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Abstract— Nowadays, the Internet of Things (IoT) continues
to expand at enormous rates. Smart Cities powered by connected
sensors promise to transform public services from transportation
to environmental monitoring and healthcare to improve citizen
welfare. Furthermore, over the last few years, Fog Computing
has been introduced to provide an answer to the massive growth
of heterogeneous devices connected to the network. Nevertheless,
providing a proper resource scheduling for delay-sensitive and
data-intensive services in Fog Computing environments is still a
key research domain. Therefore, in this paper, a network-aware
scheduling approach for container-based applications in Smart
City deployments is proposed. Our proposal has been validated
on the Kubernetes platform, an open source orchestrator for
the automatic management and deployment of micro-services.
Our approach has been implemented as an extension to the
default scheduling mechanism available in Kubernetes, enabling
Kubernetes to make resource provisioning decisions based on the
current status of the network infrastructure. Evaluations based
on Smart City container-based applications have been carried out
to compare the performance of the proposed scheduling approach
with the standard scheduling feature available in Kubernetes.
Results show that the proposed approach achieves reductions of
80% in terms of network latency when compared to the default
scheduling mechanism.

Index Terms—Smart Cities, IoT, Fog Computing, Resource
Provisioning, Kubernetes

I. INTRODUCTION

Recently, the Internet of Things (IoT) has been reshaping
our cities by transforming objects of everyday life into smart
devices. These devices are revolutionizing different domains
of urban life, such as public transportation, street lighting
and environmental monitoring. According to [1], the num-
ber of Low-Power Wide-Area Network (LPWAN) devices is
expected to grow from less than 1 percent in 2016 to 8.9
percent by 2021, from 58 million devices in 2016 to over
1 billion by 2021, which will inevitably lead to a need for
change in our current cloud infrastructure. To meet these
requirements, Fog Computing [2] is emerging as a distributed
cloud solution to meet the future demand of IoT applications
[3]. It provides nearby resources to end devices to perform
real-time processing, data analytics operations and storage
procedures overcoming the limitations of traditional central-
ized cloud infrastructures. Waste management platforms, real-
time video streaming and smart transportation systems are
already envisioned Smart City scenarios [4]. Nevertheless, Fog
Computing is still in its early stages thus research challenges in
terms of resource provisioning and service scheduling persist.

In fact, setting up a proper infrastructure to serve billions
of IoT devices and their applications, in real-time, without
dismissing the importance of energy efficiency, bandwidth
usage and geographic distribution is still a challenge to be
addressed [5], [6].

Container-based micro-services are currently revolutioniz-
ing the way developers build their applications [7]. An applica-
tion is decomposed in a set of lightweight containers deployed
across a large number of servers instead of the traditional
single monolithic application. Each micro-service is developed
and deployed separately, without compromising the applica-
tion life-cycle. Currently, containers are the de facto alterna-
tive to the traditional Virtual Machines (VMs), due to their
high portability and low resource usage. Furthermore, with
their wide adoption, multiple orchestration solutions are being
developed by IT companies and open-source communities.
Among them, the most widely used today is called Kubernetes
[8]. Kubernetes is an open-source orchestration platform for
automatic deployment, scaling, and management of container-
ized applications. Although containers already provide a high
level of abstraction, they still need to be properly managed,
specifically in terms of resource scheduling, load balancing
and server distribution, and this is where integrated solutions
like Kubernetes come into their own [9]. Kubernetes simpli-
fies the deployment of reliable, scalable distributed systems
by managing their complete life-cycle work-flow. Although
Kubernetes already supports policy-rich and topology-aware
features, the service scheduling merely takes into account the
number of requested resources on each host, which is rather
limited when dealing with IoT-based services. Therefore, in
this paper, a network-aware approach is presented to provide
up-to-date information about the current status of the network
infrastructure to enable Kubernetes to make more informed
resource allocation decisions. Our approach has been designed
and implemented as an extension to the default scheduling
mechanism available in Kubernetes. Finally, evaluations have
been performed to validate our proposal, specifically for
container-based Smart City applications. The performance of
our approach has been compared with the standard scheduling
feature present in Kubernetes.

The remainder of the paper is organized as follows. In the
next Section, related work is discussed. Section III introduces
the Kubernetes architecture and its scheduling functionality.
In Section IV, the proposed network-aware scheduling is



presented. Then, in Section V, the evaluation approach is
described which is followed by the evaluation results in
Section VI. Finally, conclusions are presented in Section VIIL.

