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Abstract

In this paper, we present a novel method for the identification of the

local bending stiffness of a beam. We use shearography to capture mea-

surements of vibrating beams, so the input data for the identification is

the modal slope – the differential of the modal shape. The modal slope

is fitted by two Fourier-series functions, one of which is derived from a

thin-beam model. The local bending stiffness is identified as the one

corresponding with the best match between the measured and the two fit-

ted modal slopes. This identification method, which we call simultaneous

Fourier-series fitting, is demonstrated on numerically-generated inputs, as

well as on experimental measurements. We use a flat, concave and convex

beam, as well as beams with locally varying bending stiffness mimicking

local damage to verify the method. It is shown that the method gives

accurate results and is robust to noise. Additionally, it has advantageous

properties that make it useful and practical: using this method, it is pos-

sible to perform the identification from only a sub-region of a beam and

even without specifying the boundary conditions.

1 Introduction

From the ubiquitous usage of finite-element method (FEM) as a modelling tool

in mechanical, civil and aeronautical engineering, the need emerged to accu-
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rately determine the stiffness, being one of the main input data in the model

besides the geometry. Finding the stiffness in a database of materials will likely

introduce some discrepancies as there will always be some differences between

the real material and the one in the database. A better way to determine the

stiffness is using a simple tensile test, though this also comes with drawbacks.

For example, the real stiffness is never perfectly homogeneous, which is one of

the basic assumptions of a tensile test.

Number of stiffness identification methods have been developed over the

years. Overviews of these methods, with application examples mostly for iden-

tification of homogeneous stiffness, are discussed in review papers by Bonnet

and Constantinescu [1] and Avril et al. [2].

Stiffness degradation is a widely used indicator to discern whether or not

there is damage in a structure. Damage identification techniques using vibra-

tional characteristics – in particular from a point of view of continuous structural

health monitoring (SHM) – are reviewed in a series of widely known papers

from Doebling, Farrar et al. [3–8]. For beams, the direct comparison of the

modal curvature between the damaged and the undamaged beam can yield a

good qualitative estimation of the damage extent, which was demonstrated by

Pandey et al. [9]. Ndambi et al. [10] successfully identified the damage of rein-

forced concrete beams. Extending this, many methods to better quantify the

damage on beams have been developed. Another example of a damage identi-

fication in beams is a paper by Huhtala and Bossuyt [11], which showed that

using a very small number of measurement points and Bayesian inference, the

damage can be successfully localised and quantified on a cantilever beam. A

comparison between different damage identification techniques is done by Dessi

and Camerlengo [12].

Degradation of stiffness is particularly important when considering struc-

tures made from composite materials, e.g. fibre-reinforced polymers (FRP),

and damage from repeated loading. Papers from Degrieck and Van Paepegem

[13] and Sevenois and Van Paepegem [14] review the determination of fatigue in

fibre composites and show that accurately determining the stiffness degradation

could play an important role in characterising fatigue in composites. One of

the methods that can be used to determine the degradation of stiffness is the
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Ultrasonic Polar Scan (UPS) by Kersemans et al. [15].

Shearography is an interferometric full-field measurement and visualization

technique which can be used for damage identification. It is already widely used

to qualitatively visualise delaminations, such as in the study by Kalogiannakis

et al. [16]. Another example of qualitative application is the comparison of infra-

red thermography to shearography, to visualise the heat-induced deformation

in concrete bonded to FRP, performed by Lai et al. [17]. De Angelis et al. [18]

presented a method for calculating the depth and size of holes drilled in com-

posite plates using shearography. Once the position and the resonant frequency

of a defect are found, an optimization procedure estimates the damage from the

frequency and the modal slope. The method was successful in finding the size,

but less so in finding the depth of the defect. Lopes et al. [19] demonstrated

and compared two methods for extracting modal slopes from shearography mea-

surements. They used spatial filtering and repeated differentiation to show that

high-order differentiation can help with qualitative damage detection in plates.

Further extension of that research lead to work by Mininni et al. [20], which

employed shearography to experimentally determine the location and the mag-

nitude of damage using a dimensionless curvature damage factor. The method

was successful in determining the location and magnitude of damage on sev-

eral examples. Finite-element method updating (FEMU) was used to further

improve the results when damage was present in multiple locations.

The local stiffness identification aims at a slightly higher target than damage

identification. In some sense, damage identification can be seen as a qualitative

analogue of the quantitative local stiffness identification. In damage identifi-

cation, some interpretation will still be needed to qualify what constitutes a

damage and what not. Local stiffness identification is fully quantitative in the

sense that it retrieves a physical property of the measured object. On the other

hand, there are damage identification methods which parametrize the damage

as a stiffness reduction factor.

For beams, one of the first stiffness identification approaches was proposed

by Maeck and De Roeck [21] where the local bending stiffness was determined

from successive differentiation of the measured modal shape of a concrete beam.

Using the progressively increasing damage it was possible to locally track the
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evolution of the damage.

Goldfeld [22] developed a beam stiffness identification method based on

smoothing and FEMU which had its efficiency evaluated on numerical examples.

Subsequent development of this method was applied to frames [23]. An exten-

sion of the method was done by Goldfeld and Elias [24] and used a polynomial

function to represent permissible damage distribution and evaluated the model

on both numerical as well as experimental data.

Most of the stiffness identification methods in some way parametrise the

measurement. Polynomial basis functions are commonly used as parametrisa-

tion. The particularity of the method presented here is that is uses Fourier-series

to describe the modal fields, though it is not the only one to use this approach.

Nguyen et al. [25] extended the virtual fields method (VFM) by parametrising

the virtual fields by the Fourier-series basis functions, instead of by the com-

monly used polynomial. This increased the computation speed several times.

A numerical example is given of the identification of the static deformation of

heterogeneous elastic isotropic material with known boundary conditions. The

reported error is about 5% when noise is added. The authors report having

problems with ringing, i.e. the Gibbs phenomenon, near the discontinuities in

stiffness. The method is further expanded [26] in order to be able to automati-

cally determine the boundary condition as a part of the identification procedure.

In this paper, we present a new method for bending stiffness identification in

beams and we validate it on numerical and experimental examples. The method

uses a simultaneous Fourier-series fitting of the modal slope, measured using

shearography. The main advantage stemming from our approach is that the

boundary conditions do not need to be explicitly prescribed. This significantly

simplifies the experimental setup since any arbitrary boundary condition can be

used. It is even possible to identify bending stiffness from a partially measured

beam because the beam regions outside of the measurement area can be taken

just as a special case of the arbitrary boundary conditions. Additionally, by

using shearography the measurements can be performed quickly and accurately.

First, in section 2, we present the theoretical basis and principle of the new

method. A very important parameter for the method is the number of harmonics

which we experimentally investigate and find the optimal value (in section 3).
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The method is then applied to numerically simulated examples (section 4) and to

experimental results (section 5) to show that the method successfully identifies

the bending stiffness variation. Conclusions and the directions for future work

are given at the end of the paper.

