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ABSTRACT (150-250 words)  

Triterpene saponins are important bioactive plant natural products found in many plant families 

including the Leguminosae. Here we characterize two Medicago truncatula cytochrome P450 

enzymes, MtCYP72A67 and MtCYP72A68, involved in saponin biosynthesis including both in 

vitro and in planta evidence. UHPLC-(-)ESI-QToF-MS was used to profile saponin accumulation 

across a collection of 106 M. truncatula ecotypes. The profiling results identified numerous 

ecotypes with high and low saponin accumulation in root and aerial tissues. Four ecotypes with 

significant differential saponin content in the root and/or aerial tissues were selected, and 

correlated gene expression profiling was performed. Correlation analyses between gene expression 

and saponin accumulation revealed high correlations between saponin content with gene 

expression of -amyrin synthase, MtCYP716A12, and two cytochromes P450 genes, MtCYP72A67 

and MtCYP72A68. In vivo and in vitro biochemical assays using yeast microsomes containing 

MtCYP72A67 revealed hydroxylase activity for carbon 2 of oleanolic acid and hederagenin. This 

finding was supported by functional characterization of MtCYP72A67 using RNAi-mediated gene 

silencing in M. truncatula hairy roots, which revealed a significant reduction of 2β-hydroxylated 

sapogenins. In vivo and in vitro assays with MtCYP72A68 produced in yeast showed 

multifunctional oxidase activity for carbon 23 of oleanolic acid and hederagenin. These findings 

were supported by overexpression of MtCYP72A68 in M. truncatula hairy roots, which revealed 

significant increases of oleanolic acid, 2β-hydroxyoleanolic acid, hederagenin and total saponin 

levels. The cumulative data support that MtCYP72A68 is a multisubstrate, multifunctional oxidase 

and MtCYP72A67 is a 2β-hydroxylase, both of which function during the early steps of triterpene-

oleanate sapogenin biosynthesis.  

 

Keywords: Saponin, sapogenin, cytochrome P450, CYP72A67, CYP72A68, Medicago 

truncatula, integrated metabolomics 
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INTRODUCTION  

Saponins are steroidal, steroidal alkaloid or triterpenoid metabolites that are typically conjugated 

with sugars and present in numerous plant species, including members of the genus Medicago 

(Augustin et al. 2011; Avato et al. 2006; Bialy et al. 1999; Gholami et al. 2014; Huhman et al. 

2005; Huhman and Sumner 2002; Pollier et al. 2011; Tava et al. 2011). Many triterpene saponin 

aglycones (saponins without sugars, also known as sapogenins) are oxidized at various positions 

on the aglycone (Figure 1). These oxidized positions are often further conjugated with varying 

numbers of sugars to yield a multitude of saponins. Saponins possess diverse biological activities 

and plant beneficial properties, which include antifungal, antibacterial, antiviral, antitumor, 

molluscicidal, insecticidal and antifeedant activities (Augustin et al. 2011; Avato et al. 2006; 

Dixon and Sumner 2003; Klita et al. 1996; Lu and Jorgensen 1987; Sparg et al. 2004; Yan et al. 

2013). In addition, they also affect plant development, including seed germination, vegetative 

growth and differentiation, fruiting and nodulation (Moses, Papadopoulou, et al. 2014). The 

pharmacological properties of saponins have been exploited in herbal medicines and, more 

recently, evaluated for their anticholesterolemic, anticancer, and adjuvant properties (Haridas et 

al. 2001; Kirk et al. 2004; Kuljanabhagavad et al. 2008; Shibata 2001). 

Triterpene saponins constitutively accumulate in plants. However, the saponin 

biosynthetic pathway and additional accumulation of saponins are further induced during 

wounding, herbivory and by methyl jasmonate, which is a signaling compound associated with 

the induction of many defense-responsive plant metabolites (Broeckling et al. 2005; Gholami et 

al. 2014; Naoumkina et al. 2007; Suzuki et al. 2005). Although saponins are beneficial plant 

defense compounds, saponins in legume forages, such as alfalfa (Medicago sativa), are of 

particular and substantial economic importance because they result in impaired digestion and 

reduced weight gain in ruminant animals (Lu and Jorgensen 1987; Sen et al. 1998). Thus, 

saponins are considered antifeedants in premiere forages such as alfalfa. A detailed molecular 

and biochemical understanding of saponin biosynthesis would enable future metabolic 

engineering of crops with increased defense properties resulting in improved fitness and field 

productivity, and decreased anti-nutrient properties that would result in enhanced livestock 

weight gain performance. Metabolically engineered legumes with improved performance and 
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nutritive value would have substantial commercial value that would advance the plant 

biotechnology industry. 

Recent studies in the Medicago genus have focused on elucidating the relationship 

between the biological activities of saponins and their chemical structures. The aglycone type, 

along with the nature and position of the sugar moieties, appear to correlate with different 

biological properties (Gholami et al. 2014; Tava et al. 2011). Two distinct classes of sapogenins 

can be differentiated in Medicago spp. based upon the position and the degree of oxidation: (i) 

sapogenins possessing a hydroxyl group at the C-24 position, without any substituent at the C-28 

position atom (i.e., soyasapogenols; A, B and E); and (ii) sapogenins possessing a carboxyl 

group at the C-28 position that often also contain different oxidized states at the C-23 position 

(i.e., oleanate sapogenins with H, OH, CHO, or COOH at the C-23 position) (Carelli et al. 2011; 

Fukushima et al. 2011; Gholami et al. 2014). Some saponins possess hemolytic activity that 

results from their affinity for membranes, and this activity is related to the nature of the aglycone 

moiety (Augustin et al. 2011). No hemolytic activity was observed for soyasapogenols (Yoshiki 

et al. 1998), while oleanate derived sapogenins possessed high (hederagenin and medicagenic 

acid glycosides) to moderate (zanhic acid glycosides) hemolytic activities (Oleszek 1996). 

Recently, ectopic accumulation of bioactive monoglycosylated saponins was suggested to affect 

the integrity of M. truncatula roots themselves; hence, saponin producing plants need to develop 

self-protection mechanisms to allow accumulation of saponins (Pollier et al. 2013). 

The first committed step in triterpene saponin biosynthesis is the cyclization of 2,3-

oxidosqualene. This reaction is catalyzed by a specific oxidosqualene cyclase (e.g., -amyrin 

synthase; AS) which has been functionally characterized in many plant species (Inagaki et al. 

2011; Iturbe-Ormaetxe et al. 2003; Sawai and Saito 2011; Suzuki et al. 2002; Thimmappa et al. 

2014). Subsequent modifications that impart functional properties and diversify the basic 

triterpene backbone include the addition of small functional groups such as hydroxy, keto, 

aldehyde and carboxy moieties which are often followed by glycosylation (Augustin et al. 2012; 

Miettinen et al. 2018; Moses, Papadopoulou, et al. 2014; Thimmappa et al. 2014).The oxidative 

reactions prior to glycosylation are catalyzed by cytochrome P450-dependent monooxygenases 

(P450s). To date, several P450s that utilize -amyrin as a substrate have been identified in 

dicotyledonous plants, whereas just one (CYP51H10) has been identified in monocots (Geisler et 
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al. 2013; Kunii et al. 2012). In oat (Avena strigosa) AsCYP51H10 (Sad2) is a multifunctional 

P450 that catalyzes the oxidation of -amyrin on both the C and D rings to give 12,13β-epoxy-

16β-hydroxy-β-amyrin, an intermediate of root saponin biosynthesis (Geisler et al. 2013). 

Currently, a significant number of other saponin biosynthetic cytochrome P450s have been 

characterized and in planta activity inferred via heterologous expression predominantly in yeast 

and to a lesser extent in Nicotiana benthamiana. In dicots, GuCYP88D6 in licorice (Glycyrrhiza 

uralensis, Fabaceae) catalyzes the C-11 oxidation of -amyrin in glycyrrhizin biosynthesis (Seki 

et al. 2008). Members of the CYP93E subfamily of P450s have been shown to catalyze the C-24 

hydroxylation of -amyrin in soyasapogenol biosynthesis (Fukushima et al. 2011; Moses, 

Thevelein, et al. 2014; Seki et al. 2008; Shibuya et al. 2006) CYP87D16 catalyzes the C-16α 

hydroxylation of -amyrin in the biosynthesis of maesasaponins (Moses et al. 2015). Members 

of the CYP716 subfamily of P450s catalyze various oxidations on the -amyrin backbone, 

including the three-step oxidation of -amyrin at the C-28 position to yield oleanolic acid by 

CYP716A12 (Carelli et al. 2011; Miettinen et al. 2017), the C-16α hydroxylation of -amyrin by 

CYP716Y1 (Moses, Pollier, et al. 2014), and the C-3 oxidation by CYP716A14 (Moses et al. 

