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ABSTRACT 

The ever-increasing demands in traffic fueled by bandwidth hungry applications are pushing data centers to their limits 

challenging the capacity and scalability of currently established transceiver and switching technologies in data center 

interconnection (DCI) networks. Coherent optics emerged as a promising solution for inter-DCIs offering unprecedented 

capacities closer to data centers and relaxing the power budget restrictions of the link. QAMeleon, an EU funded R&D 

project, is developing a new generation of faster and greener sliceable bandwidth-variable electro-optical transceivers and 

WSS switches able to handle up to 128 Gbaud optical signals carrying flexible M-QAM constellations and novel 

modulation techniques. A summary of the progress on the QAMeleon transponder and Reconfigurable Optical Add/Drop 

Multiplexer (ROADM) concepts is presented in this paper.  

Keywords: data center interconnection (DCI), bandwidth-variable optical transceivers, wavelength selective switch 

(WSS), coherent optics, photonic integration, high-speed electronic ICs.  

1. INTRODUCTION

QAMeleon is aiming to deliver a new generation of photonic devices towards scaling core and metro networks to the next 

decade. Currently, telecom operators are hard pressed to keep up with the soaring, increasingly volatile traffic that is 

traversing their networks. New video services are setting the busy-hour internet on a steep growth curve reaching 36% 
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compound annual growth rate (CAGR), while the average traffic still is estimated at a hefty 25% CAGR[1]. The operators 

are forced to plan network capacity according to peak rates rather than average rates thusly wastefully overprovisioning 

their networks to accommodate these high peak-to-average ratios. The skyrocketing demand has driven equipment 

manufacturers into a speed race where 200G shipments are now ramping up while the first 600G products have already 

emerged in 2018[15], scaling symbol rates to 64 Gbaud[2]. In this regards, component and system vendors are well underway 

with the development of their 64 Gbaud portfolio to meet these demands, however the enabling technologies to shift to the 

next gear of 128 Gbaud are urgently being sought. Meanwhile, telecommunication companies must deal with reduced 

profitability and suppressed margins, as end users demand higher bandwidth and better Quality-of-Service at the same 

price. This has created an increasingly suffocating model that cannot be escaped from with gradual cost reduction and 

capacity increases but rather needs innovative concepts that make networks more efficient and dynamic. The benefits of 

elastic networking are well-established by now[3], whereas SDN is gaining traction, towards point-and-click provisioning 

of resources and delivery of new services. Although these concepts laid the foundations of programmable optical networks, 

there is still a long way to go towards fully automated and efficient networking. ‘Sliceability’ is arguably the next 

evolutionary step in network programmability since it can bring further reductions in CAPEX and OPEX well exceeding 

30%[4],[5]. Sliceable transponders can handle multiple flows and establish point-to-multipoint connections, optimizing 

hardware resource utilization and extending the use of optical switching over costly and energy-hungry electronic switches. 

Hence there is a great need for photonic technologies that enable sliceable transponder and ROADMs components, along 

with the framework that facilitates their programmability in an SDN context.  

At the transponder side, QAMeleon is developing transceiver components that enable the switch to 128 Gbaud and will 

bring significant savings in footprint (>13×), energy/bit (10.4×) and cost/bit (>4.3×). At the ROADM side, QAMeleon is 

developing large-scale flex-grid wavelength-selective switches (1×24 WSS) and transponder aggregators (8×24 TPA), 

with the target of reducing the footprint and the cost/port by more than 40% and 28% respectively and achieving energy 

savings per ROADM node that reach 4×. In order to address the emerging needs of 5G network backhaul and DCI metro-

access networks where dynamicity is pivotal, QAMeleon is developing an integrated flex-grid 1×4 WSS with nanosecond-

scale switching time that is scalable to large channel counts (i.e. full C-band). The 1×4 WSS will enable the savings in 

footprint, energy consumption and cost by 20×, 11.5× and 36% respectively. QAMeleon will also deliver the entire 

overarching SDN framework for controlling the developed 3 Tb/s sliceable bandwidth-variable transponder (S-BVT) and 

ROADM “white boxes”. The developed devices will be validated in scalable lab and field-trial demonstrators.  

 

2. QAMELEON TRANSPONDER CONCEPT  

Scaling the speed of flexible transceivers stumbles upon the huge disparity between the bandwidth of photonic components 

and the bandwidth of the interfacing digital electronics, most notably digital analogue converters (DACs). Although 

photonic components with 3-dB response exceeding 40 GHz are available, complementary metal-oxide semiconductor 

(CMOS) DACs typically used in transponders are bound to moderate bandwidths well below 30 GHz, whereas alternative 

technologies exhibit limited interest due to their extremely high-power consumption which exceeds the total allowable 

power consumption of the CFP2 form factor[23]. QAMeleon addresses the bandwidth gap between photonics and 

electronics with an analog signal interleaving concept, presented in Figure 1. This approach allows interleaving the outputs 

of two high-speed DACs into a very-high-speed analog signal that can be used for feeding the photonic components, thus 

de-correlating the bandwidth of the DAC with that of the photonics. The same principle is followed at the receiver side, 

but the other way around: The high-speed analog signal received at the photodetector is de-interleaved into lower 

bandwidth tributaries, which can be digitized by lower-bandwidth analogue to digital converters (ADCs). 
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Figure 1: (a,b) QAMeleon transponder bandwidth interleaving concept for scaling speed to 128 Gbaud. (a) The outputs of two 

SiGe BiCMOS DACs are interleaved to form a high speed 128 Gbaud signal that will drive the 70 GHz InP IQ Mach Zehnder 

Modulator after linear amplification with an InP-HBT linear driver, (b) The receiver high speed signal is de-interleaved at the 

receiver into lower bandwidth tributaries. 

