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Abstract—The design of mechatronic systems relies more and 

more on models that are used to predict the performance in a 

virtual environment. The models involved are increasingly 

more complex multiphysical systems. Instead of spending more 

time modeling on increasingly detailed physical models, 

uncertainty can be explicitly considered to model the lack of 

knowledge. The mismatch between real life experiments and 

model simulations due to parametric uncertainty can be 

quantified by a likelihood estimation and Monte-Carlo 

sampling techniques for propagation. This paper proposes to 

significantly accelerate the process by using Polynomial Chaos 

Expansions for the propagation and a Genetic Algorithm to 

maximize likelihood. The soundness of the approach is 

demonstrated on a wet friction clutch system. The results show 

the method has a strong potential of scalability with respect to 

the number of uncertain parameters. 

 
Index Terms—Polynomial chaos expansions, system 

identification, uncertainty quantification, wet clutch.  

 

NOMENCLATURE 

α Constant for clutch plates' geometry and dynamic 

friction coefficient 

β Fraction of zcontact at which P(t)=x1(t) 

γ Constant for clutch plates' geometry and the fluid 

viscosity 

Ω(t) Angular velocity of the input shaft 

ω Angular velocity of the output shaft 

ωm Motor speed 

a, k, τ Current bias, gain and time delay 

a2, b2, c2, 

d2 

Oil pressure to piston position transfer function 

coefficients 

aa Oil pressure bias in piston position computation 

freg(t) Regularization function between torque transfer 

phases 

fskTC Torque converter capacity factor function 

fstTC Torque converter torque ratio function 

gr Gear ratio between the output shaft of the clutch 

and the load shaft 

Ji, Tic, bic Input shaft inertia, Coulomb friction torque and 

viscous friction coefficient 

Jo, Toc, 

boc 

Output shaft inertia, Coulomb friction and 

viscous friction coefficients 

kT Gain associated to oil temperature 

P(t) Clutch plates contact pressure 

u(t) Current 
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x1(t) Oil pressure inside the chamber 

x2(t) Oil pressure inside the chamber time derivative 

x3(t) State used to compute the piston position 

z(t) Piston position 

zcontact Maximum displacement of the piston 

  

I. INTRODUCTION 

The design of products relies more and more on 

computational models that are used to predict the 

performance in a virtual environment. It allows the design 

process to be shorter resulting in faster design iterations that 

lead to more robust and reliable products at lower production 

costs. In addition, a trend in product design shows an interest 

from the industry to deliver smarter and more automated 

products to their customers. These trends translate into the 

need to deliver as fast as possible models of products that can 

predict design performance. In this context, the models 

involved are usually those of mechatronic systems which are 

increasingly more complex multiphysical systems. To 

validate such models, these are usually compared to 

experimental results. However, a mismatch will always 

remain between real life experiments and model simulations. 

If despite the mismatch the model can still predict trends 

acceptably enough, the model might still be considered to be 

useful [1]. If the model predictability is not high enough, 

there are two main approaches to improve its performance, 

⚫ spend more time to understand the underlying physics 

and build a more detailed physical model 

⚫ represent the lack of knowledge explicitly to 

compensate for model structure and parameters that 

cannot be easily determined 

The first approach is the most comprehensive one but 

cannot be achieved in reasonable time when the system is too 

complex. The second approach gives a chance to find a 

balance between the modeling effort and the model 

usefulness. However, the representation of uncertainty in the 

model structure or parameters will result in uncertain 

predictions: the challenge is therefore to quantify the 

sufficient uncertainty that allows to predict experimental 

observations. 

In this paper, the strong assumption is made that the model 

structure is known and that the uncertainty is only of 

parametric nature and probabilistic. The uncertainty that is 

assumed to remain in a given model is due to the difficulty or 

impossibility to measure some physical parameters such as 

for example friction coefficients. Additionally, it is assumed 

that the uncertainty structure is fixed, and only its parameters, 

such as mean and standard deviation (for a normal 

distribution), need to be identified. Sampling techniques such 
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as Monte-Carlo methods [2] have then been extensively used 