2 Framework for beam bending stiffness identi-

fication

2.1 Thin-beam theory

The bending stiffness identification is based on the thin-beam theory, also known

as the Euler-Bernoulli beam theory. As this theory is one of the foundations of

modern structural engineering, its description can be found in many textbooks,

e.g. [27, 28]. We start from the local equation of motion of a continuously

vibrating thin beam, which defines an equilibrium for each point at a coordinate

x:
∂2

∂x2

(
E(x) I(x)

∂2w(x, t)

∂x2

)
+ ρA(x)

∂2w(x, t)

∂t2
= 0 (1)

where

• the length lx of the beam lies along the x axis,

• w(x, t) is the displacement in the z direction (out-of-plane),

• A(x) = ly × b(x) is the area of the cross-section, itself a product of the

beam width1 ly and the thickness b(x),

• ρ is the density,

• E(x) is the Young’s modulus,

• I(x) is the second moment of area (for a rectangular cross-section I(x) =

b3(x) ly/12) and

• t is the time.

The displacement can be written as w(x, t) = w(x) e i ωt, i.e. a product of a

spatially dependent function w(x) – the modal shape – and a harmonic function

with a circular frequency ω. Using this, the previous time-dependent differential

1Here, the beam width ly is taken to be constant and the thickness b(x) is variable with x.

One or both of these can be variable with x, it does not meaningfully impact the identification

procedure.
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equation can be transformed into a time-independent equation of a modal shape

as
d2

dx2

(
E(x) I(x)

d2 w(x)

dx2

)
− ρA(x)ω2 w(x) = 0 (2)

This equation can be seen as an equation of a beam loaded statically with a

distributed pressure p(x)

p(x) = ρA(x)ω2 w(x) (3)

The pressure p(x) is induced by the inertial forces, which in turn are proportional

to the modal shape w(x).

In the following text some conventions are followed. Most variables in the

preceding equations are functions of the x coordinate. Unless this needs to

be particularly emphasized, the dependence on the x coordinate is implicitly

assumed, to make the equations more readable. The first and second differential

of the modal shape w, with respect to x, are denoted as wx and wxx. The

product of the Young’s modulus E and the second moment of area I is called

the bending stiffness EI. Young’s modulus E and the bending stiffness EI can

be computed one from another if the local beam geometry is known, which it

typically is.

Successive integration of (2) leads to

d(EI wxx)

dx
=

∫ x

0

p dx+ kQ = −Q(x) (4)

EI wxx =

∫ x

0

−Qdx+ kM = −M(x) (5)

where Q is the section shear force and M is the section moment, while kQ and

kM are the integration constants.

The relevant modal fields – modal shape w, modal slope wx, modal curvature

wxx, pressure p, section shear force Q and section moment M – are mutually

dependent through the equations (1) to (5). Their circular dependency can be
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further illustrated as

M wxx

Q measured wx

p w

−EI

−ρAω2

d

d d

d
∫

∫ ∫

∫

(6)

If any modal value is known over the whole beam, the other modal values can

be reconstructed either through successive integration
∫

or differentiation d.

Note that we did not have to prescribe boundary conditions at any point, since

everything is derived from the local thin-beam equation.

2.2 Fourier series as the basis function

The Fourier series is chosen as the basis function to describe the modal fields. We

represent some arbitrary 1-dimensional field f by fitting Fourier-series function

f̃(x, c) = c0 +

nh∑
h=1

[c2h−1 cos(hΩx) + c2h sin(hΩx)] (7)

where nh is the number of harmonics and Ω is the base frequency. It is conve-

nient to represent the above equation in matrix form

f̃ = F c (8)

where c = [c0, . . . , c2nh
]> is the coefficient vector. Field f̃ is the fit to the

measurement field f and F is the Fourier-series design matrix

F =


1 cos(Ωx1) sin(Ωx1) · · · cos(nh Ωx1) sin(nh Ωx1)

...
...

...
...

...
...

1 cos(Ωxn) sin(Ωxn) · · · cos(nh Ωxn) sin(nh Ωxn)


(9)

Fitting the measured vector f by the function f̃ means finding the coef-

ficients c. We can do this with a commonly-used technique, the linear least-
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squares method (LLSQ). Here we use the convention from programming lan-

guage MATLAB and use a backslash operator “\” to represent the LLSQ [29]

c = F \ f (10)

Important properties of the LLSQ fit are the residual and the cost function.

When fitting by LLSQ we always find coefficients c which minimize the cost

function Kfit. The cost function is the sum of the squared residual

Kfit = R>fitRfit (11)

and the residual is the difference between the measured f and the fitted f̃ data

Rfit = f − f̃ (12)

In case we want to associate weights with each measured point i, we can use

the diagonal weighting matrix V . The value of each element on the diagonal

(V )i,i is usually related to the inverse of the variance of the measurement in

that point (when multiple measurements are available). If we use the weighting

matrix V , we must also modify the cost function as

Kfit =
1

2
R>fit V Rfit (13)

and use weighted LLSQ to find the coefficients c

c =
(
V

1
2 F
)
\
(
V

1
2 wx

)
(14)

We will want to perform some operations on this fitted field. From the

circle of relations between the modal fields in (6) we see that we will need some

combination of differentiation, integration and multiplication.

The differential df̃/dx can be calculated as

df̃

dx
=

d(F c)

dx
=

dF

dx
c (15)

where

dF

dx
=


0 −Ω sin(Ωx1) Ω cos(Ωx1) · · · −nhΩ sin(nhΩx1) nhΩ cos(nhΩx1)
...

...
...

...
...

...

0 −Ω sin(Ωxn) Ω cos(Ωxn) · · · nhΩ sin(nhΩxn) nhΩ cos(nhΩxn)


(16)
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In the same manner, we can perform the differentiation further, to obtain second

or higher differentials. Inversely, we can perform the integration.

Multiplication of two fields is performed element-wise by the Hadamard

product, represented by “�”. For vectors, this is (g � f)i ≡ (g)i · (f)i. We

can alternatively perform multiplication as g � f = (F � g) c where a column

(F � g)i ≡ (F )i � g. We represent element-wise power as (f�n)i ≡ (f)ni .

The reason why we need these different ways of differentiating, integrating

and multiplying the measured field is because in the identification method we

want to be able to perform these operations on the design matrix instead of

directly on the measurement.

2.3 Identification principle

The identification method exploits the fact highlighted in the circular relation

of fields in (6) – by knowing any modal field, the others can be computed, either

through successive integration or successive differentiation. In the matrix form,

any modal field f̃ is a product of its design matrix F and the coefficient vector c.

As we have seen in the previous section, successive differentiations, integrations

and multiplications change only the design matrix while the coefficients c remain

unchanged.

