-
spective of the applications deployed on top of the cloud and from the infrastruc-
ture perspective. A cloud environment offers a near infinite amount of resources,
and applications can benefit from this by scaling up or down to support the current
demand. However, as cloud users are typically charged based on the amount of
allocated resources, an efficient usage of the available cloud resources is highly
recommended to avoid unnecessary rental costs. For the cloud provider, the main
challenge is to determine a feasible allocation of the requested resources over the
physical hardware located within the data centers, minimizing the amount of phys-
ical hardware required to reduce the operational costs while still guaranteeing the
objectives described in so-called Service Level Agreements (SLAs).

This chapter reviews the challenges addressed in this dissertation and provides
a brief summary of future work. To conclude, it outlines several research directions
currently arising in the field of cloud computing, which we believe will be relevant
in future years.

1That company is none other than SalesForce.com, which is today one of the biggest CRM plat-
forms, and is one of the best known examples of Software as a Service (SaaS). Siebel itself however
no longer exists as a company, as it was bought by Oracle Corporation in September 2005 and is now
a brand name owned by Oracle Corporation.
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6.1 Review of the Addressed Challenges

Challenge #1: Design and deployment of applications in a multi-tenant cloud en-
vironment. The deployment of applications inside cloud environments is slightly
different from deployments within traditional data centers. The cloud environment
could introduce several limitations, for example regarding the supported libraries
and runtime systems. Deployment in the cloud however can help applications to
achieve a higher scalability, while reducing the hosting costs. This introduces the
need for an efficient management of the allocated resources by the deployed appli-
cations.

Chapter 2 introduced a generic approach for migrating legacy software to the
public cloud, and for incorporating support for multi-tenancy in the application.
Migrating an application to the public cloud only requires a limited number of
changes, while the conversion from a single-tenant to a multi-tenant application
typically requires more steps as the latter requires limited changes to the applica-
tion architecture. The presented approach is proactive, as it includes identifying
and eliminating possible future risks, for example by mitigating security risks and
analyzing the architecture regarding its scalability. If the application is designed
using a Service-Oriented Architecture (SOA), select application components can
be individually scaled up or down, therefore allowing for a fine-grained scalability.
Adding multi-tenancy to the application on the other hand enables the serving of
multiple consumers by a single application instance. A combination of both will
therefore maximize the utilization of the available cloud resources, while minimiz-
ing the costs. Migrating legacy software to the cloud comes at a cost, and some
application components may need to be modified or rewritten. However, by fol-
lowing the multi-step migration approach presented in Chapter 2, the long-term
benefits of a cloud migration can easily outweigh the costs of implementing the
described changes.

Challenge #2: Achieving high scalability and a high level of resource utilization
while guaranteeing tenant isolation. When the demand for a given cloud appli-
cation changes, additional application instances might need to be provisioned.
However, multiple applications belonging to different cloud users are typically
deployed within a single cloud environment, and a single application should not
impact the performance of other applications deployed on top of the same physical
hardware. Apart from this, in a multi-tenant environment, tenants should not be
able to access the data and applications belonging to other tenants. In summary,
both the multi-tenant application and the multi-tenant cloud environment should
guarantee data and performance isolation between tenants.

Chapter 3 presented the design and implementation of a scalable system for
the allocation of storage resources in a multi-tenant environment. The focus is
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on the allocation of storage, as this type of computational resources introduces
additional challenges. The most important challenge is minimizing the migration
of storage over time. As the number of applications and the amount of data for
individual applications increases over time, some of the existing data might need
to be reallocated, but this can quickly become both costly and time consuming.
In the presented approach, tenants are hierarchically structured, and a dynamic
resource allocation algorithm is used to determine a feasible allocation of the ten-
ant data over a set of storage resources. The hierarchical structure enables the
allocation of data from the tenant’s perspective, guaranteeing a clear isolation of
tenants, and taking custom tenant characteristics into account. Two algorithms are
proposed for the static allocation, based on the fast and lightweight First-Fit De-
creasing (FFD) heuristic, but adapted for managing the allocation of items with a
hierarchical structure. Furthermore, a dynamic variant for both algorithms is in-
troduced, which can be used for the dynamic (re-)allocation over time. Although
both algorithms are very similar, they achieve very different results regarding the
static and dynamic allocation of tenant data. The dHFFD strategy achieves a high
average utilization of the provisioned storage instances, and the overhead in num-
ber of required instances is small compared to the optimal solution. Furthermore,
migrations over time are nicely spread. The dHGD algorithm on the other hand
reduces the number of migrations significantly, making it a valid alternative for
real-time scenarios with stringent performance constraints, but this comes at the
price of a lower average resource utilization and therefore higher operational costs
as more storage resources need to be provisioned.