QAMeleon exploits the best of electronics ICs by combining high resolution Silicon Germanium (SiGe) Bipolar transistor 

CMOS (BiCMOS) DACs with high bandwidth Indium Phosphide (InP) Heterojunction Bipolar Transistor (HBT) 

electronics yielding a large effective number of bits (ENOB) that are used for the generation of complex modulation 

formats rather than for increasing transmitter (Tx) bandwidth. The synergy between SiGe BiCMOS and InP-HBT 

technologies allows to generate high speed signals in the most power efficient way.  

SiGe BiCMOS electronics 

To reduce the power consumption and ensure adequate signal quality, the data generation is split into two parts. First, two 

lower speed signals of 64 Gbaud will be generated using a 6-bit DAC with an ENOB equal to 5. Next, these two signals 

are time-interleaved into a single 128 Gbaud signal. To realize the very broadband devices required by QAMeleon, the 

ST’s 55 nm BiCMOS is chosen. The layout of the first generation 4-to-1 interleaver is shown in Figure 2.  

 

Figure 2: Layout of the SiGe BiCMOS interleaver.  

This 4-to-1 interleaver is inherently capable of equalizing the signal and can be configured in three different ways, thus 

increasing the versatility of the component. First, 4-to-1 interleaver operation can be used to time-interleave four 32 Gbaud 

analog signals into one 128 Gbaud signal allowing direct generation of 128 Gbaud Pulse Amplitude Modulation (PAM4) 

signals from four 32 Gbaud PAM4 signals, or 2-1 interleaver operation can be used to time interleave two 64 Gb/s analog 

signals into a high speed 128 Gbaud data stream. This implementation of the interleaver can be configured to scale and 

add the input signals, instead of performing the interleaving action. As such, it can also be used to generate 128 Gbaud 

PAM4 signal from four 64 Gbaud Non-Return-to-Zero (NRZ) signals, allowing different possibilities for the generation 

of the electrical data.  

Regarding the architecture of the SiGe BiCMOS DAC simulation experiments indicate that a non-uniform distribution of 

the DAC levels can increase the signal quality. Furthermore the DAC can be configured to receive either six 64 Gb/s NRZ 

streams or six 32 Gbaud PAM4. The latter will ensure compatibility with emerging standards such as CEI-56G-PAM4 and 

IEEE P802.3bs, which will also be supported by next generations field programmable gate arrays (FPGAs).  

InP-HBT electronics 

Linear drivers (DRV) in InP with frequency peaking have been designed. In Figure 3, layout and simulations of a 

representative DRV test circuit are presented, showing broadband (>100 GHz) frequency response with positive slope up 

to 80 GHz intended to compensate frequency roll-off from the expected environment. Simulated PAM-4 eye diagrams at 
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70 GBd show suitable linearity of the test DRV along with effective eye opening of an input signal filtered by a 5 th order 

Bessel filter with -3 dB attenuation at 20 GHz.  

 

Figure 3: Layout of InP-HBT electronics IC Linear driver test circuit, simulated Sd2d1 and PAM-4 eye diagrams. 

Analog signal interleaver (A-MUX) circuits on the InP-HBT platform are also developed within QAMeleon in order to 

allow compatibility with both CFP2-DCO and CFP2-ACO form factors. In the first case, SiGe BiCMOS DACs and 

interleaver integrated circuits (ICs) are co-developed on the same chip and used together with InP-HBT linear drivers and 

in the second case, InP-HBT interleaver and driver are co-developed on the same chip and used with external SiGe 

BiCMOS DACs. At the receiver, InP-HBT de-interleaver and transimpedance amplifier (TIA) circuits are deployed.  

InP photonic components for data generation and reception 

QAMeleon has selected the high performance InP Mach Zehnder Modulator (MZM) technology platform for the 

development of high bandwidth IQ MZM structures in order to generate the 128 Gbaud optical data flows. A new NPIN 

and NIPN layer stack in InP with optimized metal/semiconductor interfaces that would support the 3-dB electro-optic 

bandwidth requirements of higher than 70 GHz and drive voltage requirements below 2 Vpp is developed. A capacitively 

loaded travelling wave electrode (TWE) configuration with a dual-drive electrode design will be employed in order to 

minimize radio frequency (RF) loss beyond 50 GHz, with low insertion losses as well as to minimize RF crosstalk between 

the I and Q tributaries of the RF pulse steams that drive the modulator. A NPIN deep ridge MZM structure has been 

evaluated through simulations versus the standard PIN structure and the results are presented in Figure 4 below.  

 

Figure 4: Electrical Field Strength in the MQW Center vs reverse biasing in Volts for the standard PIN and the NPIN layer 

configuration targeted for QAMeleon’s modulators. 