Starting point for the derivation of the fitting function equations can be any

of the modal fields – the modal shape, modal slope, modal curvature, section

moment or the section shear force. Since the modal slope wx is the one which

is measured, it is an obvious starting point. However, it is beneficial that the

field that we fit is continuous in as many differentials as possible. While modal

shape is surely continuous, the bending stiffness can be discontinuous. This can

be an issue since the modal slopes are described by continuous functions. In a

Fourier-series function this can result in a “ringing artefact” near the disconti-

nuity location, an effect also known as the Gibbs phenomenon. Moment M is

sure to be at least C2 (first and second derivative) continuous, no matter the

distribution of the bending stiffness and the geometry of the beam, as the sec-

ond derivative of M , proportional to the modal shape w, must be continuous.

This makes the moment M the best candidate for fitting beams by the Fourier

series.
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The moment field M is thus defined as

M = F c

From equations (4) and (5) we derive

d2M

dx2
= −p

and from equation (3), we compute the modal slope w̃x

w̃x = −
d

dx

d2M

dx2
�
(
ρAω2

)�−1

 (17)

Second approach to obtain the modal slope (this second approach will bear the

notation ˜̃wx and the associated design matrix will be ˜̃F ) is by integrating the

moment M from equation (5).

˜̃wx = −
∫ x

0

M � (EI)�−1dx+ kM (18)

where the kM is the integration constant. kM can be seen as yet another coef-

ficient in the coefficient vector so that c = [c0, . . . , c2nh
, kM ]>. For the design

matrices (F and F̃ ) which do not use this coefficient, the appropriate column

is filled with zeros. Both w̃x and ˜̃wx are two separate analytic functions that

fit the measured modal slope wx.

Using modified design matrices

F̃ = −
d

dx

d2F

dx2
�
(
ρAω2

)�−1

 (19)

and

˜̃F =

∫ x

0

F � (EI)�−1dx (20)

we can write equations (17) and (18) as

wx ' w̃x = F̃ c (21)

wx ' ˜̃wx = ˜̃F c (22)

The design matrices F̃ and ˜̃F are fully defined by components (sines and cosines)

of the Fourier series and the physical properties of the beam – density ρ, cross-

section A, circular resonant frequency ω and the distribution of the bending
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stiffness EI. From the physical properties, all but the bending stiffness dis-

tribution EI can be accurately measured and they are needed as the input

properties for the bending stiffness identification method. Since the measure-

ment grid is dense, the design matrices F̃ and ˜̃F can be accurately computed

from F numerically, as described in the previous section.

Equations (21) and (22) are part of a simultaneous system of equations as

they are defined by the same coefficient vector cwx

wx

 '
w̃x

˜̃wx

 =

F̃˜̃F
 c (23)

which can be solved as a LLSQ fit

c =

F̃˜̃F
 \

wx

wx

 (24)

Further on, we will call this identification the simultaneous Fourier-series fitting

as it fits a single measurement wx by two design matrices simultaneously.

The cost function of the simultaneous Fourier-series fitting identification is

Kid =

R̃ID

˜̃RID


> R̃ID

˜̃RID

 (25)

where the residuals are

R̃ID = w̃x −wx (26)

˜̃RID = ˜̃wx −wx (27)

In case of the weighted LLSQ fitting, the cost function changes to

Kid =
1

2

R̃ID

˜̃RID


> V 0

0 V


R̃ID

˜̃RID

 (28)

The weighted fitting is then performed as

c =

V
1
2 F̃

V
1
2

˜̃F

 \
V

1
2 wx

V
1
2 wx

 (29)
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To actually identify the bending stiffness distribution EI, the identification

starts from an initial guess. The bending stiffness distribution is defined as a

vector of nid identification control points distributed along the length of the

beam, EIid ∈ Rnid×1. The values in between the control points are interpolated

by cubic splines. Finding the correct bending stiffness distribution EI is a non-

linear least squares optimization problem. The parameters of the optimization

are the bending stiffness distribution EI and the coefficients c. Finding the

coefficients c is, as shown before, a linear problem which can be solved efficiently

by the LLSQ. The non-linear optimization is thus separated into the non-linear

part, which iteratively adjusts only the EI, and the linear part. For a given EI,

the corresponding optimal coefficients c and the cost function K are found non-

iteratively (and thus very computationally efficiently) by the LLSQ method. In

this way the non-linear optimization finds the optimal (the correct) EI in a

computationally efficient way.

Furthermore, measurements w
(i)
x of multiple modes, where “(i)” in the su-

perscript signifies i-th mode at resonant frequency fi, can be used simulta-

neously for the identification. We can define residuals R̃
(i)
ID and ˜̃R

(i)
ID for a

measurement w
(i)
x and expand the cost function to include nmeas of multiple

measurements as

Kid =



R̃
(1)
ID

˜̃R
(1)
ID

...

R̃
(nmeas)
ID

˜̃R
(nmeas)
ID



> 

R̃
(1)
ID

˜̃R
(1)
ID

...

R̃
(nmeas)
ID

˜̃R
(nmeas)
ID


(30)

Notice that no information about the boundary condition is explicitly used

in this identification. Though it is possible to modify the identification method

to explicitly prescribe the boundary condition, this can be more of a drawback

than a benefit. With the exception of the free boundary conditions, it is diffi-

cult to characterise the boundaries in an experiment. It is even more difficult to

characterise them accurately. Since we do not need to prescribe the boundaries

to perform the identification, we are not limited by the choice between using
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free boundary conditions (thus making the experimental setup complex) or ac-

curately characterising the boundaries (thus making the experimental setup very

complex). We can use any type of boundary condition.

Another experimental advantage of the simultaneous fitting is that the abso-

lute magnitude of the wx is not important in the bending stiffness identification

– the measured modal slope wx can be arbitrarily scaled without affecting the

identified bending stiffness EI.

3 Optimal number of harmonics nh

This section deals with the uncertainty of the shearography measurements and

how they affect the choice of the parameters for the Fourier-series basis func-

tions. In particular, the required number of harmonics nh of the Fourier series

is investigated. The noise and fitting analysis is based on an article by Pintelon

and Schoukens [30].

The shearography measurement of the first resonant mode of a flat alu-

minium beam is used for the noise and fitting analysis. The geometry of the

flat beam is given in table 3. Free-free boundary conditions are approximated

by hanging the vibrating beam at the nodal points. Additional support, to stop

large back and forth oscillations, is provided by rubber pins placed behind the

beam. This beam support is shown in figure 1. In this set-up, the x coordi-

nate of the nodal points needs to be computed before-hand from the assumed

bending stiffness. When vibrations at several modal frequencies are acquired,

the nodal points differ for each frequency so the hanging locations need to be

re-positioned. This makes the free-free boundary condition set-up less practical

when we want to acquire multiple frequencies.

