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Summary

Much like in other modeling disciplines does the distance metric used (a measure
for dissimilarity) play an important role in the growing field of machine learning.
Often, predefined distance metrics (e.g. the Euclidean one) are used to perform
such measurement. Unfortunately, most of them ignore any statistical properties
that might be estimated from the data. The notion of a good distance metric
changes when one moves from one domain to another. For instance, in the problem
of computing the dissimilarity for human images, two images could be considered as
being similar due to one of the following reasons, the two images are taken from two
persons with the same gender, the same age, or the same race. Clearly, it is difficult
to use the same distance metric for gender, age, and race since two images might be
similar in one case, while being dissimilar in the other case. For this reason, most
research efforts have been devoted to automatically learn a good distance metric
from data. Depending on the availability of training data, distance metric learning
methods can be divided into three categories: supervised, semi-supervised, and
unsupervised. Supervised methods often use the heuristic that examples belonging
to the same class should be close to each other, while those from different classes
should be farther apart. Semi-supervised methods use the information in the
form of pairwise similarity or dissimilarity constraints. Unsupervised methods
learn a distance metric that preserves the geometric relationships (i.e., distance)
between most of the training data for the purpose of unsupervised dimensionality
reduction. In this thesis, we focus on supervised distance metric learning. The
main aim is to develop efficient and scalable algorithms for solving distance metric
learning problems under different types of supervision. The proposed algorithms
are supported by empirical as well as theoretical studies.
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Nederlandstalige samenvatting

Net zoals in andere modelleerdisciplines speelt de gebruikte afstandsmetriek
(een maat voor dissimilariteit) een belangrijke rol in het groeiende domein van
machinaal leren. Vaak worden vooraf gedefinieerde afstandsmetrieken (bijvoorbeeld
de Euclidische metriek) gebruikt om zulke metingen uit te voeren. Jammer genoeg
negeren de meeste van deze metrieken statistische eigenschappen die afgeleid kunnen
worden uit de data. De notie van een goede afstandsmetriek varieert van probleem
tot probleem. Bijvoorbeeld, wanneer men de dissimilariteit van twee afbeeldingen
met mensen wil berekenen, kunnen deze gelijkaardig zijn om de volgende redenen:
de twee afbeeldingen zijn genomen van personen met hetzelfde geslacht, leeftijd
of afkomst. Het is duidelijk dat het moeilijk is om dezelfde afstandsmetriek te
gebruiken voor geslacht, leeftijd en afkomst, aangezien twee afbeeldingen voor
het ene geval gelijkaardig kunnen zijn, maar verschillend in een ander geval. Om
deze reden wordt veel onderzoek verricht naar het automatisch leren van een
goede afstandsmetriek op basis van data. Methoden om een afstandsmetriek te
leren kunnen onderverdeeld worden in drie categorieén: gesuperviseerd, semi-
gesuperviseerd en ongesuperviseerd. Gesuperviseerde methoden gebruiken vaak de
heuristiek dat voorbeelden die tot dezelfde klasse behoren dicht bij elkaar horen
te liggen, terwijl voorbeelden die tot een verschillende klasse behoren verder weg
van elkaar zouden moeten liggen. Semi-gesuperviseerde methoden gebruiken de
informatie in de vorm van paarsgewijze similariteits- of dissimilariteitsvoorwaarden.
Ongesuperviseerde methoden leren een afstandsmaat die geometrische relaties (i.e.,
de afstand) behouden tussen de meeste van de training data om ongesuperviseerde
dimensionaliteitsreductie te kunnen uitvoeren. Deze thesis behandelt het leren
van een afstandsmetriek op een gesuperviseerde manier. De doelstelling is om
efficiénte en schaalbare algoritmes te ontwikkelen voor het oplossen van problemen
eigen aan het leren van een afstandmetriek, en dit onder verschillende types van
supervisie. De voorgestelde algoritmes worden onderbouwd door zowel empirische
als theoretische resultaten.
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1 Introduction

1.1. A general overview

Learning a distance metric to measure the closeness of examples is an important
research topic in machine learning and pattern recognition. This is also referred
to as distance metric learning. Using a good distance metric can lead to great
improvements in performance of many fundamental distance-based algorithms
such as k-nearest-neighbor (k-NN) classification (Cover and Hart, 1967), k-means
clustering (Lloyd, 1982), and kernel regression (Benedetti, 1977). This is motivated
by the fact that standard distance metrics (such as the Euclidean one) are often not
appropriate as they fail to capture certain specific characteristics of the problem.
Recently, many efforts have been devoted to finding a good distance metric for a
given problem (Kulis, 2012; Bellet et al., 2015; Moutafis et al., 2017). The idea
consists in adjusting a distance metric using the information contained in the
training data to satisfy requirements of the application in question. For instance,
in a classification setting, a good distance metric should make examples of the
same class being close together, while keeping examples of different classes far
apart (Davis et al., 2007; Weinberger and Saul, 2009; Ying and Li, 2012; Nguyen
et al., 2017c). In information retrieval applications, it should bring the most
relevant objects close to the query object given by the users according to the
relevance of information of objects (McFee and Lanckriet, 2010).

