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Abstract

The practically important problem of the modificatiof laminate out-of-plane shear stiffness by
ply cracks is hardly investigated in the literatuhe this paper, out-of-plane shear stiffness
reduction of laminates containing uniform and nowfarm distributions of ply cracks is studied.
A novel variational model is developed to determéweurately stress transfer mechanisms and
consequently out-of-plane shear stiffness reduatiogeneral cracked laminates under applied
out-of-plane shear loads. It is shown that theges of ply cracks in a laminate under out-of-
plane shear loads, perturbs the uniform distributbshear stresses and induces high gradients
of in-plane stresses leading to large shear stiffreductions. The results are compared with
those of the finite element method (FEM) implemagtperiodic boundary conditions. It is
shown that there is excellent accordance betweendbults obtained from these approaches.
The outcome of the paper provides necessary intowmdor determination of damage-based
constitutive laws for composites.
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1. Introduction

Three types of behavior are usually considered wilesigning composite laminated structures
[1]: (i) linear elastic behavior without the presenof any microscopic damage modes for
relatively low applied loads, (ii) non-linear stsestrain behavior and deterioration of effective
laminate properties due to the stable formationnmo€éroscopic damage mechanisms (ply
cracking, delamination, fiber fracture, etc.) farder applied loads, and (iii) finally catastrophic
failure due to the unstable progressive formatibdamnage mechanisms. It has been observed in
many experimental studies [2-4] that ply cracksqddnown as matrix cracks, transverse cracks,
intralaminar cracks) in laminates with off-axisgdiare the first ply level damage mode under
both applied thermo-mechanical service and envienmial loads. The accumulation of ply
cracks leads to the degradation of laminates’ tbeghastic constants. The current research work
concerns the first two design stages with focu®lotaining the out-of-plane shear stiffness of
intact and cracked laminates when there is a cediatribution of uniformly and non-uniformly
spaced ply cracks.

Many analytical [5-9] and numerical [10, 11] modktsse been developed to determine stress
transfer mechanisms between ply cracks in laminatdgr in-plane loads in order to predict the
degradation of effective in-plane thermo-elastioparties of cracked symmetric laminates.
Moreover, stress transfer in cracked un-symmegmgihates under flexural loads has also been
addressed leading to determination of bending tbeslastic properties [12-17] of general
cracked laminates. In addition, cracked laminatefeu out-of-plane normal (through-thickness)
applied loads are also investigated and, thus,effective out-of-plane axial properties of
cracked laminates can be determined [5]. Althoubh gracking might largely degrade the

effective out-of-plane shear stiffness of laminatsess transfer analysis of cracked laminates



under out-of-plane shear loads is sadly neglectdde literature. It is mainly due to the lack of
physical boundary conditions and difficulty in magi admissible stress fields in analytical
models under out-of-plane shear loads. The usendg felement models is also tedious as
complex three dimensional periodic boundary coadgi are needed. However, an objective
multiscale physics-based damage modeling [18, LB]yocracking should take into account the
effects of ply cracking on all stiffness parameté&rgen in continuum damage modeling of ply
cracking, only reduction of the in-plane propertiés cracked ply like that of Ladevéze’s meso-
model [20] is not sufficient because a transverssbtropic ply after cracking and being
homogenized is no longer transversely isotropic.

In the current paper, a novel variational modedleseloped to determine accurately the stress
fields and subsequently out-of-plane shear stifnasgeneral laminates (possibly un-balanced
and un-symmetric) under applied out-of-plane shieads in the presence of a uniform
distribution of ply cracksA completely different stress transfer mechanisan those under in-
plane loads is observed. In a laminate under impléoads, the presence of cracks perturbs the
uniform distribution of in-plane stresses and inesichigh gradients of out-of-plane shear
stresses leading to the in-plane stiffness redostiblowever, it is shown here that in a laminate
under out-of-plane shear loads, the presence ofksgerturbs the uniform distribution of out-
of-plane shear stresses and triggers high gradiefts-plane stresses leading to out-of-plane
shear stiffness reductions. The study of this stiesisfer mechanism in the cracked laminate is
necessary for the modification of laminate outdafRe shear stiffness and prediction of
secondary damage modes, e.g. ply cracking in neiymdp plies and delamination at the
interfaces To verify the developed variational approach,fthi¢e element method is applied on

a repeated unit cell by implementing three dimemaigeriodic boundary conditions. A simple



approximate methodology is also derived to obthm ¢ut-of-plane shear stiffness of general
cracked laminates containing non-uniformly spackdcpacks. It is shown that the presence of
cracks largely degrades the out-of-plane shedinsti§ of laminatesThe single fundamental
assumption of the developed method is that th@®plane shear stresses are linear through the
thickness of each ply. This assumption is alsoxeslaby implementing a ply refinement
technique by dividing each ply into several plyraats with the same material properties.