Challenge #3: Cost-effective and reproducible validation of resource management
approaches. When designing a new strategy for resource management in a cloud
environment, an important challenge is the validation of the approach in prac-
tice. Experimental evaluation on a physical cloud testbed is both costly and time-
consuming, and many cloud computing environments also have some important
limitations, as cloud users rarely have full control over the underlying hardware
resources. Simulations on the other hand can be effectively used as a prototyping
mechanism to provide a rough idea of how a particular algorithm may perform,
but it is very difficult to verify if the simulation environment is an accurate repre-
sentation of a real world data center environment.

Chapter 4 presented a general approach for the validation of cloud resource
allocation strategies, and illustrated the importance of experimental validation on
physical testbeds. While simulations can be used for the validation of large-scale
scenarios, small-scale experiments on a physical testbed can be used to accurately
fine-tune the configurable parameters and can often lead to new insights. Chap-
ter 4 also introduced the design and implementation of Raspberry Pi as a Ser-
vice (RPiaaS), a low-cost embedded cloud testbed which was built using Rasp-
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berry Pi nodes. This testbed facilitates the step towards experimental validation
on a large-scale testbed, and proved to be especially useful for the development
and initial evaluation of novel cloud resource allocation strategies. As a proof of
concept, the storage system of Chapter 3 was implemented on top of the RPiaaS
testbed, and the obtained evaluation results were compared to the results obtained
using a custom developed simulation tool. Although the results from both evalu-
ations were very similar, the experiments executed on the RPiaaS testbed allowed
for measurement of other metrics, such as the actual migration times, and also of-
fered new insights regarding the proposed migration strategy.

Challenge #4: Adapt to recent evolutions within cloud computing. A recent trend
within cloud computing is the uprise of new types of clouds, such as edge and
fog computing. Apart from this, new virtualization technologies are gaining pop-
ularity, such as the use of containers as a lightweight alternative to Virtual Ma-
chines (VMs). Containers have a minimal overhead compared to traditional virtual
machines and offer a great portability, making them a good alternative for dynamic
scenarios with a high number of reconfigurations over time. The question arises
how these new evolutions impact existing resource management solutions.

Chapter 5 provided an overview of the current state of the art regarding re-
source management within the broad sense of cloud computing, complementary
to existing surveys in literature. This chapter especially investigated how recent
research is adapting to the newly introduced evolutions, being the introduction
of new deployment models and the use of containers. Although the majority of
research is still focusing on the management of VMs within a traditional cloud en-
vironment, several interesting opportunities were identified for resource manage-
ment in a future fully containerized multi-tiered edge-fog-cloud environment. One
of the main issues with VM-based environments is the high cost of VM migrations,
and therefore the amount of VM reconfigurations over time should be minimized.
Containers however are more lightweight and offer great portability, so reconfig-
urations over time are less of an issue, but containers typically offer a lower level
of isolation. A hybrid solution however, in which containers are deployed inside
VMs, could combine the advantages of both technologies. Within the context of
edge and fog computing, less powerful devices can transfer computational inten-
sive tasks to another environment. This requires an offloading approach, that could
for example focus on energy efficiency or minimizing the operational costs. Apart
from this, in a multi-tiered environment, an application or individual application
components should be deployed in the optimal environment, for example to bal-
ance the load or to minimize the operational costs.
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6.2 Future Work

The approach presented in Chapter 2 for both migrating applications to the cloud,
and for incorporating support for multi-tenancy is mainly focusing on traditional
cloud environments, in which application components are deployed inside cloud
VM instances. As container technology is gaining popularity, the presented ap-
proach could be adapted for the migration of applications to a containerized cloud
environment. In this context, a generic strategy for converting legacy applica-
tions to a service-oriented architecture can be developed, which allows for the
deployment of individual services inside containers, and can further maximize the
utilization of the available cloud resources.

Chapter 3 introduced several heuristics for the hierarchical bin packing prob-
lem, mainly designed for the allocation and provisioning of storage resources. The
presented algorithms use a homogeneous set of bins (resource pools), in which the
size of each bin is identical. As future work, the algorithms could be extended to
support a heterogeneous set of bins, allowing bins of different size. A straightfor-
ward strategy could be to sort the set of available (free) bins in increasing order,
and to select the smallest possible bin when instantiating a new bin, or a more ad-
vanced strategy could be developed that either focuses on increasing the average
bin utilization or maximizing the tenant isolation, or a combination of both. Fur-
thermore, the developed algorithms are one-dimensional bin packing algorithms,
as they take into account a single type of resources. As future work, the algorithms
can be extended to multi-dimensional bin packing algorithms. There already are
several approximation algorithms available for the multi-dimensional bin packing
problem [1–3], but these might need to be adapted to allow for packing of items
with a hierarchical structure.

