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Abstract—An important challenge in home automation is the
energy efficient optimization of the indoor environment. This
relies on the solution of a multi-objective optimization problem
where energy efficiency and comfort parameters are maximized
simultaneously. This paper presents three data-driven control
algorithms based on machine learning techniques, which offer
an alternative to traditional control methods. The results demon-
strate that some data-driven methods can achieve similar results
than rule-based systems. Moreover, they require no prior expert
knowledge and have better scalability than standard approaches.

Keywords—Model predictive control; Deep reinforcement learn-
ing; Multi-objective optimization; Home automation; Energy effi-
ciency

I. INTRODUCTION

Buildings consume over 40% of the total power in de-
veloped countries, 27% corresponding to household’s con-
sumption and 13% to other building types. More specifically,
heating accounts for 55% to 67% of the final energy used
in residential buildings [1]. New standards and directives in
Europe aim towards energy efficient buildings, which brings
attention to control algorithms that can maximize energy
efficiency while maintaining adequate comfort conditions and
air quality for the inhabitants.

Comfort is a subjective experience and depends on multiple
parameters such as thermal comfort and air quality. Measuring
related parameters, such as temperature or CO2 levels, is
nowadays possible due to the adoption of sensors for homes.
The data collected by these sensors has potential applications
in indoor environment control.

Thermal comfort is mainly dependent on room temperature
and relative humidity (RH). Other factors include metabolic
rate, clothing insulation, gender, user’s expectations, air speed
and mean radiant temperatures [2].

Indoor air quality is the degree in which the indoor air
is pollutant free. It is indicated by the levels of indoor
contaminants such as sulfur dioxide (SO2), carbon dioxide

(CO2), ozone (O3), volatile organic carbon (VOC), among
others. Short and long-term exposure to such contaminants
can have acute health effects. In household studies, CO2 is not
a concern as its levels are unlikely to exceed safe thresholds
under normal building conditions. However, measuring CO2 is
often done as it provides information about air re-circulation
and potential exposure to other pollutants. In addition, CO2

levels are valuable indicators of room occupancy, which in
turn is used as a proxy for ventilation, cooling and heating
demands [3, 4].

In general, maximizing comfort comes with an increase in
energy consumption. In order to keep a good indoor air quality,
a high ventilation rate is needed, which in turn results in a large
heat loss.

This paper focuses on developing three data-driven con-
trol algorithms for the optimization of comfort and energy-
efficiency. The first method is a Moving Horizon Estimation
(MHE) controller based on gradient boosted regression trees.
The second and third methods use Reinforcement Learning
(RL) techniques. The models are trained and validated using
simulations of a two room apartment under different occu-
pancy profiles. It is confirmed by numerical results that some
data-driven methods can achieve similar results as rule-based
systems.

The novel contributions of this paper are the following:
• Multi-parameter optimization: Most of the related work

focuses on the optimization of only one or two parameters
such as temperature, air quality, and energy efficiency
(ventilation, heating or cooling). This approach optimizes
for four parameters: Indoor temperature, CO2 levels,
heating energy and ventilation energy.

• Data-driven and model-free: Compared to traditional
rule-based control, data-driven models do not require
expert knowledge, nor a description of the building’s
physical dynamics. Additionally, data-driven models can
infer secondary information such as occupant’s behavior



and preferences, which can potentially improve control
efficiency.

The remainder of the paper is organized as follows: Section
II contains an overview of related work concerning model
predictive control and reinforcement learning. Section III
describes the simulation settings and defines the optimization
problem. Section IV presents the methodology, elaborating on
the different control strategies. Section V contains the results.
Section VI gives the conclusions.

II. RELATED WORK

Traditionally, building automation problems are addressed
by rule-based systems in which an expert uses best practices
and mathematical models to create a set of rules that control
different house components such as heating and ventilation.
Some strategies include intelligent scheduling, set-point resets
and demand-controlled ventilation [5]. Although rule-based
systems are extensively used, they have limitations such as:

• Solutions rely on heuristics and are most likely sub-
optimal.

• Their design is building specific and can hardly be
transferred to other buildings.

• They offer poor scalability for larger buildings or multiple
components [6].