To obtain quantitative data from shearography, we need phase-unwrapping

[31], which in turn requires filtering the shearography images. The filtering is

performed by a median filter with a kernel size of 3× 3 pixels. This is the min-

imal filtering after which the unwrapping is still successful. After the filtering,

however, the neighbouring points cannot be considered statistically independent,

which is a requirement for the statistical analysis we perform here. Therefore,

each third column of a filtered shearography image is used, making the columns
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Figure 1: The experimental set-up with the free-free boundary condition. The beam

is hung at the nodal points by thin threads. To avoid the beam undulations in the

z-direction, the beam is additionally leaned against two rubber-coated pins.

independent and reducing the number of columns in the shearography images

to n = 349. The beam implies equations of one spatial variable, so the shearog-

raphy images (2-dimensional fields) of the modal slope wx(x, y) are averaged

over the width of the beam (the y axis) to obtain a 1-dimensional modal slope

vector wx.

To quantify the noise and its distribution, one shearography measurement

is repeated a number of times. For a consistent estimate of the influence of

measurement error in the parameter identification, the measurement should be

repeated nmeas ≥ 6 times (according to Schoukens et al. [32]). In this section,

the measurement is repeated nmeas = 9 times. The noise is not constant over

the field-of-view in the shearography images, so the uncertainty is computed as

a function of the x coordinate.

All the possible sources of uncertainty need to be represented in the sample of

nmeas measurements. The laser illuminating the measurement creates a speckle

pattern, which is instrumental for shearography imaging, but can also be seen

as a source of measurement noise. Thus, for each measurement, the laser is

slightly moved so that the speckle pattern changes between the measurements.

Two other sources of uncertainty stem from the discretization of a continuous

signal in the ccd (the sensor of the shearography camera) and the unwrapping
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±2σ̂mean

R([1, 9], x)

0.023

0.007
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−0.014

Normalized x coordinate
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0.01 0.99

1

−1

w
([1,9])
x

Figure 2: Measurement noise of the nmeas = 9 repeated modal slope wx is quantified.

The measurements can be averaged and the error in a measurement is represented

by the residuals R. The standard deviation of the measurement is in the range σ̂x ∈

[0.0006, 0.0102]. For nmeas = 9, this translates to ±2 σ̂mean (which encompasses about

95% of residuals R) of ±0.0004 at the minimum and ±0.0068 at the maximum.

algorithm. If the measurement is repeated at the constant modal slope ampli-

tude, the uncertainty associated with discretization and unwrapping would not

be properly accounted for. The modal slope amplitude is actually arbitrary in

the bending stiffness identification – only the relative ratios are important. The

measurements are thus performed at varying amplitudes and each measurement

is normalized to the wx ∈ [−1, 1] interval.

From the nine measurements of the modal slope w
(i)
x , where superscript (i)

represents the i-th measurement, we can calculate the mean modal slope

ŵx =
1

nmeas

nmeas∑
i=1

wx,i (31)

the i-th residual

R = wx,i − ŵx (32)
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the estimated variance

σ̂2 =
1

nmeas − 1

nmeas∑
i=1

R>i Ri (33)

and the estimated variance of the mean

σ2
mean =

σ̂2

nmeas
(34)

The optimal value for the number of harmonics nh to find the best fit ac-

cording to equation (14) is now studied. As the starting value of ŵx (see figure

2, left side) is not equal to the end value (right side), the signal is step-like and

performing the fit on it would not appropriately characterise it. Therefore, the

fit is performed on a signal of double the physical length of the beam, 2lx, as

prescribed by the method for treating the step-like signals described by Gans

and Nahman [33]. This method replaces the step-like signal by its analogue: a

signal vector s of length ns is replaced by the signal s′ =

 s

−s+ s(1) + s(ns)

,

of length 2ns. The fundamental frequency of fitting Ω should be such that one

period of the fitting function 2π corresponds to 2 lx on the x coordinate. Thus

Ω = π/lx. In practice this parameter is not fixed and can be tuned to slightly

improve the fitting performance (reduction by about 10% usually gives best

results). The optimal value of Ω cannot be given explicitly and can only be

computed as a non-linear fitting parameter. To keep the equations reasonably

simple, the default value Ω = π/lx is kept for fitting and identification through

this paper.

In case there are no systematic modelling errors, the expected value of the

cost function can be computed, as described in [30] and [32]. In case there are

modelling errors, such as if the number of harmonics used for fitting is too small,

the actual cost function will be larger than its expected value. The expected

value of the cost function depends on the number of fitting parameters, number

of sampling points and on the noise in the measurement.

The diagonal weighting matrix V is used in equation (14) in the LLSQ fit,

where each element on the diagonal is

(V )i,i =
1

(σ2
mean)i

(35)
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Table 1: For nh ≥ 4 the cost function Kfit does not diminish significantly and the cost

function Kfit matches its expected value E{Kfit}.

nh Kfit E{Kfit}± 2 std{Kfit}

1 376 400 231± 20

2 5 469 229± 20

3 526 228± 20

4 236 227± 20

5 234 225± 20

6 230 224± 20

7 224 223± 20
...

...
...

The expected value of the cost function Kfit is then (according to Schoukens

et al. [32])

E{Kfit} =
n− (2nh + 1)

2

nmeas − 1

nmeas − 3
(36)

where n = 349 is the number of measurement points on the curve and 2nh + 1

is the number of estimated parameters. Scaling of (nmeas − 1)/(nmeas − 3) is

to account for the fact that an estimated variance of the mean σ̂2
mean is used,

estimated from nmeas measurements. The variance and the standard deviation

of the cost function can be calculated as (from [32])

var{Kfit} =
n− (2nh + 1)

2

(nmeas − 1)3

(nmeas − 5)(nmeas − 3)2
(37)

and

std{Kfit} =
√

var{Kfit} (38)

In case there are no modelling errors, the cost function is in the range

Kfit ∈ [E{Kfit} ± 2 std{Kfit}] (39)

with a 95% certainty.

Table 1 shows the value of the cost function Kfit when fitting by nh ∈

{1, . . . , 7} complex harmonics and the expected value of the cost function. A

fit by nh = 4 harmonics is thus sufficient to model the modal slope ŵx with

accuracy within the measurement uncertainty.
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In a next step, the optimal number of harmonics nh is investigated for the

bending stiffness identification. In principle, the bending stiffness identification

algorithm fits two variants of the modal slope, w̃x and ˜̃wx, to the measured

modal slope wx. In this section, we have repeated measurements of the same

modal slope, since we use the mean modal slope ŵx instead of single measure-

ment wx. Likewise, we take advantage of the availability of the local weighting

matrix V . Equation (29) is used to perform the LLSQ fitting. The cost function

defined in (28) is used. The expected value of the cost function Kid is

E{Kid} =
2n− (2nh + 3)

2

nmeas − 1

nmeas − 3
(40)

where n is the number of measurement points on the curve (the measurement

range is taken twice into account in the identification process), 2nh + 3 is the

number of estimated parameters (2nh +1 coefficients c, the bending stiffness EI

and the integration constant from equation (18)). The variance (as in equation

(37)) and the standard deviation (as in equation (38)) of the cost function

cannot be calculated because the 2n measurement values are not statistically

independent – they are two copies of the same nmeas measurements.

Using the resonalyser procedure (for details see Sol [34] and Lauwagie et al.

