
Neuro-Symbolic = Neural + Logical + Probabilistic
Luc De Raedt1 , Robin Manhaeve1 , Sebastijan Dumančić1 ,

Thomas Demeester2 and Angelika Kimmig3

1KU Leuven
2Ghent University - imec

3Cardiff University
{luc.deraedt, robin.manhaeve, sebastijan.dumancic}@cs.kuleuven.be,

thomas.demeester@ugent.be, KimmigA@cardiff.ac.uk

Abstract

The overall goal of neuro-symbolic computation
is to integrate high-level reasoning with low-level
perception. We argue 1) that neuro-symbolic com-
putation should integrate neural networks with the
two most prominent methods for reasoning, that is,
logic and probability, and 2) that neuro-symbolic
integrated methods should have the pure neural,
logical and probabilistic methods as special cases.
We examine the state-of-the-art with regard to these
claims and briefly position our own contribution
DeepProbLog in this perspective.

1 Introduction

There is a growing interest in neuro-symbolic computation,
that is, in combining high-level reasoning with low-level per-
ception that offers the best of both worlds. The growing con-
sensus that both forms of reasoning are essential to achieve
true (artificial) intelligence [Kahneman, 2011] has put the
quest for neural symbolic computation [Garcez et al., 2012;
Garcez et al., 2015; Hammer and Hitzler, 2007] high on the
research agenda. While deep learning excels at low-level per-
ception, there is also a growing awareness of its limitations,
certainly in terms of reasoning. Despite various attempts
to demonstrate reasoning-like behaviour with deep learning
[Santoro et al., 2017], artificial neural networks’ current rea-
soning abilities are nowhere close to what is possible with
the typical high-level reasoning approaches. The two most
prominent frameworks for reasoning are logic and probabil-
ity. While in the past, they were studied by separate commu-
nities in artificial intelligence, a growing body of researchers
is working towards their integration, and even aims at com-
bining probability with logic and statistical learning; cf. the
areas of statistical relational artificial intelligence [De Raedt
et al., 2016; Getoor and Taskar, 2007] and probabilistic logic
programming [De Raedt and Kimmig, 2015]. The reason-
ing abilities of statistical relational artificial intelligence ap-
proaches are complementary to the strong pattern-recognition
abilities of deep learning.

2 Position statement
Based on our experience in upgrading machine learning sys-
tems towards the use of (probabilistic) logical and relational
representations [De Raedt, 2008; Muggleton et al., 2012], we
argue that a first desirable property of frameworks that inte-
grate two other frameworks A and B, is to have the original
frameworks A and B as a special case of the integrated one.
If A or B cannot be fully reconstructed, one clearly loses cer-
tain abilities, which is not only undesirable but which also
implies that there is no true unification. Applying this prop-
erty to neuro-symbolic computation implies that the existing
frameworks should have both the neural and the symbolic
representations as special case. When this is the case, one
retains both the learning abilities of the neural component as
well as the reasoning and learning abilities and the semantics
of the symbolic representations. Unfortunately, this property
is not satisfied by the vast majority of neuro-symbolic ap-
proaches in that they either push the symbolic representation
inside the neural network (from which the logic cannot be
recovered), or vice versa, apply neural learning principles to
symbolic representations (and risk loosing both the pure neu-
ral component and the logical semantics), as we shall show in
the next section.

We also advocate a second desirable property for neuro-
symbolic computation: models that learn from observed sam-
ples should be able to deal with uncertainty. Therefore, one
should not only integrate logic with neural networks in
neuro-symbolic computation, but also probability.

This effectively leads to an integration of probabilistic log-
ics (hence statistical relational AI) with neural networks and
opens up new abilities. Furthermore, although at first sight,
this may appear as a complication, it actually can greatly
simplify the integration of neural networks with logic. The
reason for this is that the probabilistic framework provides
a clear optimisation criterion, namely the probability of the
training examples. Real-valued probabilistic quantities are
also well-suited for gradient-based training procedures, as op-
posed to discrete logic quantities.