Among different methods, learning a Mahalanobis distance metric is one of the
most successful and well-studied approaches due to its simplicity and flexibility.
One can see the Mahalanobis distance metric as a generalization of the Euclidean
distance metric, which allows for rotation and scaling of features. Mahalanobis
distance metric learning has been widely used in different contexts, such as classifi-
cation (Weinberger and Saul, 2009; Nguyen et al., 2017c), regression (Nguyen et al.,
2016), subspace learning (Peng et al., 2017, 2018), semi-supervised clustering (Yin
et al., 2010; Wang et al., 2013), unsupervised learning (Cinbis et al., 2011), learning
to rank (McFee and Lanckriet, 2010), etc.

A common guiding principle for learning a distance metric is that the distances
between similar examples should be small, while the distances between dissimilar
examples should be large. Additionally, there are also several requirements for
a good distance metric learning method: (1) it should reflect the true similarity
relationships between examples in order to generalize well to unseen examples; (2)
it should be easy to implement and to compute efficiently; (3) it should be flexible
enough to handle different learning settings and data types.



CHAPTER 1. INTRODUCTION

Unfortunately, most of the existing distance metric learning methods are lacking
in at least one of the above requirements. In this thesis, we explore various large-
scale optimization techniques for distance metric learning problems under different
types of supervision. Our primary focus is on learning the Mahalanobis distance
metric. In the next section, we provide a roadmap of the problems considered in
this thesis and our contributions.

1.2. Research contributions and structure

This thesis will be divided into five parts: one introductory part (I), three central
parts (II-IV), and one concluding part (V). Parts II-IV contain the main con-
tributions, which concern the development of novel supervised distance metric
learning algorithms for different learning settings. Each of these parts focuses
on a limited number of research objectives and can be read independently. As
a typical way of validating algorithms in machine learning, each of the proposed
algorithms will be tested on different types of applications. To make the thesis
more accessible to readers, Part I includes two chapters (1-2) that introduce basic
machine learning concepts, some mathematical tools and well-known results in
distance metric learning. Readers who are less familiar with machine learning
and mathematical optimization are strongly encouraged to read this part. Part II
consists of three chapters (3-5) that exploit the use of binary similarity information
(e.g., pairwise constraints) in order to learn a distance metric. Part III consists of
five chapters (6-10) that exploit the discriminative nature of relative information
(e.g., triplet constraints). Part IV consists of one chapter (11) that exploits the
use of kernel learning for clustering. Finally, Part V includes one chapter (12)
describing some concluding remarks and possible research directions. Most of the
results in this thesis have already been published or submitted for publication in
peer-reviewed international journals. Chapters 3, 4, 5, 6, 7, 8, 9, 10, and 11 have
been described in Nguyen et al. (2017¢); Nguyen and De Baets (2019); Nguyen
et al. (2019b, 2018b); Nguyen and De Baets (2018a); Nguyen et al. (2019a, 2016,
2018a), respectively. An overview of the thesis structure is visualized in Fig. 1.1. In
this section, the three main parts are briefly introduced. Moreover, for each of the
main parts, the key research objectives and contributions are formulated.

1.2.1. Part II: Distance metric learning using pairwise con-
straints

Problem setting

Information in the form of similarity constraints is often used as natural supervisory
information in distance metric learning. Given a set of constraints, distance metric
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the former part is prerequisite material for understanding the latter)

learning aims to find a solution that satisfies as many constraints as possible.
In Part II of this thesis, we will develop learning methods based on pairwise
constraints, which contain similar (must-link) and dissimilar (cannot-link) pairs of
examples. For many learning tasks, pairwise constraints may be extracted with
minimal effort or even automatically (Bar-Hillel et al., 2005). A good distance
metric should bring examples from similar pairs close to each other while keeping
examples from dissimilar pairs far apart. As the number of pairwise constraints
can be very large, e.g. O(N?) pairs can be constructed from N training examples,
selecting meaningful pairwise constraints becomes a key issue in order to improve
the performance. Besides, learning a distance metric on a large-scale data set raises
several issues related to the scalability of the time and space complexity.

Motivated by the above arguments, Part II of this thesis focuses on the following
objectives.

Objective II.1: The development of a distance metric learning framework based
on local pairwise constraints, which provides a closed-form solution rather
than using tedious optimization procedures.