[35]), the bending stiffness of the first tested beam is estimated to be EI = 9.5

Nm. In this section, exceptionally, we will identify bending stiffness as if the

beam is completely homogeneous, so the identification is performed in nid = 1

point.

Table 2 shows the minimized cost functions Kid, the expected cost function

E{Kid} and the identified bending stiffness EI for an increasing number of com-

plex harmonics nh. In the case of identification, a larger number of harmonics

nh is needed than in the case of fitting. After nh = 11 the cost function does

not diminish further, and the actual value of EI is found. The identification

of EI converges slower (i.e. Kid diminishes slower by increasing the number of

harmonics) than the fitting (table 1). The identification at nh ≥ 11 is approxi-

mately as good as fitting at nh ≥ 4. In those cases the expected and the actual

cost functions match.

In the case of bending stiffness identification, the LLSQ is doubly bound

– both the function w̃x and its fourth differential ˜̃wx must fit the measured

ŵx. The actual minimized cost function Kid does not reach the expected value
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Table 2: From nh ≥ 11 the cost function Kid converges to the minimal value and the

bending stiffness EI is properly identified.

nh Kid E{Kid} identified EI

1 752 800 462 46.3

2 329 623 461 40.4

3 319 651 459 37.5

4 67 316 458 18.8

5 14 451 457 18.4

6 12 004 455 18.7

7 11 980 454 18.7

8 9 450 453 14.6

9 1 343 451 9.72

10 591 450 9.55

11 524 449 9.54

12 520 447 9.54

13 519 446 9.54

14 518 445 9.54
...

...
...

...

E{Kid}, though it comes close to it.

In this section, we show that the Fourier series is a very good basis function

for the fitting. For the first resonant mode of a beam, only nh = 4 complex

harmonics are sufficient to fit the measurement, within the precision allowed by

the measurement noise. The bending stiffness identification procedure is based

on simultaneous fitting of a Fourier series function and its fourth differential.

In the case of identification, a higher number of coefficients is needed, nh ≥ 11.

4 Identification from simulated data

After defining the new identification algorithm and selecting the parameters,

we can actually use it on test cases – that way we can assess the algorithm’s

accuracy, robustness and reliability. In this section we start from the simplest
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test case, a flat beam, towards more complex ones.

As shown in the previous sections, the input of the identification algorithm is

the modal slopewx. We can either obtain the modal slopew from an experiment

or generate it in a numerical simulation. Using simulations, in this case the

finite-element (FE) method, has two major advantages: we know the exact

bending stiffness in the model and the modal slope wx is free of measurement

noise and uncertainty. The FE model can be considered as a virtual experiment.

Five types of beams are tested. The first three, the flat, concave and convex

beam, are both simulated and are available as physical samples. The fourth test

beam has two sections with jumps in stiffness between them. Because of the

difficulties involved in making a physical sample with accurately varying stiffness

it is available only as a FE model. The fifth test beam is a flat beam with a

weakened region (a region of reduced bending stiffness). It is both simulated

and available as a physical sample, but the properties of the weakened region

are slightly different in the simulation and in the physical sample. The last

two beams are intended for testing how well the identification handles sharp

discontinuities. The properties of all beams are summarized in the table 3.

Table 3: Properties of the five types of aluminium beams

Flat Concave Convex Sectioned
Locally

weakened

Length lx in mm 220.46 220.09 220.09 220.00 220.00

Width ly in mm 24.96 25.05 25.02 25.00 25.00

Thickness b in mm 3.96 [2.00, 3.99] [1.97, 4.01] 4.00 [2.71, 4.00]

Stiffness E in GPa 69.7 69.7 69.7 13.8, 69. 7 69.7

Available as:

FEM X X X X X

Experiment X X X X

The algorithm can identify bending stiffness from modal slope wx of any

resonant mode. In the following examples the first five resonant modes are

used from the finite-element model and the experiments. An advantage of this

identification algorithm is that a combination of modal slopes wx of different
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modes can be used, which makes the identification more robust. The improved

robustness when using combined modal slopeswx is discussed and demonstrated

in section 4.2.

We need a quantification parameter to measure how well the algorithm per-

forms an identification, a goodness of identification. In the domain of curve

fitting a common way to represent the goodness of fit is by the root-mean-

square-deviation (RMSD) and we will adapt it for use here as well. For this

particular problem it is defined as

RMSD =

√√√√mean

((
EI −EIid

)>(
EI −EIid

))
(41)

where EI is either the correct bending stiffness. The identification is commonly

(and expected to be) inaccurate at the edges of the beam, so it is better to define

the RMSD only in the region x ∈ [0.1 lx, 0.9 lx].

To compare the results of identification for different beams between them-

selves, as RMSD is dependent on the actual local bending stiffness of the beam,

the RMSD is normalized by the mean value of the correct (or estimated) bend-

ing stiffness EI. The resulting quantity is the coefficient of variation of the

deviation

CVD =
RMSD

mean(EI)
(42)

and it is expressed as a percentage (of deviation from the mean bending stiff-

ness).

The identification algorithm has some parameters which can be freely chosen.

To keep the identification results fair, and to show that the algorithm is robust,

all the identifications are run with the same parameters, unless noted otherwise.

The identification is performed at nid = 20 points, with intermediate values

interpolated by cubic splines. This is deemed a good compromise between fast

identification (identification of a single mode takes about 2 to 3 seconds), ability

to detect small deviations and robustness to noise. As we have seen in the

previous section, nh ≥ 11 is needed for good identification. However, we use

nh = 12 harmonics of the Fourier series for fitting, to account for the fact that

we are using not just the first, but also higher vibrational modes. The initial

guess for each identification is a constant field EI = 5 Nm2.
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4.1 Finite-element models

The finite-element simulation is done in ABAQUS. Beams are modelled using

a 2-dimensional mesh of ABAQUS S4R elements – each of which is a 4-node

linear general-purpose shell element with reduced integration. S4R are mixed

thin/thick shell elements, however, the thick shell formulation is forced. The

mesh is of size 220× 20 (each element is 1× 1.25 mm), which is chosen to keep

the individual elements approximately square and to have enough nodes in the x

direction to represent a smooth modal slope curve. An out-of-plane modal shape

w for each considered resonant frequency is the output of the simulation. From

the 2-dimensional modal shape w field, the 1-dimensional modal slope wx curve

is computed by differentiation in the x direction (using central differences) and

by averaging in the y direction (the same averaging is done for the experimental

data).

For vibrations, the physical characteristic which governs whether thin- or

thick-beam behaviour can be expected is the wavelength of the modal shape

(the distance between two peaks in the modal shape w). For higher modes

the wavelength is shorter and as such the beam is approaching the thick-beam

behaviour. As the identification algorithm is based on the thin-beam model, and

thick plates are used for modelling, increasing discrepancies can be expected

for the higher modes. Through this we can see how suitable the thin-beam

implementation is for this problem.