3 State-of-the-art in Neuro-Symbolic
Computation

We now examine the state-of-the-art in neuro-symbolic com-
putation with respect to these two properties, i.e., whether



Neural network /
embeddings as special case

Logic as
special case Probabilistic Underlying logic

Semantic based regularization [Diligenti et al., 2017] X FOL
Logic Tensor Networks [Donadello et al., 2017] FOL
Lifted Rule Injection [Demeester et al., 2016] X Implication rules
Adverserial Set Regularisation [Minervini et al., 2017] X Clausal logic
Semantic Loss Function [Xu et al., 2018] X X Propositional logic
∂ILP [Evans and Grefenstette, 2018] Datalog
Neural Theorem Prover [Rocktäschel and Riedel, 2017] Clausal logic
TensorLog [Cohen et al., 2018] X Datalog Subset
DeepProbLog [Manhaeve et al., 2018] X X X Clausal logic

Table 1: Comparing Neuro-Symbolic frameworks

they retain the neural network and logic as special cases, and
whether they integrate probabilities. Here, we only consider
works that combine neural networks with logic, although the
field of neuro-symbolic integration is wider than this. The
results are summarized in Table 1.

This subset of the domain can be divided into two cate-
gories: logic as constraints and differentiable logic frame-
works.

Logic as constraints. The dominant idea is to use logic
as a constraint on a deep model. That is, the deep model is
extended with a regularization term, derived from the desired
logical properties, which encourages it to mimic logical rea-
soning: not obeying such logical properties induces a penalty.
For instance, [Diligenti et al., 2017] and [Donadello et al.,
2017] use first-order logic to specify constraints on the out-
put of the neural network, while [Demeester et al., 2016] and
[Minervini et al., 2017] use logical IF-THEN rules, derived
from expert knowledge, to enforce the embeddings to be more
consistent with the logical constraints. [Xu et al., 2018] intro-
duce a generalization of this principle such that more complex
logical constraints can be imposed on any deep model. Com-
mon to all these approaches is the use of logic as a regular-
izer, which encourages deep models to satisfy the constraints.
This leads to the logic being encoded into the parameters (ei-
ther into the weights of the neural network, or directly into
the embeddings). The constraints are soft, and there is no
guarantee that they all will be satisfied. In fact, the trade-off
between encouraging the constraints vs. following the data
in case both are contradictory, is merely a hyperparameter of
the model. From a logical perspective, constraints only sup-
port one form of reasoning, an alternative form of reasoning
is based on providing definitions of predicates (in the form
of rules or definite clauses), and to use such rules to answer
queries. This is the basis for the popular programming and
database languages Prolog and Datalog. The aforementioned
methods thus generally do have neural networks as a special
case (i.e., when there are no additional constraints), however,
they do not have logic as a special case when leaving out the
neural part. The importance of being able to fully recover the
logic is already hinted at in some of these papers. For exam-
ple, [Xu et al., 2018] show that neural networks trained with
the additional regularization term cannot consistently make
predictions coherent with the logic they were trained on.

Differentiable logic frameworks. A different class of
neuro-symbolic systems works by making the logic program

differentiable, which is achieved by reformulating the basic
reasoning primitives using the mathematics of differentiable
functions. [Rocktäschel and Riedel, 2017] apply this to the
backward reasoning procedure of Prolog, while [Evans and
Grefenstette, 2018] do this in the style of forward reasoning.
Although both systems are based on standard reasoning algo-
rithms, the original logic cannot be recovered as special case,
since the original semantics and inference have been funda-
mentally changed. Similarly, [Cohen et al., 2018] introduce
a framework to compile a tractable subset of logic programs
into differentiable functions and to execute it with neural net-
works. All three systems mentioned above construct a neural
network to perform the execution, but they do not have neu-
ral networks as a special case. These approaches can only
deal with rather restricted classes of logic programs. Further-
more, because they push the logic programming components
into the neural networks, both the proper semantics of logic
programs and the programming language nature of the frame-
work are sacrificed. This is clear when considering that the
approach of [Rocktäschel and Riedel, 2017] is to map a proof
tree on a neural network, which can then be differentiated as
the logic has been removed. These systems also suffer from
not keeping the original logic as a special case. For example,
[Rocktäschel and Riedel, 2017] and [Evans and Grefenstette,
2018] both mention that the neural execution of the differen-
tiable logic creates a large computational overhead.