The NPIN epitaxial (EPI) structure (Figure 5 (LEFT)) will be driven based on a differential driving scheme with impedance 

of the TWE at 2 x 25 Ohms and has stringent space requirements at the RF interface. As shown in Figure 5 (RIGHT), the 

3-dB bandwidth of the new NPIN modulator structure is expected to be more than 70 GHz. QAMeleon is also investigating 

a new NIPN structure in tandem which is expected to yield lower swing voltage and electro-optical insertion loss. 

QAMeleon transmitter will integrate polarization handling elements on the InP photonics platform yielding compact dual 

polarization-enabled devices.  
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Figure 5: (LEFT) InP NPIN Deep Ridge waveguide structure; (RIGHT) RF simulation of a new designed TWE on BCB 

together with the new NPIN EPI-waveguide design compared to standard MZM measurement 

The coherent receiver will follow current industry standards and will employ dual 90 degrees hybrids, monolithically 

integrated high bandwidth Photodiodes (PDs) with more than 110 GHz 3-dB bandwidth.  The responsivity is expected to 

be 0.08A/W at each PD for the wavelength of 1550nm.  

Narrow Linewidth Laser 

QAMeleon will develop laser sources for coherent communications with ultra-narrow linewidth on InP that will used for 

feeding the InP IQ MZM and the 90-degree optical hybrids at the receiver. The laser design is based on a modulated grating 

distributed Bragg reflector (MG-DBR) structure in order to achieve the high-performance requirements on linewidth, 

output optical power and noise response. Figure 6 illustrates the cross section of the laser design. The laser will be fully 

tunable throughout the C-band, its linewidth will be 100 GHz and the output power +19 dBm. In addition, higher operation 

temperature will be pursued in order to reduce the overall power consumption of the optical Tx/Rx subsystems. 

Furthermore, improvements on the process side will be performed in order to reduce optical losses in the cavity and 

improve the electrical isolation processes. Design optimization will be performed targeting high production yield and 

proven reliability required by commercial application products.  

 

Figure 6: Cross-section of QAMeleon InP narrow linewidth laser. 

The estimated overall power consumption of QAMeleon transmitter considering all its comprising electronics and 

photonics components is 14.7 W at 25℃ including thermoelectric cooler (TEC) for the Narrow Linewidth Laser (NLL) 

and the IQ modulator while for the QAMeleon receiver is 11.1 W at 25℃.  

 

3. QAMELEON ROADM CONCEPT 

 QAMeleon is developing the core photonic technology to address the key challenges faced by network operators 

concerning the main building blocks of Colorless, Directionless, Contentionless and Gridless (CDCG) ROADMs i.e. WSSs 

and TPAs. Port scalability is of outright priority, because each node must cope with a large number of ports and wavelength 

division multiplexing (WDM) channels. This is reflected in relevant market studies, indicating large-port-count WSSs 

(1×10 or larger) as the fastest-growing area among ROADM components[21]. Scaling the number of ports can dramatically 

reduce the number of WSS modules in a node, avoiding cascades of switches, as shown in Figure 7. Note that even when 
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large-port-count WSSs are deployed, a substantial number of WSS modules are required per ROADM. This in turn raises 

the need for miniaturization, to save operator’s real estate.  

QAMeleon ROADM concept is based on the hybrid integration of InP photonic integrated circuits (PICs) with Liquid 

Crystal on Silicon (LCoS) technology using an Electro-Optic Polymer Board (EOPCB) replacing bulky free-space 

configurations. Two types of WSS elements are being developed within the project, i) a 1x24 hybrid InP PIC-LCoS WSS 

and an 8x24 TPA based on the same technology approach and ii) a fully integrated 1x4 WSS with ultrafast switching times 

based on the use of InP Semiconductor Optical Amplifier (SOAs) with nanosecond gain dynamics. In both cases the 

EOPCB acts as the host board for the intimate integration of InP PICs and the mechanical stability of free space optical 

components.  

 

Figure 7: Number of WSS modules in a 4-degree node as a function of dropped wavelengths per direction[22]. 

Hybrid InP-LCoS 1x24 WSS and 8x24 TPA 

Regarding the 1x24 WSS, QAMeleon has opted for a hybrid InP-LCoS architecture which is based on InP wave front-

ends (WFE), a micro-optics free space setup implemented on a Polymer Electro optical (EO) motherboard and a 

commercial LCoS panel (Figure 8). The input signal is introduced from the fiber into the input polymer waveguide (PWG) 

and then directed into the respective InP waveguide and the polarization beam splitter/combiner (PBSC). At the PBSC 

output the light is split into two different polarization paths. The TM polarized signal must be rotated before entering the 

WFE since the LCoS operation is polarization sensitive. The WFE relies on an AWG with zero-path length difference in 

order to provide a plane wave output that is launched into the free space optics (FSO) setup comprising a diffraction grating 

(analyzing the wavefront into wavelengths), a focusing lens (focusing separated wavelengths onto discrete locations on 

the LCoS panel) and the LCoS device used for the beam steering. The wavelength separation performed by the Diffraction 

grating and the beam steering performed by the LCoS are realized in two directions perpendicular to each other allowing 

each beam projected on the LCoS to be independently switched with respect to each wavelength, so that it is coupled to 

the desired output WFEs thusly switching to the desired PWG output.  
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Figure 8: The QAMeleon’s Hybrid 1×24 WSS architecture relying on InP WFEs along with micro-optic free space 

components, and a commercial LCoS Spatial Light Modulator (SLM). The motherboard for the integrated WSS device is 

EOPCB platform.  