2015). In addition, CYP72A154 oxidizes -amyrin at the C-30 position (Seki et al. 2011) and 

several P450s have been identified that further modify oxidation products of -amyrin, such as 

MtCYP72A61 and GmCYP72A69 (Sundaramoorthy et al. 2018; Yano et al. 2016) that 

hydroxylate 24-hydroxy--amyrin at the C-22 and C-21 positions, respectively, in soyasaponin 

biosynthesis, MtCYP72A68 that oxidizes C-23 of oleanolic acid, and MtCYP72A67 that 

catalyzes oxidation at C-2 position (Biazzi et al. 2015; Fukushima et al. 2013). However, several 

P450s and glycosyltransferases involved in saponin biosynthesis still remain uncharacterized and 

in planta evidence for tentatively identified genes is minimal. 

Correlated gene expression analysis has emerged as a powerful tool for predicting gene 

function as correlation is suggestive of related biological processes (Hirai et al. 2005; Hirai and 

Saito 2004). Such correlations are facilitated by the availability of large quantities of public gene 

expression data which enable the calculation of gene coexpression correlation scores across 

thousands of samples (Usadel et al. 2009). Naoumkina et al. (2010) described a set of 

coexpressed M. truncatula genes based on comprehensive clustering of methyl jasmonate-

induced transcript expression patterns along with chromosomal location analysis (Naoumkina et 
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al. 2010). However, the identification of the specific P450 enzymes responsible for the 

production of particular metabolites is still a difficult task due to the large numbers and 

significant diversity within the P450 multigene family (Augustin et al. 2011). 

We support that an integrated approach that includes genomic, transcript, and metabolite 

profiling along with ectopic expression offers a more productive strategy to identify and 

functionally characterize new biosynthetic genes (Seki et al. 2011). Such a combined approach 

has been successfully used to identify several glycosyltransferase genes involved in the 

biosynthesis of triterpene saponins in M. truncatula (Achnine et al. 2005; Naoumkina et al. 

2010). In the Naoumkina et al., 2010 report, the putative roles of MtCYP72A67 and 

MtCYP72A68 in saponin biosynthesis were proposed based upon correlated gene expression 

with functionally characterized genes such as those encoding -amyrin synthase, 

MtCYP716A12, MtUGT73F3 and MtCYP93E2 (Carelli et al. 2011; Fukushima et al. 2013; 

Naoumkina et al. 2010; Seki et al. 2011). Accordingly, MtCYP72A67 and MtCYP72A68 

expression was found to be regulated by the transcription factor TRITERPENE SAPONIN 

BIOSYNTHESIS ACTIVATING REGULATOR2 (TSAR2), the regulator of hemolytic 

triterpene saponin metabolism in M. truncatula (Mertens et al. 2016) ). Since then, we have also 

presented our in vitro biochemical assays of recombinant MtCYP72A67 and MtCYP72A68 

heterologously expressed in yeast ( Sumner et al. 2012; Tzin et al. 2012a, 2012b). Similar in vivo 

enzymatic activities have been reported in engineered yeast strains for MtCYP72A61, 

MtCYP93E2, MtCYP72A67 MtCYP72A68 and MtCYP716A12 (Biazzi et al. 2015; Fukushima 

et al. 2013). However, evidence obtained through studies in heterologous microbial systems does 

not always equal in planta function. For example, Biazzi et al, 2015 associated MtCYP72A68 

with medicagenic acid biosynthesis based upon in vitro yeast assays. However, we report here 

that MtCYP72A68 is a multi-functional oxidase responsible for hederagenin, gypsogenin and 

gypsogenic acid biosynthesis based upon in vivo and in planta evidence.  In addition, in planta 

triterpene engineering has been hampered by a lack of knowledge about the regulatory 

mechanisms controlling gene expression (Sawai and Saito 2011). Hence, a challenge for future 

triterpenoid research will be to identify the transcription or other regulatory factors that steer 

their biosynthesis (Biazzi et al. 2015; Moses et al. 2013) 
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OBJECTIVES 

In this report, we describe a highly productive approach for the discovery of triterpene 

biosynthetic genes and provide both in vitro and in planta characterization of two CYP72 family 

genes. More specifically, MtCYP72A67 and MtCYP72A68 were identified based upon large-

scale, correlated metabolite accumulation and gene expression. Highly correlated genes were 

then functionally characterized as multisubstrate, mono and multifunctional oxidases in 

triterpene saponin biosynthesis using heterologous in vitro and in vivo yeast expression assays, 

heterologous in vivo tobacco expression assays, and in planta using M. truncatula hairy root 

cultures and Tnt1 mutants. 

 

METHODS 

Germplasm plant materials 

Seeds for the Medicago truncatula ecotype collection were obtained from Jean-Marie Prosperi at 

L'Institut National De La Recherche Agronomique (INRA; 

http://www.international.inra.fr/the_institute). The ecotype collection used in the present study 

was described previously (Ronfort et al. 2006). Single seed descent lines for all of the INRA 

ecotypes were developed on site at the Noble Foundation. 

Plant growth conditions 

Plants were grown in a root cone system (Stewe and Sons, OR) with Turface MVP medium 

(Profile Products, Buffalo Grove, IL) in a Conviron TCR180 walk-in growth chamber 

maintained at 90% humidity and at an average temperature of 24oC day (16 h) and 20oC night (8 

h). Plants were fertilized daily with 15 ppm nitrogen (20-10-20 Peat-Lite Special; The Scotts 

Company). Five-week-old plants were harvested, and the Turface was washed quickly from the 

roots. Plants were dissected into roots and aerial parts, which were flash frozen in liquid nitrogen 

and stored at -80 oC. 

Metabolomics analyses by UHPLC-(-)ESI-QToF-MS and GC-MS 

Lyophilized tissues were ground into a fine powder using a mortar and pestle, and 10 mg of 

powder was extracted with 1 ml of 80% methanol in a one-dram vial for two hours on an orbital 

shaker. An internal standard containing 18 g/ml umbelliferone was used in all samples. 
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Extracted samples were centrifuged for 30 min at 2900 x g at 4°C, and supernatants were 

transferred to UHPLC-MS autosampler vials. The HPLC-(-)ESI-QToF-MS analyses were 

performed with a Waters Acquity UHPLC system coupled to a Waters Premier hybrid 

quadrupole time-of-flight (QTOF) mass spectrometer (http://www.waters.com). A reverse-phase, 

UPLC BEH 1.7 µm C18, 2.1 mm x 150 mm column (Waters) was used for separations. The 

mobile phase consisted of eluent A (0.1% [v/v] acetic acid/water) and eluent B (100% 

acetonitrile). Separations were achieved using a linear gradient of 95 % to 30 % A over 30 min, 

30 % to 5 % A over 3 min, and 5 % to 95 % A over 3 min. The flow rate was 0.56 mL/min, and 

the column temperature was maintained at 60 °C. Mass-to-charge ratios (m/z) of the eluted 

compounds were determined in the negative ESI mode from m/z 50 to 2,000. The Waters QTOF 

Premier was operated using the following instrument parameters: desolvation temperature of 385 

°C; desolvation nitrogen gas flow of 850 L/h; capillary voltage of 2.9 kV; cone voltage of 48 eV; 

and collision energy of 10 eV. The MS system was calibrated using sodium formate, and 

raffinose was used as the lockmass compound. -amyrin, erythrodiol, and cycloartenol assays 

were extracted twice with 500 µl of ethyl acetate, dried under nitrogen gas, dissolved in 100 µl 

pyridine, N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA)-derivitized, and analyzed by 

GC-MS as described previously (Broeckling et al. 2005). GC-MS of these compounds were 

performed because they do not ionize well by negative ESI due to a lower number of hydroxyl 

substituents. 

Data Processing  

Raw UHPLC-(-)ESI-QToF-MS data files were annotated and quantified using MarkerLynx XS 

(Waters; www.waters.com) or converted to CDF file format, followed by metabolite data 

extraction, alignment, and export using MET-IDEA software (Broeckling et al. 2006; Lei et al. 

2012). A target ion list containing 143 known and putative triterpene saponin ions of interest was 

used for the targeted saponin analyses. This ion list was selected and annotated based on 

authentic standards and previous MS and MS/MS analyses of triterpene saponins conducted 

internally in the lab (Huhman et al. 2005; Huhman and Sumner 2002). In addition to the targeted 

analyses of saponin content, non-targeted analyses of all samples were performed using Waters 

MarkerLynx software. The spectral abundance values for all metabolites in a separation were 

normalized to the internal standard of 18 g/ml umbelliferone. Descriptive statistics were 
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performed in Microsoft Excel and JMP (SAS Institute Inc; http://www.jmp.com). Correlation 

coefficients were calculated using a custom MATLAB script (http://www.mathworks.com/). 

RNA extraction, quantitative real-time PCR and Medicago Genome Array 

Total RNA was isolated using modified cetyl-trimethyl-ammonium bromide (CTAB) extraction 

as described previously (Pang et al. 2007) or RNeasy Plant Mini Kit (Qiagen, Valencia, CA). 

Total RNA was purified and concentrated using the RNeasy MiniElute Cleanup Kit (Qiagen, 

Valencia, CA), and then treated with DNase I (Invitrogen, Carlsbad, CA). RNA concentration 

and quality were determined with a Nanodrop spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE). First-strand cDNA was synthesized from 2 µg total RNA in a total volume of 

20 µL using SuperScript III reverse transcriptase (Invitrogen). Primers for quantitative real-time 

PCR were designed using Primer3 software (http://www.frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi). Each primer pair was confirmed to give a single PCR product. 