for the parametric uncertainty propagation. Such an approach 

to propagation involves sampling values for each uncertain 

parameter from their uncertainty range, then evaluating a 

model using this parameter set and repeating the process 

many times to obtain a probability distribution of the model 

output. The accuracy of the result depends on the number of 

runs that are performed and in general a large number of them 

is usually necessary. As a result, this approach is 

computationally expensive. More structured sampling 

techniques such as Latin hypercube sampling [3], adaptive 

sampling [3] and importance sampling [4] have been 

proposed with modest computational speed improvements 

for complex systems. More recent works have shown that 

functional expansions such as Polynomial Chaos Expansions 

(PCEs) [5]-[7] can lead to significant gains in term of 

computational cost [6]. When dealing with complex models, 

the use of PCEs can be facilitated by non-intrusive PCEs [7], 

by allowing to perform the propagation without the need to 

modify the model itself. In this work, the model parametric 

uncertainty is represented using normal distributions. In 

addition, a term (zero-mean normally distributed) is added at 

the output of the model. Other distributions could have been 

employed without any loss of generality of the approach. The 

originality of this investigation lies in the use of PCEs for the 

propagation of parametric uncertainty inside a Maximum 

Likelihood Estimation (MLE) [8], [9] loop, see Fig. 1. The 

goal of the approach is to find the sufficient parametric 

uncertainty a model needs to include, to explain different 

experiments [10]. To maximize the likelihood of an 

experiment being predicted by the model a Genetic 

Algorithm (GA) is used to select the parameters of the chosen 

uncertainty structure (mean and standard deviation). As GAs 

are based on heuristic rules, a global maximum cannot be 

guaranteed to be found. However, the method is particularly 

useful for complex problems in which developing a more 

detailed physical would be too time consuming and for 

simulation models that are computationally expensive. 

 

 
Fig. 1. Proposed approach for uncertainty quantification. 

 

 
Fig. 2. Test bench of a wet friction clutch system. 

 

As a proof of concept, the approach is applied to a wet 

friction clutch system, see Fig. 2. Wet friction clutches are 

hydraulic-mechanical devices used to transmit torque from 

their input shaft to their output shaft by means of friction. 

They are used in various types of automatic transmissions to 

selectively engage gear elements. They are used for off-road 

vehicles and agricultural machines where high torques are 

transmitted. For our investigation, a test bench was used, see 

Fig. 2. 

To illustrate the proposed approach for uncertainty 

quantification, the paper starts with a section about the 

experiments that were performed and how an initial 

deterministic model of the physical system was derived and 

how it performs. The subsequent section describes the 

theoretical foundations of the approach and numerical results 

in application to the wet friction clutch. 

 

 
Fig. 3. Wet friction clutch system. 

 

II. WET-CLUTCH EXPERIMENTS AND MODEL 

The following section describes the experiments that were 

performed on the test bench Fig. 2 and how a physical model 

of the system was derived. 

A schematic cross-section of a wet clutch is shown in Fig. 

3. As explained in [11], its input shaft is connected to a 

hollow cylinder with internal grooves, called the drum. A 

first set of friction plates (clutch plates) with external 

toothing can slide in those grooves, while a second set of 

friction plates (clutch discs) with internal toothing can slide 

over a grooved bus connected to the output shaft. Torque is 

transferred between the shafts by pressing both sets together 

with a hydraulic piston, realized by sending a control signal 

to the servo-valve in the hydraulic line to the clutch. When 

this is done, the clutch chamber first fills up with oil and the 

pressure builds up until it is high enough to compress the 

return spring and move the piston towards the friction plates, 

see Fig. 4. This is called the filling phase, and it ends once the 

piston advances far enough and presses the plates together 

such that torque transfer commences. At this moment the slip 

phase begins and the system dynamics change considerably, 

yielding strongly non-linear system behavior [12], [13]. The 

difference in rotation speeds between the in- and output 

shafts, denoted the slip, then decreases until both shafts rotate 

synchronously. A good engagement is obtained when torque 

transfer starts as soon as possible without introducing torque 

peaks, which can be realized by a short filling phase and a 

smooth transition into the slip phase. The pressure in the line 

of the clutch, the rotational speeds of the in- and output shafts 

as well as the torque of the output shaft torque are measured. 

A. Experiments 

In total 216 experiments are performed, and the oil 

pressure, angular velocities and output shaft torque are 

recorded. Between experiments, variations of the control 

signal, the motor speed, inertia and friction of the load are 
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performed, see Fig. 2. A classic key performance indicator 

(KPI) of interest in industry is the shifting time from neutral 

to first gear of the automatic transmission, see Fig. 4. The 

KPIs obtained experimentally are reported on Fig. 5 and the 

difference between experimental and simulation results Δ𝑡 is 
the one on Fig. 5. Even though 4 parameters could change 

during the experiments, some important quantities remain 

incontrollable and not measurable on the test bench such as 

the oil temperature dynamics and the piston position. The 

piston position is generally not measured on industrial 

machines which makes the case closer to an industrial 

application. 