Model predictive control (MPC) creates one or more models
that approximate the physical properties of the building in
order to predict the future states within a time horizon. The
controller then takes the action(s) that maximize a target
function within a given set of constraints.

In MPC, Artificial Neural Networks (ANN) have success-
fully been applied for optimizing the operation time of heating,
ventilation and air conditioning units (HVAC) [7, 8], predicting
temperature and relative humidity [9], and estimating future
load demand [10, 11]. Other examples of soft-computing tech-
niques include thermal comfort controllers based on neuro-
fuzzy logic [12, 13], and Random Forests for occupancy
estimation [14].

More recent papers have investigated the use of RL tech-
niques, where the optimization problem is addressed by an
agent that learns actions in a goal-oriented manner. Compared
to MPC techniques, RL offers the possibility of optimizing
long time horizons without causing time overheads during
evaluation. Additionally, they can easily be extended to control
multiple actuators and self adjust as user’s preference change
over time.

The multi-objective optimization of thermal comfort, en-
ergy efficiency and indoor air quality has been addressed
with a radial basis approximator in Q-learning [15], Extreme
Random Forests with Q-learning [16], ANNs with an Actor-
Critic architecture [17], Deep Q-learning (DQN) [18, 19], and
Convolutional Neural Networks (CNNs) [20].

For a more detailed review on building control we refer to
the surveys concerning HVAC control based on ANN [21],
time-series [22], and other soft-computing techniques [23].

III. OPTIMIZATION PROBLEM

The aim is to develop an intelligent control system that
optimizes comfort and energy efficiency by controlling multi-
ple actuators in a simulated indoor environment. The building
specifications of the environment are described in Section
III-A. The simulation settings are provided in Section III-B.
The optimization variables and objectives are outlined in
Section III-C.

A. Building Specifications

The simulated building is a two zone apartment located
in Brussels. Zone 1 (Z1) is composed of a living room and
entrance and zone 2 (Z2) is a bathroom. Table I contains the
area distribution and Fig. 1 its layout.

The roof and the facade with the window are in contact
with the exterior and have a thermal transmittance (U-value)
of 0.15 W/(m2K). The other surfaces are considered to be
adiabatic causing no energy loss. The window in zone 1
can be completely covered by an awning to reduce incident
radiation, it has a solar transmittance of 0.05 and reflectance
of 0.142. The ventilation system has a natural air supply and a
mechanical air exhaust with an extractor in each zone. Zone 1
has an extraction rate of minimum ±4.5 m3/h and maximum
of ±70 m3/h. Zone 2 has an extraction rate of minimum ±9
m3/h and maximum ±50 m3/h.

All the actuators are present in zone 1. Table II summarizes
the actuators’ effects and Table III shows their ten possible
states. The numbers in parentheses represent ordinal quantities
which are used to explain the control Algorithm 1 in Section
III-C. It is important to notice two aspects of the actuators’
functionality. First, the window can provide additional venti-
lation at no energy cost, with a possibly larger loss-heat due

TABLE I
SIMULATED APARTMENT’S AREA DISTRIBUTION

Zone Space Dimensions Surface area

Z1 Living room 5 x 6 x 2.7 m 30 m2

Entrance 1.2 x 2 x 2.7 m 2.4 m2

(Window) (4.5 x 2.2 m) (9.9 m2)
Z2 Bathroom 3.8 x 2 x 2.7 m 7.6 m2

Total 5 x 8 x 2.7 m 40 m2

Fig. 1. Layout of the simulated two-room apartment



TABLE II
OVERVIEW OF ACTUATORS AND THEIR EFFECTS

Actuators States Effect Z1 Z2

Ventilation Ventilation rate x
Low
Mid
High

4.5 m3/h
17.6 m3/h
62.8 m3/h

Window Ventilation rate x
Closed
Tilted
Open

dependenta

106.2 m3/h
232.4 m3/h

Awning Incident radiation x
On
Off

dampenedb
full

a While the window is closed the rate is determined by the ventilation state.
b The incident radiation is reduced according to the awning’s physical

properties.