2. Theoretical formulation of variational approach

2.1 Geometry and coor dinate system

A multi-layered composite laminate made of N plie#h general lay-up (possibly un-
symmetric) under axialtf) and transverset] out-of-plane shear loads, is considered. A
Cartesian coordinate system with its origin locatddthe center of the laminate will be
considered as shown in Figs. 1a and b, where tlyeard z directions, respectively, define the
in-plane axial, in-plane transverse and througbkiiess directions. The N-1 interfaces between
the layers are shown by zziz1, 2... N-1. The lower and upper external stefaare denoted by
z=7=-h and by z=g=h, where 2h is the total thickness of the laminditee thickness of thd"i
ply is specified by z-z.,. The laminate is assumed to have length 2L irathal direction (x-
axis) and width 2W in the transverse directiorakys).

2.2 Analysis of undamaged laminate

For an undamaged laminate subject to the inputiepgbading parameters, and t;, the

effective out-of-plane axial shear strgi}l and the effective out-of-plane transverse sheamst
yC, control the deformation of the laminate. Moreowle external edges of the undamaged

laminate are subject to uniform shear stresgesdt;, thus, for all layers in the laminate, we

have
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where ¢°0 %0, etc., denote stress terms in tfelayer of the undamaged laminate. The

material is monoclinic (no coupling between outptdne shear and axial directions) and thus,

we have:

W TS tSda Vo' T8 . £ =e0) =) =yN)=0. (2)
wheres,, s, and s, terms are members of the compliance mdsijx,,, of the I" layer in the
global (x, y, z) coordinate system amag"’, y°", etc., denote strain terms in the undamaged

laminate. The effective out-of-plane axig] and transversg; shear strains for the undamaged

laminate are then given by
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where the out-of-plane transver@? and axialG! shear stiffness modules and out-of-plane

shear coupling parametdp’ for the undamaged laminate, can be obtained as/fsil
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The analysis presented in this section might beandggd as an extension of the classical
laminated plate theory where the effects of oytlafie loads are included and out-of-plane

shear stiffness terms are defined.

2.3 Analysis of the laminate containing uniformly spaced ply cracks



Imagine now that the laminate is damaged with umfg spaced ply cracks, having a separation
2a, in some of its 90plies (parallel to the y-axis, see Fig. 1a). Ascks are uniformly
distributed, a unit cell of length 2a, thicknessaztd width 2W between two consecutive cracks
with the (x, y, z) coordinate system located atdbater of the unit cell, will be considered to
derive the stress fields.

2.3.1 Stresstransfer analysis

It is noted that the presence of cracks perturbautidamaged stress fields and thus, the stresses

in the I" ply of the cracked laminatgs’ ) will be written as follows:

o (x,2) =0 (2 +a* (% 3, meE Xy, (5)

whereg®® are the stresses in the layer of the undamaged laminate (obtained in tlewipus
section) andg?’ are the unknown perturbation stresses in thely due to the presence of

cracks.

We assume that out-of-plane perturbation sheasssisehave piecewise linear forms, as follows:
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where p(x) and ¢(x) are 2(N+1) unknown perturbation stress termsciwiare functions of x
only, and are zero when the laminate is undamagsd, the prime sign shows the derivative
with respect to x. It should also be noted thataheve assumed forms satisfy automatically the
continuity of out-of-plane shear stresses at therfiace between plies (zrz2=1...N-1). The

other stress terms can be found using the saiisfiact equilibrium equations, =0 and

traction continuity conditions between plies fot-oftplane normal stresse$”, as follows:
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The obtained perturbation stress fields should b#dance the applied out-of-plane shear loads.
The undamaged stress fields have already balaredapplied loads, thus, the following

relations must be considered between the pertorbatresses:
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where the satisfaction of the above equations entkie normal traction free conditions, £0)

at z=th. The in-plane perturbation transverse se®e)’ can be defined in terms of other
stress terms with the assumption that under thensss$ loading condition the in-plane

transverse strains are zero in both cracked andrmiaded laminates, as follows:

£ 20=80%+ 8,00+ 6% + 57 = ©
1
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Finally, the Eqgs. (6), (7) and (9) form an admiksiktress field that satisfies exactly the
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equilibrium equations and all through-thicknestiocan continuity and boundary conditions for
any 2(N+1) functions jfx) and g(x). In addition, Egs. (8) and (9) assert that ¢hare two
relations between the perturbation functions, thus humber of unknown perturbations function
that must be found is 2N. These unknown functioils lwe obtained by minimization of the

complementary energy.