All primers for PCR amplification are listed in Supplemental Table S7. The parameters and 

analysis of the qRT-PCR were as described previously (Pang et al. 2007). All reactions were 

performed with three technical replicates. Data were analyzed using the SDS 2.2.1 software 

(Applied Biosystems). Five hundred nanograms of purified RNA for each of the three biological 

replicates were used for probe synthesis using a GeneChip3’ IVT express kit, according to 

manufacturer’s instructions (Affymetrix). Hybridization of probes to Affymetrix GeneChip 

Medicago genome arrays and scanning of arrays was carried out as described (Benedito et al. 

2008). Raw data were normalized by robust multichip averaging (RMA), as previously described 

(Irizarry et al. 2003). 

Expression of MtCYP72A67 and MtCYP72A68 genes in WAT11 yeast system 

Coding sequences information for MtCYP72A67 and MtCYP72A68 (Li et al. 2007) were 

obtained from NCBI genebank: DQ335782 and DQ335780, respectively. Primers were designed 

for the coding sequence by using Primer3 software (Rozen and Skaletsky 2000). The upstream 

cloning primer for MtCYP72A67 and MtCYP72A68 included both a BamHI restriction site and a 

kozak yeast translation initiation sequence, where the downstream cloning primer included an 

EcoRI cut site. MtCYP72A67 and MtCYP72A68 were amplified from cv. Jemalong A17 aerial 

tissue cDNA template using Platinum Hi-Fi Taq polymerase (Invitrogen, Carlsbad, CA). The 

CYP72A68 PCR product was cloned into the pGEM-T easy vector (Promega, WI), then 
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sequenced using M13 forward and reverse primers. CYP72A67 and CYP72A68 were excised 

from the p-GEM easy vector via a BamHI and EcoRI restriction digest and sub-cloned into the 

pYeDP60 vector (Pompon et al. 1996) and sequenced using the GAL10 promoter. WAT11 yeast 

cells were transformed as previously reported (Greenhagen et al. 2003; Urban et al. 1997) and 

confirmed by PCR. 

Recombinant expression and microsomal preparations for enzymatic assays 

WAT11 yeast cells were transformed with pYeDP60-MtCYP72A68, pYeDP60-MtCYP72A67 

or empty pYeDP60 vector, and microsomes were prepared as previously described (Greenhagen 

et al. 2003). For initial in vitro studies, 100 µg of total microsomal protein (quantified via 

Bradford assay) (Bradford 1976) was incubated for 2 h at 30°C in a 500 µl reaction volume of 50 

mM potassium phosphate buffer (pH 7.25) containing 1 mM NADPH and 40 µM purified 

authentic substrate of either -amyrin, cycloartenol, erythrodiol, oleanolic acid or hederagenin. 

An NADPH generation system (3.3 mM glucose-6-phosphate, 1.3 mM of NADPH, 3.3 mM 

magnesium chloride and 0.4 mM glucose-6-phosphate dehydrogenase) (Mene-Saffrane and 

Dellapenna, 2009) was also used. All enzymatic assays were performed in triplicate. All reaction 

assays were analyzed using UHPLC-(-)ESI-QToF-MS as described above, or dissolved in 100µl 

pyridine, MSTFA-derivitized, and analyzed by GC-MS as previously described (Broeckling et 

al. 2005). 

Generation and cultivation of TM3-derived strains 

For expression in TM3-derived yeast strains, MtCYP72A67 and MtCYP72A68 were amplified 

from M. truncatula cDNA with primers P1+P2 and P3+P4, respectively, cloned into 

pDONR221, sequence verified and gateway recombined in the yeast expression vector 

pAG423GAL-ccdB (Addgene plasmid 14149; (Alberti et al. 2007)). Primer sequences for P1 

through P8 are listed in Supplemental Table S8. The construct encoding the self-processing 

polyprotein with the M. truncatula cytochrome P450 reductase 1 (MtCPR1; Medtr3g100160) and 

CYP716A12 was created by amplifying MtCPR1 without a stop codon and with a 3′-overhang of 

the partial T2A sequence with primers P5+P6 and CYP716A12 with a 5′-overhang of the partial 

T2A sequence with primers P7+P8. Subsequently the 2 fragments were fused by PCR with 

primers P5+P8, cloned into pDONR221, sequence verified and recombined in the yeast 

expression vector pAG425GAL-ccdB (Addgene plasmid 14153; (Alberti et al. 2007)). The yeast 
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strains (Supplemental Table S8) were generated from strain TM3 and cultivated as described 

(Moses, Pollier, et al. 2014). Briefly, yeast precultures were grown with agitation in synthetic 

defined (SD) medium containing glucose with appropriate dropout (DO) supplements (Clontech) 

at 30 °C for 18 to 20 h. Gene expression was induced by inoculating washed precultures into 

synthetic defined Gal/Raf medium containing galactose and raffinose with appropriate dropout 

supplements (Clontech) to a starting OD600 of 0.25 on day 1. The induced cultures were 

incubated for 24 h, and on day 2, methionine and methylated β-cyclodextrins (MβCD) were 

added to 1 and 5 mM, respectively. After a further 24 h incubation, MβCD was added once again 

to 5 mM on day 3, and on day 4 all cultures were extracted for metabolite analyses. For organic 

extracts of the spent medium, 1 mL of the yeast culture was extracted twice with 0.5 mL of 

hexane and once with 0.5 mL of ethyl acetate. The organic extracts were pooled, vaporized to 

dryness and trimethylsilylated for GC-MS analysis. GC-MS analysis was carried out as 

described (Moses, Pollier, et al. 2014) . 

Nicotiana benthamiana leaf infiltration 

For transient expression in N. benthamiana leaves, the coding sequence of GgAS, 

MtCYP716A12, MtCYP72A67, and MtCYP72A68 were Gateway recombined from their 

pDONR221 entry vectors into the binary vector pK7WG2D (Karimi et al. 2002). The resulting 

constructs were individually introduced into the A. tumefaciens strain C58C1, carrying the helper 

plasmid pMP90. Agrobacterium strains were grown for 2 d in a shaking incubator (150 rpm) at 

28 °C in 5 mL yeast extract broth medium, supplemented with 100 μg/mL kanamycin, 100 

μg/mL spectinomycin, and 20 μg/mL gentamycin. After incubation, 0.5 mL of bacterial culture 

was used to inoculate 9.5 mL of yeast extract broth medium supplemented with antibiotics and 

containing 10 mM MES (pH 5.7) and 20 mM acetosyringone. After an additional overnight 

incubation (150 rpm, 28 °C), strains for transient coexpression were mixed, collected via 

centrifugation, and resuspended in 5 mL of infiltration buffer (100 mM acetosyringone, 10 mM 

MgCl2, and 10 mM MES, pH 5.7). The amount of bacteria harvested for each construct was 

adjusted to a final OD600 of 0.3 after resuspension in the infiltration buffer. After 2 to 3 h 

incubation at 150 rpm and 28 °C, the bacteria mixtures were infiltrated to the abaxial side of 

fully expanded leaves of 3- to 4-week-old N. benthamiana plants grown at 25 °C in a 14-h/10-h 

light/dark regime. The infiltrated plants were incubated under normal growth conditions for 5 d 

prior to metabolite analysis. Nicotiana benthamiana infiltrated leaves were harvested and ground 
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to a fine powder in liquid nitrogen for metabolite analyses. Then, 0.4 g of ground leaf material 

was extracted with 1 mL of methanol for 10 min and centrifuged for 5 min at 20,800 x g. The 

resulting organic extract was evaporated to dryness under vacuum and subsequently resuspended 

in 0.5 mL of water and 0.5 mL of ethyl acetate. After centrifuging again for 5 min at 20,800 x g, 

the organic phase was removed, vaporized to dryness, and trimethylsilylated for GC-MS analysis 

which was carried out as described previously (Moses et al. 2015). 

Ectopic expression of MtCYP72A67 and MtCYP72A68 in Medicago truncatula hairy roots 

The coding sequence of MtCYP72A67 and MtCYP72A68 were amplified from cDNA 

synthesized from M. truncatula (cv. Jemalong A17) aerial tissue using Platinum Hi-Fi Taq 

polymerase (Invitrogen, Carlsbad, CA). The primer sequences used for amplification are listed in 

Sup. Table S9. PCR products were cloned into the entry vector pENTR/D/TOPO (Invitrogen) 

and sequenced. The entry vectors were recombined into a destination vector, pK7WG2D for 

overexpression or pK7GWIWG2D(II) for RNAi (a double-stranded hairpin RNA), by using the 

LR clonase reaction (Invitrogen). The vectors were transformed into Agrobacterium rhizogenes 

(strain ARqua1) by electroporation (Quandt et al. 1993). Transformed colonies were grown on 

LB-agar medium at 28°C, with spectinomycin and streptomycin for vector selection. After 

confirmation by PCR, transformed agrobacteria were used to transform leaves of M. truncatula 

(cv. Jemalong A17) and generate hairy roots (Verdier et al. 2012). 