Chapter 4 introduced the design and implementation of RPiaaS, a low-cost
embedded cloud testbed for the validation of resource management approaches.
RPiaaS provides a rich toolset for both the deployment of experiments and the
monitoring of relevant metrics such as the CPU, memory and disk utilization. Re-
cently, we started integrating low-cost SDN switches into the testbed, and as future
work the available toolset can be extended to support the automatic configuration
and monitoring of the network aspects. By defining data flows between the worker
nodes, the bandwidth between clusters can for example be limited to allow for
more realistic scenarios. In the near future, we also plan to use the testbed for
SDN-based experimental research, such as the autonomous management of flows
in a heterogeneous network environment, consisting of multiple distinct SDN con-
trollers.
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6.3 Future Perspectives for Cloud Resource Man-
agement

Efficient resource management in a cloud environment is essential, for both the
applications deployed on top of this cloud environment as for the underlying phys-
ical infrastructure. From an infrastructure point of view, efficient resource man-
agement can help to achieve higher scalability, as more cloud users can be served
by the same amount of hardware, and can also lead to lower operational costs, as
unused hardware can be put in standby or even powered off. As cloud users are
typically charged based on the actual resource usage, applications deployed on top
of the cloud should efficiently use the allocated amount of resources. Chapter 5
provided an overview of the current state of the art regarding resource management
in cloud environment, and already introduced several challenges and opportunities.
In the remainder of this section, some final research directions are briefly discussed
regarding resource management in a future cloud.

6.3.1 Lightweight VMs, containers, or a combination of both

Traditionally, cloud computing is built using hardware-level virtualization, mean-
ing that VMs are provisioned and managed by a hypervisor. VMs introduce a no-
ticeable overhead, as they emulate hardware and run a full stack operating system,
and as a result they require a fair amount of resources. Recently, containers are
gaining popularity as an alternative virtualization technology. Compared to VMs,
containers have a much smaller overhead, and are typically much smaller in size
as they are executed directly on the operating system kernel. Containers however
offer a lower level of isolation and can impose some security risks, which could
prevent the wide adoption of containers within cloud computing. Meta-containers
are similar to containers, but are embedded with extra components that allows for
reasoning and control of containers [4]. Meta-containers can already solve some
of the issues containers are facing, but they will be as powerful as VMs in terms
of isolation. However, a combination of both technologies is also possible, by de-
ploying containers inside VMs. While this could combine the advantages of both
technologies, a downside of this approach is that actions taken by the hypervisor
can have unpredictable and non-deterministic effects on the nested containers [5].
Deploying containers inside VMs would facilitate dynamic reconfigurations over
time, as there is no longer a need for costly VM migrations but instead the nested
containers can be migrated to a different VM running the same container engine.
Therefore, deploying containers inside VMs currently seems to be the best option,
and it will be interesting to see how this evolves in the near future.
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6.3.2 Cloud-centric or edge-centric

In a multi-tiered cloud environment, multiple fog and edge environments can col-
laborate with a centrally hosted traditional cloud environment for offloading of
computational intensive tasks. Fog and edge environments offer low latency to-
wards the end devices, whereas the central cloud has a significant larger com-
putational capacity. Applications deployed in a multi-tiered cloud environment
environment can be either cloud-centric or edge-centric. With cloud-centric com-
puting, the main functionality is executed in the central cloud environment, and
the edge or fog environment is mainly used to reduce the load towards the cloud
and the latency towards the end devices, for example by implementing caching
or by pre-processing and filtering the data obtained from the edge devices before
sending it to the centrally hosted cloud. With edge-centric computing on the other
hand, the applications, data and services are moved away from the central cloud
to the periphery of the network [6]. There is still a central cloud environment, but
this environment is mainly used to support the edge or fog environment, for ex-
ample for the execution of computational intensive tasks, or to support the fog or
edge environment when the demand for computing capacity spikes (also referred
to as cloud bursting). An edge-centric approach could bring many advantages, as
the data and application logic are located in a trusted environment close to the end
users and devices, but also introduces several challenges as the data and appli-
cation logic are now distributed, and different edge and fog environments might
need to collaborate. However, when cloud computing was introduced, some main
issues preventing many enterprises to migrate to the cloud were that they either
did not trust this central cloud for storing their data, they wanted to avoid vendor
lock-in, or a migration to the public cloud was just not possible because of legal
implications (e.g. some countries explicitly state that some sensitive data needs to
be stored within the country, which is not possible with public cloud computing).
Edge-centric computing could solve these issues, by only storing data at the edge
of the network, but this paradigm is not yet largely adopted. However, as edge
devices are getting more powerful, edge-centric computing could definitely gain
popularity over the next years.