It is shown [21] that in order to minimize the golementary energy, it is sufficient to minimize

the perturbation complementary enerdy Which can be written as follows:

v =3 osorav=3 '] Yo} [ ]} aech

Where V is the region occupied by the laminate.

(10)

The perturbation complementary energy can be siieplas Eq. (11) in terms of 2N unknown
independent perturbation functions, by inserting plerturbation functions (Egs. (6)-(9)) and the

compliance matrices of each ply into Eq. (10) artdgrating over z:
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and where {p} and {q} represent independent unknogperturbation functions (written in a

vector form) and the coefficient matri¢es)] , etc., can be easily evaluated analytically imter
of ply properties. Finally, minimizing the functiahin Eq. (11) leads to a set of ordinary
differential equations with constant coefficierds,follows:
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The readers can refer to many available mathemaéieabooks or Ref. [6] to find the general

solution of the differential equations similar teat of Eq. (12). However, after finding the



general solution, boundary conditions are needeatktermine the solution. The coupled system
of differential equations in Eq. (12) requirestatal, 6N traction boundary conditiorisis noted
that for a laminate with N layers there are N+1ldrface locations (zz k=0...N) including the
external lower and upper surfaces. Imagine thewe Mrinterface locations adjacent to cracked
plies and N interface locations which are not adjacent to @ngcked plies (there should be at

least one interface of this type), thus, we havetNN=N+1. Suppose further that
I,={0,1,2,...N} is the set of all N+1 interface indices (z=&=0...N). Moreover,l 01 is
the set of indices of interface locations adjadentracked plies and, O 1, is the set of indices
of the uncracked interfaces. Therefore, we havarigld Ul , =1 S andl N1,=0 .

The traction free conditions at the plane contagnicracks x=ta for N interface locations

adjacent to cracked plies provide gbbundary conditions, as follows:

o, (xa)=0= p (xa)=0, kO I, (14)
r,(xa)=0=q(*a)=0, kOI, (15)
r,(*a,z)=0= p@Ea=-71, kI I. (16)

For N, interface locations which are not adjacent to amgicked plies, the periodic boundary
conditions together with rotational anti-symmetB2] (under assumed loading condition) about
the vertical central axis assert the following 5¢Muboundary conditions (see Eq. (8) by which

one out of any N+1 unknowns functions were elineidpat

0(a)=20,(-a)= P =+ p(-9=0, I |, (17)
r,(@ =21, (- =0q(d=2q(-3=0, K | (18)
(82)=1(-a2)= p(3= p-a K | (19)



The physical construction of the problem does rifetr@ny evident boundary condition even in
terms of displacement. Here, we introduce the festtion boundary condition in terms of
mathematicahatural boundary conditions [22for Ny-1 independent interface locations, which
are not adjacent to any cracked plies. Indeed, itinmze the functional in Eq. (11) when
boundary values are not fully defined, it is neetiedatisfy the following equation in addition to

the differential equations in Eq. (12),

T x=a (20)
oF

] {o}  =0=m{pea}{ p(-3})-=0.

The above equation clearly provides{lN boundary conditions, as required to find thieitson.
2.3.2 The effective out-of -plane shear stiffness modules

The effective out-of-plane shear modules of thelad laminate can be determined, provided
that stress fields are already obtained as a fomadf applied shear loads. The principle of

minimum complementary energy for the assumed l@pdamdition can be simplified as follows:

1 A 1 A (21)
G G |[r ) T
Utf’ue=1{rt TH apt Vsi{rt 7,} @ G| V+UP=UP |
2 A 1], 2 A2 1 ||
G, G, e @

Where G, , G, and A, are, respectively, the out-of-plane transverserssigffness, axial shear
stiffness and shear coupling parameter for thekehtaminate. Moreovet) | denotes the true
complementary energy whilé) ?,_specifies the complementary energy computed with an

adm

admissible stress field. We have minimized theysbédtion complementary enerdy®leading

to an upper bound for the laminate stiffness pataraeTherefore, the effective shear modules
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of the cracked laminate can be obtained by applihnge special loading cases and finding the

perturbation complementary energy using Eq. (11) , as follows:

T Em (22)
Bl e S |
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2.4 Analysis of the laminate containing non-unifor mly spaced ply cracks

Imagine now that the laminate is damaged with noifeumly spaced ply cracks (see Fig. 1b).
Unlike laminates with uniformly spaced cracks,sitniot possible to select a repeating unit cell
and the stress analysis must be conducted for titiee ecracked laminate. Moreover, a
progressive ply cracking simulation usually neealsstdering more than hundred non-uniformly
distributed cracks. While it is still possible terfporm an exact variational analysis (see Ref. [23]
for in-plane loads) for laminates with non-unifochstribution of ply cracks under out-of-plane
shear loads, the simplicity and computational &fficy of the approach might be negated by too
many coupled differential equations and boundaryddmns that will arise. It should be noted
that performing such an analysis using FEM is alsbfeasible when there are too many cracks
(>100). Therefore, an approximate approach baseanoassumption is implemented to obtain
out-of-plane shear modules of the laminate. We rassthat for a non-uniformly cracked
laminate under out-of-plane shear loads, crackpigning and in-plane sliding displacements are
negligible in comparison to crack tip out-of-plasigling. In other words, we assume that for a
laminate with non-uniform distribution of cracks <k<L (see Fig. 1b), the stress distribution for
each fragment J between the two neighboring plgksiawhere J=1...M, corresponds to that

found in a uniformly cracked laminate having thensacrack separation (2alt is noted that all

11



fragments are under the same effective averageiedpdbads. Therefore, the total
complementary energy of the cracked laminate casiebermined by adding the complementary
energy of each fragment which can be obtained atggy leading to simple expressions for

laminate shear modules, as follows:

1_1¥ 1 23
Gt L = q(J) J !
1 1d 1 (24)
- = Xa ,
G, L;G;J) ’
M. 10) M 25
£=12A§J)xaj, where =) 3. &5)
Ga L J=1 Ga J=1

2.5 Finite element modeling of uniform ply cracking under out-of-plane shear loads

To verify the developed variational model for umnifdy spaced ply cracks, a FEM simulation in
ABAQUS/Standard general purpose software was peddrusing the 8-noded brick elements
with full integration scheme. A unit cell similap tthat considered in section (2.3), was
considered and discretized into finite elements reneaction free conditions on the crack
surfaces were enforcebh order to consider any state of applied far-fiskdain/stress as out-of-
plane shear loads, periodic boundary conditions &r faces in the three dimensions were
implemented [24]. The procedure of applying FEM dhd formulation of periodic boundary
conditions are already described in Ref. [24] ahd teader should refer to this publication for
more details.The convergence study for the FEM models was padd and very refined
meshes were used at locations close to the crpskatid ply interfaces. An example of such
mesh is shown in Fig. 2.

3. Results and discussion

12



We first verify the accuracy of the developed mdaetomparing the stress fields obtained from
the variational approach with those of FEM. To dotsvo symmetric laminates of type [0/90]
and [45/90], made of Carbon/Epoxy, containing uniformly distited ply cracks with density of
p=1/2a=1/mm in the J0ply, under an effective out-of-plane applied ashkar stress,, are
considered. The unidirectional material properties these laminates are,; E 141.3 GPa,
E»»=9.58 GPa, =5 GPap1,=0.3,125=0.32 and §,=0.25 mm. For all results obtained from the
developed variational model, a ply refinement tégha [23] is implemented by which each
layer is first divided into six elements of equiaickness to relax the effects of assumptions in
Eq. (6). In addition, ply elements next to the ifgees which are adjacent to the cracks were
subdivided in half, five times to ensure having \eenged results. The convergence study has
also been performed for FEM to make sure that ésalts are converged and as can be seen in
Fig. 2, very refined meshes are used speciallyeclws the cracks. Figs.3a and b show,
respectively, the through-thickness variations hef hormalized out-of-plane axial shegy/t,
and normalb;J/t, Stresses at the plane containing cracks (x=abh®{0/90} laminate. Figs. 4a
and b depict, respectively, the axial distributadmormalized interfacial out-of-plane sheait,

and normab/t, stresses at the upper 0/90 interface (z=0.25 rRig3. 5a and b also show the
axial distribution of, respectively, the normalizedt-of-plane axial shear stressggr, at the
upper external surface (z=0.5 mm) and the norndlizegplane axial stresses./t, at the upper
0/90 interface (z=0.25 mm in 9ply). Moreover, Figs.6a and b show, respectivesig, through-
thickness variations of the normalized out-of-plam&@l sheat,,/t, and normab_J/t, Stresses at
the plane containing cracks (x=a) for [45/9@Jminate. Figs. 7a and b depict, respectively, the
normalized axial distribution of in-plane axi@l/ta and sheat,,/t, stresses at the upper 45/90

interface (z=0.25 mm in 9(ply). The general observation is that there isEgut agreement