Tnt1 mutant identification of cyp72a68 lines 

The MtCYP72A68 coding sequence was used for in silico blast searches against the Noble 

Foundation Tnt1 flanking sequence database https://medicago-

mutant.noble.org/mutant/database.php, which yielded an insertion event, NF1698 insertion 4 in 

R108 ecotype. The Tnt1 insertion in cyp72a68 was confirmed via cloning and sequencing of the 

truncated PCR product using gene-specific and Tnt1 border primers amplified from a 

cyp72a68/cyp72a68 heterozygous NF1698-4 plant, position 503bp. Generation of the M. 

truncatula Tnt1 insertion mutant population and growth of R1 seeds were performed as 

described (Tadege et al. 2008). Reverse genetic screening for Tnt1 retrotransposon insertions in 

MtCYP72A68 was performed by using a nested PCR approach (Cheng et al. 2011) and 

cyp72a68-forward: 5’-GCACGAGGAAAACATTTCACAC-‘3. PCR products from target 

mutant NF12169 line were purified with QIAquick PCR purification kit (Qiagen) and sequenced 
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by using Tnt1 primers to confirm insertions in MtCYP72A68 at position. Insertions in 

Mtcyp72a68 were found at position 503 bp in mutant line NF1698-4 and at 453 bp in line 

NF12169 which were validated by PCR (both calculated from start codon and located on exon). 

All mutants were genotyped however no homozygous Tnt1-Mtcyp72a67 insertion plants were 

identified. 

 

RESULTS 

Metabolite profiling of a M. truncatula ecotype collection reveals substantial chemical 

diversity and identifies high and low saponin-accumulating ecotypes 

Species-specific germplasm collections (ecotypes; natural genetic variants) are a powerful 

resource for exploring the natural chemical variation in triterpene saponin content (Branca et al. 

2011; Ronfort et al. 2006). In this study, 106 ecotypes were analyzed using high-resolution 

biochemical profiling to characterize the chemical diversity in triterpene saponin content within a 

large M. truncatula germplasm collection (collection provided by Dr. Jean-Marie Prosperi and 

the French National Institute for Agriculture Research; INRA). The triterpene saponin content in 

each of the above lines was analyzed separately in root and aerial tissues using UHPLC- coupled 

to a hybrid quadrupole time-of-flight mass spectrometer operated in the negative electrospray 

ionization mode (UHPLC-(-)ESI-QToF-MS). Metadata compliant with the Metabolomics 

Standards Initiative (Fiehn et al. 2007; L. W. Sumner et al. 2007) are summarized in 

Supplemental Table S1. Overall, 143 putative and identified triterpene saponins were measured 

based upon unique ion mass-to-charge ratio (m/z) and chromatographic retention time pairs. 

Seventeen saponins were rigorously identified based upon co-characterization with authentic 

standards (e.g., 3-Glc-28-Glc-medicagenic acid standard); 53 saponins were tentatively identified 

based upon mass spectral (accurate mass, in-source fragmentation and/or MS/MS) and literature 

data (Huhman et al. 2005; Huhman and Sumner 2002; Pollier et al. 2011); 28 saponins had 

partial annotation based solely on spectral features resulting from probable source fragmentation 

(e.g. possibly Glc-Glc-bayogenin); and the remainder were unknowns. The latter unknown 

saponins were differentiated based upon unique m/z values and retention times in the same 

manner as the known and putatively identified saponins. Total saponin accumulation values were 

determined for both aerial and root tissues of each ecotype by summing the peak area for each of 

the saponin ion/RT pairs (Supplemental Table S2 and S3). A scatter plot of the total saponin 
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content in the aerial tissue versus the root is present in Figure 2. The average value for the total 

saponin chromatogram peak areas in 106 ecotypes was 78.32 normalized relative instrument 

response to the internal standard (nrir) in the aerial tissue and 285.35 nrir in the roots. Ecotype 

ESP105 had the lowest relative content of total saponins in aerial tissue (3.4 nrir), but very high 

total saponin accumulation in root tissue (394.1 nrir). In contrast, ecotype GRC43 had the lowest 

total saponin accumulation in the root (44.7 nrir) but very high total accumulation in aerial 

tissues (131.3 nrir). Thus, these two most diverse ecotypes were selected for further comparative 

gene expression analyses. 

 

Correlated metabolite and gene expression analyses identify MtCYP72A67 and 

MtCYP72A68 as cytochrome P450s potentially involved in saponin biosynthesis 

Correlations between gene-to-gene expression and gene-to-metabolite accumulation have been 

shown to be a powerful tool for the identification of novel natural product biosynthetic genes 

(Goossens 2015; Hirai et al. 2005, 2010; Hirai and Saito 2004). Here, correlation analyses 

between saponin accumulation and gene expression were performed using selected ecotypes with 

high saponin diversity: M. truncatula ESP105 and GRC43 (Figure 2, and Supplemental Tables 

S2 and S3). These ecotypes were chosen based upon their substantial differential and tissue-

specific accumulation of saponins as described above. We also selected two reference ecotypes: 

A17 that was used for genomic sequencing (Young et al. 2011) and R108 that been used in the 

generation of a Tnt1 retrotransposon insertion mutant population (Tadege et al. 2008). 

Affymetrix GeneChip-Medicago Genome Arrays were used for gene expression analyses. 

Qualitative and relative quantitative analyses of saponin levels were performed using UHPLC-(-

)ESI-QToF-MS and based upon a unique ion/RT pair list as described above. Saponins were then 

grouped according to their triterpene aglycone structures. This grouping of sapogenin-specific 

accumulation values was performed for eight different sapogenin aglycones, including oleanolic 

acid, hederagenin, bayogenin, medicagenic acid, polygalagenin (putative identification), zanhic 

acid, soyasapogenol E and soyasapogenol B (see structures in Figure 1). In addition, two 

parameters for total saponin calculations were used: i) total known = sum of the known 

sapogenins and ii) total aglycones = sum of total known saponins and unknown aglycones. Gene-

to-gene and gene-to-metabolite Pearson's correlation coefficients (r) were calculated and 

clustered using gene expression levels for 23 P450 probe sets implicated in a previous report 
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(Naoumkina et al. 2010), -amyrin synthase (AS), nine other known genes related to M. 

truncatula terpene biosynthesis, known sapogenin aglycones and total saponin levels (Figure 

3).The probe sets of four genes, MtCYP72A67, MtCYP72A68, MtCYP716A12 and MtAS, were 

positively correlated to each other (Pearson's r ≥ 0.5, upper left triangle) and significant (P value 

<0.01, lower right triangle) as highlighted in the Figure 3 heat map. These probe sets were also 

highly correlated with the total saponin content and medicagenic acid. The expression levels of 

MtCYP72A67, MtCYP72A68, MtCYP716A12 and MtAS with the sapogenin aglycones level are 

presented in Supplemental Figure S1 and the qRT-PCR verification of the gene expression levels 

in Supplemental Figure S2 along with the full list of transcriptome and metabolome data for the 

selected M. truncatula ecotypes in Supplemental Table S4. 

The correlation data reported here were validated with previous studies which reported 

that both βAS (the first enzymatic step of triterpene saponin biosynthesis) and MtCYP716A12 

(enzyme associated with oleanate sapogenin biosynthesis) are key enzymatic steps in triterpene 

saponin biosynthesis in M. truncatula (Carelli et al. 2011; Fukushima et al. 2011; Suzuki et al. 

2002). The data also highlighted two more important genes, MtCYP72A67, a P450 suspected to 

be involved in Medicago saponin biosynthesis (Biazzi et al. 2015; Fukushima et al. 2013; 

Naoumkina et al. 2010) and MtCYP72A68, which was reported to catalyze the three-step 

oxidation of oleanolic acid in a heterologous yeast system (Fukushima et al. 2013). 

Additional correlation analyses and gene expression clustering of the implicated P450 

genes were performed using data from the M. truncatula Gene Expression Atlas (Benedito et al. 

2008). The expression data used for the correlation data are provided in Supplemental Table S5. 

These analyses revealed similar clustering of the uncharacterized MtCYP72A67 and partially 

characterized MtCYP72A68 genes with the previously characterized MtAS, MtCYP716A12 and 

MtCYP93E2 P450s (Supplemental Figure S3). MtCYP72A67 and MtCYP72A68 are also highly 

correlated with the accumulation of the oleanate sapogenin medicagenic acid. Therefore, the 

cumulative correlation data strongly support that both MtCYP72A67 and MtCYP72A68 have a 

high potential as putative genes/enzymes involved in triterpene sapogenin biosynthesis. 