 

 
Fig. 4. Wet friction clutch system dynamics. 

 

 
Fig. 5. Experimental versus deterministic simulation results 

 

B. Physical Modeling 

To predict the performance using a physical model, the test 

bench system is virtually decomposed into subsystems. The 

motor is idealized by assuming it always delivers a 

predefined speed and required torque. The torque converter is 

modeled using a torque ratio function fstTC (
ωinput

ωoutput
) =

Toutput

Tinput
and a capacity factor function 𝑓𝑠𝑘𝑇𝐶 (

ω𝑜𝑢𝑡𝑝𝑢𝑡

ω𝑖𝑛𝑝𝑢𝑡
) =

ω𝑖𝑛𝑝𝑢𝑡

√𝑇𝑖𝑛𝑝𝑢𝑡
 provided by the manufacturer. The load of the system 

is composed of the ratio selector, the flywheel and the brake, 

see Fig. 2. The ratio selector is a gearbox that allows to vary 

the inertia, while the brake allows to vary the friction load 

seen by the clutch. 

In addition, a state-space model identified based on 

previous work [14] was used to represent the dynamics from 

the current input signal to the piston position in the chamber, 

 

{
 
 
 
 

 
 
 
 

𝑥1̇ = 𝑥2

𝑥2̇ = −
6

𝜏2
. 𝑥1 −

4

𝜏
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6. 𝑎. 𝑘
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+
6. 𝑘

𝜏2
. 𝑢 −

2. 𝑘

𝜏
. �̇�

𝑥3̇ =
𝑏2
𝑐2
. 𝑥1 +

𝑎2
𝑐2
. 𝑥2 −

𝑑2
𝑐2
. 𝑥3 −

𝑎𝑎. 𝑏2
𝑐2

𝑧 = 𝑚𝑖𝑛(𝑧𝑐𝑜𝑛𝑡𝑎𝑐𝑡 , 𝑚𝑎𝑥(0, 𝑘𝑇 . 𝑥3))

𝑃 = 𝑚𝑎𝑥 (0,

𝑧
𝑧𝑐𝑜𝑛𝑡𝑎𝑐𝑡

− 𝛽

1 − 𝛽
) . 105. 𝑥1

 (1) 

 

The wet friction clutch model is decomposed according to 

the three torque phases of Fig. 4. The initial torque phase is 

the phase where the friction plates are not yet in contact but as 

there is oil between them, some torque is transferred between 

input and output shafts. This phase is modeled based on 

planar Couette flow assumption and leads to the equation 

below,  

 

𝐽𝑜.
𝑑ω

𝑑𝑡
=
γ

𝑧
. (ω − Ω) (2) 

 

where 𝐽𝑜 and ω are the inertia and speed of the output shaft, 𝑧 

is the distance between the friction plates, Ω is the speed of 

input shaft and γ is a constant that captures the geometry of 

the plates and the fluid viscosity. The slipping phase is the 

one where the plates enter in contact. This is modeled as it 

would be assumed for a dry friction clutch, 

 

{
 
 
 
 

 
 
 
 

𝐽𝑖 . Ω̇ = −𝑏𝑖𝑣. Ω − 𝑇𝑖𝑐 − 𝑓𝑟𝑒𝑔. α. 𝑃

+ω𝑚
2 .
𝑓𝑠𝑡𝑇𝐶 (

Ω
ω𝑚

)

𝑓𝑠𝑘𝑇𝐶 (
Ω
ω𝑚

)
2 − (1 − 𝑓𝑟𝑒𝑔).

γ

𝑧𝑐𝑜𝑛𝑡𝑎𝑐𝑡 − 𝑧
. (ω −

1

𝑔𝑟
Ω)

𝐽𝑜. ω̇ = −𝑏𝑜𝑣. ω − 𝑇𝑜𝑐

+𝑓𝑟𝑒𝑔. 𝑔𝑟. α. 𝑃 + (1 − 𝑓𝑟𝑒𝑔).
𝑔𝑟. γ

𝑧𝑐𝑜𝑛𝑡𝑎𝑐𝑡 − 𝑧
. (ω −

1

𝑔𝑟
Ω)

 (3) 

 

In the sticking phase, plates are in contact, input and output 

shaft speeds become equal and as soon as the required torque 

is not too high, the transferred torque becomes oil pressure 

independent, 

 

𝐽𝑖 +
𝐽𝑜
𝑔𝑟
2
. Ω̇ = −𝑏𝑖𝑣 . Ω − 𝑇𝑖𝑐  

+ω𝑚
2 .