TABLE III
POSSIBLE ACTUATORS’ STATES

Window Ventilation Awning
Closed (0) Low (1) On (1)
Closed (0) Medium (2) On (1)
Closed (0) High (3) On (1)
Closed (0) Low (1) Off (0)
Closed (0) Medium (2) Off (0)
Closed (0) High (3) Off (0)
Tilted (0.5) Inactive (0) On (1)
Tilted (0.5) Inactive (0) Off (0)
Open (1) Inactive (0) On (1)
Open (1) Inactive (0) Off (0)

* The numbers in parentheses represent ordinal quantities and are used to
explain the algorithm in Section III-C.

to the increased ventilation. Second, there is no direct control
of the heating in zone 1, nor of the ventilation and heating in
zone 2. These components are regulated by their own control
systems that react according to CO2 concentration and indoor
temperature. Nevertheless their behavior is indirectly affected
by the actions of the available actuators.

B. Simulation

The simulation is done using EnergyPlus [24] and interfaced
with control algorithms through Building Controls Virtual Test
Bed (BCVTB) [25].

The simulation goes from the beginning of February until
the end of April. This period provides a varied range of
conditions: in the beginning heating is essential for indoor
comfort, and at the end additional ventilation is of importance.
The outdoor temperature ranges from -9.1 °C to 22.7 °C, the
incident radiation ranges from 0 W/m2 to 837.7 W/m2. The
simulation is done in steps of ten minutes. Table IV shows the
simulation variables.

Three realistic occupancy profiles are used in order to
create different energy demand and air pollution scenarios. The
profiles are generated with a technique that provides realistic
behavior for Belgian households based on Aerts et al. [26].
The simulated occupancy profiles are:
A. One retired adult.
B. Two adults without children and both working full time.

TABLE IV
SIMULATION VARIABLES

Outdoor Z1 Z2

St
at

e
va

ri
ab

le
s

Temperature (°C)
Time

Temperature (°C)
CO2 concentration (ppm)
Relative humidity (%)
Illuminance (lux)
People count
Heating power (W)
Ventilation power (W)
Incident radiation (W/m2)
Awning status
Window status

Temperature (°C)
CO2 concentration (ppm)
Relative humidity (%)
Illuminance (lux)
People count
Heating power (W)
Ventilation power (W)

A
ct

ua
to

rs

-
Awning
Window
Ventilation

-

C. Two adults without children, one working full time and the
other part-time.

Fig. 2 shows the corresponding occupancy distributions.

C. Optimization Objective

Each control algorithm is evaluated in terms of comfort and
energy efficiency profiles as follows. First each variable of
interest is converted into a score according to the weights
and formulas in Table V. Second, the variable scores are
aggregated in a weighted sum which results in a comfort score
(1) and an energy score (2).

Scomfort =
ST daywT day + ST nightwT night + SCO2wCO2

wT day + wT night + wCO2

(1)

Senergy =
Sventwvent + Sheatwheat

wvent + wheat
(2)

Fig. 2. Occupancy profiles. For each hour is shown the amount of people
present in the apartment on average during the simulation.



TABLE V
SCORE FUNCTIONS

Temperature
Day ST day

{
4, if 21.5 >= Temp(Z1) >= 20.5 or Occupancy == 0

max(0, 5− 2|Temp(Z1)− 21.5|), elsewise

Temperature
Night ST night

{
4, if 22 >= Temp(Z1) >= 19 or Occupancy == 0

max(0, 5.5− |Temp(Z1)− 20.5|), elsewise

CO2

concentration SCO2(Z1)

{
4, if 800ppm >= CO2(Z1) or Occupancy == 0

max(0, 4− (CO2(Z1)− 800)/133), elsewise

Ventilation
Energy Svent


4, if 5000 > Event

5000−Event
11250

+ 4, if 50000 > Event > 5000
0, elsewise

Heating
Energy Sheat


4, if 50000 > Eheat

50000−Eheat
75000

+ 4, if 350000 > Eheat > 50000
0, elsewise

Weights wT day = 2, wT night = 1, wCO2 = 2, wvent = 1, wheat = 3

Notice two important aspects: first, room temperature ST is
evaluated in two different ways in order to force a higher level
of comfort during daytime and when people are present. The
time between 8:10 and 23:00 corresponds to day-time and the
rest to night-time. Second, the comfort score only considers the
variables in Z1 as it is the zone where occupants spend most
of their time. For the energy score, the energy consumption
of both zones is considered.