Heterologous expression of MtCYP72A67 in yeast 

The potential oleanate sapogenin oxidase activity of MtCYP72A67 was tested using 

heterologous expression in yeast and in vitro biochemical assays using yeast microsomes. A 
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recent article reports on the identification of CYP72A67 (Fukushima et al. 2013); however, upon 

co-expression of the AS, cytochrome P450 reductase (CPR), CYP716A12, and CYP72A67 

genes in yeast, they could not demonstrate CYP72A67 activity (Fukushima et al. 2013). In this 

study, we used microsomes from yeast WAT11 cells expressing MtCYP72A67 in vitro with a 

variety of triterpene sapogenin substrates, and the products were analyzed by UHPLC-(-)ESI-

QToF-MS. NADPH was also added to these assays as a P450 cofactor. When oleanolic acid was 

used as a substrate, 2β-hydroxyoleanolic acid was detected as a product in the MtCYP72A67 (+) 

NADPH microsomal samples, but not detected in the MtCYP72A67 (-) NADPH or empty vector 

control samples (Table 1 and Supplemental Figure S4A). When hederagenin was used as a 

substrate, 2β-hydroxyhederagenin (e.g. bayogenin) was detected as a product in the (+) NADPH 

samples but not detected in the MtCYP72A67 (-) NADPH and empty vector control samples 

(Table 1B and Supplemental Figure S4B). Both the empty vector control and assays without 

NADPH resulted in no P450 activity (Supplemental Figure S4B). In addition, -amyrin and 

erythrodiol were used as substrates in MtCYP72A67 assays, but no products were detected using 

gas chromatography-mass spectrometry (GC-MS; data not shown; a summary of all substrates 

that were used for MtCYP72A67 yeast assay is listed in Supplemental Table S6). It was 

concluded that microsomes containing recombinant CYP72A67 protein possess multi-substrate 

C-2β-hydroxylase activity for oleanolic acid and hederagenin, yielding the C-2 β-hydroxy 

derivatives. 

Encouraged by the in vitro assays that clearly indicate the oleanolic acid oxidase activity 

of CYP72A67, additional yeast strains KM1 and KM2 were created from a sterol engineered -

amyrin producing yeast strain TM3 (Moses, Pollier, et al. 2014). All yeast strains generated in 

this study are listed in Supplemental Table S8. Both strains express CYP716A12 and M. 

truncatula cytochrome P450 reductase (MtCPR1) from a high-copy number plasmid to produce a 

self-processing polyprotein in which the P450 reductase and the P450 are linked via a 2A 

oligopeptide (de Felipe et al., 2006). When cultivated in the presence of methylated β-

cyclodextrins (MβCD), both strains produce high levels of oleanolic acid (Figure 4A). Yeast 

strain KM2 also expresses MtCYP72A67 from a high-copy number plasmid, whereas KM1 does 

not. Comparison of the GC chromatograms of extracts from the spent medium of KM1 and KM2 

cultured with MβCD showed a single unique peak in strain KM2, but not in strain KM1, that 
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corresponds to 2β-hydroxyoleanolic acid (Figure 4A). In summary, MtCYP72A67 was shown to 

catalyze the C-2β-oxidation of oleanolic acid, using in vitro assays with yeast microsomes and 

engineered yeast strains. 

Ectopic expression and characterization of MtCYP72A67 in planta 

To investigate if MtCYP72A67 functions as a 2β-hydroxylase in planta, M. truncatula hairy 

roots were generated following Agrobacterium rhizogenes-mediated transformation with the 

Mtcyp72a67 RNAi, a double-stranded hairpin RNA that triggers post-transcriptional gene 

silencing, or with MtCYP72A67- overexpressing the MtCYP72A67 full coding sequence. 

Quantitative RT-PCR analysis of the MtCYP72A67 transcript levels resulted in an average gene 

expression reduction of 46% in Mtcyp72a67-RNAi hairy roots compared to control. UHPLC-(-

)ESI-QToF-MS was used to compare the saponin content in transformed hairy roots relative to 

an empty vector control. Figure 5 summarizes the changes in saponin content which were 

measured in Mtcyp72a67 RNAi hairy roots. Deduced enzymatic products of CYP72A67 and 

related downstream saponins, including 2β-hydroxyoleanolic acid, bayogenin, polygalagenin 

(putative identification), medicagenic acid and zanhic acid were significantly reduced while 

substrates oleanolic acid, hederagenin and gypsogenin (putative identification) were significantly 

increased in the Mtcyp72a67 RNAi hairy roots compared to the control. In Figure 5, the oleanate 

sapogenins were altered in the Mtcyp72a67 RNAi hairy roots where the downstream C-2 

oxidative derivatives of oleanolic acid were decreased while the non-C-2 oxidative pathway 

metabolites were increased. 

MtCYP72A67 was overexpressed in hairy roots and MtCYP72A67 transcript levels 

showed an average 2.24-fold induction by qRT-PCR compared to the control. Saponin analyses 

were performed by UHPLC-(-)ESI-QToF-MS for the MtCYP72A67-overexpressing hairy roots 

and compared to hairy roots transformed with an empty vector. MtCYP72A67-overexpressing 

hairy roots had significantly increased levels of several aglycones, including 2β-

hydroxyoleanolic acid, polygalagenin (putative identification) and zanhic acid (Supplemental 

Figure S5). Unexpectedly, the level of oleanolic acid was also significantly increased which may 

indicate a more complex regulatory function of this gene. Ectopic expression of MtCYP72A67 in 

planta is in agreement with the results from yeast and thus support the conclusion that 

MtCYP72A67 possesses multi-substrate 2β-hydroxylase activity for oleanolic acid and 
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hederagenin, yielding the C-2 alcohols in the oleanate sapogenin branch of the triterpene 

saponins. 

In addition, G. glabra AS and MtCYP716A12 were transiently expressed with or without 

MtCYP72A67 in Nicotiana benthamiana leaves using Agrobacterium tumefaciens-mediated 

infiltration. Similar to yeast, comparison of the GC-MS chromatograms of organic extracts from 

leaves three days after co-infiltration revealed the presence of 2β-hydroxyoleanolic acid in leaves 

that were co-infiltrated with MtCYP72A67 (Figure 4B). Taken together, MtCYP72A67 was 

shown to catalyze the 2β-oxidation of oleanolic acid in heterologous tobacco bioassays. 

Heterologous expression of MtCYP72A68 in yeast  

The potential oleanate sapogenin oxidase activity of MtCYP72A68 was first tested using 

heterologous expression and in vitro enzymatic assays. Microsomes of WAT11 yeast cells 

expressing MtCYP72A68 were tested for in vitro enzymatic activity with various substrates, and 

products analyzed with UHPLC-(-)ESI-QToF-MS or GC-MS as described above. Protein 

activity was measured with oleanolic acid or hederagenin as the substrate and with or without 

NADPH as a P450 cofactor. As shown in Table 2A, when oleanolic acid was used as a substrate, 

hederagenin, gypsogenin, and gypsogenic acid accumulated. None of these products were 

detected in the empty vector control samples (see also Supplemental Figure S6A). The detected 

anion at m/z 469.35 at retention time (RT) of 24.91 min was tentatively identified in this study as 

gypsogenin or 3β-hydroxy-23-oxo-olean-12-en-28-oic acid based upon literature information 

including accurate mass, aglycone anion at m/z 469 and a predicted molecular formula of 

C30H46O4 (Supplemental Figure S6; http://www.chemspider.com). 

Another detected anion at m/z 485.35 and RT of 21.88 min was previously identified as 

gypsogenic acid or 2β,3β-dihydroxy-23-oxo-olean-12-en-28-oic acid based upon fragmentation 

of its aglycone anion at m/z 485 and a predicted molecular formula of C30H46O5 (Supplemental 

Figure S6; http://www.chemspider.com and (Pollier et al. 2011). In addition, the amount of 

oleanolic acid detected was lower in the MtCYP72A68 (+) NADPH assay, indicating its 

consumption as a substrate. When hederagenin was used as a substrate (Table 2B), large 

quantities of gypsogenin and gypsogenic acid were detected as products in the MtCYP72A68 

assay and not detected in the empty vector control samples (see also Supplemental Figure S6B). 

The amount of hederagenin detected was lower in the MtCYP72A68 (+) NADPH assay, 
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indicating its consumption as a substrate. -amyrin and erythrodiol were also tested as substrates, 

but no products were detected via GC-MS (data not shown; a summary of all substrates that were 

used for MtCYP72A68 yeast assays is listed in Supplemental Table S6). Taken together, these 

results indicate that microsomes containing recombinant MtCYP72A68 possess the ability to 

catalyze the sequential oxidation of C-23 on oleanolic acid, yielding the C-23 alcohol, aldehyde 

and carboxylic acid derivatives. The data also indicated that recombinant MtCYP72A68 will not 

accept sapogenins with C-28 methyl or C-28 hydroxyl groups as substrates. 

Next, yeast strains KM1 and KM3 were created from a sterol engineered -amyrin 

producing yeast strain TM3 (Moses, Pollier, et al. 2014). Yeast strain KM3 expresses a self-

processing polyprotein in which CYP716A12 and MtCPR1 were linked via a 2A oligopeptide. 

KM3 also expresses MtCYP72A68 from a high-copy number plasmid, whereas KM1 does not. 

Comparison of the GC-MS chromatograms of extracts from the spent medium of KM1 and KM3 

cultured with MβCD showed three unique peak in strain KM3 that correspond to hederagenin, 

gypsogenin and gypsogenic acid (Figure 6A) (Fukushima et al. 2013). 