𝑓𝑠𝑡𝑇𝐶 (
Ω
ω𝑚

)

𝑓𝑠𝑘𝑇𝐶 (
Ω
ω𝑚

)
2 −

1

𝑔𝑟
2.
𝑏𝑜𝑣 . Ω −

1

𝑔𝑟
. 𝑇𝑜𝑐  

(4) 
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The equations are implemented in MATLAB and solved 

using a solver for nonstiff differential equations (ode45). 

C. Experimental Vs. Deterministic Simulation Results 

The model contains parameters such as viscous friction 

coefficients, Coulomb friction coefficients that were 

identified using specific experiments in steady state. Inertias 

were estimated based on known masses, materials and 

geometry approximations. Other parameters, such as current 

bias, gain & delay, oil temperature, pressure bias for position 

computation, clutch friction coefficient and initial piston 

position cannot be measured and are considered as uncertain. 

As a first approximation, these parameters are fitted by 

nonlinear least-squares using the experimental results. A 

comparison between the experimental and the simulation 

results can be found on Fig. 5. The difference between 

experimental and simulation results Δ𝑡 is the one on Fig. 5. 

As mentioned in the previous paragraphs, the oil temperature 

can hardly be measured and there is no piston position sensor 

on our setup. The lack of knowledge of these dynamics is a 

source of uncertainty that the method proposes to quantify. 

To reduce the influence of oil temperature dynamics, all 

experiments were performed after a warm-up of the machine 

that guarantees some identical initial conditions in terms of 

temperature. It is an assumption that the uncertainty of the 

model is of only parametric nature. Future work will 

investigate how to include model structure uncertainty as 

well. 

 

III. PARAMETRIC UNCERTAINTY QUANTIFICATION 

The parametric uncertainty quantification is done 

accordingly to the approach of Fig.1. To verify the approach, 

the results will be compared to a densely sampled quasi 

Monte-Carlo (for the propagation) and exhaustive grid search 

(that maximizes likelihood) that we call "classic" throughout 

the rest of the paper. This classic approach allows to brute 

force the solution and can be very effective when the number 

of uncertain parameters is not too high or the computational 

cost of evaluating the model is very low. The proposed 

approach in this paper allows to overcome those two 

limitations. The main originality being that for such class of 

problems PCEs are applied for the propagation of parametric 

probabilistic uncertainty. This section presents some theory 

about PCEs and the validation of the proposed approach on 

the wet friction clutch model described in the previous 

section. 

A. Propagation Using Polynomial Chaos Expansions 

As determined by the architecture in Fig. 1, we require an 

efficient means to quantify the probability that performance, 

𝑦𝑖 , of experiment 𝑖, as obtained through simulation, takes the 

same value as the experimentally measured performance, 𝑎𝑖, 
and that for a specified input uncertainty. Mathematically, we 

desire to evaluate the conditional output probability density 

function, 𝑝𝑌𝑖(𝑎𝑖|β), 𝑤ℎ𝑒𝑟𝑒  is a parameter set that fully 

determines the input uncertainty. 

To that end we will engage the Polynomial Chaos 

Expansion (PCE) framework [15]. The PCE framework 

offers an efficient and accurate tool to quantify and propagate 

uncertainty in nonlinear context and is found computationally 

superior over brute force Monte Carlo (MC) approaches. The 

propagation of input uncertainty to the output space is 

realized by modelling the explicit forward deterministic 

model through a polynomial series expansion in function of 

the random parameters. When the polynomial basis functions 

are chosen to be orthonormal w.r.t. the input probability 

distribution, optimal approximation conditions are 

established to propagate uncertainty to the output space for 

that specific input distribution [15]. Numerical details are 

given next. 

According to the framework, any sufficiently smooth 

forward model 𝑦(⋅)  can be represented as an infinite 

polynomial series expansion [16]. 