In order to evaluate different user’s preferences two profiles
are proposed: Comfort priority (3) and energy efficiency
priority (4).

Comfort preference profile = 0.9Scomfort + 0.1Senergy (3)

Energy preference profile = 0.1Scomfort + 0.9Senergy (4)

IV. METHODOLOGY

In this section, the rule-based system, the moving horizon
estimation and the reinforcement learning approaches are
briefly introduced.

A. Rule-based System

A rule-based system is a common approach for building
automated control which can prioritize either for comfort or
energy efficiency. The benchmark is a rule-based system de-
signed for this specific case. The rules take into account room
occupancy, room temperature, CO2 levels, incident radiation
and the previous actuator state. Algorithm 1 contains the
pseudocode for the rule-based system that prioritizes comfort.
The numeric values for the actuator states correspond to
discrete actions as specified in Table III. The rules for the
controller with energy efficiency priority follow a similar
structure with different threshold levels. For the sake of brevity
this pseudocode is not included.

B. Moving Horizon Estimation

The MHE controller is composed of a predictive model
and a scorer. The predictive model estimates the indoor
temperature, CO2, ventilation and heating demand for the
next N time-steps based on the current state (see Table IV),

Algorithm 1: Rule-based for comfort
Input : P People count in both zones, T Z1 Temperature,

R Z1 Incident radiation, C Z1 CO2 level, Wp
Previous window’s status, Vp Previous ventilation
status, Ap Previous awning’s status,

Output: Ws Window’s status, Vs Ventilation status, As
Awning’s status

1 Ws = 0 As = 0 V s = 1
2 if P > 0 then
3 if T >= 22.2 and Wp == 0 then Ws = 0.5
4 else if T >= 23 and Wp <= 0.5 then Ws = 1
5 else if T <= 21.5 and Wp > 0 then Ws = 0
6 else Ws = Wp
7 else Ws = 0
8 if T > 20.5 then
9 if T > 21.5 then

10 if R > 200 then As = 1
11 else As = 0
12 else
13 if R > 240 then As = 1
14 else As = 0
15 else As = 0
16 if C < 720 then
17 if T > 21.8 then
18 Vs = Vp + 1
19 if Vs > 3 then Vs = 3
20 else Vs = 1
21 else
22 if Vp == 1 then
23 Vs = 2
24 else if Vp == 2 then
25 if C > 760 or T > 21.8 then Vs = 3
26 else Vs = 2
27 else if Vp == 3 then
28 if T > 21.8 then
29 Ws = 0.5
30 else if T > 22.5 then
31 Ws = 1
32 else Vs = 3
33 else if Wp > 0 and Ws == 0 then
34 Vs = 3
35 if Ws == 0.5 then Vs = 0
36 if Ws == 1 then Vs = 0



Fig. 3. Moving horizon estimation. A is the set of available actions (see Table
III), S are the state variables (see Table IV) and Mavg the moving average of
each state variable.

moving averages of the state variables and the possible actions
(see Table III). The scorer evaluates the predicted states
and chooses the action that maximizes the score within the
predicted horizon. Fig. 3 shows a schematic of the MHE
controller.

The predictive models are based on extreme gradient
boosted trees (XGBoost) [27]. To forecast multiple steps
ahead, a rolling approach is applied, where only the infor-
mation available up to current time step is used to predict the
next N time-steps.

The number of possible outcomes increases exponentially
with the number of time-steps N. In order to reduce the
computation time, it is assumed that the controller repeats the
same action for the next k time-steps, where 1 < k < N ,
meaning that the controller may take an action for a shorter
period than the prediction horizon. This is a sensible choice
as prediction errors become larger as the horizon (N) grows.

C. Reinforcement Learning

In RL, an agent interacts with an environment in discrete
steps and learns to perform the best actions over time. The
agent in this case is equivalent to the controller. For a given
state (st) the agent takes an action (at) by following a policy
(π). Afterwards the system transitions to a new state st+1 and
receives a scalar reward (r). The objective then is to learn a
policy that maximizes the rewards, in other words, that learns
to take the best actions for all possible states. The objective
can be expressed as maximizing the sum of discounted rewards
over the episode R =

∑∞
t=t0

γt−t0rt. Where γ is a discount
factor that makes the sum finite, and balances the importance
of immediate rewards and future ones. Fig. 4 shows the general
RL structure.