4 Our approach: DeepProbLog
The proposed approach is pursued in DeepProbLog [Man-
haeve et al., 2018], a neuro-symbolic framework developed
in the past year. What sets DeepProbLog apart from the
other approaches mentioned above is that instead of chang-
ing the logic, it is extended. To create DeepProbLog,
we extended the probabilistic logic programming language
ProbLog [Fierens et al., 2015] with neural predicates. The
underlying concept of a probabilistic logic programming lan-
guage is simple: (ground) atomic expressions of the form
q(t1, ..., tn) (aka tuples in a relational database) are consid-
ered as (independent) random variables that have a probabil-
ity p of being true. This view, which was pioneered in the dis-
tribution semantics by [Sato, 1995], effectively unifies the ba-
sic primitives in logic with those in probability theory: propo-
sitions become random variables. On top of these “proba-
bilistic facts” one can then define rules (in the form of logic
programs) that allow to derive conclusions from these facts



and induce a probability distribution over possible worlds.
The neural predicate extends this concept so that atomic ex-
pressions can also be annotated with the output of a neural
network, given that the output can be considered a probability.
This simple idea is appealing as it allows us to retain all the
essential components of the probabilistic logic programming
language: the semantics, the inference mechanism, as well as
the implementation. At the same time, it clearly decouples
the logical component from the neural component. As neu-
ral networks become predicates, they can be called from the
logic programs and so the logical layer is at the higher-level
and the neural one at the lower-level with the neural predi-
cates providing the interface, while both sides can treat each
other as a black box. For example, consider the task where
we have to learn to classify sums from pairs of handwritten
digits, e.g + = 8. In line with our position statement,
the neural network needs to handle only the image recogni-
tion, while the addition is handled purely by logic. This task
can thus easily be solved in DeepProbLog by specifying a
neural predicate that defines the classification of single dig-
its, and a single line of logic that defines the addition. As
shown in [Manhaeve et al., 2018], this single line of logic is
enough to clearly outperform a fully neural baseline, as it con-
verges quicker, to a higher accuracy. Furthermore, because
the neural network in the DeepProbLog program classifies
digits, it can be reused for other tasks after training, whereas
the baseline can only be used on the same task. It is easy to
see how both the logic and the neural networks are preserved
as special cases: if the DeepProbLog program has no neu-
ral predicates, it simply becomes a normal ProbLog program.
If that program has no probabilistic facts, it becomes a pure
logic program. Furthermore, if the program only contains
a neural predicate, it becomes equivalent to directly training
the neural network. In describing the learning algorithm for
DeepProbLog it is important to note that DeepProbLog, in
contrast to other approaches for neuro-symbolic learning, not
only encompasses a neural and a logical framework, but also
a probabilistic one. Making the logic probabilistic also makes
it differentiable, allowing gradients to be derived so that the
neural networks can be trained with standard gradient descent
methods. For the given example, note that the neural predi-
cate is trained from an indirect signal, i.e., from observations
of sums (at the output of the logical layer), rather than through
labels of individual digits.

To summarize, DeepProbLog occupies a unique position
in the space of neuro-symbolic methods in that i) it is a pro-
gramming language that supports neural networks and ma-
chine learning, and it has a well-defined semantics (as an ex-
tension of Prolog, it is Turing equivalent); (ii) it integrates
logical reasoning with neural networks; so both symbolic and
subsymbolic representations and inference, learning and rea-
soning, perception and inference; (iii) it integrates probabilis-
tic modeling, programming and reasoning with neural net-
works (as DeepProbLog extends the probabilistic program-
ming language ProbLog, which can be regarded as a very ex-
pressive directed graphical modeling language [De Raedt et
al., 2016]).

Acknowledgements
This work has been partially supported by the European Re-
search Council Advanced Grant project SYNTH9 (ERCAdG-
694980). RM is a SB PhD fellow at FWO (1S61718N).

References
[Cohen et al., 2018] William W Cohen, Fan Yang, and

Kathryn Rivard Mazaitis. Tensorlog: Deep learning meets
probabilistic databases. Journal of Artificial Intelligence
Research, 1:1–15, 2018.