The key building block of these two modules is the InP WFE which replace bulky input/output (I/O) fibers. Optimization 

of the WFE design is based on having a beam profile that would sufficiently cover discrete areas of the LCoS panel while 

effectively suppressing side lobes, by altering design elements of the waveguide array: a) the number of waveguide 

elements, b) the spacing between the waveguides for a given wavelength operation and c) the waveguide’s width. 

Simulation studies regarding the optimization of the WFE design are on-going. Footprint reduction is also achieved by 

means of the integrated polarization handling elements, PBSC and Polarization Rotators which realize the handling of both 

polarization states using a single LCoS panel. The PBSC design is multi-mode interference based (MMI-based) and it is 

shown in Figure 9. Preliminary simulations show good performances for transverse electric (TE) and transverse magnetic 

(TM) modes. Optimizing the MMI length and width, the shallow etch gap width as well as the taper characteristics at the 

input waveguide-MMI interface, concurrent maximum power of TM at Port 1 and TE at Port 2 should be achieved. The 

calculated Insertion Loss (IL) is less than 0.4 dB for both polarizations, achieving the targeted 1 dB value and a calculated 

extinction ration (ER) of the splitter of more than 20 dB. 

 

Figure 9: MMI-based PBSC component top view (Left) and Beam profile at the output of the PBSC for the TM and TE modes, 

respectively (Right). 

The 8x24 TPA is based on the extension of the logical topology of the 1x24 hybrid WSS that combines 8 WSSs with 24 

8×1 multicast switches (MCSs) using a single LCoS. More specifically, upgrading the InP WFEs of Figure 8 with multiple 

input waveguides allows introduction of multiple optical signals in the WFE. A salient characteristic of this design stems 

from the WFE’s phase characteristics: Light that is introduced from the center waveguide, exits the chip as a planar wave, 

perpendicular to the chip’s facet. Changing the input to another waveguide tilts the output wavefront by an angle that 

depends on the input waveguide. As a result, after propagating through the bulk optics, the signals entering from different 

waveguide inputs of the WFE, are projected on different areas of the LCoS SLM. This allows combination of multiple 

WSSs in approximately the same footprint, maximizing the gain in integration density brought by the WFEs. Figure 10 

illustrates the concept of InP WFE with multiple I/O waveguides allowing superposition of multiple WSS elements on the 

same LCoS panel. 
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Figure 10: Multi-I/O WFE interfaces for QAMeleon 8x24 TPA. 

Fast 1x4 WSS 

QAMeleon 1x4 fast WSS module is based on the hybrid integration of InP PICs on the EOPCB platform allowing for a 

fully integrated device. At the input of the 1x4 WSS, a signal is broadcasted by a 1:4 coupler. Its fundamental building 

block is the Wavelength Blocker (WBL) InP PIC which comprises a pair of arrayed waveguide gratings (AWGs) with 

12.5 GHz spacing and SOAs acting as ON/OFF switches in between, as shown in Figure 11 (a) and (b). For scaling the 

number of spectral slices (channels) multiples units of WBLs are designed into a single InP PIC.  The SOAs provide extra 

advantage of on-chip amplification thereby compensating the losses introduced by the two AWG in the WBL and coupling 

losses. The SOAs also enable fast switching providing a switching time less than 20 ns[18],[19],[20]. An AWG multiplexer is 

used to combine outputs of an InP PIC into the output of the 1x4 WSS as shown in Figure 11 (a)). 

Figure 11 (c) illustrates the “split and combine” concept of the WSS based on which selective number of AWG outputs 

are set to the ON and OFF state depending on the bandwidth of the incoming input signal. The incorporation of multiple 

AWG channels allows control of the passband width of the output WSS port with granularity of 12.5 GHz slices.  

  

Figure 11: (a) Architecture of QAMeleon fast 1x4 WSS, (b) block diagram of WBL and (c) Bandwidth discretization of 32, 

64 and 128 Gbaud in 12.5 GHz spectral slices. 

Moreover, the AWGs and the SOAs on the InP platform are targeted to be polarization insensitive devices and different 

waveguide geometries are under investigation based on the birefringence they induce on both TE and TM polarizations. 

Recent simulation studies for the birefringence of deep and shallow waveguides as function of their width, at the target 

wavelength of 1555 nm, imply that polarization insensitivity of the AWGs could be obtained by controlling the width of 

the deep waveguides. Mechanical strain can influence birefringence too indicating that achieving the polarization 

insensitive condition is very susceptible to waveguide width variations.  hence it is necessary to use a high-resolution 

lithography tool. These properties result in very sharp and uniform waveguides as can be seen in Figure 12 where “W” 

indicates a 300 nm separation between the AWG waveguides, which largely determines the channel separation. The better 

waveguide definition also has a positive effect on propagation losses.  
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Figure 12: AWG fabricated using a high-resolution lithography tool. 

