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ABSTRACT

MS2PIP is a data-driven tool that accurately predicts
peak intensities for a given peptide’s fragmentation
mass spectrum. Since the release of the MS2PIP
web server in 2015, we have brought significant up-
dates to both the tool and the web server. In addi-
tion to the original models for CID and HCD frag-
mentation, we have added specialized models for the
TripleTOF 5600+ mass spectrometer, for TMT-labeled
peptides, for iTRAQ-labeled peptides, and for iTRAQ-
labeled phosphopeptides. Because the fragmenta-
tion pattern is heavily altered in each of these cases,
these additional models greatly improve the predic-
tion accuracy for their corresponding data types. We
have also substantially reduced the computational
resources required to run MS2PIP, and have com-
pletely rebuilt the web server, which now allows pre-
dictions of up to 100 000 peptide sequences in a sin-
gle request. The MS2PIP web server is freely available
at https://iomics.ugent.be/ms2pip/.

INTRODUCTION

In high throughput tandem mass spectrometry (MS2), pep-
tides are identified by analyzing their fragmentation spec-
tra. These spectra are obtained by collision induced dis-
sociation (CID) or higher-energy collisional dissociation
(HCD), where peptides are made to collide with an inert
gas, or by electron-transfer dissociation (ETD) or electron-
capture dissociation (ECD), in which electrons are trans-
ferred to peptides. After fragmentation, the mass-to-charge
ratios (m/z) and intensities of the resulting fragment ions
are measured, yielding the two dimensions of a fragmen-
tation spectrum. While the fragment ions’ m/z can easily

be calculated for any given peptide, their intensities have
proven to follow extremely complex patterns (1).

In 2013, we therefore developed the data-driven tool
MS2PIP: MS2 Peak Intensity Prediction (2), which can pre-
dict fragment ion intensities. By applying machine learning
algorithms on the vast amounts of data present in public
proteomics repositories such as the PRIDE Archive (3,4),
we could create generalized models that accurately predict
the expected normalized MS2 peak intensities for a given
peptide. While the first iteration of MS2PIP outperformed
the then state-of-the art prediction tool PeptideART (5), it
was originally only trained for CID fragmentation spectra.
As HCD fragmentation became more popular in the field,
we therefore expanded MS2PIP with prediction models for
HCD spectra. In 2015, we built the MS2PIP web server to
make these models easily available to all potential users, re-
gardless of their computational resources (6).

Over the past few years, MS2PIP has been used by re-
searchers to create proteome-wide spectral libraries for pro-
teomics search engines (including Data Independent Ac-
quisition), to select discriminative transitions for targeted
proteomics (7,8), and to validate interesting peptide identi-
fications (e.g. biomarkers) (9,10). Moreover, we have also
shown that MS2PIP predictions can be used to improve
upon and even replace proteomics search engine output
when rescoring peptide-to-spectrum matches (11).

Because of the great interest in, and steadily increasing
relevance of, MS2 peak intensity prediction, we have con-
tinued to update and improve MS2PIP and the MS2PIP
web server. We have updated MS2PIP to be more compu-
tationally efficient, we have rebuilt the MS2PIP web server
to handle up to 100 000 peptide sequences per request in-
stead of 1000, and we have added specialized models for
the TripleTOF 5600+ mass spectrometer and for isobaric
labeled peptides.
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NEW IN THE 2019 VERSION OF MS2PIP

More efficient MS2PIP code

Rapid advances in machine learning research combined
with larger and more diverse training datasets have allowed
for more accurate MS2PIP predictive models. The Ran-
dom Forest algorithm employed in the original MS2PIP
has made room for a Gradient Tree Boosting algorithm
(12), which, in combination with more training data, has
improved prediction accuracy. This improved prediction is
especially noticeable for peptides with higher charge states,
where the large performance differences between charge 2+
and 3+ observed for the original MS2PIP models have been
significantly reduced in the new version (Supplementary
Figure S1).

In addition, we have drastically reduced the required
computational resources for MS2PIP, while simultaneously
further improving its prediction speed. The large mem-
ory footprint of the original version (requiring several gi-
gabytes) has now been reduced to just a few hundred
megabytes, depending on input request size. When run lo-
cally on a normal four core laptop, MS2PIP can predict
peak intensities for a million peptides in <5 min.