 

y(𝑥) =∑𝑐𝑖ϕ𝑖(𝑥)

∞

𝑖=0

⟶ 𝑦(𝑑)(𝑥) =∑𝑐𝑖ϕ𝑖(𝑥)

𝑛𝑝

𝑖=0

 (5) 

 

Here 𝑐𝑖 represent the polynomial coefficients and ϕ𝑖(⋅) a 

range of polynomial basis functions that can be used to write 

any polynomial. For practical purposes we consider the 𝑛𝑑-th 

order approximation, 𝑦(𝑑)(⋅), that is obtained by omitting any 

higher order polynomials from the series expansion and thus 

omitting any polynomial basis function ϕ𝑖(⋅) of order > 𝑛𝑑. 

When the basis is ordered properly this corresponds with 

truncating the series after the 𝑛𝑝-th term. The latter value is 

determined by the polynomial order, 𝑛𝑑 , and the input 

dimension, 𝑛𝑥 , as 𝑛𝑝 =
(𝑛𝑑+𝑛𝑥)!

𝑛𝑑!𝑛𝑥!
. The polynomial order 

required to represent a given forward model accurately, is 

determined by the model's nonlinearity and input dimension. 

Exact error bounds in function of the polynomial order are 

given in [17]. The error vanishes for 𝑑 →∞. 

Now consider that the input parameter 𝑥 corresponds with 

a stochastic variable 𝑋. We are interested in quantifying the 

stochastic behaviour of the output variable 𝑌 = 𝑦(𝑋) . As 

mentioned, 𝑦(𝑑)(⋅)  is suited optimally to quantify the 

uncertainty propagation to the output space when the 

polynomials are orthonormal w.r.t. the probability 

distribution of 𝑋. A polynomial basis is orthonormal with 

respect to the arbitrary probability distribution 𝑝𝑋(⋅) when 

the following condition holds, here 𝒳 represents the value set 

of the input uncertainty. 

⟨ϕ𝑖 , ϕ𝑗⟩ = ∫ ϕ𝑖(𝑥)ϕ𝑗(𝑥)𝑝𝑋(𝑥)d𝑥
𝒳

 

Several standard probability distributions are associated to 

known univariate orthonormal polynomial bases by the 

Wiener-Askey scheme [15], Table I. A multivariate 

orthonormal basis is easily constructed from a set of 

univariate orthonormal bases under the sole assumption that 

the stochastic input variables are independent. How to 

construct such a basis is detailed in appendix. 

In this work two random input variables are considered, 

and it is assumed that both are distributed normally. Hence, 

we can express these two input variables as a linear 

transformation of the standard normal random variables, 𝜃1 

and 𝜃2 . According to the Wiener-Askey scheme, the 

multivariate Hermite polynomials, 𝐻𝑖 , are optimal to 

construct the polynomial series (see appendix). Remark that 

the forward model then becomes a function of the standard 
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normal random variable, 𝜃 , invoking the transformation, 

𝑥(θ|β) , that is fully determined by the parameter, 𝛽 =
(𝜇1, 𝜇2, 𝜎11, 𝜎22, 𝜎12).

1 

 

x(θ|β) = [
𝑥1
𝑥2
] = [

μ1
μ2
] + [

σ11 σ12
σ21 σ22

] [
θ1
θ2
] ; θ1, θ2 ∼ 𝒩(0,1) 

 

The coefficients, 𝑐𝑖(β), in function of the transformation 

parameters are calculated by projection of the forward model 

on the polynomial space exploiting the inner product 

definition. Remark that indeed all other terms vanish due to 

the orthonormality of the multivariate Hermite polynomials, 

𝐻𝑖(⋅) , w.r.t. the multivariate normal distribution, φ(⋅) 
(consult appendix for details). 

 

𝑐𝑖(β) = ⟨𝑦(𝑥(⋅ |β)), 𝐻𝑖⟩ = ∫𝑦(𝑥(θ|β))𝐻𝑖(θ)φ(θ)dθ
Θ

 

(6) 
 ≈∑𝑦(𝑥(θ𝑗|β))𝐻𝑖(θ𝑗)𝑤𝑗

𝑛𝑞

𝑗=1

 

 

In this work quadrature rules were used to approximate the 

resulting integral. A quadrature rule is determined by a 

number of collocation points 𝜃𝑗 and collocation weights 𝑤𝑗 . 

A unique optimal quadrature rule is associated to each 

polynomial basis covered by the Wiener-Askey scheme [17]. 