EOPCB platform 

The EOPCB technology offers low-loss waveguides and tight bends and acts as a host platform for the InP PICs and the 

free-space micro-optics setup including the LCoS. Having in mind the large number of optical components that comprise 

QAMeleon WSS elements, a modular approach will be followed allowing to address integration challenges and ensure 

scalability towards a larger number of I/O ports at reduced complexity and with moderate increase in footprint.  

Optimization of the EOPCB platform relies on the current polymer material and the dimensions of the waveguides. The 

mode field diameter (MFD at 1/e2) is a critical parameter that affects coupling losses to the PICs (approx. 4 µm MFD) and 

the glass fiber (approx. 10.4 µm MFD) and its lower limit is given by the refractive index contrast of the polymer 

waveguide. The waveguide is represented by a channel type configuration with a rectangular, step-index cross section 

embedded in the cladding (Figure 13 Left). The MFD of the polymer waveguide depends on the physical dimension of the 

waveguide core and refractive index contrast of the polymer (Figure 13 Right). Currently a lower boundary of the MFD 

of approximately 4.7 µm is anticipated and is limited mainly by the optical properties of the optical polymer. In order to 

minimize coupling losses further investigation in required in the potential of lateral MFD adaptation. The manufacturing 

of the polymer waveguides allows for an adaptation of the lateral MFD-width, which is intended to be used for reducing 

mode field mismatch at the fiber coupling interface. The electrical layers of the EOPCB consist of a material layer with 

enough conductivity and thickness for the anticipated current strength with coplanar electrical waveguides (CPW) 

providing the required rise and fall times.  

 

 

Figure 13: (LEFT|) Sectional view of channel type polymer waveguide with critical dimensions, and (RIGHT) graph of MFD 

as function of refractive index contrast and waveguide core size. 

Within the premises of QAMeleon, various polymer waveguides with different core widths have been fabricated allowing 

for preliminary evaluation of the EOPCB platform with respect to MFD and optical coupling (Figure 14). The waveguide 

propagating loss at 1550 nm is 0.55 dB/cm using the cut-back method while no excess bending radius loss is observed to 

radius down to 7 mm.  
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Figure 14: (a) cross-section of 3.2 µm wide waveguide core, (b) top-view of waveguide cores separated by a 2.4 µm wide 

cladding gap. 

Hybrid integration of InP PICs to EOPCB 

The InP-to-Polymer waveguide optical interface will be butt-coupling for simplicity and to avoid further changes in the 

InP platform that would be needed for an adiabatic coupling. The optimum coupled power from InP rib waveguides (cross 

section 2 x1 μm) to polymer waveguides (cross-section of 3 x 3 μm) was evaluated through finite-difference time-domain 

(FDTD) simulations based on power overlap integral (OI) calculation[17]. First results yielded coupling efficiency of 25% 

by optimizing the InP waveguide width to 3.5 μm. New spot size converter are being developed in the InP platform to 

interface standard InP rib waveguides with single-mode fibers that can be also exploited for the interface with the polymer 

waveguides as envisaged within QAMeleon. Using these spot size converters preliminary results indicate that coupling 

efficiency can be improved up to 59.2 % (2.277 dB coupling losses) and 65.97% (1.8 dB coupling losses) for TE and TM 

modes, respectively without sacrificing the single-mode operation (Figure 15).  

 

Figure 15: Showing TE and TM mode profiles using the new InP spot size converter and 3.5×3.5 μm polymer waveguide. 

Finally, regarding the integration and assembly process for QAMeleon WSSs and TPA modules, a flip-chip approach is 

considered. The target mechanical accuracy of the flip-chip process is 1 μm across the horizontal and the vertical planes 

which imposes challenges for the vertical alignment of InP waveguide with the polymer waveguide. QAMeleon approach 

is based on a vertical offset on the EOPCB to control the height of the PIC (in vertical-plane) assuming the PIC is positioned 

‘face-down’, as shown in Figure 16 (a). The tolerance of the PIC epi-layers can typically be controlled to 100’s nm range. 

Electrical connectivity from the PIC to the EOPCB by wire bonding is preferred. The model below suggests the use of a 

ceramic interposer that would electrically connect to the InP via bumpers and via wire bonds to the EOPCB as shown in 

Figure 16 (b). The ceramic interposer will also provide mechanical support to the InP PIC.  

  

Figure 16: (a) Flip-chip assembly of InP PICs on the EOPCB of VARIO that will act as the motherboard for QAMeleon WSSs 

and TPA modules, (b) cross section showing the use of a ceramic interposer to facilitate electrical connectivity between the 

InP PIC and EOPCB and provide structural support to InP.  
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4. QAMELEON SDN AND WHITE-BOX DEMONSTRATORS 

 

QAMeleon control plane architecture is based on a centralized SDN controller that implements core functions related to 

the monitoring and programming of the underlying optical network, like the management of its topology, the maintenance 

of its status and the collection of its statistics, as well as the configuration of its devices through a flow-based paradigm, 

as shown in Figure 17 (a). The logic of the network programming is placed in dedicated SDN applications running on top 

of the controller. The interaction between the controller and the applications is based on REST Application Programming 

Interfaces (APIs) that expose the underlying optical resources with a suitable level of granularity and abstraction. The 

specific characteristics of the different optical devices are handled through dedicated SDN plugins, placed at the south-

bound of the controller and in charge of managing the interaction with the data plane. The SDN plugins implement the 

device-specific information models and interact with the single network elements placed at the data plane through the 

mediation of SDN agents, which act as translators of control plane protocol messages and configure the single elements, 

e.g. programming an FPGA (Figure 17 (b)).  