II. RELATED WORK

A handful of research efforts has been already performed in
the context of resource provisioning for cloud environments.
In [10], the problem of scheduling container-based micro-
services over multiple VMs has been addressed. Their ap-
proach focused on reducing the overall turnaround time and
the total traffic generated for the complete end-to-end service.
In [11], a rank scheduling approach has been presented. It
focuses on optimizing the resource usage by sorting each
task based on its computational need. Furthermore, in [12],
an adaptive approach for dynamic resource provisioning in
the cloud based on continuous reinforcement learning has
been discussed. Their approach considered the uncertainty
present in the cloud market, where each interaction between
different cloud providers can have an impact on attracting and
maintaining customers.

In recent years, resource provisioning research specifically
tailored to IoT and Smart Cities has been carried out. In [13],
an approach for the prediction of future resource demands in
terms of service usage and Quality of Service (QoS) in the
context of multimedia IoT devices has been presented. More-
over, in [14], a programming infrastructure for the deployment
and management of IoT services has been discussed. The
proposal includes migration mechanisms for the reallocation of
services between multiple Fog nodes. In [15], several container
orchestration technologies have been evaluated to measure
the performance impact of running container-based micro-
services in Fog nodes. In [16], a model for the deployment
of IoT applications in Fog Computing scenarios has been
presented and implemented as a prototype called FogTorch.
The proposal focused on fulfilling not only hardware and
software demands but also QoS requirements, such as network
latency and bandwidth.

Although the existing and ongoing research cited address
resource provisioning issues present in Cloud and Fog Com-
puting environments, they have not yet delivered an integrated
solution since most research has been focused on theoreti-
cal modeling and simulation studies. The proposed network-
aware approach in this paper builds further on [17], where
a resource provisioning Integer Linear Programming (ILP)
model for the IoT service placement problem in Smart Cities
has been presented. The ILP formulation takes into account
not only cloud requirements but also wireless constraints
while optimizing IoT services for network latency, energy
efficiency and bandwidth usage. Solutions implemented in our
earlier work have been implemented as an extension to the
scheduler feature already present in the Kubernetes platform.
Our approach allows the Kubernetes scheduler to make more
informed resource allocation decisions based on up-to-date
information about the current network status. To the best of our
knowledge, our approach goes beyond the current state-of-the-
art by extending the Kubernetes platform with network-aware

scheduling mechanisms for the proper provisioning of IoT-
based services. Performance evaluations based on container-
based Smart City services have been carried out to compare
our approach with the standard scheduling feature present in
Kubernetes.

III. KUBERNETES: EMPOWERING ORCHESTRATION OF
SMART CITY APPLICATIONS

This section introduces the Kubernetes orchestration plat-
form. First, the Kubernetes architecture and main concepts are
presented. Then, the scheduling functionality of Kubernetes is
discussed.

A. Kubernetes Architecture

The Kubernetes architecture is shown in Fig. 1. The ar-
chitecture follows the master slave model, where at least one
master node manages Docker [18] containers across multiple
worker nodes (slaves). These worker nodes can be local phys-
ical servers and VMs or even public and private clouds. The
Master is responsible for exposing the Application Program
Interface (API) server, scheduling the service deployments
and managing the overall cluster. The API server is imple-
mented through a RESTFul interface, which provides an entry
point to control the entire Kubernetes cluster. Users can send
commands to the API server through the built-in Kubernetes
Command Line Interface (CLI), known as kubectl. Etcd is
a key-value pair distributed data storage used for service
discovery, coordination of resources and sharing cluster con-
figurations. Etcd allows the other components to synchronize
themselves based on the desired state of the cluster. Scheduled
jobs, created and deployed micro-services, namespaces and
replication information are examples of data stored in Etcd.
Furthermore, the Kubernetes node agent known as Kubelet is
responsible for recognizing discrepancies between the desired
state and the actual state of the cluster. When this happens,
Kubelet launches or terminates the necessary containers to
reach the desired state described by the API server. Kubelet
runs on each node of the cluster and is also responsible for
reporting events, resource usage, among others. Then, the
Controller Manager is responsible for monitoring Etcd and the
overall state of the cluster. If the state of the system changes,
the Controller Manager communicates the desired state of the
system through the API server.