6.3.3 Towards serverless cloud computing

Although containers are gaining popularity, cloud computing is still mainly built
around the provisioning of VMs, and cloud users are typically charged based on
the number of provisioned VMs. A majority of applications however struggle to
fully utilize the allocated amount of resources, leading to a waste of unused re-
sources [7]. A fine-grained pricing model could tackle this issue, presenting an
interesting opportunity for the deployment of applications inside containers. This
is also one of the main ideas behind serverless computing [8]. Serverless com-
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puting is an event-driven cloud execution model, in which the cloud user provides
the code and the cloud provider manages the life-cycle of the execution environ-
ment of that code. Cloud users are then charged based on the actual amount of
resources consumed by an application, rather than on pre-purchased units of ca-
pacity. Serverless computing could facilitate cloud deployments, as the cloud user
no longer needs to deploy and manage several cloud instances, and could also
offer economic advantages especially for the execution of small, short jobs. Fur-
thermore, containers could play an important role in the evolution of serverless
computing, as they can be deployed easily and fast and introduce minimal over-
head. Therefore, serverless computing could become more adopted in the near
future, and it could also facilitate the step towards cloud computing for a broader
audience.
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This appendix extends the work presented in Chapter 3, but focuses on the distri-
bution of database records over multiple relational database instances. When the
amount of tenant data is too large to fit a single database, the data records might
need to be distributed over multiple instances. Tables inside relational databases
however can have indexes defined to speed up search operations. In this appendix,
we characterize the impact on the performance for such operations, both theoret-
ically and experimentally, for scenarios in which data records are divided over
multiple separated instances. Furthermore, we introduce three models for load-
balancing and multiple search approaches to efficiently locate the required data.
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Figure A.1: In a multi-tenant application, most of the software stacks up until the
application itself, which is shared by the different tenants.

A.1 Introduction

Multi-tenancy [1] enables the serving of multiple clients or tenants by a single
application instance, with isolation of each tenant’s data. The major benefits in-
clude increased utilisation of available hardware resources and improved ease of
maintenance and deployment. These benefits can result in lower overall appli-
cation costs. In a multi-tenant architecture, a software application is designed to
virtually partition its data and configuration, as illustrated in Figure A.1, and each
tenant works in a virtual application instance. Within the application, every tenant
will typically have its own users and administrators. Some tenants may be divided
into multiple subtenants, each one again having its own users. A reseller for ex-
ample is a special tenant, serving multiple customers, its subtenants. The PUMA
project [2] aims to develop a scalable security solution for the management and
enforcement of user permissions for Software as a Service (SaaS) applications in
a shared (multi-tenant) infrastructure. This solution offers support for essential
security requirements, such as confidentiality, integrity and availability.

With the recent evolution of cloud computing [3], a technology that enables
elastic, on-demand resource provisioning, and SaaS in particular, a multi-tenant
architecture has gained popularity. With cloud computing, an optimal usage of
available resources is recommended to reduce operating costs, as the infrastructure
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provider usually charges for the number of instances used. As the number of ten-
ants grows, a scalable architecture for authentication and authorization is needed.
While most users belong to a single tenant (or subtenant), some users might belong
to multiple tenants, which introduces extra challenges for a multi-tenant access
control system. Examples include a custom tenant administrator, who is responsi-
ble for multiple (but not all) subtenants, and a freelancer who works for different
tenants.

Performance is a key challenge in multi-tenant environments, because multiple
tenants share the same resources and hardware utilisation is higher on average,
and one tenant might clog up resources, compromising the performance of all
other tenants. Scalability is another big challenge, especially when the number of
tenants increases [4].

In this appendix we focus on the scalability and load-balancing of the storage
component of multi-tenant applications, in particular the access control system.
We present a hierarchical data management approach, taking performance metrics
into account, for structuring the different tenants and subtenants. Different physi-
cal implementations are possible, and we will shortly describe the advantages and
disadvantages of each alternative. We characterize the impact on the performance
both theoretically and experimentally.

We will address these three research questions: (i) How to store, load balance
and find tenant data in large multi-tenant environments with minimal overhead?
(ii) How does the proposed model impact the performance of the application? (iii)
How do tenants impact each other’s performance?

In the next section we will discuss related work. Afterwards, in Section A.3,
we will present a hierarchical model for managing and storing data, users and
roles. We will discuss how specific data can be searched, and provide a theoretical
analysis of the impact on the performance in Section A.4. In Section A.5, we will
verify our theoretical analysis by different experiments. In Section A.6, we finish
with our conclusions and future work.

A.2 Related Work

In previous work [5], we described the steps required to migrate an existing appli-
cation to a public cloud environment, and proposed a solution to add multi-tenancy
to the application. We focused on the use case of a medical communications appli-
cation. In this appendix, we elaborate on the concept of management and storage
of users and roles in a multi-tenant environment, and focus on the performance
and load distribution of the access control system.

Related to the PUMA project, the work of Decat et al. [6] [7] is complemen-
tary to this appendix. They focus on scalable and confidentiality-aware access
control management for SaaS applications from the point of view of the tenant. To
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achieve this, they describe and evaluate the concept of federated authorization in
which authorization is externalized from the SaaS application and centralized at
the tenant [6]. To improve performance, they also describe a policy decomposition
algorithm for more fine-grained policy deployment [7]. In this appendix, we focus
on the performance of the storage part of the application.