Objective I1.2: The exploitation of kernels that allows distance metric learning
to effectively handle more complex and high-dimensional data sets.
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Objective I1.3: The illustration of the proposed framework by means of a case
study.

Objectives II.1 and I1.2 are the main topics of Chapter 3. Objective I1.2 is the
main topic of Chapter 4. The last objective is considered in Chapter 5. In the
following, we will briefly describe these chapters.

A brief overview of Part 11

In Chapter 3, we formulate the problem of learning a linear transformation through
maximization of the Jeffrey divergence between two multivariate Gaussian dis-
tributions derived from local pairwise constraints. Rather than using tedious
optimization procedures, we prove a closed-form solution, which is easy to imple-
ment and tractable for large-scale problems. We further derive a kernelized version
to tackle nonlinear problems.

In Chapter 4, we present an extension to the well-known KISSME algo-
rithm (Kostinger et al., 2012), an effective distance metric learning method using
pairwise constraints to improve the re-identification performance. KISSME is very
efficient in terms of training time since it only requires two inverse covariance
matrix estimations. However, a linear transformation induced by KISSME may
not be powerful enough for more complex problems. We show how to kernelize
the KISSME method, resulting in a nonlinear transformation, which is suitable
for many real-world applications. To further apply the proposed kernel method
efficiently when data are collected sequentially, we introduce a fast incremental
version that learns a dissimilarity function in the feature space without estimating
the inverse covariance matrices.

As a study case, we explore the use of distance metric learning for the analysis of
flow cytometry data in Chapter 5. We evaluate the potential of a learned distance
metric in quantifying single-cell distances in a data-driven way. In particular, two
different cytometry applications are considered, the first being flow cytometry in
the field of synthetic microbial ecology and the second being mass cytometry or
Cytometry by Time-Of-Flight (CyTOF) for the analysis of human cells. Results
indicate that a learned distance metric can significantly improve the cell population
identification.
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1.2.2. Part III: Distance metric learning using triplet con-
straints

Problem setting

Despite the popularity of pairwise constraints, there are two major drawbacks.
First, when examples in similar pairs lie in different clusters belonging to the same
class, these pairwise constraints may mislead the learning algorithm. Second, it
would be more natural for human labelers to compare objects like “A is more
similar to B than to C” rather than deciding whether two objects are similar or
not. In Part IIT of this thesis, we will develop distance metric learning methods
based on these relative comparisons or triplet constraints. Such constraints are
less restrictive than pairwise constraints in the sense that there is no assumption
regarding the membership of examples to any class. Instead, it assumes only the
proximity of the examples. In the simplest case, triplet constraints can be obtained
from any three examples if two of them belong to the same class, which is different
from that of the third example. Due to the large number of triplet constraints,
one may randomly select a subset of constraints and feed them into the learning
algorithm in order to reduce the computational burden. However, such random
selection has a few drawbacks. First, it does not consider the most discriminative
parts in the feature space (e.g., the boundaries between classes), which can be used
to improve the performance. Second, the selected constraints remain the same
during the training process, without taking into account the current distance metric.
While triplet constraints have been successfully applied to standard classification
problems, using such constraints for other learning settings has remained largely
unexplored in the literature.

To overcome the above shortcomings, Part IIT of this thesis considers the use
of triplet constraints in different learning settings. In particular, we focus on the
following objectives.

Objective III.1: The development of a scalable distance metric learning method
based on stochastic gradient descent for nearest-neighbor classification.

Objective III.2: The mathematical formulation of learning a distance metric as
a nonconvex optimization problem, as well as the theoretical analysis of the
algorithm.

Objective II1.3: The development of an effective distance metric learning method
that learns multiple distance metrics instead of a single global one, making it
more robust to heterogeneously distributed data.

Objective II1.4: The development of an efficient distance metric learning for
regression settings, where the output space is continuous.

Objective IIL.5: The development of a distance metric learning method for
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ordinal classification settings, where there exists ordering information among
class labels.

The above objectives are the main topics of Chapters 6 to 10. In the following, we
will briefly describe these chapters.

A brief overview of part 111

One of the fundamental challenges in distance metric learning is the positive
semidefiniteness constraint on the Mahalanobis matrix. Semidefinite programming
is commonly used to enforce this constraint, but it becomes computationally
intractable on large-scale data sets. In Chapter 6, we develop an efficient distance
metric learning algorithm based on stochastic gradient descent. It employs the
principle of margin maximization to learn the distance metric with the goal of
improving k-NN classification. Our algorithm can avoid the computation of the full
gradient and ensure that the learned matrix remains within the cone of positive
semidefinite (PSD) matrices after each iteration. Unlike the method developed in
Chapter 3, no assumption about the distribution of the data is required, making it
more practical on real-world problems.