Specialized models for isobaric labeled peptides and the
TripleTOF 5600+ mass spectrometer

One of the most important changes in this new version
of MS2PIP is the addition of specialized models for spe-
cific types of peptide spectra. The type of mass spectrom-
eter, fragmentation method and certain peptide modifica-
tions (such as isobaric labels and phosphorylation) can
heavily alter peptide fragmentation patterns. We have there-
fore now also trained specialized models for the TripleTOF
5600+ mass spectrometer, for TMT-labeled peptides (13),
for iTRAQ-labeled peptides (14), and for iTRAQ-labeled
phosphopeptides (Table 1). Each of these models was
trained and evaluated on publicly available spectral libraries
or experimental datasets, ranging in size from 183 000 to 1.6
million peptide spectra. Final validation of every model was
based on wholly independent datasets, ranging in size from
9000 to 92 000 unique peptide spectra (Table 2). Spectral li-
braries were filtered for unique peptides and then converted
to MS2PIP input format. For experimental datasets, origi-
nal peptide identifications as provided by the data submit-
ter were used where available. Where such original identifi-
cations were not available, we performed the identification
using the MS-GF+ (15) search engine in combination with
Percolator (16) for post-processing.

Redesigned, more robust web server

Along with the heavily updated MS2PIP models, we have
also rebuilt the web server from the ground up. Like the pre-
vious version, this web server has been built using the Flask
framework (https://flask.pocoo.org) with a front-end based
on Bootstrap (https://getbootstrap.com).

In this newly built web server, we have implemented a ro-
bust queueing system that is able to handle concurrent tasks.
This has allowed us to increase the maximum number of
peptide sequences per request from 1000 to 100 000. Besides

submitting a single task through the website, users can also
automate their requests through MS2PIP’s updated REST-
ful API, for which we provide an example Python script. A
single request of 100 000 peptide sequences takes less than
five minutes to complete, including up- and download time.
Predictions for 1000 peptide sequences are returned in less
than three seconds.

On the user-friendly webpage, users can select one of
the available models and upload a csv file with peptide se-
quences, precursor charges, and modifications. After up-
loading this input file, a progress bar displays the status of
the request and a URL is displayed to which the user can
return at any time to check the status of their request (e.g.,
in case the browser window was closed). When the predic-
tions have been finalized, the user can inspect the results
through several interactive plots, and the predicted spectra
can be downloaded in comma-separated values (CSV) for-
mat, in Mascot Generic File (MGF) format, in BiblioSpec
or Skyline (SSL and MS2) formats (25,26), or in NIST (Na-
tional Institute of Standards and Technology) MSP spectral
library format.

PERFORMANCE OF THE SPECIALIZED MODELS

We can evaluate MS2PIP model performance by predicting
peak intensities for peptides present in the external evalua-
tion datasets, and by comparing these predictions to their
corresponding empirical spectra. This comparison is per-
formed through the Pearson correlation coefficient (PCC)
between predicted and experimental spectra. The resulting
PCC distributions for each of the specialized models are
shown in Figure 1A.

The median PCCs are higher than 0.90 for all models,
except for the TripleTOF 5600+ and the iTRAQ phospho
models, which have median PCCs of 0.74 and 0.84, respec-
tively. These two lower median correlations might be the re-
sult of lower training dataset sizes (see also Table 2).

When we apply all specialized models to each spe-
cific evaluation dataset––that is, including mismatched
model-dataset combinations, such as applying the TMT
model to the HCD evaluation dataset––we consistently ob-
serve median PCCs that are substantially higher for cor-
rectly matched models and evaluation datasets than for
mismatched models and evaluation datasets (Figure 1B).
Only the specialized TripleTOF 5600+ model is compa-
rable in performance to the HCD model when predicting
TripleTOF 5600+ spectra. Overall, this figure makes a clear
case for the utility of specialized MS2PIP models for specific
types of data.

Figure 1B also shows which specialized cases have sim-
ilar fragmentation patterns. The specialized models for
isobaric-labeled peptides (TMT, iTRAQ, and iTRAQ phos-
pho) are quite similar in performance across the different
evaluation datasets, as are the HCD and TripleTOF 5600+
models. To further verify this, we have directly compared the
models by calculating the PCCs for all specialized model
predictions for the same set of peptides (Supplementary
Figure S2). The results confirm the findings we observe in
Figure 1.