Micro-services in Kubernetes are often tightly coupled
forming a group of containers. This group is the smallest work-
ing unit in Kubernetes, which is called a pod. A pod represents
the collection of containers and volumes (storage) running in
the same execution environment [9]. The containers inside a
pod share the same IP Address and port space (namespace).
Containers in different pods are isolated from one another
since they own different IP addresses, different hostnames, etc.
The main limitation is that two services listening on the same
port cannot be deployed inside the same pod. Based on the
service requirements and on the available resources, the master
schedules the pod on a specific node. Then, the assigned node
pulls the container images from the image registry if needed
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Fig. 1: High-level view of the Kubernetes Architecture.

and coordinates the necessary operations to launch the pod.
The scheduling operation of assigning a node of the cluster to
each pod is performed by the Kube-scheduler (KS). The KS is
the default scheduling component in the Kubernetes platform,
which is responsible for deciding where a specific pod should
be deployed. The KS operations are further detailed in the next
section.

B. Kube-Scheduler (KS) - Scheduling features on Kubernetes

The KS decision making process is shown in Fig. 2. Every
pod needing allocation is added to a waiting queue, which
is continuously monitored by the KS. If a pod is added to
the waiting queue, the KS searches for a suitable node for the
deployment based on a two step process. The first step is called
node filtering, where the KS verifies which nodes are capable
of running the pod by applying a set of filters, also known
as predicates. The purpose of filtering is to solely consider
nodes meeting all specific requirements of the pod further in
the scheduling process. The second operation is named node
priority calculation, where the KS ranks each remaining node
to find the best fit for the pod provisioning based on one or
more scheduling algorithms, also called priorities. The KS
supports the following predicates [8]:

1) PodFitsResources: If the free amount of resources

(CPU and memory) on a given node is smaller than
the one required by the pod, the node must not be

Pods to be scheduled: . . Pod . - ‘Pod‘ . @
For a given pod: .

Worker1 Worker 2 Worker 3 Worker 4 Worker 5
Possible Nodes:

Filtering

I e Worker 3 doesn't have enough resources; i
I e Volume conflicts in Worker 2; |

Worker 1 Worker 4 Worker 5

I N

Remaining Nodes:

o Worker1:p=3 Priority

§ o Worker 4:p=2 i
i eWorker5:p=5 |

Select max{node priority} = Worker 5

Fig. 2: The Scheduling procedure of the Kube-Scheduler.
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further considered in the scheduling process. Therefore,
the node is disqualified.

NoDiskConflict: This predicate evaluates if a pod can
fit due to the volumes it requests, and those that are
already mounted.

NoVolumeZoneConflict: This predicate checks if the
volumes a pod requests are available through a given
node due to possible zone restrictions.
PodFitsHostPorts: For instance, if the pod requires to
bind to the host port 80, but another pod is already
using that port on the node, this node will not be a
possible candidate to run the pod and, therefore, it will
be disqualified.

CheckNodeMemoryPressure: This predicate checks if
a pod can be allocated on a node reporting memory
pressure condition. Currently, Best Effort pods should
not be placed on nodes under memory pressure, since
they are automatically deassigned from the node.
CheckNodeDiskPressure: This predicate evaluates if a
pod can be scheduled on a node reporting disk pres-
sure condition. Pods can currently not be deployed on
nodes under disk pressure since they are automatically
deassigned.

MatchNodeSelector (Affinity/Anti-Affinity): By using
node selectors (labels), it is possible to define that a
given pod can only run on a particular set of nodes with
an exact label value (node-affinity), or even that a pod
should avoid being allocated on a node that has already
certain pods deployed (pod-anti-affinity). These rules
can be created by declaring Tolerations in the pod con-
figuration files to match specific node Taints. Essentially,
affinity rules are properties of pods that attract them to a
set of nodes or pods while taints allow nodes to repel a



given set of pods. Taints and tolerations ensure that pods
are not deployed into inappropriate nodes. Both are im-
portant mechanisms to fine-tune the scheduling behavior
of Kubernetes. Node selectors provide a flexible set of
rules, on which the KS bases its scheduling decision
by filtering specific nodes (node affinity/anti-affinity), by
preferring to deploy certain pods close or even far away
from other pods (pod affinity/anti-affinity), or just on
node labels favored by the pod (taints and tolerations).