Convex optimization has become very popular in distance metric learning over
the last few years, because of its empirical performance and because it facilitates a
deeper mathematical analysis. Unfortunately, in many practical settings, convexity
is not always guaranteed, and one has to resort to nonconvex optimization. In
Chapter 7, we exploit the use of nonconvex optimization to learn a distance metric.
Similarly to the method proposed in Chapter 6, our distance metric learning
framework aims to minimize the misclassification rate of the nearest-neighbor
classifier. Due to the use of the ramp loss function, our objective function for
margin maximization has a strong ability to avoid the influence of outliers. In
particular, the distance metric learning problem is formulated as an instance of
difference of convex functions (DC) programming. We show that the generalization
error analysis of the proposed approach has an important theoretical implication in
explaining that minimizing the objective function may improve the generalization
performance of nearest-neighbor classification.

Although there has been an increasing interest in distance metric learning,
learning a global distance metric is insufficient to obtain satisfactory results when
dealing with heterogeneously distributed data. In Chapter 8, we propose an efficient
method that learns multiple local distance metrics instead of a single global one.
More specifically, the training examples are divided into several disjoint clusters, in
each of which a distance metric is trained to separate the data locally. Moreover,
a global distance metric is introduced to capture the common structure among
all the clusters, which requires that the distance metric in each cluster should
be as close as possible to the global one. On the one hand, the global distance
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metric serves as a regularization that controls overfitting; on the other hand, it can
lead to the propagation of side-information among clusters, resulting in a more
robust and stable model. By learning multiple distance metrics jointly within
a single unified optimization framework, our method consistently outperforms
single distance metric learning methods, while being more efficient than other
state-of-the-art multi-metric learning methods.

In Chapter 9, we present a distance metric learning method for k-nearest-
neighbor regression. We define the constraints based on triplets, which are built
from the neighborhood of each training example, to learn the distance metric. The
resulting optimization problem can be formulated as a convex quadratic program.
Our proposed method is simple to implement, and it ensures very fast training,
which can be computationally tractable for large-scale data sets.

We further consider distance metric learning for ordinal classification, a problem
setting in-between nominal classification and metric regression where the goal is
to predict labels from an ordinal scale. Usually, there is a clear ordering of the
classes, but the absolute distances between them are unknown. Disregarding
the ordering information, this kind of problems is commonly treated as a multi-
class classification problem, although this is not appropriate from a semantic
point of view. In Chapter 10, we propose a distance metric learning approach
for ordinal classification by incorporating local triplet constraints containing the
ordering information into a conventional large-margin distance metric learning
approach.

1.2.3. Part I'V: Distance metric learning for supervised clus-
tering

Problem setting

Part IV of this thesis considers the supervised clustering setting, a problem of
training a clustering algorithm with some supervised information so that it can
produce a desirable clustering for unseen data (Finley and Joachims, 2005; Daumé
and Marcu, 2005). Unlike traditional clustering problems, which are usually referred
to as unsupervised clustering, here we have sets of examples and complete clusterings
over these sets. By training the distance metric to obtain correct clusterings on
supervised data, we expect the distance-based algorithm to cluster unseen data in a
similar fashion. Due to the fact that most of the existing semi-supervised methods
simply attempt to satisfy the constraints derived from a small amount of labeled
data for a single problem, it is usually not reasonable to transfer the knowledge
learned from a set of training labels to another set of testing labels (Finley and
Joachims, 2005). Supervised clustering can be viewed as a special case of multi-class
classification in the sense that both approaches try to classify related examples into
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the same class and unrelated examples into different classes (Finley and Joachims,
2005, 2008). Nevertheless, supervised clustering can also be used for problems
containing new labels that have not been seen during the training, which seems
impossible with multi-class classification.

Therefore, it is important to develop new algorithmic solutions for supervised
clustering. In particular, the objectives of Part IV are twofold.

Objective IV.1: The mathematical formulation of learning a distance metric on
the kernel space for supervised clustering.

Objective TV.2: The development of a scalable optimization method to efficiently
solve this problem.

These objectives are the main topics of Chapter 11, which will be described
next.

A brief overview of part IV

In Chapter 11, a kernel-based distance metric learning method is developed to
improve the practical use of k-means clustering. In particular, given a set of related
data sets with known partitions, we aim to learn a distance metric that will lead to
these partitions when k-means clustering is performed. Learning the Mahalanobis
distance metric is considered as a structured learning problem. Unlike existing
kernel-based methods, we enforce the low-rank constraint on the solution by adding
the trace norm to improve the generalization ability. Given the corresponding
optimization problem, we derive a meaningful Lagrange dual formulation and
introduce an efficient algorithm in order to reduce the training complexity. Our
formulation is simple to implement, allowing a large-scale distance metric learning
problem to be solved in a computationally tractable way.