We can also visualize the differences in fragmentation
pattern by plotting the predictions from two different mod-
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Table 1. All specialized MS2PIP models with MS2 acquisition information and peptide properties of the training datasets

Model Fragmentation method MS2 mass analyzer Peptide properties

CID CID Linear ion trap Tryptic digest
HCD HCD Orbitrap Tryptic digest
TripleTOF 5600+ CID Quadrupole Time-of-Flight Tryptic digest
TMT HCD Orbitrap Tryptic digest, TMT-labeled
iTRAQ HCD Orbitrap Tryptic digest, iTRAQ-labeled
iTRAQ phospho HCD Orbitrap Tryptic digest, iTRAQ-labeled

enriched for phosphorylation

Table 2. Train-test and evaluation datasets used for specialized MS2PIP models

Model Use Dataset # Unique peptides

CID Train-test NIST CID (17) 340 356
Evaluation NIST CID Yeast (17) 92 609

HCD Train-test MassIVE-KB (18) 1 623 712
Evaluation PXD008034 (19) 35 269

TripleTOF 5600+ Train-test PXD000954 (20) 215 713
Evaluation PXD001587 (21) 15 111

TMT Train-test Peng Lab TMT Spectral Library (22) 1 185 547
Evaluation PXD009495 (23) 36 137

iTRAQ Train-test NIST iTRAQ (17) 704 041
Evaluation PXD001189 (24) 41 502

iTRAQ phospho Train-test NIST iTRAQ phospho (17) 183 383
Evaluation PXD001189 (24) 9088

Figure 1. (A) Boxplots showing the Pearson correlation coefficients (PCCs) for each of the specialized models applied to their respective evaluation dataset.
(B) Median PCCs when applying all specialized models to each evaluation dataset, showing the utility of specialized models. Each dot shows the median
PCC of a specialized model applied to a specific evaluation dataset. To improve readability, dots representing performance of a single model are connected.

els for the same peptide sequence and mirroring the em-
pirical spectrum below these predictions. This is shown in
Figure 2 for the TMT and HCD models with an empiri-
cal TMT-labeled peptide spectrum. While the TMT model
mirrors the empirical TMT spectrum very well, the HCD
model does not match the empirical TMT spectrum.

An additional parameter that influences fragmentation
patterns is the collision energy (CE). Yet, as most spectral
libraries do not include information on the CE values, CE
is not part of MS2PIP’s feature set. In order to evaluate
MS2PIP’s performance across different CEs, we have there-
fore applied the HCD model on a large public dataset of
synthetic peptides measured at different CEs (27). The re-
sults are shown in Supplementary Figure S3. For confident
PSMs (Andromeda score higher than 200) at higher CE val-
ues (30% and 35% normalized CE), median PCCs are above
0.90, which corresponds to the general HCD model evalu-

ation. For confident PSMs at a lower CE value of 25% nor-
malized CE, the median PCC is slightly lower at 0.85. It
therefore seems that most real-life data is recorded at higher
CE values, as the overall HCD performance of MS2PIP
most closely resembles 30% and 35% normalized HCD. As
the overall HCD performance already indicated, MS2PIP
will thus produce reliable peak intensity predictions in typi-
cal applications. Nevertheless, it is important to be mindful
of the effect of altered CE values when interpreting MS2PIP
predictions, especially in those cases where lower CEs were
used.

CONCLUSION AND FUTURE PERSPECTIVES

With the advent of novel mass spectrometry methods and
new computational pipelines, MS2 peak intensity predic-
tion is becoming ever more relevant. As one of the front
runners in peak intensity prediction, MS2PIP has already
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Figure 2. Predictions for the peptide sequence EENGVLVLNDANFDNFVADK, carrying two TMT labels, produced by the TMT model (top left) and
the HCD model (top right), compared to the empirical spectrum (bottom left and right).

been used for a variety of purposes, including creation of
proteome-wide spectral libraries, optimization of targeted
proteomics applications, validation of interesting peptide
identifications, and rescoring of search engine output.

With the current update, we present our latest efforts in
further widening the scope of MS2PIP. The new web server
enables researchers to easily obtain more predictions more
efficiently, and the new MS2PIP models extend the applica-
bility of MS2PIP to more varied, popular use cases, allow-
ing it to be applied when specific fragmentation methods,
instruments, or labeling techniques are employed.

DATA AVAILABILITY

The MS2PIP web server is freely available via
https://iomics.ugent.be/ms2pip. Documentation
for contacting the RESTful API is available via
https://iomics.ugent.be/ms2pip/api/. MS2PIP is open
source, licensed under the Apache-2.0 License, and is
hosted on https://github.com/compomics/ms2pip c. All
Python scripts that were used to generate the figures are
available in a Jupyter notebook via https://github.com/
compomics/ms2pip c/tree/releases/manuscripts/2019.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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