13



between the two sets of results verifying the aacyiof both approaches and the implementation
in each software. In order to show the capabilitythee current approach to deal with un-
symmetric laminates, a symmetric [90/43aminate which is un-symmetrically cracked
(containing cracks only in the upper°dfly with density 1/mm) under an effective out-déipe
applied axial shear stresg is also considered. Through-thickness variatminhe normalized
out-of-plane axiaky./t. and transverse/t, shear stresses at the plane containing crackg (x=a
are shown, respectively, in Figs. 8a and 8b. Thal aariations of the normalized out-of-plane
axial t/ta and transverse, /1, shear stresses at the upper external surface5(mnt). are also
shown, respectively, in Figs. 9a and 9b.

In order to study the effects of ply cracking ore ttaminate out-of-plane shear stiffness
parameters, two symmetric laminates of type [Q/96P/90} and two un-symmetric laminates
of type [0/90/30/45], [0/30/45/90], made of Glagsdky, containing uniformly distributed ply
cracks in 90 plies are considered. The unidirectional materiaperties for these laminates are,

Ei1i= 45 GPa, =12 GPa, &=5.8 GPap1,=0.3,v23=0.42 and §y=0.25 mm. Fig. 10a depicts

variation of the normalized axiac% and transverse(% out-of-plane shear stiffness terms

a t

versus crack density in ®0ayer. Similarly, the variation of the out-of-pka shear coupling
parameteis versus crack density is shown in Fig. 10b. It barseen that the out-of-plane axial
shear stiffness £and coupling shear paramelgrare largely dependent to the crack density for
different laminates. It can also be seen thatithat coordinate system where cracks are th 90
plies, the transverse shear stiffness parametersn@in constant and are independent of crack
density.

Finally, in order to compare the out-of-plane sh&#dfness parameters of uniformly and non-

uniformly cracked laminates, a representative va@usiement of [30/9Q]laminate, made of

14



Glass/Epoxy, containing two cracks (M=2) in thegén2L=2mm (see Fig. 1b) with uniform and
non-uniform distribution of cracks in 9@ly, is considered. Table 1 compares the effedive

of-plane shear terms of laminates with differerdrée of non-uniformity.

Table. 1: Effective elastic constants of [30/d@minate with 2L=2mm and M=2 (see Fig. 1b)

when the laminate is cracked with average crackiteM/2L=1/mm.

Shear a/L=0.5 a/L=0.4 &/L=0.3 &/L=0.2 &/L=0.1
properties (uniform
cracking)
G (GPa) 5.089 5.089 5.089 5.089 5.089
G;(GPa) 4.046 4.149 4.223 4.279 4.323
As 0.0562 0.0577 0.0587 0.0595 0.0601

It can also be observed that assuming a uniforntrilaision of ply cracks (#L=0.5)
overestimates the out-of-plane shear stiffnesscatemtu of the cracked laminates which is in
agreement with previous observations on the inglaminate properties [23]. It also means that
the effects of this non-uniformity should be taketo account specifically at the beginning of
the cracking process where cracks are randomlgitalistd.

4. Conclusion

A new variational model is developed to predictumately the stress transfer mechanisms in
cracked general laminates under applied out-ofeplsimear loads. The effective out-of-plane
shear stiffness of laminates as a function of cdaksity is studied and it has been shown that
ply cracking largely degrades the out-of-plane shleminate properties. An approximate
methodology is introduced to deal with non-unifoyrapaced ply cracks. The comparison of the
results with direct FE results implementing 3D pdic boundary conditions shows perfect

accordance. The effects of ply cracking and itgloam or uniform distribution on the effective

15



out-of-plane shear parameters of laminates shdstilse taken into account when modeling ply

cracking at structural level.
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Normalized out-of-plane shear stiffness modules
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