By using these predicates, the KS knows in advance which
nodes are not suitable for the pod deployment, thus it will
remove those from the list of possible candidates. On one
hand, after completion of the filtering process, finding no
capable nodes for the pod deployment is always a possibility.
In that case, the pod remains unscheduled and the KS triggers
an event stating the reason for the failed deployment. On the
other hand, if several candidates are retrieved after completion
of the filtering operation, the KS triggers the node priority
calculation. The node priority calculation is based on a set of
priorities, where each remaining node is given a score between
0 and 10, 10 representing “perfect fit” and 0 meaning “worst
fit”. Then, each priority is weighted by a positive number
depending on the importance of each algorithm and the final
score of each node is calculated by adding up all the weighted
scores [8]. The highest scoring node is chosen to run the pod.
If more than one node is classified as the highest scoring node,
then, one of them is randomly selected. The KS supports the
following priorities:

1) LeastRequestedPriority: The node is scored according
to the fraction of CPU and memory (free/allocated). The
node with the highest free fraction is the most preferred
for the deployment. This priority function spreads the
pods across the cluster based on resource consumption.

2) MostRequestedPriority: This priority algorithm is the
opposite of the one above. The node with the highest
allocated fraction of CPU and memory is the most
preferred for the deployment.

3) BalancedResourceAllocation: This priority function
ranks nodes based on the cluster CPU and Memory
usage rate. The purpose is to balance the resource
allocation after the pod provisioning.

4) SelectorSpreadPriority: This priority algorithm tries to
minimize the number of deployed pods belonging to the
same service on the same node or on the same zone/rack.

5) CalculateAntiAffinityPriority: This priority function
scores nodes based on anti-affinity rules. For instance,
spreading pods in the cluster by reducing the same
number of pods belonging to the same service on nodes
with a particular label.

6) NodeAffinityPriority: In this case, nodes are ranked
according to node-affinity rules. For instance, nodes with
a certain label are scored higher than others.

7) InterPodAffinityPriority: This priority algorithm
scores nodes based on pod affinity rules. For example,
nodes with certain pods already allocated are scored

higher since it is preferred to deploy the given pod
close to these pods.

8) ImageLocalityPriority: Remaining nodes are ranked
according to the location of the requested pod container
images. Nodes already having the requested containers
installed are scored higher.

9) TaintTolerationPriority: This priority function scores
nodes based on their taints and the correspondent tolera-
tions declared in the pod configuration files. Remaining
nodes are preferred according to the fewer number of
intolerable taints on them for the given pod.

Predicates are evaluated to dismiss nodes that are incapable
of running the given pod while priorities are designed to
rank all the remaining nodes that can deploy the pod. For
example, given a pod which requires half a core (0.5) CPU,
the PodFitsResources predicate returns False for a node which
only has 400 millicpu free. Furthermore, for the same pod,
the LeastRequestedPriority priority ranks a node which has
2.5 CPU cores free higher than one which has only 600 mil-
licpu left, even though both nodes can accommodate the pod
(assuming they have the same CPU capacity). Additionally, it
should be noted that the KS searches for a node for each pod,
one at a time. The KS does not take into account the remaining
amount of pod requests still waiting for deployment. After the
scheduling decision is made, the KS informs the API server
indicating where the pod must be scheduled. This operation is
called Binding.

Another important feature of Kubernetes is resource re-
quests and limits. Developers should specify resource requests
and limits on the pod configuration files. A resource request
is the minimum amount of resources (CPU and/or memory)
needed by all containers in the pod while a resource limit is
the maximum amount of resources that can be allocated for
the containers in a pod. Pods can be categorized in three QoS
classes depending on resource requests and limits:

1) Best Effort (lowest priority): A Best Effort pod has
neither resource requests or limits on its configuration
files for each of its containers. These pods are the first
ones to get killed in case the system runs out of memory.

2) Burstable: A Burstable pod has all containers with
resource requests lower than their resource limits. If a
container needs more resources than the ones requested,
the container can use them as long as they are free.

3) Guaranteed (highest priority): A guaranteed pod has
resource requests for all its containers equal to the
maximum resource needs that the system will allow the
container to use (resource limit).

When pods have specified resources requests, the KS can
provide better decisions in terms of scheduling and when pods
have described resource limits, resource contention can be
handled properly [19]. When several containers are running on
the same node, they compete for the available resources. Since
container abstraction provides less isolation than VMs, sharing
physical resources might lead to a performance degradation
called resource contention. These rules enable Kubernetes to



properly manage cluster resources. However, developers still
need to properly set up these resource requests and limitations,
because containers often do not use the entire amount of
resources requested which leads to wasted resources. For
instance, 6 pods have been deployed and each one is requesting
1Gb of RAM in a node with 6GB RAM capacity, but each
pod only uses 500 MB of RAM. The KS could allocate more
pods into that node, but due to the incorrect resource requests,
it will never schedule.