[De Raedt and Kimmig, 2015] Luc De Raedt and Angelika
Kimmig. Probabilistic (logic) programming concepts. Ma-
chine Learning, 100(1):1–43, 2015.

[De Raedt et al., 2016] Luc De Raedt, Kristian Kersting, Sri-
raam Natarajan, and David Poole. Statistical relational ar-
tificial intelligence: Logic, probability and computation.
Synthesis Lectures on Artificial Intelligence and Machine
Learning, 2016.

[De Raedt, 2008] Luc De Raedt. Logical and Relational
Learning. Springer, 2008.

[Demeester et al., 2016] Thomas Demeester,
T. Rocktäschel, and S. Riedel. Lifted rule injection
for relation embeddings. In EMNLP, 2016.

[Diligenti et al., 2017] Michelangelo Diligenti, Marco Gori,
and Claudio Sacca. Semantic-based regularization for
learning and inference. Artificial Intelligence, 244:143–
165, 2017.

[Donadello et al., 2017] Ivan Donadello, Luciano Serafini,
and Artur S. d’Avila Garcez. Logic tensor networks for
semantic image interpretation. In IJCAI, 2017.

[Evans and Grefenstette, 2018] Richard Evans and Edward
Grefenstette. Learning explanatory rules from noisy data.
JAIR, 2018.

[Fierens et al., 2015] Daan Fierens, Guy Van den Broeck,
Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo
Thon, Gerda Janssens, and Luc De Raedt. Inference and
learning in probabilistic logic programs using weighted
Boolean formulas. Theory and Practice of Logic Program-
ming, 15(3):358–401, 2015.

[Garcez et al., 2012] Artur S d’Avila Garcez, Krysia B
Broda, and Dov M Gabbay. Neural-symbolic learning sys-
tems: foundations and applications. Springer Science &
Business Media, 2012.

[Garcez et al., 2015] Artur d’Avila Garcez, Tarek R Besold,
Luc De Raedt, Peter Földiak, Pascal Hitzler, Thomas
Icard, Kai-Uwe Kühnberger, Luis C Lamb, Risto Miikku-
lainen, and Daniel L Silver. Neural-symbolic learning and
reasoning: contributions and challenges. In 2015 AAAI
Spring Symposium Series, 2015.

[Getoor and Taskar, 2007] Lise Getoor and Ben Taskar. In-
troduction to statistical relational learning. MIT press,
2007.

[Hammer and Hitzler, 2007] Barbara Hammer and Pascal
Hitzler. Perspectives of neural-symbolic integration, vol-
ume 8. Springer Heidelberg:, 2007.



[Kahneman, 2011] Daniel Kahneman. Thinking, fast and
slow. Farrar, Straus and Giroux New York, 2011.

[Manhaeve et al., 2018] Robin Manhaeve, Sebastijan Du-
mancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic pro-
gramming. In NeurIPS, 2018.

[Minervini et al., 2017] Pasquale Minervini, Thomas De-
meester, Tim Rocktäschel, and Sebastian Riedel. Adver-
sarial sets for regularising neural link predictors. In UAI,
2017.

[Muggleton et al., 2012] Stephen Muggleton, Luc De Raedt,
David Poole, Ivan Bratko, Peter Flach, Katsumi Inoue,
and Ashwin Srinivasan. Ilp turns 20. Machine learning,
86(1):3–23, 2012.

[Rocktäschel and Riedel, 2017] Tim Rocktäschel and Sebas-
tian Riedel. End-to-end differentiable proving. In NIPS,
2017.

[Santoro et al., 2017] Adam Santoro, David Raposo,
David G Barrett, Mateusz Malinowski, Razvan Pascanu,
Peter Battaglia, and Tim Lillicrap. A simple neural
network module for relational reasoning. In NIPS, 2017.

[Sato, 1995] T. Sato. A statistical learning method for logic
programs with distribution semantics. In ICLP, 1995.

[Xu et al., 2018] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao
Liang, and Guy Van den Broeck. A semantic loss func-
tion for deep learning with symbolic knowledge. In ICML,
2018.


	Introduction
	Position statement
	State-of-the-art in Neuro-Symbolic Computation
	Our approach: DeepProbLog