1.3. Evaluation methodology

Evaluation is an essential part of any machine learning development. As commonly
done in machine learning, the evaluation of a distance metric learning algorithm will
be performed on synthetic and benchmark data sets of different sizes and complexi-
ties. The benchmark data sets are taken from the machine learning repositories and
are available for download. All data sets contain numeric features without missing
values.! Computational experiments will concern the predictive performance and
running times of the proposed methods. Source codes of all methods developed

There are occasionally a few data sets with nominal features, which are encoded as integers.
Since our experiments mainly concern the performance between different distance metric learning
methods, these nominal features have very little effects on the performance. All methods are
trained on the same set of features.

10
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in this thesis can be found at https://github.com/bacnguyencong. These im-
plementations can be loaded in the scientific computing environment Matlab so
that any non-expert user can easily use or test the developed models on their own
data.

In addition to the performance comparison, the null hypothesis significance
testing is considered to analyze the behavior of the proposed methods. This is
typically carried out by the Friedman test on the null hypothesis that there is no
statistically significant difference among all the competing methods (Demsar, 2006).
When the Friedman test rejects the null hypothesis, multiple comparisons are
carried out to establish which are the significant differences among the competing
algorithms. These multiple comparisons are usually based on the mean-ranks
post-hoc tests. Despite its popularity, several issues have been found when applying
this hypothesis testing framework (Benavoli et al., 2017, 2016). For instance, the
outcome of the test depends on the set of competing algorithms. Algorithms A and
B might be declared significantly different in one pool of algorithms and not if the
pool contains other algorithms. Many machine learning researchers simply ignore
this null hypothesis significance testing in order to avoid such paradoxical situations.
Since the approach to perform the statistical comparison of multiple algorithms
in machine learning is not yet well developed, we keep using the traditional one
introduced by Demsar (2006) in several chapters. The reason is simply that we try
to follow a common practice of the scientific journals in which the corresponding
chapter was published.

1.4. Notational conventions

For the sake of convenience, the following notations are used throughout the
thesis.

e Scalars
Scalars are denoted by lowercase or uppercase letters, such as k, n, and D.

e Sets
Generic sets are denoted by calligraphic uppercase letters, such as &', ), and
V. The cardinality of the set X" is denoted by |X|. We use R to denote the
set of real numbers, R to denote the set of nonnegative real numbers. The
set of real D-dimensional vectors is denoted by R”, and the set of real m x n
matrices is denoted by R™*™. We use S™*™ to denote the set of m x m
symmetric matrices.

e Vectors
Vectors are assumed to be column vectors and denoted by boldface lowercase
letters, such as x, y and z. The transpose of a vector x is denoted by x and
the i-th element is denoted as x;. The inner product between two vectors u

11
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and v is denoted by (u,v) = u'v. Moreover, the £;-norm of a D-dimensional
vector x is defined by ||x|; = Zil |z;| and the fo-norm of x is defined as

T

IIx|l2 = vxTx.

Matrices

Matrices are denoted by boldface capital letters, such as A, B and C. The
trace of a matrix A is denoted by tr(A). The identity matrix is denoted by I.
The diagonal vector of a square matrix M is denoted by diag(M). We will
use K;. to refer to the i-th row vector and K ; to refer to the j-th column
vector of a matrix K. The Hadamard product o of two matrices of the same
dimension is defined as (A o B);; = A;;B;;. The Frobenius norm ||.||r of a

matrix A is defined as ||A|p = \/z;’; S Ayl

Functions

A generic function f with domain X and co-domain ) is denoted by f: X — ).
The hinge function .|+ : R — Ry is defined as [#]1 = max(0, z). The gradient
of f is denoted as V f.



2  Preliminaries

In this chapter, we introduce some relevant backgrounds in machine learning,
which are sufficient to understand the contributions of this thesis. We first introduce
the supervised learning setting and the main results of statistical learning theory.
We then present the basics of distance metric learning as well as its role in machine
learning algorithms. Subsequently, a variety of applications using distance metric
learning is discussed. Lastly, we review a number of optimization algorithms and
see how they can be applied in the context of distance metric learning.

Most of the material that is presented in this chapter can be found in the text-
books Statistical Learning Theory (Vapnik, 1998) and Convex Optimization (Boyd
and Vandenberghe, 2004).