IV. NETWORK-AWARE SCHEDULING EXTENSION IN
KUBERNETES

Although the KS provides flexible and powerful features,
the metrics applied in the decision making process are rather
limited. Only CPU and RAM usage rates are considered in the
service scheduling while latency or bandwidth usage rates are
not considered at all. When IoT or Smart City environments
are considered, latency restrictions are highly challenging
since delay-sensitive applications, involving connected vehi-
cles and disaster monitoring should react to dynamic changes
in the order of milliseconds. If the threshold is exceeded, the
service can become unstable, action commands may arrive too
late and control over the service is lost. Therefore, it is crucial
to ensure that the service is deployed on a node capable of
providing low response times in the communication.

Another constraint is bandwidth. Even when the compu-
tational resources can handle all user requests, bandwidth
limitations may cause network congestion and even service
disruptions, which could eventually lead to service inter-
ruptions. As not all QoS levels can be maintained during
these events, proper resource scheduling is needed for Fog
Computing environments. A suitable provisioning approach
must consider multiple factors, such as the applications’
specific requirements (CPU and memory), the state of the
infrastructure (hardware and software), the network status
(link bandwidth and latency), among others. Thus, this paper
proposes a network-aware scheduling extension to Kubernetes,
which provides up-to-date information about the current status
of the network infrastructure. Kubernetes describes three ways
of extending the KS:

1) Adding new predicates and/or priorities to the KS and

recompiling it.

2) Implementing a specific scheduler process that can run
instead of or alongside the KS.

3) Implementing a “scheduler extender” process that the
default KS calls out as a final step when making
scheduling decisions.

The third approach is particularly suitable for use cases
where scheduling decisions need to be made on resources not
directly managed by the standard KS. The proposed network-
aware scheduler has been implemented based on this third
approach, since information on the current status of the net-
work infrastructure is not available throughout the scheduling
process of the KS. Essentially, when the KS tries to schedule
a pod, the extender call allows an external process to filter
and/or prioritize nodes. Two separate calls are issued to the

TABLE I: The RTT labels of our Fog Computing infrastructure

Node RTT-A | RTT-B RTT-C | RTT-D | RTT-E

Master 32 ms 32 ms 32 ms 32 ms 4 ms
Worker 1 64 ms 64 ms 4 ms 14 ms 32 ms
Worker 2 64 ms 64 ms 4 ms 14 ms 32 ms
Worker 3 64 ms 64 ms 4 ms 14 ms 32 ms
Worker 4 4 ms 14 ms 64 ms 64 ms 32 ms
Worker 5 4 ms 14 ms 64 ms 64 ms 32 ms
Worker 6 4 ms 14 ms 64 ms 64 ms 32 ms
Worker 7 64 ms 64 ms 14 ms 4 ms 32 ms
Worker 8 64 ms 64 ms 14 ms 4 ms 32 ms
Worker 9 64 ms 64 ms 14 ms 4 ms 32 ms
Worker 10 14 ms 4 ms 64 ms 64 ms 32 ms
Worker 11 14 ms 4 ms 64 ms 64 ms 32 ms
Worker 12 14 ms 4 ms 64 ms 64 ms 32 ms
Worker 13 32 ms 32 ms 32 ms 32 ms 4 ms
Worker 14 32 ms 32 ms 32 ms 32 ms 4 ms

extender, one for filtering and one for prioritizing actions. The
arguments passed on to the FilterVerb endpoint consist of the
set of nodes filtered through the KS predicates and the given
pod while the arguments passed to the PrioritizeVerb endpoint
also include the priorities for each node. The filter step is
used to further refine the list of possible nodes. The prioritize
call is applied to perform a different kind of priority function,
where the correspondent node scores are added to the default
priority list and used for the final node selection. Nevertheless,
it should be noted that the three approaches are not mutually
exclusive.