 

Figure 17: (a) QAMeleon functional control plane architecture, (b) SDN-Agent building blocks and interfaces, (c) Optical 

device represented as an FPGA: components c1, c2 and c3 of the hardware are individually modelled (example of 

disaggregated approach).  

Following the latest trends in SDN architectures for optical networks, the QAMeleon control plane architecture strongly 

relies on the “disaggregation” paradigm, defining different level of abstraction and/or aggregation to describe, monitor and 

program single optical components, devices or network topologies as a whole. The concept of “disaggregation” is largely 

used in the context of the optical networks in order to simplify and automate network operations and guarantee multivendor 

interoperability. QAMeleon’s approach is to consider an optical device as a proper aggregation of optical functions or 

subcomponents that are individually modelled and individually controllable. The decomposition of an optical device in a 

set of standard modelled subcomponents leads to the development of fully disaggregated white boxes, where software and 

hardware are separated (sw/hw disaggregation) and may be composed of devices from different vendors and optionally 

managed by different open source software.  

In Figure 17 (c), a device (generically represented as an FPGA in the picture) is decomposed in a set of components, which 

are modelled using YANG language. The interaction between the single components, properly modelled, represents the 

behavior of the device as a whole. For example, a ROADM is modelled as a set of interconnected WSSs and TPAs, where 

each of them is controllable and/or configurable as single functional entities.  

The communication interface of the SDN agent and QAMeleon transponder and ROADM devices will be vendor specific, 

while the interface between SDN controller and SDN agent will be based on the standard NETCONF protocol. Both the 

interactions will be based on a client to server communication approach. More specifically, in the controller to agent 

communication, the Agent will act as a server while the SDN controller, as the entity that performs data plane 

configuration, will constitute the client. In the agent to device communication, the agent will act as client while the device 

constitutes the server. The parameters that will be controlled at the transponder are the symbol rate of the optical flows, 

the modulation format and the wavelength per generated optical flow yielding a fully flexible S-BVT transponder. As for 

the WSS and TPA modules, the reconfigurable SDN parameters will be the I/O port, the center frequency and the passband 
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width. The above parameters will be translated in device-specific parameters that will configure the operation of the optical 

hardware. Figure 18 illustrate the S-BVT and ROADM “white-box” demonstrators.  

 

Figure 18: QAMeleon S-BVT and ROADM white-box demonstrators. 

 

5. MODULATION FORMATS & DSP 

 

In order to achieve QAMeleon’s objectives of next-generation elastic optical networks (EONs) operating in the flexible 

Dense WDM (DWDM) grid[6], programmable, rate-adaptive operation is necessary. The QAMeleon transceiver should 

support different modulation formats with different spectral efficiencies, adapting the bit rate and reach based on actual 

network traffic demand[7]. Coded modulation techniques are a viable method to enhance the total coding gain and close 

the gap to the channel capacity. In addition to conventional Dual Polarization (DP) M-ary Quadrature Amplitude 

Modulation (M-QAM) formats, QAMeleon has devoted significant effort in investigating the application of four-

dimensional (4-D) modulation, probabilistically shaped (PS) M-QAM, as well as digital subcarrier multiplexing to provide 

the required flexibility for the S-BVT.  

4-D modulation in coherent optical transmission systems uses both the real (in-phase) and imaginary (quadrature) 

tributaries in 2 orthogonal polarizations. This allows construction of power-efficient signal constellations by the optimal 

placement of the signal points in 4-D space, and as a result, Optical Signal to Noise Ratio (OSNR) performance can be 

increased. For communication systems, sensitivity gains can be attained by optimizing the signal constellation[8],[9]. In 

QAMeleon a particular set of 4-D formats is considered, that are constructed by applying the set-partitioning technique on 

DP-M-QAM formats, referred to as M-ary set-partitioned QAM (M-SP-QAM). An important aspect of M-SP-QAM 

formats is that they can be implemented using the same hardware as conventional DP-M-QAM formats, with some minor 

modifications in the digital signal processing (DSP) modulation/demodulation algorithms. Accordingly, a transceiver 

which supports standard DP-M-QAM in addition to M-SP-QAM, provides a wide range of possible spectral efficiencies. 