The identification is performed for the modes f1 to f5 individually, and for all

five modes combined. From figure 3 we can see the first mode having difficulties

converging to the correct bending stiffness EI. For the rest of the modes, as

well as when identifying the bending stiffness from the combined modes, the

identification converges to the right values. This behaviour is seen also in the

further examples and is likely because the lowest modes provides less information

to the identification algorithm. However, all these identification results are

actually very satisfactory – even the worst case has only CVD = 1.4%. In

general we can conclude that the identification algorithm can robustly perform

the identification, in every vibration mode and by using combined modes.
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Figure 3: Identification from the finite-element flat beam model. Except for the first

mode, the identification is within the ±1% region of the correct bending stiffness value

for x/lx ∈ [0.1, 0.9].

4.2 Robustness to noise

An important feature of any identification method is its robustness to the mea-

surement noise. If the identification method is overly sensitive to noise, it cannot

be applied to real measurements. The identification method presented here is

aimed at shearography measurements, which can be very noisy, thus a con-

siderable robustness is needed. We show that the simultaneous Fourier-series

identification method effectively deals with the measurement noise.

To accurately determine the robustness to noise we use data from the FE

model, for which we know the exact bending stiffness and thus can exactly

calculate the identification error. Normally distributed noise with standard

deviation σnoise is added to the normalized modal slope slopes wx (which are
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identification from f1

from f3

from f5

from combined modes f1 to f5

CVD = 0.52% 3.0%

Figure 4: The higher the mode, the better robustness to noise – identification from

modes f3 and f5 is considerably better than identification from mode f1 for the same

amount of noise. Identification becomes especially robust to noise when several modes

are combined (here modes f1 to f5). The example is the flat beam with σnoise = 10−2,

which is on the upper limit of the expected amount of noise.

always in the range [−1, 1]). In this section, the examples related to the noise

robustness are focused on the flat beam, typically with noise of σnoise = 10−2

added to the modes f1 to f5. In figure 2 we show that σ̂x ∈ [0.0006, 0.0102] so

the noise that is used in the simulations is on the upper boundary of what can

be expected in real measurements. Typically the identifications are performed

from combined modes f1 to f5, without explicitly prescribing the boundary

conditions. Since the added noise is by definition random, a slightly different

result can be expected each time we run an identification. Each identification

is performed five times, with random noise generated each time anew. For each

identification, results of all five runs are shown in graphs, with the median value

shown more prominently.

The same amount of noise is added to different modes to see how identifica-

tion is affected by the choice of the resonant mode. As we see in figure 4, the

higher resonant modes are less affected by noise. Higher modes are denser in

information, as the change of the modal slope wx per unit length is larger. It

can be said that the signal content the identification uses is higher. However,

it is not always practical to use the higher modes as they are more difficult

to excite in an experiment and the use of the thin-beam model becomes less

appropriate for the higher modes.

Comparison of how a different amount of noise σnoise affects the accuracy

of the identification is shown in figure 5. Up to σnoise = 10−2 the noise has
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Figure 5: Up to the σnoise = 10−2, which is on the upper level of the expected noise

from shearography experiment, the identification from combined modes f1 to f5 is

almost unaffected by noise. Even for the example with extreme noise σnoise = 10−1,

the identification error is acceptable.

CVD
0.52% 0.84%

number of identification 
points nID

15

20

30

40

Figure 6: Robustness to noise is better, but not by much, if the number of identi-

fication control points is smaller. The points in this graphs are calculated for a flat

beam, from numerical simulation of combined modes f1 to f5 with added noise of

σnoise = 10−2.
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Figure 7: There is almost no change in the results when using different number of

Fourier series harmonics nh for the bending stiffness identification. The points in this

graphs are calculated for a flat beam, from numerical simulation of combined modes

f1 to f5 with added noise of σnoise = 10−2.

almost no effect on the results of the identification. Only at σnoise = 10−1 is the

identification significantly affected, though even in that case the median CVD is

still acceptable, at 3.4%. Bear in mind that σnoise = 10−1 is an extreme example

of noise, unlikely to be encountered in real shearography experiments.

When discussing the noise tolerance, an important parameter of the identifi-

cation is the number of control points nid, between which the bending stiffness is

interpolated. The higher the number of control points nid, the more locally the

bending stiffness change is identified. However, smaller number of control points

nid results in better robustness to noise. In figure 6 we see that an increase in

the number of control points nid results in less noise robustness, but the effect

is minor – the median CVD ranges from 0.52% for the best case to 0.84% for

the worst case. The simultaneous Fourier-series identification is robust to noise,

even when a large number of control points is used. The rest of the examples

in this section use nid = 20 which gives the best noise tolerance and is fully

capable to identify the bending stiffness change in all of the examples.

Another important parameter that needs to be selected for identification,

that might affect the robustness to noise, is the number of Fourier-series har-

monics nh. In section 3 it is shown that the number of harmonics should be

nh ≥ 11. Figure 7 further shows that the identification method is robust to

the choice of the number of harmonics nh. There is no statistically significant

difference in choosing one over another. In all the other examples, the choice is

set to nh = 12, as the higher number nh is computationally more expensive.
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In general, we can conclude that the simultaneous Fourier-series identifi-

cation shows good robustness to noise, particularly when using higher modal

shapes or, even better, when combining several distinct modal shapes.

4.3 Identification from a subregion

As shown already in section 2.3, the simultaneous Fourier-series identification

method does not need information on the boundary conditions to identify the

bending stiffness. When the modal slope wx from only a subregion (a part of

the beam of length lid) is available, the influence of the rest of the beam can be

replaced by some unknown boundary condition at the edges of the subregion.

Since the algorithm does not need to have the boundary conditions prescribed

anyhow, it is possible to identify the bending stiffness from only a subregion of

the beam with no explicit information on the rest of the beam.

Figure 8 shows what happens when we try to identify the bending stiffness

from a subregion (combined modes f1 to f5 are used) around the centre. If

the subregion is large enough, the identification is successful, as seen from cases

where identification length lid/lx = {40%, 60%, 80%}. If the subregion is too

small, the identification fails to identify the correct bending stiffness.

Lower modes need larger identification length lid for a successful identifica-

tion. In figure 9, we see that for the mode f1 almost the whole beam length is

needed to successfully identify the bending stiffness. If we instead use the higher

modes, a smaller subregion is enough – for the mode f5 as little as lid = 30% lx

is sufficient. Higher modes are more information-dense and bending stiffness

identification can converge to the correct bending stiffness from information

from such a small subregion. If we combine more modes, the bending stiffness

identification needs larger identification length lid than the highest individual

mode, but not much more, and combining modes has additional advantages,

like better robustness to noise.

4.4 Concave and convex beam

The concave beam and the convex beam have varying thicknesses. The concave

beam is thin (b = 2.00 mm) in the centre and thick (b = 3.99 mm) at the edges.

Conversely, the convex beam is thick (b = 4.01 mm) at the center and thin
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Figure 8: Several examples of identification from a subregion of a flat beam (combined

data from modes f1 to f5 is used). When the subregion length is sufficient, the identifi-

cation is successful, as in cases of identification from length lid/lx = {40%, 60%, 80%}.