 

Ectopic expression and characterization of MtCYP72A68 planta 

M. truncatula hairy roots were transformed and MtCYP72A68 overexpressed to further 

substantiate the role of MtCYP72A68 in triterpene saponin biosynthesis. The MtCYP72A68 

transcript levels in hairy roots were quantified by qRT-PCR, and an average 1.51-fold induction 

in MtCYP72A68 expression was observed compared to the control. Saponin analyses were 

performed by UHPLC-(-)ESI-QToF-MS on the MtCYP72A68-OE (overexpression) hairy roots 

and compared to hairy roots transformed with an empty vector. The fold changes in saponin 

content that were detected in MtCYP72A68-OE hairy roots are presented in Figure 7, and the 

data revealed significantly increased levels of several aglycones, including oleanolic acid, 

hederagenin, polygalagenin (putative identification), soyasapogenin E and total saponins. None 

of the metabolites were decreased. Unexpectedly, the level of 2β-hydroxy oleanolic acid was 

also induced. As shown in Figure 7, both oleanate sapogenins and soyasapogenols branches were 

altered in the MtCYP72A68-OE hairy roots, which affected the total accumulation of saponins by 

1.53-fold. M. truncatula hairy roots were also transformed with Mtcyp72a68 RNAi, a double-

stranded RNA (hairpin RNA). However, transcript levels of Mtcyp72a68-RNAi were checked by 
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qRT-PCR and showed only a minor average decrease in gene expression of 16% and no 

significant metabolic changes. Glycyrrhiza glabra AS, MtCPR1 and MtCYP716A12 were also 

transiently expressed with or without MtCYP72A68 in Nicotiana benthamiana leaves using 

Agrobacterium tumefaciens-mediated infiltration. Like in yeast, comparison of the 

chromatograms of organic extracts from leaves three days after co-infiltration revealed three 

unique peaks corresponding to hederagenin, gypsogenin and gypsogenic acid in leaves that were 

co-infiltrated with MtCYP72A68 (Figure 6B). Hence, heterologous expression of MtCYP72A68 

in yeast and tobacco all point towards the sequential oxidation of C-23 of oleanolic acid by 

MtCYP72A68 and confirm similar results obtained by (Fukushima et al. 2013).  

We also measured the saponin levels extracted from root tip tissues from Tnt1 

retrotransposon mutants (Tadege et al. 2008) in the MtCYP72A68 gene. Two independent mutant 

lines with retrotransposon insertions in the MtCYP72A68 gene were identified through PCR 

screening (Tadege et al. 2008). Tnt1 insertion lines NF1698-4, NF12169, and R108 (control) 

were germinated and the root tips (approximately 3 mm) from 25 plants (a mixed population of 

heterozygous and wild type, 2:1) were collected. The mRNA levels revealed that both Tnt1 

mutant lines possessed lower MtCYP72A68 mRNA levels, 22 % lower for NF1698-4 and 20% 

lower for NF12169, compared to wildtype R108 control (Supplemental Figure S7A). This was 

followed by UHPLC-(-)ESI-QToF-MS analyses of sapogenin aglycones (Supplemental Figure 

S7B). These analyses showed reduction of medicagenic acid and zanhic acid of NF12169 line. 

DISCUSSION 

Genomic and coexpression analyses identify genes involved in triterpene saponin 

biosynthesis 

Currently, several P450s from multiple P450 families have been reported in relation to saponin 

biosynthesis (Augustin et al. 2011; Miettinen et al. 2018; Seki et al. 2015). Diversity of P450s 

are involved in triterpene saponin biosynthesis across many species, hence the prediction of 

specific substrate and enzymatic activity based on sequence alone is complex (Nelson and 

Werck-Reichhart 2011). Thus, there is a need for large-scale data approaches to identify and 

prioritize candidate P450s and other gene candidates involved in triterpene biosynthesis. 

Germplasm collections are powerful resources for exploring the natural variation for any number 

of phenotypes (Ronfort et al. 2006), including saponin content. We measured the total saponin 
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content for 106 of M. truncatula ecotypes and revealed substantial differential accumulation of 

these specialized metabolites. Four diverse ecotypes with strong differential accumulation of 

saponins in root and aerial tissues were selected for further transcriptome analyses. Correlation 

analyses between gene-gene expression and gene-metabolite accumulation were then performed 

to identify genes that are likely involved in triterpene saponin biosynthesis. The correlation 

coefficients between microarray gene expression levels for putative P450s, AS, known 

sapogenins and total saponins revealed a significantly correlated cluster of genes, including 

MtCYP72A67, MtCYP72A68, MtCYP716A12 and MtAS. Saponin levels, including total known 

saponins, total aglycones and medicagenic acid, were also clustered (Figure 3 and Supplemental 

Figure S3). These correlations represent discovery events that identify putative saponin 

biosynthetic genes. To further assess the CYP72 candidate genes, correlation coefficients for 

gene-gene expression values of the P450s were calculated using the M. truncatula Gene 

Expression Atlas (Supplemental Figure S3) (Benedito et al. 2008; He et al. 2009). This revealed 

similar clustering of MtCYP72A67 and MtCYP72A68 genes with MtAS and MtCYP716A12 

(Figure 3). Both MtAS and MtCYP716A12 genes have been previously reported as saponin 

biosynthetic enzymes (Supplemental Figure S3) (Carelli et al. 2011; Fukushima et al. 2011; 

Miettinen et al. 2017). MtCYP72A61, MtCYP72A67 and MtCYP72A68 were also implicated 

based upon their coexpression with -amyrin synthase in methyl jasmonate-elicited cell culture 

data (Naoumkina et al. 2010) and their expression is under control of the regulator of hemolytic 

saponin biosynthesis, the transcription factor TSAR2 (Mertens et al. 2016).  Thus, MtCYP72A67 

and MtCYP72A68 were prioritized for functional characterization. 

MtCYP72A67 is a C-2 hydroxylase involved in the biosynthesis of oleanate sapogenins 

Heterologous combinatorial biosynthesis is a method that establishes novel enzyme-substrate 

combinations in vivo (Pollier et al. 2011). However, heterologous combinatorial expression of 

AS/CPR/CYP716A12/CYP72A67 genes in yeast strains did not demonstrate CYP72A67 

activity (Fukushima et al. 2011), whereas in this study, we were able to demonstrate the 2β-

hydroxylase activity of MtCYP72A67 on oleanolic acid. This apparent discrepancy could be due 

to the difference in the yeast strains used or due to different culturing conditions. In the study of 

Fukushima et al. (2013), the non-engineered yeast strain INVSc1 was used, whereas for this 

study we used the sterol-engineered yeast strain TM3. In strain TM3, the native yeast gene 
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ERG7 is under control of a methionine-repressible promoter allowing for increased accumulation 

of 2,3-oxidosqualene, the substrate for -amyrin synthase. In addition, strain TM3 also expresses 

a truncated feedback-insensitive copy of isoform 1 of the S. cerevisiae 3-hydroxy-3-

methylglutaryl-CoA reductase (tHMG1) gene, allowing for an increased accumulation of 2,3-

oxidosqualene (Kirby et al. 2008; Moses, Pollier, et al. 2014). Furthermore, the use of MβCD in 

the cultivation process improves the catalytic efficiency of the P450s, likely due to removal of 

feedback inhibition on the P450 activity or removal of toxicity due to lower intracellular 

accumulation of sapogenins (Moses, Pollier, et al. 2014). 

 Heterologous MtCYP72A67 catalyzed the oxidation of C-2 of both oleanolic acid and 

hederagenin, yielding the products 2β-hydroxy oleanolic acid and bayogenin, respectively (Table 

1). The hydroxylation of hederagenin indicates that compounds with C-23 hydroxyl substitution 

are also substrates for MtCYP72A67-mediated C-2 oxidation. MtCYP72A67 P450-mediated C-2 

oxidation activity is also supported by the lack of product accumulation in assays deficient in 

NADPH (Supplemental Figure S4). Lack of product accumulation in these assays indicates that 

the cytochrome P450 reductase/MtCYP72A67 requires NADPH as an electron donor for activity 

(Liu et al. 2003; Seki et al. 2008). No products were detected when MtCYP72A67 was assayed 

with -amyrin or erythrodiol, which implies that compounds with a C-28 methyl (-amyrin) or 

C-28 hydroxyl group (erythrodiol) are not suitable substrates for MtCYP72A67-mediated C-2 

oxidation. Functional genomics studies of Mtcyp72a67 RNAi and MtCYP72A67 overexpression 

in M. truncatula hairy roots further demonstrated that MtCYP72A67 possessed in planta 

oxidation activity for C-2 of oleanolic acid and hederagenin, yielding the C-2 alcohols in 

catalyzed substrates of the oleanate sapogenin branch of the triterpene saponins (Figure 5 and 

Supplemental Figure S5). 