Based on Kubernetes affinity/anti-affinity rules and node
labels, a complete labeling of a Fog Computing infrastructure
has been conducted. The infrastructure is shown in Fig. 3.
As presented, the infrastructure is composed of a Kubernetes
cluster with 15 nodes (1 master node and 14 worker nodes).
Nodes are classified with labels {Min, Medium, High} for
keywords { CPU, RAM}, depending on their resource capacity.
Additionally, nodes are classified in terms of device type, by
classifying them with taints {Cloud, Fog} for the keyword
{DeviceType} and according to their geographic distribution.
Location taints enable the placement of services in specific
zones or certain nodes. All these rules are important to fine-
tune the scheduling behavior of Kubernetes, in particular,
to help the scheduler make more informed decisions at the
filtering step by removing inappropriate nodes. For instance,
for a delay-sensitive service, a nearby node is more suited than
a remote one for this time-critical scenario. Thus, Round Trip
Time (RTT) values are assigned to each node as a label so that
delay constraints can be considered in the scheduling process.
The RTT labels of each node are listed in Table I.

A. Random Scheduler (RS)

The Random Scheduler (RS) has been implemented by
extending KS through the filter endpoint. The random selection
of the node is, in fact, a random pick after the KS filters out
the inappropriate nodes.
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Fig. 3: A Fog Computing infrastructure based on the Kubernetes architecture

TABLE II: Software Versions of the Evaluation Setup.

Software Version
Kubeadm v1.13.0
Kubectl v1.13.0
Go gol.11.2
Docker docker://17.3.2
Linux Kernel 4.4.0-34-generic
Operating System Ubuntu 16.04.1 LTS

B. Network-Aware Scheduler (NAS)

The Network-Aware Scheduler (NAS) has been imple-
mented by extending KS through the filter endpoint. The
NAS Algorithm is shown in Alg. 1. The proposed NAS
makes use of the strategically placed RTT labels to decide
where it is suitable to deploy a specific service based on
the target location specified on the pod configuration file. In
fact, the node selection is based on the minimization of the
RTT depending on the target location for the service after
the completion of the filtering step. Additionally, in terms of
bandwidth, NAS checks if the best candidate node has enough
bandwidth to support the given service based on the bandwidth
requirement label. If the bandwidth request is not specified in
the pod configuration file, a default value of 250 Kbit/s is
considered during the scheduling phase. After completion of
the scheduling request, the available bandwidth is updated on
the correspondent node label.

V. EVALUATION SETUP

The illustrated infrastructure has been implemented with
Kubeadm [20]. The Kubernetes cluster has been set up on the

imec Virtual Wall infrastructure [21] at IDLab, Belgium. The
software versions used to implement the Kubernetes cluster
are listed in Table II. All proposed schedulers have been
implemented in Go and deployed in the Kubernetes cluster
as a pod. In Fig. 4, the pod configuration file for the NAS is
shown. As can be seen, the pod is composed by two containers:
the extender and the NAS. The extender is responsible for
performing the proposed scheduling operation while the NAS
is in fact the actual KS. In Fig. 5, the scheduling policy
configuration file for the NAS is shown.

The evaluation has been carried out on Smart City services
performing unsupervised anomaly detection. This scenario has
been previously presented in [22]. The purpose of this use case
is to collect air quality data in the City of Antwerp to detect
high amounts of organic compounds in the atmosphere based
on outlier detection and clustering algorithms. The anomaly
detection algorithms have been implemented as container APIs
and then deployed as pods in the Kubernetes cluster. The
deployment properties of each service are shown in Table III.
In Fig. 6, the pod configuration file for the deployment of
the birch-api service is shown. The desired location for the
allocation of the service is expressed by the targetLocation
label. The minimum needed bandwidth for the provisioning of
the service is expressed by the bandwidthReq label. Moreover,
the available bandwidth per node is 10 Mbit/s. Additionally,
a pod anti-affinity rule has been added to each service so
that pods belonging to the same service are not deployed
together, meaning that a node can only allocate one instance
of a certain pod. Additionally, the service chain of the Birch
and the Kmeans service is composed by two pods, the API



Algorithm 1 NAS Algorithm

Input: Remaining Nodes after Filtering Process in
Qutput: Node for the service placement out
1: //Handle a provisioning request
2: handler(http.Request){
3:  receivedNodes = decode(http. Request);
receivedPod = decode Pod(http. Request);
node = selectNode(receivedNodes, receivedPod);
return node
: )
: //Return the best candidate Node (recursive)
selectNode(receivedNodes, receivedPod){
10:  targetLocation = getLocation(receivedPod);
11:  minBandwidth = get Bandwidth(received Pod);
122 min = math.MazxFloat64;
13:  copy = recetvedN odes;
14:  // find min RTT
15:  for node in range received N odes{
16: ritt = get RT'T (node, target Location);
17: min = math.Min(min, rtt);
18: }
19:  // find best Node based on RTT and minBandwidth
20:  for node in range receivedNodes{

D A A

21: if min == getRTT (node, target Location){

22: if minBandwidth < get AvBandwidth(node){
23: return node;

24: }

25: else

26: copy = removeN ode(copy, node);

27: }

8. }

29:  if copy == null

30: return null, Error(”No suitable nodes found!”);
31:  else

32: return selectNode(copy, receivedPod);

33 }

and the correspondent database. The deployment of these
services has been performed to compare the performance of
our implemented schedulers with the default KS.