Calero et al [8] describe an authorization model suitable for cloud computing
in which hierarchical role-based access control, path-based object hierarchies and
federation are supported. The model described can be used to implement authen-
tication and roles in a multi-tenancy environment, but no details are added about
where to store the users and roles, especially in large, scalable environments. By
contrast, we focus on how to divide the users over different datasets, and how this
will influence the performance of the authentication mechanism.

In [9], the design of the Force.com multi-tenant internet application develop-
ment platform is described. The storage uses a set of metadata, data and pivot
tables to store all tenant data generically. Typically, a single database is used for
every tenant. The paper presents a very generic way for storing custom objects
and custom data, which could be used to store the tenant’s data, but doesn’t really
focus on the scalability. By contrast, we present a scalable model where multiple
tenants can share a single database, and characterize the performance of the model.

In [10] a solution for access control in cloud environments is presented. Access
policies based on data attributes are used to enforce authorization. Such could be
used to encrypt the tenants data, combined with the hierarchical model presented
in this appendix.

Walraven et al [11] described an architecture of a multi-tenancy enablement
layer, which can be used for data isolation, feature management and tenant-specific
customizations. This layer could be extended with the hierarchical model pre-
sented in this appendix to increase scalability and performance, for building a
middleware for highly scalable multi-tenant applications.

A.3 Architecture Outline

Web applications are usually designed using a multitier architecture, where the
application is separated into multiple layers, as illustrated in Figure A.2. Within
the business logic layer, security is provided by the access control component. This
component should be decoupled from the offered services as much as possible.
The database layer holds the application data, the different users and (if applicable)
roles. As an alternative for roles, Attribute-Based Access Control (ABAC) [12]
could also be used. The reasoning behind ABAC is that every user, resource and
action can have certain attributes related to them on which policies can define
restrictions.

In this section, we focus on the scalability of the database layer in multi-tenant
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Figure A.2: Layered architecture with decoupled access control. The data access
component is responsible for selecting the correct datastore.

applications. We will introduce a logical hierarchical representation of the differ-
ent tenants and subtenants, and make a mapping to the physical storage. The data
access layer is responsible for load balancing between the different datastores and
holds the decision support for splitting or merging datastores when applicable.

A.3.1 Logical Representation

Tenants and subtenants can be structured hierarchically. In the rest of this ap-
pendix, we will refer to this representation as the tenant tree. At the top level is the
SaaS provider, which can be seen as the root node of the tenant tree. The differ-
ent tenants using the application are located on the next level, and can be seen as
child nodes of SaaS provider. Therefore, all tenants share the same parent. Some
tenants can even be divided into multiple subtenants, for example in the scenario
of a reseller. In this case, the subtenants are child nodes of their respective parent
tenant, making the tenants inner nodes (nodes with child nodes) of the tree and the
subtenants leaf nodes (nodes without children).

Figure A.3 shows an example tenant tree where a multi-tenant software ap-
plication, deployed on the public cloud by the SaaS provider, is used by three
different tenants. All tenants have the same parent, the SaaS provider. Tenant A,
a reseller, has three child nodes, its clients, while tenant C has two child nodes.
Subtenant A1 and tenant B are examples of leaf nodes (colored in grey), whereas
tenant A is an example of an inner node. Inner nodes also have some tenant data.
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Figure A.3: The tenant tree, a logical representation of different tenants and subtenants in
a multi-tenant application. Grey nodes are leaf nodes of the tree.

A.3.2 Physical Storage

By introducing the logical hierarchical representation, the question arises how and
where to store the data for the different tenants. Data could be split in the same
way as the logical representation, by creating a datastore for each (sub)tenant or
merge multiple smaller databases. For small applications with a limited number of
tenants, a single datastore can be used. We distinguish 3 different models for load
balancing the data:

1. The monolithic model, where all data is stored in a single datastore.

2. The fully distributed model where every tenant and subtenant has its own
datastore.

3. The hybrid model which is a mix of both previous models.

Table A.1 shows a comparison between the monolithic and fully distributed
model. For a new SaaS application with a limited number of tenants, the provider
could start using the monolithic model for storing all data, and move to the hybrid
model or the fully distributed model as the amount of tenants and data grows. The
monolithic model will be easier to implement with lower costs, as only a single
database instance is needed. The fully distributed model on the other hand is more
flexible and scalable, with guaranteed data isolation, but at a higher price. A good
architecture should support both models, making it possible to select the optimal
strategy for every tenant. The application provider could select the optimal strategy
himself, or leave the choice to the tenant. In the latter case, the provider could
offer the application in different versions with a different Service-Level Agreement
(SLA), for example basic hosting using the monolithic model, silver hosting using
the hybrid model with a single datastore for a tenant and its subtenants, and gold
hosting using the fully distributed model.
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Table A.1: Comparison between the monolithic and fully distributed model.