Deep Q-learning (DQN) is a RL technique where ANNs
are used as the approximator for the mapping function. In this
paper two DQN extensions are implemented, namely Double
Q-learning (DDQN) [28] and Rainbow (RBW) [29]. As far as
we know, this is the first work to introduce RBW for building
environment control.

Fig. 4. Reinforcement Learning controller

Compared to the MHE controller, RL offers two advantages.
First, the RL models learn to predict the reward of future states
instead of the future state variables, which removes the need
of having independent models for each variables of interest
as seen in Fig. 3. Second, the MHE model predicts state
variables for each subsequent time-step, whereas RL learns
a sum of discounted future values, which removes the need of
making the N time-step predictions. These advantages reduce
the model complexity and the overhead of predicting multi-
ple variables in subsequent time-steps, however, RL models
require considerably more data in order to be trained.

V. RESULTS

In this section the simulated building presented in Section
III is evaluated following the control algorithms presented in
Section IV. Section V-A contains the MHE specifications.
Section V-B contains the RL specifications. Section V-C
compares the models and discusses the results.

A. Moving Horizon Estimation Setup

For each occupation profile, a MHE controller is trained
using offline recordings of the other occupancy profiles. This
is done so the model is trained under different occupancy pro-
files, and then tested in an unseen profile. For each occupancy
profile four datasets are recorded: two while using the rule-
based system (see Algorithm 1). Similarly, two with a modified
version of the rule-based system which takes random actions
with a certain probability.

The controller consists of four independent XGBoost mod-
els and a scorer. The models forecast indoor temperature
and CO2 levels for zone 1, ventilation energy demand for
zone 2, and heating energy demand for both zones. Note that
ventilation of zone 1 is directly controlled. Each XGBoost
model is tuned using 10-Fold cross-validation and grid search
to find the best hyper-parameters. As subsequent time-series
samples are temporally dependent, a split-block strategy is
used, where the splits are done in full days, rather than
individual samples [30].

During evaluation, the models predict the next N time-steps
according to the current state (see Table IV) and possible
actions (see Table III). Each prediction is then converted into



a score following the preference profiles specified in (3) and
(4). Finally, the controller selects the best action a*, which
corresponds to the action that maximizes the score for the
whole horizon N.

If the MHE algorithm is directly applied, the controller
behaves as an on/off system that relies mostly on the window
and seldom the ventilation. In practice this would be an
undesired behavior, therefore, an additional constraint is added
that restricts the controller from switching the window status
more than 15 times within 12 hours. If the constraint is
violated, the scorer takes the next action with highest score,
and successively until the action is a valid one.

The k value is set to 1 and the prediction horizon N to 4 (40
minutes). Other k-values were evaluated but are not reported
here as their performance was not significantly better than this
configuration.

B. Reinforcement Learning Setup

In the case of RL, the controller is trained online while it
interacts directly with the environment. A RL model is trained
for each occupancy profile and each preference profile.

The input state corresponds to the concatenation in time of
the last 18 time-steps (3 hours). The reward is the score for
the new state according to the preference profiles in (3) and
(4).

Table VI shows the agent specifications. The network ar-
chitecture is slightly different between DDQN and RBW. In
both cases the first two layer are convolutions in the time
axis, which allow learning temporal features. The rest of the
implementations is as follows:
• DDQN: Table VII shows the network architecture. The

agent follows a ε-greedy policy with linear decay. After
28 episodes the ε value is kept to 0.05 and the simula-
tion is run for another 12 episodes. This gives in total
information of 120 months (∼1.540.000 samples).

• RBW: Table VIII shows the network architecture. The
RBW agent uses noisy linear layers as mean of explo-
ration, therefore no ε value is given. Convergence of
RBW was faster than DDQN, therefore the simulation
is run for only 30 episodes, equivalent to 90 months
(∼1.155.000 samples).