VI. EVALUATION RESULTS

In Table IV, the execution time of the different schedulers
is shown. As can be seen, the extender of both implemented
schedulers decides on average between 4 and 6 ms. The default
KS does not issue an extender call and, thus, the scheduling
decision is made on average on 2.14 ms while the RS and
the NAS require between 6 and 8 ms because of the extender
procedure. Additionally, the binding operation execution time
is similar among all the schedulers since the binding is actually
performed by the KS on all the schedulers. The RS requires
on average 3 seconds to allocate and initialize the required
containers for the services while the KS and the NAS only
need on average 2 seconds. In Fig. 7, the different allocation
scheme for each of the schedulers is illustrated. As expected,

f apiVersion: apps/vibetal
kind: Deployment
metadata:
labels:
component: scheduler
tier: control-plane
name: network-aware-scheduler
namespace: kube-system
spec.
selector:
matchlabels
component: scheduler
tier: control-plane
replicas: 1
template:
metadata:
labels:
component: scheduler
tier control-plane
version: second
spec
tolerations:
- key: “function”
operator: "Equal”
value: "master"
effect: "NoSchedule"
serviceAccountName: network-aware-scheduler
containers:
- name: extender
image: jpedro1992/network-aware-scheduler:0.0.3
ports:
- containerPort: 8100
- name: network-aware-scheduler
image: mirrorgooglecontainers/kube-scheduler:v112.3-beta.0
command:
- Jusr/local/bin/kube-scheduler
- --address=0.0.0.0
- --leader-elect=false
- --scheduler-name=network-aware-scheduler
- --policy-configmap=network-aware-scheduler-config
- --policy-configmap-namespace=kube-system
livenessProbe:
httpGet:
path: /healthz
port: 10251
initialDelaySeconds: 15
readinessProbe:
httpGet:
path: /healthz
port: 10251
resources
requests:
cpu:'01
securityContext:
privileged: false
volumeMounts: []
hostNetwork: false
hostPID: false

Fig. 4: The pod configuration file for the NAS.

L kind: ConfigMap
apiVersion: vl
metadata:
name: network-aware-scheduler-config
namespace: kube-system
data
policy.cfg: |
{
"kind" : "Policy",
“apiVersion" : "v1",
"metadata”: {
"name": "network-aware-scheduler-config",
"namespace"; "kube-system"
L
“predicates”: [
{"name" : "PodFitsResources"},
{"name": "PodFitsHostPorts"},
{"name" : "NoDiskConflict"},
{"name" : "NoVolumeZoneConflict"},
{"name" : "PodToleratesNodeTaints"},
{"name" : "MatchInterPodAffinity"}
1
“extenders”.
{
"urlPrefix": "http://127.0.0.1:8100",
"apiVersion": "v1",
"filterVerb": "filter",
"enableHttps": false
}
1
}

Fig. 5: The scheduling policy configuration file for the NAS.

the RS and the KS deployment schemes are not optimized for
the desired location of the service since in their scheduling
algorithm no considerations are made about network latency.



TABLE III: Deployment properties of each service.