Monolithic model Fully distributed model

Cost + single instance, cheaper - multiple instances
needed, higher cost

Implementation + easier to implement,
search less complex

- application needs to
support multiple data-
stores, search more
complex

Security - only on application
level

+ data isolation, security
both by application and
database

Performance - shared resources, single
tenant can clog-up ap-
plication

+ dedicated instance for
every tenant

Scalability - only usable for limited
number of tenants

+ highly scalable

When storing data from multiple tenants into a single datastore (monolithic or
hybrid model), each data row should be accompanied by a unique identifier for
the tenant, the tenantId. In addition, add a table containing information about all
different tenants and their corresponding tenantId. When speaking about tenant
data, we can make a distinction between:

1. The tenant users, where all users belonging to a single tenant are stored.

2. The tenant roles, where the different roles for the tenant users are stored.

3. The tenant’s application data, specific for the SaaS application.

Different combinations of the storage models for each data type are possible. Fig-
ure A.4 shows an example mapping between the tenant tree and the physical stor-
age of the different types of data. In this example, all tenant users are stored using
the monolithic model, the application data of tenant C using a hybrid model, and
the roles using the fully distributed model. The application data of tenant C and
subtenants C1 and C2 is stored in a single colocated datastore.

Apart from selecting the strategy for splitting the data, which data do we store
in which datastore? The main goal is to store the data at the lowest possible node
of the tree, starting at the root node. For example, when the roles are stored using
the fully distributed model, as in Figure A.4, the subtenant-specific roles are stored
at the subtenant datastores. A user who only belongs to subtenant B1 will have a
corresponding role in the roles datastore of subtenant B1. A tenant administrator,
who manages all subtenants of tenant B, will typically have a tenant administrator
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Figure A.4: Mapping between a part of the tenant tree and the physical storage of the data
for the different tenants and subtenants.

role stored in the roles datastore of tenant B. A tenant administrator, who manages
some (but not all) subtenants of tenant B will have a custom administrator role,
also stored in the roles datastore of tenant B. Alternatively, we could give the last
user separate roles in the datastores of the different subtenants, but this introduces
a small overhead as multiple roles are needed for a single user.

A.4 Distributed Search

By introducing a hierarchical model for users, roles and tenant data, some data may
be distributed over multiple database instances. This will have an impact on the
performance and scalability of the application, as the number of users and amount
of tenant data can now be much higher, but the system might have to search in
multiple databases.

The question arises how to efficiently retrieve the needed data. In this section,
we will propose multiple search methods, followed by a theoretical analysis of the
impact on the performance.

Figure A.5 shows an illustrative scenario of a fully distributed model, with
a tenant C and subtenant C2. An authenticated user “Bob” wants to access the
data of subtenant C2. The authorization system needs to know whether “Bob” has
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Figure A.5: Example scenario where user “Bob” wants to access the application data of
subtenant C2. The required role can be stored at different locations in the tenant tree.

access to the data of subtenant C2, or more concrete, if this user has an applicable
role for this subtenant. Because the model is fully distributed, meaning that every
tenant and subtenant has its own roles datastore, the corresponding role for user
“Bob” can be stored in three locations, as illustrated in Figure A.5:

1. The roles datastore of subtenant C2.

2. The roles datastore of tenant C.

3. The roles datastore of the SaaS Provider (the root).

Although this example scenario only handles the search for a role in the roles
datastore, a similar scenario can be described for searching a user or finding some
tenant data.

A.4.1 Search Methods

When searching for the data, in our example scenario a corresponding role for
user “Bob”, we need to search at different locations. In general, the data can be
stored at any location along the path from the (leaf) node to the root. We can do
a serial search, starting at a single datastore, e.g. the leaf datastore, and moving
to the next datastore along the path in case the data is not yet found, or in case
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Table A.2: Overview of used symbols.

Symbol Description

tds time to find a record in a single datastore, based on an indexed
parameter

t∗ds time to find a record in a single datastore,based on a non-indexed
parameter

nds number of records in the datastore
ntot total number of records
pds probability that user record is stored in the specific datastore

the datastores are stored on different (virtual) machines, we could also perform
a parallel search), searching in all datastores at the same time and merging the
results.

In case of the serial search, we can start at the leaf node, and move up the tree
towards the root node, this is the bottom-up approach, or we could start at the root
and continue down the tree towards the leaf node (top-down approach). However,
we strongly prefer the bottom-up approach. The bottom-up approach is easier to
implement, as in the top-down approach, the path from the root to the leaf node
needs to be calculated in advance. Also, when using the top-down approach, all
traffic needs to pass the root node, turning this datastore into a possible bottleneck.