If the identification length is too small, such as in the example of lid/lx = 20%, the

identification converges to the wrong bending stiffness EI.

20% 40% 60% 80% 100%

0
1%

10%
CVD

f1f3f5
combined
f1 to f5

Identification length

Figure 9: Depending on which resonant mode is used, identification is more or less

robust to the choice of the identification subregion size lid. We see that for mode f1,

the identification is only successful, i.e. the CVD ≤ 1%, for lid/lx ≥ 85%. For mode

f3 the identification is successful when lid/lx ≥ 85% and for mode f5 identification

can be successfully performed from as little as 30% length. When we combine modes

(here shown combined modes f1 to f5) the identification needs a larger lid than when

only using f5 mode.
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(b = 1.97 mm) at the edges. Other properties are similar to the flat beam, as

shown in table 3.

The bending stiffness computed from the FE model using the simultaneous

Fourier-series identification is, in general, accurate, as seen in figures 10 and 11.

For both the concave and convex beam, the identification from modes f1 and

f2 converges to the wrong value. For those cases the CVD goes to above 600%.

This is in line, though more exaggerated, with what we have already seen in the

case of the flat beam.

4.5 Sectioned beam

We can use the example of the sectioned beam, to see if and what kind of

artefacts a discontinuity in the bending stiffness EI distribution causes in the

identification. The sectioned beam is divided into two equally large sections,

with abrupt and drastic change in bending stiffness between them (see figure

12).

When the bending stiffness identification is performed in the (default) num-

ber of identification points nid = 20, the identified bending stiffness shows os-

cillations on the left half of the beam. This is due to the Gibbs phenomenon

(mentioned in section 2.3) – the Fourier series is unable to accurately fit the

abrupt transitions such as here the discontinuity between the left and right side

of the beam. A number of techniques have also been developed to deal with

the Gibbs phenomenon, out of which the most successful ones are reviewed by

Gottlieb and Shu [36]. In the future work, it should be researched which of

them can be implemented in this identification framework. The Gibbs phe-

nomenon can also be reduced if we increase the number of identification points.

For example, by increasing the number of identification points to nid = 100

we see that although the unwanted oscillations of the bending stiffness are still

present, they are less prominent and they affect a smaller region around the

discontinuity. The downside of using a large number of identification points nid

is that it makes the identification slightly more susceptible to the measurement

noise.
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Figure 10: The identification of the bending stiffness of the FE model of the concave

beam is accurate, except in cases when the identification is performed from the modes

f1 and f2, for which the identification converges to wrong values.
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Figure 11: The identification of the bending stiffness of the FE model of the convex

beam is accurate, except in cases when the identification is performed from the modes

f1 and f2.

30



15.0

Normalized x coordinate
x/lx

Identified bending stiffness

EI in Nm2

correct EI

0 1

sf identification,

9.2

1.8

0

0 1

sf identification,

nid = 20 nid = 100

Figure 12: The abrupt transition in bending stiffness poses a problem for the identifi-

cation methods. When using the simultaneous Fourier-series identification, there is an

oscillation of bending stiffness near the transition point. When using a low number of

identification points (n = 20) the situation is worse then when using a larger number

(n = 100).

9.3

Normalized x coordinate
x/lx

Identified bending stiffness

EI in Nm2

correct EI ±1%

0 1

7.4

Figure 13: The bending stiffness of the weakened beam is identified accurately.

31



4.6 Locally weakened flat beam

The weakened beam has a constant cross-section, the same as the flat beam.

But, in the range x/lx = [0.36, 0.41] the bending stiffness is reduced to 80% of

the bending stiffness of the rest of the beam. This local weakening mimics a

local damage to the beam.

The bending stiffness is identified from the combined five modes, in nid = 50

control points. The identified and the actual bending stiffness match very well,

as seen in figure 13. In most of the beam’s length the bending stiffness is

identified to about ±1% of the correct bending stiffness and the CVD = 1.6%.

We see that the simultaneous Fourier-series identification can successfully handle

the abrupt changes in bending stiffness here.

5 Identification from experiments

For the beams which are available as physical samples, the modal slope wx can

of course be obtained from shearography experiments. This is the ultimate test

of the identification method, but it has two drawbacks – we can only estimate

the actual local bending stiffness EI distribution and the error of the identifica-

tion is intertwined with the measurement uncertainty. This prevents a deeper

quantitative analysis of the errors like in the previous section, but it still gives

us a valuable qualitative insight into the behaviour of the identification method.

The measurement set-up is composed of the shearography camera, the beam

support with clamping on one side and the excitation source. The shearogra-

phy camera and the beam support are placed on a vibration-isolation table,

to limit the vibration which deteriorates the shearography measurements. The

shearography camera and the acquisition system is the isi-sys SE3 [37]. A

loudspeaker behind the beam is used to excite the vibration at a resonant fre-

quency. This way, a non-contact excitation is possible, and the mass-loading

of the beam (as in the case when a shaker would be used) need not be taken

into account. If there are significant energy losses due to the nature of the ma-

terial (e.g. when using highly damped materials such as wood) or due to the

losses at the boundary, the excitation sound can get very loud. The aluminium

beams have a specularly-reflective surface. Since shearography can only image
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Figure 14: The experimental set-up with the clamped-free boundary condition is

simple – the beam is clamped on the left side and multiple frequencies can be excited

without changing the experimental setup.

diffusely-reflective surfaces, the beams are coated with a very thin layer of white

powder.

The beams are manufactured from the same aluminium plate. The density

ρ = 2676 kg/m3 and Young’s modulus E = 69.7 GPa of the material are

calculated from the flat beam, using the following procedure: the flat beam

has a constant thickness b = 3.96 ± 0.04 mm (measured in 23 points along the

length); from the first resonant frequency f1 = 427.5 Hz (free-free boundary

conditions), analytic relations for a flat beam calculate the average Young’s

modulus to E = 69.7 GPa; the density is calculated from the average measured

thickness b, the length lx, the width ly and the mass m. For a flat beam with

average thickness b and Young’s modulus E, the corresponding bending stiffness

is EI = 9.00 ± 0.27 Nm2. All the beams are prescribed with these material

properties (ρ and E) in the finite-element model in the previous section as well.

The beams are clamped at one side and free at the other, as shown in figure

14. The advantage of this setup, compared with the classical one shown in figure

1, is that the locations of the nodal points are irrelevant for the measurement

and thus we can easily excite multiple modes with no changes to the support.

The clamped region of the beam cannot be imaged so no bending stiffness can

be identified there. Clamping on both sides is not performed as the excitation
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Figure 15: The identified bending stiffness EI is similar to its assumed value when

we perform the identification from the clamped-free beam and modes f1 to f5.
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Figure 16: The results of the identification of the concave beam clamped on the left,

from modes f1 to f5 matches very well with the estimated bending stiffness EI.

energy needed is too high to obtain good measurement for higher frequencies.