Thus, it enables a very good trade-off between bit rate and transmission reach. Monte Carlo simulations are performed in 

VPItransmissionMaker Optical Systems to estimate the required optical signal-to-noise ratio (ROSNR) for M-SP-QAM 

and their corresponding DP-M-QAM formats at a hard-decision (HD) forward error correction (FEC) limit of Bit Error 

Rate (BER)=3.8×10-3. The spectral efficiencies (SEs) of these formats versus the ROSNR are plotted in Figure 19. All 

modulation formats are operating at a fixed symbol rate of 28 Gbaud. It should be noted that for DP-M-QAM formats, it 

is only possible to increase the SE by a step of 1 bits/symbol/polarization, where each step requires ~2.5 – 4 dB additional 

OSNR. Finer granularity of 0.5 bits/symbol/polarization in SE can be provided if the M-SP-QAM formats are also 

considered which serves as an intermediate step between DP M-QAM formats. This enables a smooth transition in 

information bit rate (each increment requires ~1 – 2 dB extra OSNR) achieving greater flexibility.  

Proc. of SPIE Vol. 10924  109240E-12
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Aug 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

Figure 19:  Spectral efficiency vs ROSNR for M-SP-QAM and DP-M-QAM formats at BER= 3.8×10-3. 

Probabilistic shaping (PS) is a technique used to impose a non-uniform distribution on the transmitted symbols, such that 

the 𝑑𝑚𝑖𝑛 between constellation points is increased for the same average signal energy. This technique is used to achieve 

the so-called shaping gain, which is capped to 1.53 dB for the additive white gaussian noise (AWGN) channel[10]. PS is 

very attractive for optical communication systems because of the performance gains and the ability to adjust spectral 

efficiency (and thus, the data rate) with arbitrarily fine granularity. QAMeleon has developed DSP that generates PS square 

M-QAM formats. Such formats do not impose additional requirements on the hardware (e.g. in terms of DAC resolution 

needed), compared to conventional DP-M-QAM transmitters.  

 

Figure 20: (LEFT) Shaped constellation diagrams for 64QAM with the corresponding PMFs for three different SEs: (a) 6.0 

bits/symbol (i.e. unshaped); (b) 5.5 bits/symbol; (c) 4.5 bits/symbol. (RIGHT) BER as a function of SNR for selected M-SP-

QAM and PS-64QAM formats, assuming an AWGN channel. 

Figure 20 (LEFT) shows the constellation diagrams for PS-64QAM with the corresponding probability mass functions 

(PMFs) for three different cases. As can be seen PS-M-QAM allows using a fixed base constellation, symbol rate and FEC 

overhead, with the SE able to be tuned simply by changing the input distribution of the signal points[11]. In a flexible optical 

network environment, the SE can therefore be traded off for OSNR performance (and thus, transmission reach), with very 

fine granularity, allowing maximization of overall network capacity. Performance comparisons through simulation of M-

SP-QAM formats with PS-64QAM in back-to-back configuration with AWGN as the only impairment are out. Figure 20 

(RIGHT) shows the BER performance as a function of SNR for M-SP-QAM with M = 32, 128 and 512, corresponding to 

SEs = 2.5, 3.5 and 4.5 bits/symbol respectively. In addition, the performance of PS-64QAM formats at the same SEs are 

also plotted. PS-64QAM offers ~1.8 dB gain over M-SP-QAM at the SD-FEC limit of BER = 2×10-2, for the same SE. 

The gain reduces to ~1.2 dB at the HD-FEC limit of BER = 3.8×10-3. This gain gets smaller as the SNR increases, until 

eventually it vanishes at asymptotically high SNR. The larger gain at the low SNR regime can be attributed to the fact that 

M-SP-QAM employs anti-Gray mapping, and a wrongly decided symbol will not necessarily lead to only a single bit error, 

but in multiple bit errors. Moreover, the number of nearest neighbors for 4-D formats is larger than that of the 2-D PS-

64QAM format. This factor limits the achievable gain for 4-D, especially at low-SNR, and the benefit of the PS signal 

becomes more apparent in this region. However, this comes at the expense of higher implementation complexity. PS 

requires using a distribution matcher at the transmitter side and arithmetic decoder at the receiver side[11], which increases 

the computational complexity of the system versus M-SP-QAM, which can be implemented using a few logical gates[12] 

and a simplified symbol decision function[13].  

The framework needed to add FEC to PS-M-QAM formats is also investigated. This is important for QAMeleon to be able 

to approach the channel capacity of a given transmission link. Simulation of the transmitter-side DSP in order to allow 
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adding low-density parity-check (LDPC) codes to the PS-M-QAM generator are implemented (Figure 21)[14]. The 

implementation is specifically formulated for square M-QAM formats as square QAM is widely adopted and much simpler 

to generate than other, arbitrary constellations.  

 

Figure 21: Architecture incorporating FEC with PS square QAM. The red text indicates the bits/symbol carried at each stage. 

The distribution matcher (DM) first generates a Maxwell-Boltzmann distribution of entropy 𝐻(𝑋) − 1 for the positive 

amplitudes of an 8-ary Pulse Amplitude Modulation (PAM-8) signal (i.e., half the levels of a PAM-8). Note that the number 

of levels generated at this point is defined by the target base distribution to be shaped; in this example it is 64-QAM, and 

thus 8 levels per quadrature tributary are needed. This ‘half’ PAM-8 then carries m-1 bits/symbol (where m=log28). The 

other (negative) amplitude values of the PAM-8 are generated from a sign bit, which carries the FEC overhead. The FEC 

overhead can be less than a whole bit, in which case a fraction 1-γ of the sign bit can carry information (note that γ ≤ 1). 