 

MtCYP72A68 is a multifunctional oxidase involved in the oleanate sapogeninin 

biosynthesis 

Previous studies have shown that an individual cytochrome P450 can catalyze the oxidation of a 

given carbon, yielding the hydroxyl, carbonyl and carboxylic acid products related to diterpenes 

in loblolly pine and Arabidopsis (He et al. 2009; Ro et al. 2005). More recently, a 

multifunctional oxidase involved in triterpene saponin biosynthesis (MtCYP716A12) has also 

been identified in M. truncatula (Carelli et al. 2011). Both heterologous expression assays in 
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yeast and tobacco demonstrate that MtCYP72A68 catalyzes the initial oxidation of C-23 of 

oleanolic acid, yielding the C-23 hydroxyl product hederagenin (Table 2, Supplemental Figure 

S6). Additional products with m/z values of 469.35 and 485.35 were also detected in the 

MtCYP72A68 oleanolic acid assays. These have been tentatively identified as gypsogenin, the 

C-23 aldehyde derivative of oleanolic acid, and gypsogenic acid, the C-23 carboxy derivative of 

oleanolic acid, based upon accurate mass and literature information. Assays of yeast expressing 

MtCYP72A68 tested with hederagenin also showed production of gypsogenin and gypsogenic 

acid products. No products were detected when MtCYP72A68 was assayed with -amyrin or 

erythrodiol, which implies that compounds with a methyl C-28 (-amyrin) or C-28 hydroxyl 

group (erythrodiol) are not suitable substrates for MtCYP72A68-mediated C-23 oxidation. 

The in planta study of MtCYP72A68 overexpressed in M. truncatula hairy roots 

supported the oxidase activity of CYP72A68 for oleanolic acid, yielding the C-23 alcohol in 

catalyzed substrates of the oleanate sapogenin branch of the triterpene saponins (Figures 8). Tnt1 

mutant lines with an insertion in the MtCYP72A68 gene accumulated high levels of 2β-hydroxy 

oleanolic acid due to the reduced level of MtCYP72A68 (Supplemental Figure S7). However, the 

reason for high induction of 2β-hydroxy oleanolic acid in MtCYP72A68 overexpressing lines is 

not clear and may be due to more complex regulation of the pathway or regulatory function of 

the CYP72A68 gene. Taken together, these results indicate that MtCYP72A68 catalyzes the 

oxidation of C-23 of oleanate sapogenins, yielding the alcohol (hederagenin), and likely also 

catalyzes the further oxidation towards the aldehyde (gypsogenin) and carboxy acid (gypsogenic 

acid). 

Multisubstrate enzymes enhance chemical diversity  

MtCYP72A67 and MtCYP72A68 are novel enzymes that catalyze the sapogenin biosynthesis in 

M. truncatula. MtCYP72A67 is a multisubstrate C-2 oxidase yielding 2β-hydroxy oleanolic acid 

and bayogenin, and MtCYP72A68 is a multisubstrate C-23 multifunctional oxidase yielding 

hederagenin, gypsogenin and gypsogenic acid. Although gypsogenin was not detected in planta, 

it was detected in yeast heterologously producing MtCYP72A68 and supplied in vivo or in vitro 

with oleanolic acid and hederagenin acid (Table 2, Figures 7-8 and Supplemental Figure S6-S7). 

We suggest that MtCYP72A68 has the potential to convert the C-23 alcohol of hederagenin to a 

carbonyl group leading to gypsogenin. Together these genes have the potential to synthesize at 
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least four different sapogenins from a common precursor, oleanolic acid. Biosynthesis of 

bayogenin, for instance, requires both genes for oxidation of C-2 and C-23 (Figure 1). However, 

the order of these reactions has not yet been determined. Evidence for cytochrome P450 enzymes 

as multisubstrate enzymes in biochemistry has been accumulating for some time (Carelli et al. 

2011)Siminszky et al., 1999; Schmidt et al., 2003; Ro et al., 2005). Enzymes with broad 

substrate tolerance are also commonly found in natural product biosynthesis. Enzymes that can 

act on more than one substrate to give multiple products is a mechanism that generates chemical 

diversity, and, as long as one of the products enhances the fitness of the producer, the genes 

coding for the overall process will be favored by selection, and chemical diversity will be 

retained (Firn and Jones, 2003; Weissman and Leadlay, 2005; Gershenzon and Dudareva, 2007). 

CONCLUSIONS 

We exploited the genetic and biochemical diversity of a M. truncatula population and used 

integrated metabolomics and transcriptomics to identify novel genes involved in saponin 

biosynthesis. This was achieved through UHPLC-(-)ESI-QToF-MS metabolite profiling of a 

diverse collection of M. truncatula ecotypes, which further resulted in the identification of four 

specific ecotypes with substantial differential saponin accumulation. Correlated gene-to-gene 

expression and gene-to-metabolite accumulation data identified MtCYP72A67 and MtCYP72A68 

as potential oxidative enzymes associated with saponin biosynthesis. These genes were then 

functionally characterized using traditional in vitro, in vivo and in planta biochemical assays 

along with genetic approaches to prove function. The data provide evidence that MtCYP72A67 

is a C-2 β-hydroxylase of oleanolic acid and bayogenin, and that MtCYP72A68 is a 

multisubstrate, C-23 multifunctional oxidase of hederagenin, gypsogenin, and gypsogenic acid. 

The successful integration of metabolomics and transcriptomics illustrated here provides 

additional evidence of the value of these exciting new technologies in the discovery and 

characterization of novel specialized metabolism genes. 
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SUPPLEMENTAL DATA 

Supplemental Table S1: Metabolomics Standards Initiative Compliant Metadata supporting the 

experiments reported here (Fiehn et al. 2007). 

Supplemental Table S2: Full ecotype UHPLC-ESI(-)-QTofMS data of Medicago truncatula 

aerial tissue 

Supplemental Table S3: Full ecotype UHPLC-ESI(-)-QTof-MS data for Medicago truncatula 

root tissue 

Supplemental Table S4: Relative saponin accumulation levels and gene expression data for 

selected M. truncatula lines (Log10). 

Supplemental Table S5: Expression values from Medicago gene expression atlas of terpene 

P450s genes, unknown P450s and other genes from the terpenes biosynthesis which were used 

for CE heat map. 

Supplemental Table S6: Substrates that were tested in CYP72A67 and CYP72A68 activity 

assay 

Supplemental Table S7: Primer list used for qRT-PCR. 

Supplemental Table S8: Yeast strains generated in this study and primers used for cloning.  

Supplemental Table S9: Primer list of MtCYP72A67 and MtCYP72A68 cloning to hairy roots 

transformation.  

Supplemental Figure S1. Relative saponin accumulation relative to gene expression levels of 

MtCYP72A67, MtCYP72A68, MtCYP716A12 and AS genes. Root and aerial tissues were 

collected from four selected ecotypes: (A) A17; (B) ESP105; (C) GRC43; and (D) R108. 

Microarray analyses and UHPLC-(-)ESI-QToF-MS were performed using three biological 

replicates. Expression values are reported as Log10 of shoots (black bars) and root (white bars). 

Supplemental Figure S2. Gene expression of MtCYP72A67, MtCYP72A68, MtCYP716A12 and 

AS. Root and aerial tissues were collected from 5-week-old M. truncatula ecotypes, including 

ESP105, GRC43, A17, and R108. Relative gene expression was measured and reported for two 

methods: A) qRT-PCR; and B) microarray analyses. In both methods, three biological replicates 

were used. 

Supplemental Figure S3. Correlation coefficient (Pearson's r) heat map of known, unknown 

P450s and genes from the terpene biosynthesis using expression values from Gene Expression 
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Atlas. Transcript levels were measured in the different tissues (microarray data were obtained 

from the M. truncatula Gene Expression Atlas database version 2, MtGEAv2, 

https://mtgea.noble.org/v2/). The P450s involved in triterpene biosynthesis were selected 

according to a previous paper (Naoumkina et al. 2010). Upper left triangle matrix presents probe 

set correlation coefficients using Pearson's correlation (scale -0.5 to 1), and lower triangle matrix 

presents P value of the correlation coefficient test (light blue present P value < 0.01 and brown 

present non-significant). The black-bordered squares illustrated a highly correlated set of genes, 

including MtCYP72A67, MtCYP72A68, MtCYP716A12, AS, MtCYP93E2, isopentenyl 

pyrophosphate isomerase, phosphomevalonate kinase and mevalonate kinase. 

Supplemental Figure S4. UHPLC-(-)ESI-QToF-MS chromatograms of the MtCYP72A67 

product generated yeast in vitro enzymatic assays. (A) Chromatogram of activity assay using 

oleanolic acid and (B) hederagenin. The full-length MtCYP72A67 was tested with cofactor 

(MtCYP72A67 (+) NADPH), without cofactor (MtCYP72A67 (-) NADPH) and empty vector 

with cofactor (empty vector (+) NADPH). The results illustrate that MtCYP72A67 hydroxylates 

the C-2 position of oleanolic acid and hederagenin to produce 2-hydroxyoleanolic acid and 

bayogenin. 

Supplemental Figure S5. Results of overexpression (OE) of MtCYP72A67 full gene in M. 

truncatula hairy roots. (A) Proposed biosynthetic pathway of the sapogenins with observed 

metabolite fold changes in M. truncatula hairy roots. The sapogenin names are marked in 

different colors according to the fold changes: red – saponin significant fold increase; black – no 

change; and gray – not detected. The observed saponin fold changes are noted in brackets. 

*Gypsogenin and polygypsogenin were putatively identified using tandem mass (no authentic 

standard). 