2.1. Supervised learning

Learning from data is a fundamental problem and has a long and successful history.
Inspired by humans’ capabilities in recognizing patterns, the goal of machine
learning is to make computers learn to solve intellectual tasks from experience
(data) in an automatic way (Duda et al., 2012). One of the first models realizing
this idea was the Perceptron introduced by Rosenblatt (1962). Given a set of
examples, it constructs a rule to separate data into two different categories. The
generalization ability of this model was successfully tested on the digit recognition
problem. During the 1990s, kernel-based learning algorithms (Cortes and Vapnik,
1995; Vapnik, 1998) have proven a great success in machine learning. The most
representative kernel-based classifier is the Support Vector Machine (SVM) (Cortes
and Vapnik, 1995) (also called Support Vector Network). More recently, deep
learning has achieved remarkable success in various domains (Goodfellow et al.,
2016). Since the time of the Perceptron, machine learning has gained an immense
importance in everyday applications. In addition, significant efforts have been made
to develop the mathematical foundations of machine learning (Vapnik, 1998; Mohri
et al., 2012; Anthony and Bartlett, 2009). Nowadays, results of a machine learning
model must be confirmed by theoretical and experimental studies on different tasks.
Depending on the structure of data, one can divide machine learning problems
into two main categories: supervised and unsupervised learning. In a supervised
setting, data contain examples (typically a vector) along with their desired outputs
(also called labels). In an unsupervised setting, the labels are not available and a
machine learning model must be constructed solely on the unlabeled data. This
thesis will focus on the first category, supervised learning. Interested readers can
refer to the well-written book on unsupervised learning by Bishop (2006).

13
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2.1.1. Problem statement

Assume that data are generated from an unknown generator, the goal of supervised
learning is to infer a hypothesis (an approximation of the generator) using a limited
number of training examples. In the following, we review basic notions of statistical
learning theory, a well-known framework pioneered by Vapnik (1998).

Formally, the selection of a desired hypothesis is based on a set of n independent
and identically distributed (i.i.d.) pairs

{(leyl)a RS (Xnayn)}

drawn according to some unknown distribution p(x,y) = p(x)p(y|x). Here, x € RV
is a vector in the input space X and y is the associated output in the output space ).
A learning algorithm tries to construct an approximation, which provides for a
given generator, the best prediction to the outputs. In other words, the goal is
to find an appropriate hypothesis f: X — ), where f € H, a set of admissible
hypotheses, which achieves the best results in prediction. Therefore, estimating
the hypothesis f corresponds to minimizing the following expected error

R(S) = Exyynion (s F(x))] = / Ly, Fx)dp(x.5).

with L a loss function which incurs a penalty if f(x) # y. For instance, the simplest
loss function in classification is the misclassification error, defined as

0, if f(x)=uy,

L(%f(X)){l i f(x) £y

Directly optimizing the misclassification error is hard, even for a simple hypothesis
space (Ben-David et al., 2003). For this reason, surrogate loss functions are often
used, such as the hinge loss, the exponential loss, and the logistic loss.

The problem of learning, therefore, is to find a hypothesis that minimizes the
expected error when the probability distribution p(x,y) is unknown, given the
observed data.

2.1.2. Empirical risk minimization

One can easily show that good predictions of the training data are necessary
conditions to perform well on unseen data. This leads to the principle of Empirical
Risk Minimization (ERM). In general, the risk R(f) cannot be computed because
the distribution p(x,y) is unknown. However, it can be approximated by averaging

14



§2.1. Supervised learning

the loss function on the training examples, the so-called empirical risk,

n

Remp (1) = - 3 Ly £x1)).

i=1

The ERM principle suggests that the learning algorithm should choose a hypothe-
sis f that minimizes the empirical risk

f* = ml;lé%lze Remp(f) .

While the ERM principle may work well in practice, selecting the hypothesis
space H must be done carefully in order to make a good model. Without knowledge
of the task, it is often difficult to select an appropriate H.

2.1.3. Structural risk minimization

Minimizing the empirical risk is a necessary condition, but what are the sufficient
conditions? Why is the rule that is correct for training examples also correct for
unseen examples? Statistical learning theory provides an answer to these questions.
In particular, with a probability at least 1 — o, the expected error of any f € H is
bounded by

Rmsmmm+¢“m?+”_mz, (2.1)

n

where h is the Vapnik-Chervonenkis (VC)-dimension of the hypothesis space H,
which measures the capacity of H. Clearly, a small value of the empirical error does
not necessarily imply a small value of the expected error. The generalization-error
bound in (2.1) suggests that, disregarding the logarithmic factors, in order to
achieve a good generalization performance, we need to minimize both the empirical
error and the ratio between the VC-dimension and the number of training examples
at the same time. In other words, it is very important to make a good trade-off
between minimizing the empirical risk and choosing an appropriate value for the
VC-dimension of the function space H, known as the bias-variance trade-off. There
are two reasons that make the true risk of a hypothesis being much larger than its
empirical risk. The first one is due to a too simple model, which is referred to as
underfitting. The second one is due to a too complex model, which is referred to as
overfitting.