TABLE VI
RL PARAMETERS

DDQN RBW
Discount 0.95
Batch size 64
Initial replay 12816
Memory type replay
Memory size 25632
Synch.
frequency 6000 5000

ε init
ε decay step
ε final

1
2.5 e-6

0.05
-

Vmin
Vmax -

0
1

1−γ

TABLE VII
DDQN NETWORK PARAMETERS

Network configuration
# Type Size Specs

1 Conv1D 32
window = 4
stride = 3
padding = Same

2 Conv1D 32
window = 3
stride = 2
padding = Same

4 Flatten - -
5 Dense 256 -
6 Dropout - p = 0.20
7 Dense 128 -
8 Dropout - p = 0.20
9 Softmax 10 -

C. Evaluation

The results of the three models are summarized in Figs. 5 to
7 for each of the three models and the benchmark (REF). The
results compare performance in terms of comfort and energy
scores (1) and (2) for each occupancy profile. The dashed
line corresponds to the Pareto front, and highlights all optimal
solutions.

Fig. 5. Performance in occupation profile A

TABLE VIII
RBW NETWORK PARAMETERS

Network configuration
# Type Size Specs Module

1 Conv1D 32
window = [5]
stride = 2
padding = same Sequential

2 Conv1D 32
window = [3]
stride = 1
padding = same

3 Flatten - -
4 Dropout - p = 0.2
5 Noisy Linear 512 σ = 0.5

Dueling6 Noisy Linear 512 σ = 0.5
7 Soft max num. atoms -



Fig. 6. Performance in occupation profile B

Fig. 7. Performance in occupation profile C

The RBW implementation was able to obtain similar results
than the rule-based system under all of the occupancy profiles.
In all cases the solutions found are non-dominated and part
of the Pareto front. In some cases the trade-off for comfort
and energy presents potential gains. For example, the comfort
preference profile RBW under the occupancy profile B yields
a saving of 17% of heating energy without a significant
change in comfort (see Fig. 6). Table IX compares the energy
consumption between RBW and the rule-based system for the
three months period.

On the other hand, MHE and DDQN performances are
below the Pareto front in most cases, except for occupancy-
profile C (see Fig. 7) where also the DDQN and MHE models
for energy optimization are part of the Pareto front.

MHE’s poor performance can be attributed to two factors:
first, the actuator’s effect may occur in time spans longer
than the optimization horizon of 40 minutes. Increasing the
time horizon would in principle improve the performance

TABLE IX
ENERGY CONSUMPTION IN KWH

Profile
Vent.
Energy

Heat.
Energy

REF RBW REF RBW

A Comfort 25.82 51.87 291.73 217.92
Energy 1.04 2.08 64.11 61.01

B Comfort 54.82 5.02 304.63 357.33
Energy 5.61 2.73 68.32 248.24

C Comfort 50.59 51.61 351.19 288.65
Energy 5.45 2.53 73.90 99.90

with the drawback of requiring a more complex model and
a considerable computational overhead. Second, the MHE
was trained using data generated by the rule-based system
which lacks information of undesirable states. In case the
controller observes a previously unseen state, it may be taking
suboptimal actions, which points to a poor generalization. In
order to compensate for this, additional data was generated by
allowing the controller to take random actions. However, based
on the results, it seems that the amount of data generated was
insufficient, or the random actions were not able to generate
valuable information.

DDQN’s poor performance can be attributed to a limited
exploration due to following the ε-greedy policy. This problem
is partially addressed by the noisy layers, which are included
in the RBW implementation. This can also be related to a
high similarity between the outcome of different actions. This
can occur when external parameters have a considerable influ-
ence in the building’s environment, such as wind speed, rain
and clouds. The difference between taking different actions
becomes less significant and may lead to under-performing
policies. In such scenarios the dueling networks approach is
able to find better policies [29].

VI. CONCLUSIONS

This work presented three multi-objective data-driven con-
trol approaches to maximize comfort and energy efficiency in
a simulated building.

It was found that RBW is able to achieve a performance
comparable to the traditional rule-based systems. It was also
found that MHE and DDQN cannot achieve good perfor-
mances under the chosen settings.

RBW offers an alternative to traditional building’s environ-
ment control. As it is a driven-data algorithm, it can be trained
using historical data. Thanks to its model free approach,
it can be implemented in buildings with different physical
properties, more zones and different user’s behavior without
requiring an extensive study of their interactions with the
indoor environment.
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