The code rate is then given by 𝑅𝑐 = (𝑚 − (1 − 𝛾))/𝑚, and can therefore not be less than (𝑚 − 1)/𝑚. The total 

information rate can then be written as:  

𝐼𝑅 = 𝛽 + 𝛾 = 𝐻(𝑥) − (1 − 𝑅𝑐)𝑚 

Demodulation of DP (dual-polarization) PS-M-QAM signals poses unique challenges for the DSP of the digital coherent 

receiver. Algorithms that have been developed for blind demodulation of DP M-QAM formats, where uniform symbol 

probabilities are assumed, fail to perform adequately when applied to their PS counterparts. The problem is further 

compounded by the fact that PS formats are necessarily reliant on using base constellations which are high-order (M=64 

or 256), and these are inherently more difficult to demodulate, even in the uniform case. Research into DSP algorithms for 

blind demodulation of PS-M-QAM, focusing first on polarization-demultiplexing and equalization, has been started. A 

novel approach has been developed that relies on a 2-stage scheme comprising a polarization alignment algorithm, 

followed by a probability-aware time-domain Multi-Input Multi-Output (MIMO) equalizer[16]. An illustrative example 

simulation setup that demonstrates the operation of the DSP demodulation process is presented in Figure 22. The setup 

consists of a dual-polarization transmitter that generates the DP PS-M-QAM signal, which is transmitted over 20 spans of 

standard single-mode fiber (SSMF), with lumped amplification. After coherent detection, the signal is digitized and 

processed with the DSP algorithms that include the new novel polarization demultiplexing and equalization scheme. The 

simulation includes the impairments expected in a real transmission system, including random birefringence and 

polarization mode dispersion (PMD), amplified spontaneous emission (ASE) noise, limited ADC resolution as well as 

severe bandwidth limitations to stress-test the DSP and prove its ability to cope with severe constellation distortions. Figure 

23 shows constellations obtained after transmission of a DP PS-64-QAM carrying 4 bits/symbol over 1600 kms. The 

received OSNR is measured at ~18 dB, while the symbol error rate (SER) is estimated at ~6∙10-4.  
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Figure 22: Simulation setup created in VPItransmissionMaker Optical Systems for the transmission, reception and 

demodulation of DP PS-M-QAM signals. 

 

 

Figure 23: (LEFT) X-polarization constellation after SOP alignment, and prior to equalization. (RIGHT) The same 

constellation after equalization with the novel probability-aware TDE MIMO. 

Regarding the Digital Subcarrier Multiplexing (SCM) scheme, preliminary studies on using standard M-QAM schemes 

(quadrature phase shift key (QPSK) and 16-QAM) have been performed. An Arbitrary Waveform Generator was employed 

to evaluate the performance of the SCM IQ streams prior to feeding them to the optical modulator for three different 

scenarios (Table 1).  

Table 1: Initial scenarios for experimental evaluation of Digital SCM. 

Proposed SCM 

Scheme 

Format per 

subcarrier 

Rate per 

subcarrier 

Subcarrier spacing 

2-SCM QPSK / 16-QAM 16 Gbaud 18.4 GHz 

3-SCM QPSK / 16-QAM 10 Gbaud 11.5 GHz 

4-SCM QPSK / 16-QAM 8 Gbaud 9.2 GHz 

The appropriate roll-off filters was applied in order to get total capacity ~32 Gbaud QPSK / 16-QAM in single carrier 

format. The generated spectrums prior to the DAC (64 GSa/s sampling rate) are presented in Figure 24.  
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Figure 24: Digital sequence SCM spectra at the input of the DAC based on the scenarios of Table 1. 

For the Tx side, bit-to-symbol mapping, pulse shaping per subcarrier and digital pre-distortion of the optoelectronic 

frontend using frequency domain equalizers is used. On the Rx side the DSP is shown in Figure 25. The desired subcarrier 

for demodulation is selected by down-converting it on the baseband and low-pass filtering is performed. The remaining 

DSP chain is identical to the case of demodulating a single carrier M-QAM scheme. Thus, in this first approach no shared 

processes for the detection of each subcarrier is used and the demodulation of each band is performed independently.  

 

Figure 25: Rx-side DSP for SCM demodulation. 

Employing a simple coherent transmitter/receiver link the combined Tx/Rx DSP for the SCM scenarios was evaluated. A 

single-polarization IQ stream is received by the coherent receiver, where the Digital Oscilloscope provided the digitized 

waveforms for Rx-side processing. The performance of the selected scenarios is depicted in Figure 26.  
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Figure 26: Performance evaluation of the selected SCM scenarios. 

 

6. CONCLUSIONS 

 

Coherent optics pose a promising solution for the ever-increasing demands in traffic which pose key challenges for network 

operators and vendors. The progress that QAMeleon, an EU funded R&D project, has made towards developing a new 

generation of faster and greener sliceable bandwidth-variable electro-optical transceivers and WSS switches able to handle 

up to 128 Gbaud optical signals carrying flexible M-QAM constellations and novel modulation techniques has been 

presented. QAMeleon’s TPAs and ROADMs are being developed as main building blocks of an envisioned Colorless, 

Directionless, Contentionless and Gridless (CDCG) photonic technology.  
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