One solution to this problem is based on the Structural Risk Minimization
(SRM) principle (Vapnik, 1998). This principle tries to find an optimal relationship
between the empirical error estimated by the hypothesis chosen from a set of
hypotheses and the capacity of that set of hypotheses (see Fig. 2.1). Let I'1,..., I}
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4 underfitting optimal overfitting
S
b risk
empirical error
confidence term
h
structure

Figure 2.1: An illustration of the Structured Risk Minimization (SRM) principle. If the
hypothesis space H; has a small complexity, then the model capacity is small, but the
empirical error is large (underfitting). Otherwise, if the complexity of H; is large, then
the model capacity is large, while the empirical error is small (overfitting). The optimal
expected error at H. is achieved by making a good trade-off between the empirical error
and the model capacity.

be the equivalence classes of all admissible hypotheses in H, where two hypotheses
belong to the same equivalence class if they separate the training examples in the
same way. In doing this, we split our set containing an infinite number of admissible
hypotheses H into a set containing a finite number of equivalence classes I';, where
i €{1,...,1}. In order to perform the SRM principle, we first create a structure
on these equivalence classes, which is a set of nested subsets of hypotheses

HiCHyC---CH,

such that h; < hy < --- < h, where h; is the VC-dimension of H;. The minimiza-
tion of the right-hand side of (2.1) can be performed as follows: we first choose an
element of the structure to control the VC-dimension, then choose a hypothesis in
this element that minimizes the empirical error. In order to build this structure,
we need to associate with each equivalence class some value characterizing the
capacity of the class. For instance, in the case of SVM, each equivalence class is
associated with the largest margin of the hypothesis belonging to this class, since a
high value of the margin corresponds to a low value of the VC-dimension.
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§2.2. Distance metric learning

2.1.4. Regularized risk minimization

An implicit way of working with nested hypothesis spaces is the principle of
regularized risk minimization (RRM). Instead of minimizing the empirical error
Remp(f) and then expressing the generalization ability of the resulting model f
using some capacity measure of the underlying hypothesis class H, we can directly
minimize the so-called regularized risk

Ryes(f) = minimize Remp(f) + AQ(f)
feH
where the hyperparameter A > 0 controls the trade-off between minimizing the
empirical error and punishing hypotheses with large fluctuation through the reg-
ularizer Q). The regularization is used to penalize “complex” hypotheses and to
break the tie between hypotheses that have the same empirical error.

After having presented the supervised learning setting and the statistical learning
framework, we now turn to distance metric learning, which is the main focus of
this thesis.

2.2. Distance metric learning

The notion of similarity between objects or examples plays a key role in several
machine learning tasks. There is often no obvious way of defining a (dis)similarity
measure. Rather than using a default distance metric such as the Euclidean one, it
is desirable to learn a distance metric that satisfies certain conditions, depending on
the application domain. If some side-information is given, for instance, as provided
by human labelers, it can be used to optimize an appropriate criterion requiring
that the distances between similar examples (e.g. examples of the same class) are
smaller than those between dissimilar examples (e.g. examples of different classes).
In this section, we first give the definition of distance metrics. Next, we introduce
a brief overview of some of the applications of distance metric learning employed in
various domains. Finally, we formulate the problem of learning a distance metric as
a mathematical optimization problem and then discuss some common optimization
techniques used in the literature.

2.2.1. Definitions

Distance usually refers to some degree of closeness of two objects, e.g., length, gap,
time, or rank difference. Here, we consider the mathematical notion of this term.
We start by introducing the definition of what is a distance metric.
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Definition 2.1. A distance metric is a function d: X x X — R, that satisfies,
for any x;,x;,%x; € X:

(i) Non-negativity: d(x;,x;) > 0;

(i1) Symmetry: d(x;,x;) = d(x;,%;);
(i1i) Triangle inequality: d(x;,x;) + d(x;,%;) > d(x;,%;);
(iv) Distinguishability: d(x;,x;) =0 & x; = Xx;.

The above definition was introduced by Fréchet (1906) to define a metric
space (X, d), which is a special case of a general topological space. If one of these
properties fails while others hold, the corresponding functions are given a different
name. For instance, if the second property fails, then d is called a quasi metric. If
the last property fails, we talk about pseudometrics. In distance metric learning,
we do not distinguish between pseudometrics and metrics. Two notions are used
interchangeably in the literature. It is worth noting that the triangle inequality
property becomes very important to speedup learning algorithms such as nearest
neighbor search (Wang, 2011b) and k-means clustering (Elkan, 2003a). Some
examples of distance metrics are listed below (see Deza and Deza, 2006, for more
concrete examples).