In most cases, the search can stop when an applicable role is found. In some
scenarios however, roles higher in the hierarchy could overrule lower roles. This
will have a bad influence on the performance as the authorization system needs
to search all datastores to get all roles. We strongly recommend to avoid such
scenarios, as it will not only have a bad influence on the performance, but the
authorization system will also become far more complex.

A.4.2 Theoretical Analysis

As the number of possibilities for dividing the data over the datastores is endless,
we will breakdown the problem into two cases, which can be combined for the im-
plemented model. The symbols used in this section are summarized in Table A.2.
We will only focus on the distribution of users among different datastores, but the
same approach can be followed for distribution of roles and/or tenant data (if ap-
plicable). When using the serial search, we will use the bottom-up search, for the
above-mentioned reasons.

As described in the previous section, tenants can be logically organised in a
hierarchical way, and a mapping can be made to the physical storage locations.
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Figure A.6: Theoretical analysis of the time needed for finding the tenant data in a 2-level
hierarchical structure tenant-subtenant. The vertical axis denotes the relative response

time, where 1 equals the time needed to find the data in a single datastore.
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A.4.2.1 Time required to find a user in a datastore

We start our analysis with the time needed to find a single user in a large dataset.
The value is dependent on both the number of users in the dataset, and the indexing
method used.

When searching for an entry in a single table, based on an indexed parameter,
the average time needed has a factor O(log(n)), when searching on a non-indexed
parameter, this factor is O(n), where n equals the number of rows in the table.

Therefore, in theory, the time needed to find a user in a single datastore will be
equal to

tds = C × log(nds)

t∗ds = C × nds

where tds and t∗ds denote the time needed to find a user (record) in a dataset, based
on an indexed and non-indexed parameter, nds denotes the number of users in the
datastore, and C is an unknown constant factor.

A.4.2.2 Probability

When we have multiple datastores, the probability that a random user u is stored
in a specific datastore is equal to

pds = nds/ntot

where ntot equals the number of users in the datastore.

A.4.2.3 Vertical Search

When users are divided over two datastores, where one datastore (parent) is the
parent of the other (child), the average time needed to find a random user, using a
bottom-up serial search, can be calculated as

tavg = pchild × t(∗)child + pparent × (t
(∗)
child + t

(∗)
parent)

The average time to find a user, using the bottom up serial search, can be divided
into 2 subcases: the case where the user is stored at the child datastore (probability
pchild), and the case where the user is stored at the parent datastore (probability
pparent). In the first case, the bottom-up algorithm will only have to search the
child datastore. However, in the second case, the algorithm will start searching in
the child datastore, and continue the search in the parent datastore.

In case of a parallel search, the average time corresponds to

tavg = max(t
(∗)
child, t

(∗)
parent)
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Figure A.7: Extension to the full model. User “Bob” wants to access the data of
subtenant A1, and needs a role which can be stored at the subtenant or tenant node.

Figure A.6 illustrates the time needed for finding a corresponding data row in a
2-level hierarchical structure, existing of a tenant (parent) and a subtenant(child),
using the bottom-up approach. The horizontal axis denotes the amount of data
stored at the child node, while the vertical axis denotes the normalised response
time, where 1 equals the time needed to find the data in a single datastore. As
can be seen from this figure, the distributed serial search on an indexed parameter
will have a bad influence on the performance when data is split over different
datastores, especially if most of the data is located at the parent node. In all other
models, splitting the data over multiple stores results in better performance, with
an optimum if the amount of data is equally divided over both stores.

A.4.2.4 Horizontal Search

In case the data is divided over 2 datastores on the same level (ds1 and ds2), for
example in the case of 2 subtenants, we won’t have to search both datastores. For
example, if we want to find out if user “Bob” has access to subtenant B1, we
will only search the roles datastore of subtenant B1, and not the roles datastore of
subtenant B2. So, in case there are no parent nodes, and data is divided on the
same level, the average time to find a role in datastore ds1 can be given as

tavg = t
(∗)
ds1
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Figure A.8: Theoretical analysis of the impact of other subtenants on the time needed for
finding tenant A1’s data in a full model. Tenant A1 has a total of 10k records divided over

the 2 datastores. The variable na2
a denotes the extra rows added to the shared (parent)

datastore by the other subtenants.
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Figure A.8: Theoretical analysis of the impact of other subtenants on the time needed for
finding tenant A1’s data in a full model. Tenant A1 has a total of 10k records divided over

the 2 datastores. The variable na2
a denotes the extra rows added to the shared (parent)

datastore by the other subtenants (continued).