Supplemental Figure S6. In vitro enzymatic assays of recombinant MtCYP72A68 in yeast 

WAT11 cells. (A) UHPLC-(-)ESI-QToF-MS chromatograms of activity assays using oleanolic 

acid and (B) hederagenin as substrates. The full-length CYP72A68 was tested with cofactor 

(CYP72A68 (+) NADPH) and empty vector with cofactor (empty vector (+) NADPH). 

Gypsogenin (3-hydroxy-23-oxoolean-12-en-28-oic acid) was tentatively identified here based 

upon literature information including accurate mass, aglycone anion at m/z 469 and a predicted 

molecular formula of C30H46O4. Gypsogenic acid, ((3β)-3-hydroxyolean-12-ene-23,28-dioic 
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acid) was previously identified from fragmentation of saponins yielding an aglycone anion at m/z 

485 and a predicted molecular formula of C30H46O5 (http://www.chemspider.com and (Pollier et 

al. 2011)). 

Supplemental Figure S7. Metabolite accumulation and qRT-PCR levels in cyp72a68 Tnt1 

mutant lines. Metabolites and mRNA were extracted from 3mm root tips of 3-day-old seedlings 

with three biological repeats from two Tnt1 mutant lines, NF1698-4 and NF12169. (A) The 

relative level of CYP72A68 gene expression detected by qRT-PCR in NF1698-4 and NF12169. 

Expression values were normalized relative to the endogenous ubiquitin control gene. (B) Fold 

changes in sapogenin content observed in the two mutant lines NF1698-4 and NF12169. In bold, 

Student’s t-test with P value < 0.05. 
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FIGURES and LEGENDS 

 

 

Figure 1. Proposed biosynthetic pathway of triterpene sapogenins reported in Medicago spp. 

(modified from Pollier et al., (2011) J. Natural Products). Solid arrows mark the enzymatic steps 

which have been characterized: MtCYP72A68 and MtCYP72A67in the current paper in addition 

to MtAS (Suzuki et al. 2002), MtCYP716A12 (Carelli et al. 2011)(Fukushima et al. 2011)(; Seki 

et al., 2011), MtCYP93E2 (Fukushima et al. 2011), MtCYP72A68* (Fukushima et al. 2013). 

Dashed arrows mark the unknown enzymes. Asterisk marks enzyme activity that has been tested 

in yeast system only (not in planta).  
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Figure 2. Scatter plot of total saponin content in root and aerial tissue measured for a germplasm 

collection of 106 M. truncatula ecotypes. Saponin content was quantified using UHPLC-(-)ESI-

QToF-MS total chromatographic peak area and measured for 5-week-old root and aerial tissues 

(three to four biological replicates for each ecotype tissue). Dashed line, average values of the X 

= 78.32 and Y = 285.35 total saponin chromatogram peak areas. ESP-105 had relatively high 

levels of saponins in roots but low levels in aerial tissues, and vice versa for GRC-43. Ecotype 

A-17 was used as a reference line.  

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



32 
 

 

Figure 3. Correlation coefficient Pearson's r heat map of sapogenin metabolites and putative 

triterpene P450 transcripts. Metabolites and transcript levels were measured in root and aerial 

tissues of four selected M. truncatula ecotypes, A17, ESP105, GRC43 and R108 (three 

biological replicates each). Characterized and putative P450s involved in terpene biosynthesis 

were selected according to a previous report (Naoumkina et al. 2010) in addition to AS and 

nine other known M. truncatula genes involved in early terpene biosynthesis. Upper left triangle 

matrix presents correlation coefficient Pearson's r as determined using Pearson's correlation 

(scale -0.8 to 1), and lower right triangle matrix presents P-values of the correlation coefficient 

test (light green highlights P-values <0.01, and brown highlights non-significant correlation). 

The black-bordered boxes encapsulate highly correlated probe sets including CYP72A67, 

CYPA68, CYP716A12 and AS, and metabolites medicagenic acid, total saponins, and total 

aglycones. 
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Figure 4.  In vivo functional analysis of CYP72A67. Overlay of GC-MS chromatograms 

showing accumulation of trimethylsilylated enzymatic products. (A) S. cerevisiae strain KM1 

expressing GgAS, MtCPR1 and CYP716A12 (black) and S. cerevisiae strain KM2 expressing 

GgBAS , MtCPR1, CYP716A12 and CYP72A67 (red). (B) N. benthamiana co-infiltrated with 

A. tumefaciens strains armed with gene silencing suppressor p19, GgAS and CYP716A12 

(black) and N. benthamiana co-infiltrated with A. tumefaciens strains armed with gene silencing 

suppressor p19, GgAS, CYP716A12 and CYP72A67 (red). CYP72A67v2 (version 2) was used.  
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Figure 5. Characterization of Mtcyp72a67-RNAi in M. truncatula hairy roots. (A) Proposed 

sapogenin biosynthesis pathway in M. truncatula hairy root and observed fold changes noted in 

brackets. The sapogenin names are marked in different colors, according to the fold changes: red 

– saponin significant fold increase; blue – significant fold decrease; black – no change; and gray 

– not detected. Sapogenins were identified based upon authentic standards, except gypsogenin, 

gypsogenic acid and polygalagenin which were putatively identified using tandem mass. 

Gypsogenin (put) was detected only in the Mtcyp72a67-RNAi hairy root transgenic lines but not 

in the wild type. 
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Figure 6. In vivo functional analysis of CYP72A68. Overlay of GC-MS chromatograms showing 

accumulation of trimethylsilylated enzymatic products in (A) S. cerevisiae strains KM1 

expressing GgAS , MtCPR1 and CYP716A12 (black) and KM3 expressing GgAS, MtCPR1, 

CYP716A12 and CYP72A68 (red). (B) N. benthamiana infiltrated with an A. tumefaciens strain 

armed with gene silencing suppressor p19 (black) and N. benthamiana co-infiltrated with A. 

tumefaciens strains armed with gene silencing suppressor p19, GgAS, CYP716A12 and 

MtCYP72A68. Also shown are oleanolic acid and hederagenin standards (green). CYP72A68v2 

(version 2) was used.  
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Figure 7. Characterization of MtCYP72A68 overexpression in M. truncatula hairy roots. (A) 

Proposed sapogenin biosynthesis pathway in M. truncatula hairy root and observed fold changes 

noted in brackets. The sapogenin names are marked in different colors, according to the fold 

changes: red – saponin significant fold increase; black – no change; and gray – not detected. 

Sapogenins were identified based upon authentic standards, except gypsogenin, gypsogenic acid, 

and polygalagenin which were putatively identified using tandem mass. 
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Table 1. In vitro enzymatic assays of CYP72A67. Values in the table represent the mean, 

normalized chromatogram peak areas and standard error for each of the metabolites (three 

biological replicates per assay condition). The substrates that were used for CYP72A67 protein 

were (A) oleanolic acid and (B) hederagenin. 

A) Substrate: oleanolic acid        

Name RT m/z 

CYP72A67 (+) 

NADPH empty vector 

fold change 

CYP72A67 / 

empty vector P value 

oleanolic acid 28.63 455.35 44866.7 ± 2321.2 49566.7 ± 1026.9 0.91 1.4E-01 

2-hydroxyoleanoic 26.36 471.35 97000.0 ± 3507.6 N.D. ±   high   

           

B) Substrate: hederagenin         

Name RT m/z 

CYP72A67 (+) 

NADPH empty vector 

fold change 

CYP72A67 / 

empty vector P value 

hederagenin 22.76 471.35 42033.3 ± 1299.1 47966.7 ± 1026.9 0.88 2.4E-02 

bayogenin 20.28 487.34 45433.3 ± 448.5 N.D. ±   high   
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Table 2. In vitro enzymatic assay of CYP72A68 protein. Values in the table represent the mean, 

normalized chromatogram peak areas and standard error for each of the metabolites (three 

biological replicates per assay condition). The substrates that were used for CYP72A68 protein 

were (A) oleanolic acid and (B) hederagenin. 

A) Substrate: oleanolic acid         

Name RT m/z CYP72A68 (+) NADPH empty vector 

fold change 

CYP72A68 / 

empty vector P value 

oleanolic acid 28.80 455.35 218673.0 ± 12616.4 328189.4 ± 6112.1 0.67 1.7E-04 

hederagenin 22.96 471.35 175971.8 ± 10435.2 N.D.     high N.D. 

gypsogenin 

(put) 24.91 469.33 258803.0 ± 18852.2 N.D.     high N.D. 

gypsogenic acid 

(put) 21.88 485.33 156.8 ± 39.1 N.D.     high N.D. 

           

B) Substrate: hederagenin         

Name RT m/z CYP72A68 (+) NADPH empty vector 

fold change 

CYP72A68 / 

empty vector P value 

hederagenin 22.96 471.35 227765.9 ± 12260.6 250615.2 ± 4084.8 0.91 3.8E-02 

gypsogenin 

(put) 24.91 469.33 119954.8 ± 16918.1 N.D.     high N.D. 

gypsogenic acid 

(put) 21.89 485.55 762.9 ± 221.0 N.D.     high N.D. 
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