5.1 Flat, concave and convex beam

The identifications are performed from the combined first five modes. The

identification result for the flat beam, in figure 15, is very close to the assumed

value of the bending stiffness, with CVD = 1.5%. The Fourier-series identifica-

tion performs a satisfactory identification from experimental measurements as

well as the simulated data. The identification of the concave and the convex

beam is also good, as seen in figures 16 and 17.
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Figure 17: The bending stiffness identified from the convex beam clamped on left

side, using combined modes modes f1 to f5.

5.2 Locally weakened beam

In the final experimental example, we simulate the damage by cutting a groove in

a flat aluminium beam. This example also illustrates how well the identification

performs when the decrease in bending stiffness is very localized. The groove

is cut using a band saw, which ensures we obtain an even groove both in width

and in depth. The groove can be progressively deepened, to track how the

identification performs for different damage magnitudes. The groove is 1.45

mm wide, which is shown in figure 18. The identification is performed with the

beam clamped on one side, like in the setup in figure 14. We are exciting and

measuring the first six resonant modes.

Since we are interested in the local bending stiffness, here we increase the

number of identification points to nid = 50, compared to nid = 20 in the pre-

vious experiments. This allows for better local resolution in bending stiffness

identification, though it will increase the identification uncertainty as well. With

nid = 50, one identification point covers lx/nid = 4.4 mm, which is three times

the groove width (1.45 mm).

Normally, the bending stiffness EI for a rectangular cross-section of the

beam is proportional to the cube of the local thickness b. A local reduction

of thickness from binit to bdmg thus causes a local bending stiffness reduction

from EIinit to EIdmg = b3dmg/b
3
initEIinit. By cutting the groove we also remove
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(a) Groove depth 0.28 mm (b) Groove depth 0.52 mm (c) Groove depth 1.29 mm

Figure 18: To simulate damage in a flat aluminium beam, a thin groove of width

1.45 mm in thickness is cut. The groove is progressively made deeper, to track the

simulated damage.

material. In the first approximation, the local mass does not affect the local

bending stiffness so we do not have to explicitly prescribe this mass decrease

in the identification. Also, the global mass change due to cutting the groove is

negligible.

Figure 19 shows us the results of the identification, comparing the identifi-

cation of the undamaged beam to the identifications with the groove depth of

0.28, 0.52 and 1.29 mm. The identified bending stiffness outside of the groove

before and after damage is very similar, though we can see that the relatively

high nid results in fluctuation of the identified bending stiffness. The groove is

clearly distinguishable in the identification for groove depths of 0.52 and 1.29

mm. Even for the most shallow groove, there is a distinct difference in bending

stiffness before and after damage. We can identify the local decrease of bending

stiffness for the three groove depths as 91%, 79% and 43% of EIinit. However,

due to the change in thickness the bending stiffness should be 80%, 66% and

31% of the original one. A reason for this mismatch might be that the groove

width is much smaller than a single identification region.

6 Conclusion and future work

In this article, a novel local bending stiffness identification method, the so-

called simultaneous Fourier-series identification, was developed. It is based on

fitting the modal slope wx to the two distinct variations of the Fourier-series,

while enforcing the equations of the thin-beam theory. The method finds the
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Normalized x coordinate

x/lx

Identified bending stiffness

EI in Nm2

11

11

0.80.41

9

9

9

4

4

actual position and width of the groove

1.29 mm groove, EI(x/lx=0.41) = 3.89 Nm

0.52 mm groove, EI(x/lx=0.41) = 7.14 Nm

estimated EI

no groove, EI(x/lx=0.41) = 9.09 Nm

0.28 mm groove, EI(x/lx=0.41) = 8.23 Nm

Figure 19: The identification is able to distinguish the change in the local bending

stiffness for all three groove depths (0.28, 0.52 and 1.29 mm), though for the 0.28 mm

groove the change in bending stiffness is within the uncertainty of the identification.

The identified bending stiffness in the groove is not well matched to the bending

stiffness which we would expect from the local thickness change, which is likely due

to the fact that the groove width (1.45 mm) is much smaller than the length that one

identification point covers (4.4 mm).
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bending stiffness distribution that fits the measured modal slope wx from the

shearography measurements.

Experimentally obtained modal slopes and modal slopes from finite-element

(FE) model are used. Using the data from the FE model, the correct bending

stiffness that should be obtained from the identification is known. This allows

us to see how accurate the identification is; and to assess the robustness with

respect to the measurement noise.

From the FE model we learn that the simultaneous Fourier-series identifica-

tion is accurate – the results are in most cases at about 1% of the correct values.

Simultaneous Fourier-series identification does not need to have boundary con-

ditions explicitly prescribed (at least for modes higher than f2). Practically,

this means that the experiment can be performed with any boundary condition

(it is not limited to the free boundary conditions only), which makes perform-

ing experiments simple and fast. Experiments are successfully performed with

free-free and clamped-free boundary conditions. Another advantage of not ex-

plicitly prescribing the boundary conditions is that the bending stiffness can be

identified from only a partially measured modal slope (from a subregion of the

beam). In this article we show that the identification can be accurate from as

little as 30% of the beam length.

We show that the simultaneous Fourier-series identification is robust to

abrupt changes of the bending stiffness (same can be said for abrupt changes

in thickness). The local bending stiffness for both the sectioned beam and

the locally weakened beam can be accurately identified from the combined five

modes. Fitting the sectioned beam by the Fourier series suffers from a misbe-

haviour near the discontinuities, the so-called Gibbs phenomenon. This can be

reduced if we increase the number of identification points.

The effectiveness of the damage identification is experimentally verified by

cutting a groove into a flat aluminium beam. By progressively deepening the

groove we show that the identification can successfully track the progression of

damage, even when the size of the damage is smaller than the size of a single

identification region.

The simultaneous Fourier-series identification, as discussed in this article is

used to identify the bending stiffness – similarly it can be used to identify the
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thickness of the beam. The non-linear optimization algorithm, which minimizes

the cost function K (equation (25)) by adjusting the local value of the EI

can perform the identical process by adjusting the local value of the thickness

b and keeping the Young’s modulus E constant. The rest of the thickness

identification process is identical to the bending stiffness identification. This

process was implemented on the same FE data and the thickness identification

is as accurate as the bending stiffness identification. These results are omitted

here for the sake of brevity.

Using weighted fitting (here used when calculating the optimal number of

harmonics), makes capturing the modal slopes a more laborious process, since

at least six measurements need to be done per mode that is captured. As

the non-weighted fitting prove to be able to handle the noise very well, it was

not necessary to make the modal slope process more complicated. However, if

higher quality input is required, and especially if the process can be automated,

it remains a viable option to increase the quality of the identification.

The thin-beam identification model will not be a good model to use when

identifying bending stiffness of literally thick beams or beams made of sandwich

material. Implementing the thick beam as the underlying model could further

extend the usefulness of the identification method.
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