Service Pod Name CPU Reg/Lim RAM Req/Lim Min. Bandwidth Replication Target Dependencies
Name (m) (Mi) (Mbit/s) Factor Location P
Birch birch-api 100/500 128/256 2.5 4 A birch-cassandra
birch-cassandra 500/1000 1024/2048 5 3 birch-api
Robust robust-api 200/500 256/512 2 4 B none
Kmeans kmeans-api 100/500 128/256 2.5 5 C kmeans-cassandra
) kmeans-cassandra 500/1000 1024/2048 5 3 kmeans-api
Isolation isolation-api 200/500 256/512 1 2 D none
L apiVersion: apps/vl Scheduler
kind: Deployment RS s NAS
metadata
name: birch-api Worker 1 Legend:
Sz:lzctor 5 ‘ M . Pod . . . . . Pod Birch-api - A
matchLabels: Worker 2 M Birch-cassandra - A
re;scp;:izch»api C S5 ‘ Pod . . . . . Robust-api - B
template: Worl{erS . Kmeans-api - C
tadata:
T:hil: ? 5 J ‘Pnd‘ Pod . . . . . Kmeans-cassandra - C
app: birch-api . o
targetLocation: RTT-A Worker 4 . Isolation-api - D
minBandwidth: 2.5Mi & Pod pod [B6d PB4 | Poo pod Pod
spec g
schedulerName: network-aware-scheduler Worker 5
affinity: A & Pod Pod Pod
podAntiAffinity: S ‘ .
requiredDuringSchedulinglgnoredDuringExecution: Worker 6
- labelSelector: K Pod! Pod [P
matchExpressions: : ‘ o . 0 Ld
apatori Worer7
values S J .. ..
- birch-api W k 8
topologyKey: "kubernetes.io/hostname" orker
containers: D S ‘ ..
- image: jpedro1992/birch:2.0
name: birch-api Worker 9
resources: < Pod
requests: < J ..
memgr1y: "128Mi" Worker 10
cpu:'0.1
limits: s o L] pod
:;mgr;/ 256H Worker 11
ports: B X J Pod . .
- containerPort: 5000 »
name: http Worker 12
protocol: TCP & ‘ Pod Pod .. Pod! . Pod .
k Worker 13
Fig. 6: The pod configuration file for the birch-api service. s | |(Fod B
WOkaf 14
TABLE IV: The execution time of the different schedulers. e | |FE
Master
Extender Scheduling Binding Pod Startup & ] Pod Pod
Scheduler .. . . .
decision decision operation Time
KS - 2.14 ms 162.7ms 2.02's . . NS .
RS 530 ms 771 ms 178 2ms 304 s Fig. 7: The service provisioning schemes of the different
NAS 4.82 ms 6.44 ms 173.1ms 2.10 s schedulers.

For instance, the KS allocation scheme of the isolation-api
service is fairly poor since both replicas are deployed in
location B and C, respectively, while D is the desired location.
The differences in the average RTT per scheduler are detailed
in Fig. 8. As shown, the proposed NAS achieves significantly
lower RTTs for each of the deployed services. For instance,
the RTT is on average 4 ms when the NAS provisions the
isolation-api service while for the RS and the KS, the RTT is
on average 34 ms and 39 ms, respectively. By just increasing
the KS execution time by 6 ms by issuing an extender call,

the service provisioning in terms of network latency is highly
improved. Furthermore, both KS and RS allocate pods on
nodes already compromised in terms of network bandwidth
since bandwidth requests are not considered in the scheduling
process. KS overloads worker 1 and 4 by allocating on them
4 pods leading to service bandwidths of 14.5 Mbit/s and 12.5
Mbit/s for the worker 1 and 4, respectively, which surpasses
the available bandwidth of 10 Mbit/s. This allocation scheme
may lead to service disruptions due to bandwidth fluctuations.
Results show that, for the overall service deployment, our NAS
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Fig. 8: Comparison of average RTT per scheduler for different
pod-deployment scheduling strategies in a Smart City air
quality monitoring scenario.

can improve the performance of the default KS by reducing
the network latency by 80%. In summary, by combining the
powerful Kubernetes scheduling features with Fog Computing
concepts and their envisioned IoT demands, the proposed
approach paves the way towards proper resource provisioning
in Smart City ecosystems.

VII. CONCLUSIONS

In recent years, the combination of Smart Cities and Fog
Computing has encouraged the development of effective or-
chestration mechanisms to guarantee the smooth performance
of IoT services. In this paper, a network-aware scheduling
approach for Smart City container-based applications is pro-
posed, which provides informed resource allocation decisions
based on the current status of the network infrastructure. Two
popular open-source projects, Docker and Kubernetes, have
been used to validate our approach. The modular and scalable
design of the Kubernetes architecture provides a flexible
abstraction between the micro-services and the underlying
infrastructure. The proposed scheduling mechanism has been
implemented as an extension to the default scheduling feature
available in Kubernetes. Evaluations have been performed to
validate the proposed scheduling algorithm. The performance
of our approach has been compared with the standard sched-
uler in Kubernetes. Results show that the proposed NAS can
significantly improve the service provisioning of the default
KS by achieving a reduction of 80% in terms of network
latency. As future work, additional scheduling strategies will
be added to our scheduler to further refine the resource
provisioning scheme in terms of mobility and resilience.
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