A.4.2.5 Impact of other subtenants on the performance

We can easily extend the horizontal and vertical search to a full hierarchical model.
Figure A.7 shows a simple tree with a single tenant and 2 subtenants. In our exam-
ple scenario from Section A.4, user “Bob” want to access the data of subtenant A1.
While the datastore of subtenant A1 is dedicated, the datastore of tenant A is shared
between all subtenants. When a subtenant adds extra data to the shared datastore,
this will have an impact on the performance. The total number of records in the
shared datastore is given as

na = naa + na1a + na2a

where naa denotes the number of records added by tenant A and na1a and na2a the
number of records added by subtenants A1 and A2. The time needed to find Bob’s
role equals

tavg = pa1 × t(∗)a1 + pa × (t
(∗)
a1 + t(∗)a )

with probabilities
pa1 = na1/(na1 + na1a )

pa = na1a /(na1 + na1a )
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Figure A.8 illustrates what happens when the number of records added by
the other subtenants (subtenant A2 represents all other subtenants) increases for
both the distributed serial indexed and non-indexed search. Note that the different
curves in Figure A.8a don’t start at the same point, as can be seen in Figure A.8b.
As can be seen from this figure, the influence of the other subtenants on the overall
performance of subtenant A1 will decrease as more of the data of subtenant A1
is stored at the leaf node. Hence, when splitting a datastore vertical, it is never a
good idea to equally divide the data over the tenant and subtenant.

A.4.3 Conclusions

The theoretical analysis shows that in most of the cases, splitting the data over mul-
tiple stores won’t have a bad influence on the performance of the application. Only
when using a distributed serial search in a 2-level hierarchical (vertical) structure,
and when searching on an indexed value, the performance will be bad when most
of the data is stored in the parent datastore. However, in most structures, the data-
stores will not only be split vertical, but also horizontal, and most of the data will
be located at the leaf nodes, yielding much better performance.

A.5 Evaluation Results
In this section, we will verify our theoretical analysis of the performance by dif-
ferent experiments.

A.5.1 Experimental Analysis

To verify our theoretical analysis, we ran some experiments on 2 different envi-
ronments. For the first environment, we used a MySQL dbms on Ubuntu 13.04,
running on a virtual machine with a single core vCPU and 2GB of memory in-
stalled. As a second environment, we configured Microsoft SQL Server on Win-
dows 2008R2, running on a physical machine with a 2.8GHz Intel Core i5 (quad
core) and 4GB of memory installed.

During the experiment, we calculated the average time to find a random user
in a 2-level hierarchical structure (tenant-subtenant), using the distributed serial
bottom-up search. Figure A.9 shows the results for both environments, for a total
of 100k, 250k and 500k users. During all experiments, the average time was cal-
culated by authenticating 10 percent of the total amount of users. The horizontal
axis denotes the percentage of data stored at the child (subtenant) node, while the
vertical axis denotes the average response time, expressed in milliseconds.

As can be seen from the figure, the experimental results resemble the calculated
theoretical times, except for the indexed serial search on the SQL Server environ-
ment. This exception is due to the fact that response times are very low when
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Figure A.9: Experimental analysis of the time needed for finding the tenant data in a
2-level hierarchical structure tenant-subtenant.
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Figure A.9: Experimental analysis of the time needed for finding the tenant data in a
2-level hierarchical structure tenant-subtenant (continued).
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using indexing, making the overhead of searching two databases bigger than the
average time. As in the theoretical analysis, the distributed indexed search yields
better results as more users are located at the child node. For the distributed non-
indexed search, best results are achieved when data is equally divided over both
datastores. As the experimental results are in line with the calculated theoretical
results, the theoretical analysis can be used to optimize the hierarchical structure
for big amounts of data.

A.5.2 Conclusions

Experiments confirmed that the results are in line with the theoretical analysis.
Therefore, the theoretical analysis can be used to build the decision support part of
the the data access layer, for autonomous splitting and merging tenant datastores.
In case of a serial search, there is some small overhead due to the switching be-
tween datastores, but this overhead can be neglected as the size of the datastore
grows. In our evaluation, we only focused on the two subcases (parent-child and
2 nodes at the same level), but this can be used for extension to a full hierarchical
structure like the one proposed in Figure A.4.

A.6 Conclusions and Future Work

As the number of tenants and users in the multi-tenant application grows, users,
roles and tenant data can be split over multiple datastores. In this appendix, we
presented a hierarchical model for the logical representation of the tenant tree and
a mapping to the physical storage. Users, roles and tenant data can be divided using
the monolithic, the fully distributed or the hybrid model. When data is divided over
multiple datastores, we can make use of a serial (bottom-up or top-down) search,
or a parallel search when the datastores are located on different machines.

The theoretical and experimental analysis confirmed that the hierarchical model
presented in this appendix can be used to build autonomous high scalable multi-
tenant applications in the cloud. By using the hierarchical model for both the
physical representation of tenants and subtenants, and choosing a strategy for the
physical storage of the different datastores, it is straightforward to create a mapping
between the two models, making the management of the application less complex.

In future work, we will focus on the elasticity of the SaaS application and
decision support part of the data access layer, to build an autonomous system for
automatic scaling of the application and data in the public cloud.
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