For one dimensional input dimension a quadrature set of 𝑛𝑞 

points is exact for polynomials up to degree 2𝑛𝑞 − 1. Hence 

the quadrature order determines the number of coefficients 

that can be retrieved correctly and therefor the accuracy of 

the polynomial approximation. For multivariate input, full 

tensor products can be used. We wish to emphasize that 

characterization of the expansion in (5) still requires to 

perform a total of 𝑛𝑞 forward model evaluations. In general, 

however, the number of collocation points required to 

optimally approximate the forward model is far less than the 

number of MC samples that is required to accurately quantify 

the output uncertainty, justifying the computational 

efficiency of PCE over MC.  

In conclusion, recall that we were interested in the 

conditional output density function with respect to the 

transformation parameters 𝛽 . In order to evaluate the 

probability density function of the output variable, a number 

of MC simulations can be performed on the polynomial in (5) 

using the coefficients obtained by (6), therefor omitting any 

further direct evaluations of the forward model. 
 

TABLE I: WIENER-ASKEY POLYNOMIAL CHAOS 

distribution polynomials support 

Gaussian Hermite [−∞,∞] 
Gamma Laguerre [0,∞] 

Beta Jacobi [−1,1] 
Uniform Legendre [−1,1] 

 

B. Application and Numerical Results 

To validate the proposed approach, see Fig. 1, it is applied 

to the wet friction clutch model presented in Section 2. As 

previously stated, the model contains 7 uncertain parameters 

but as a first step, only 2 uncertain parameters are considered: 

pressure bias and initial piston position. To vary those two 

uncertain parameters, nominal pressure bias is multiplied by 

 
1 When neglecting input correlation, we can disregard σ12 by definition. 

𝑥1 and nominal initial piston position by 𝑥2. To avoid the cost 

of repeating computations of the model several times, the 

model performance (shifting time from neutral to 1st gear) is 

stored in a look-up table for 50 × 50 variations of 𝑥1 × 𝑥2 

between 0.5 and 1.5 for the 216 experimental conditions. The 

540k simulations are ran on a supercomputer and stored in a 

lookup table that replaces the model block in the approach 

Fig. 1. Future work will also investigate the use of surrogate 

models to replace, when relevant, this step of the approach. 

It is assumed that the two uncertain parameters are normally 

distributed, but other distributions could have been chosen 

without any loss of generality; the impact on the PCE would 

be on the kind of polynomials to be used [5]. 

 

 
Fig. 6. Quantified uncertainty on inputs. 

 

For a given input multivariate normal distribution of 𝑥𝑖, 
the propagation through the model and the addition of an 

additive output uncertainty term (zero mean Gaussian) allows 

to obtain a performance probability distribution. Covariance 

terms were removed as they appeared to have no significant 

effect in this case. The likelihood of the given uncertainty 

(μ𝑥1 , μ𝑥2 , σ𝑥1 , σ𝑥2 , σ𝑜𝑢𝑡𝑝𝑢𝑡) is then computed as the product 

of the probability of the simulation model to be the 

experimentally measured performance (Δ𝑡𝑖 from data) for the 

𝑖𝑡ℎ experimental scenario, 

 

𝐿(μ, σ) =∏𝑝(𝑌𝑖 = Δ𝑡𝑖|μ, σ)

216

𝑖

  （7） 

 

The higher 𝐿(𝜇, 𝜎) is, the more the simulation results are 

likely to represent the data obtained experimentally. In the 

classic approach, the maximization of 𝐿  is found by 

evaluating the likelihood of a very large number of 

combinations of means and variances. The maximum 

decimal log-likelihood is -269 and is plotted on Fig. 6. For a 

given uncertainty structure, this is the best result that can be 

found, and it is used as a benchmark of the proposed 

approach. The figure 6 shows the region of 𝑥𝑖 's that best fits 

the data. Since 𝑥2's mean is close to 1, the nominal parameter 

appears to be an acceptable approximation. The probability 

density functions for all experiments are presented on Fig. 7 

including the experimental results (black dots). 

In comparison, the proposed approach gives an 

approximation of the previous solution. The maximum 

decimal log-likelihood is found to be -273. An important 

downside of the approach is it cannot achieve the exact same 

performance as the brute force approach. This is due to the 

fact PCEs introduce a model approximation and that a GA is 

used to replace the grid search which cannot guarantee the 

solution is a global optimum. However, the so-called classic 
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brute force approach is not scalable with the number of 

uncertain parameters due to its computational cost.  

For the proposed approach, the grid search of uncertain 

inputs is replaced by a genetic algorithm that dramatically 

reduces the number of necessary model evaluations. In 

addition, the PCEs accelerate the propagation of uncertain 

parameters and leads to an interesting solution, see Fig. 6. 
 

TABLE II: COMPUTATIONAL COST OF EACH METHOD PERFORMED ON A 

DESKTOP PC (8XCORE I7-6900K - 128 GB RAM) 
Method Computational cost 

Classic: quasi Monte-Carlo + grid search ≈ 277 hours 

Proposed: PCEs + GA ≈ 1.65 hours 

 

Due to the low cost of the computation, see Table II, 

scalability is a great potential of the method. In future work, 

the accuracy of the result Fig. 6 could be improved by 

refining the search method after this initial solution. 

 
Fig. 7. Simulation performance probability versus measured performance 

 

IV. CONCLUSIONS AND FUTURE WORK 

An approach using Polynomial Chaos Expansions for the 

propagation, and a Genetic Algorithm for the selection of the 

uncertainty structure parameters, is presented to quantify the 

sufficient parametric uncertainty a given model should 

include in order to explain experimental results. It is 

illustrated by applying it to the complex problem of 

predicting the shifting time of an automatic wet friction 

clutch system. The method is validated by comparing the 

obtained solution to the one obtained by brute forcing the 

problem. The results show the method gives an 

approximation of the solution at a very interesting 

computational cost. The proposed approach has therefore a 

great potential of scalability with respect to the number of 

uncertain parameters. 

Future work will investigate the inclusion of not only 

parametric but also model structure uncertainty. 

APPENDIX  

Hermite Polynomials and Multivariate Bases 

The univariate Hermite polynomials, 𝐻𝑖(⋅), are orthogonal 

w.r.t. to the univariate standard normal distribution, 𝒩(0,1), 
wich probability density function is given by φ(θ) =

√2π−1𝑒
−θ2

2 . In the main text we mentioned that the Hermite 

polynomials are orthonormal meaning that the inner product 

not only vanishes when applied on different Hermite 

polynomials but also normalizes when applied on the same 

Hermite polynomials. Note that within a normalization factor 

both definitions are equal and hence we opted merely to 

mention the normalized version so to ease the readability of 

the section. It follows that 

 

⟨𝐻𝑖 , 𝐻𝑗⟩ = ∫ 𝐻𝑖(θ)𝐻𝑗(θ)
1

√2π
𝑒
−θ2

2
d

∞

−∞

θ = δ𝑖𝑗 

 

In the univariate case a basis, 𝐻1
𝑛𝑑 , for the univariate 

polynomial space of at most degree 𝑛𝑑 is spanned by the first 

𝑛𝑑 + 1 Hermite polynomials, {𝐻0, … , 𝐻𝑛𝑑}. By construction 

this basis is orthogonal w.r.t. the univariate standard normal 

distribution. A basis, 𝐻𝑛θ
𝑛𝑑 , for the 𝑛θ -variate polynomial 

space of at most degree 𝑛𝑑  can be generated from the 𝑛θ 

univariate bases, 𝐻1
𝑛𝑑 . The basis vectors are defined as 

𝐻|𝑖|≤𝑛𝑑 = ∏ 𝐻𝑖𝑘(θ𝑘)
𝑛θ
𝑘=1 , with multi-index 𝑖 = (𝑖1, ⋯ , 𝑖𝑛θ) 

and where |𝑖| = ∑ 𝑖𝑘
𝑛θ
𝑘=1 . For notational convenience we 

further exploit the bijection that exists between the 

multi-indices 𝑖 that satisfy |𝑖| ≤ 𝑛𝑑  and the integer index 𝑖 

taking values in (1,… ,
(𝑛θ+𝑛𝑑)!

𝑛θ!𝑛𝑑!
). Remark that this basis is 

indeed orthogonal w.r.t. the multivariate standard normal 

distribution, defined as φ(θ) = ∏ φ(θ𝑘)
𝑛θ
𝑘=1 . 

 

⟨𝐻𝑖 , 𝐻𝑗⟩ =∏∫ 𝐻𝑖𝑘(θ)𝐻𝑗𝑘(θ)φ(θ𝑘)dθ𝑘

∞

−∞

𝑛θ

𝑘=1

=∏δ𝑖𝑘𝑗𝑘

𝑛θ

𝑘=1

= δ𝑖𝑗  
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