Example 2.1. The Minkowski distance metrics are a family of distance metrics
induced by the £,-norms, given by

D 1/p
dp(u,v) = lu—vl, = (Z Jui — vﬂ)
i=1

with p > 1. Some widely used distance metrics are

(i) p =1, the Manhattan distance metric d(u,v) = Zii1 lu; — vy,

(ii) p = 2, the Euclidean distance metric d(u,v) = \/Zi’;l |u; — v;]2,

(iii) p — oo, the Chebyshev distance metric d(u,v) = I{laxD|ui — v
1=1,.

Example 2.2. The Hamming distance metric defines the distance between two
D-dimensional vectors as the number of positions at which their values differ,

d(u,v) = HZG (1,...,D} | w 7@1}\ .

As mentioned in the preceding chapter, distance metric learning will be mostly
formulated as a semidefinite program. We hence need to define positive semidefinite
matrices.

Definition 2.2. A symmetric matric M € RP*P js PSD, denoted by M = 0, if
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§2.2. Distance metric learning

for any vector x € RP, the following condition holds

XTMXZO.

Most of the studies in this field pay particular attention to the Mahalanobis
distance metric (Mahalanobis, 1936) because it can be conveniently optimized
by deriving a convex formulation with the guarantee of finding the global opti-
mum (Weinberger and Saul, 2009; Xing et al., 2002; Davis et al., 2007; Shen et al.,
2012). Besides, it provides good generalization performance (Shi et al., 2014; Guo
and Ying, 2014; Jin et al., 2009). The Mahalanobis distance metric originally refers
to a distance measure that incorporates the correlation between features

s (xi,x;) = 3 (%1 — %)) 8 (%1 — ),

where x; and x; are random vectors of the same Gaussian distribution with mean
p and covariance matrix

1
n—1

%= Z(Xi —H)(Xi—N)T-

In the distance metric learning literature, the Mahalanobis distance metric is
defined as follows.

Definition 2.3. The Mahalanobis distance between two vectors x; and x; in RP
with respect to a PSD matriz M is computed as

dm(x;,%x;) = \/(Xz‘ —x;) TM(x; — x;).

One can decompose M as M = UAU " using the eigenvalue decomposition,
where U is a matrix containing all eigenvectors of M and A is a diagonal matrix
containing all eigenvalues of M on its diagonal. Let L = UAY 2 then the Maha-
lanobis distance can be viewed as the Euclidean distance in the transformed space
after performing a linear transformation x; = L x;,

d3p(xi, %) = (x; —x;) "LL" (x; — x;)

= I = )12

We can interpret x; as a projected point in a new coordinate system defined by
the orthogonal matrix U, which is shifted and rotated w.r.t. the original coordinates
(see Fig. 2.2). Thus, the Mahalanobis distance exactly captures the idea of learning
a global linear transformation. From another perspective, this is equivalent to first
applying a whitening transformation to the data, making a set of uncorrelated
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examples having a unit variance, and then measuring the Euclidean distances in
the transformed space.

>

(a) Euclidean (b) Mahalanobis

Figure 2.2: An illustration of the Euclidean and the Mahalanobis distance metrics in
the 2-dimensional space. The major axes of the ellipse are defined by the eigenvectors u;
of M and the corresponding eigenvalues \;. For the Euclidean case, both A1 and A2 are
identical.

2.2.2. Problem statement

The main objective of distance metric learning is to find a proper distance metric
using the information contained in the training data, in order to bring similar exam-
ples closer and to push dissimilar examples farther away. A distance metric learning
approach is usually formulated as a constrained optimization problem,

min‘i)‘r]nize f(W)=XQ(W)+ L(W,R), (2.2)

where Q(W) is the regularizer, L(W,R) is the loss term penalizing the violation
of W over a set of constraints R, and A > 0 is the regularization parameter.
Depending on the parameterization of W (i.e., learning a Mahalanobis matrix M
or a linear transformation matrix L), we might have additional constraints. While
this formulation is different for each approach, the constraints are often of one of
the following types:

(i) Pairwise constraints:
S = { (x,%;) | x; and x; should be similar },
D= { (x4,%;) | x; and x; should be dissimilar }

(ii) Relative constraints:
T = { (xi,Xj,%;) | x; should be more similar to x; than to x; }

(iii) Quadruplewise constraints:
Q= { (%4, %5, %X1,Xm) | d(x;,%;) should be smaller than d(x;, X,,) }
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§2.2. Distance metric learning

The latter has been widely used in computer vision (Law et al., 2013). This
type of constraints is easy to find when the ordering information of classes such
as Yy < ¥i < yj < Ym is given. Hence, the distance between x; and x; should
be smaller than the distance between x; and x,,. In this thesis, we will pay
more attention to the first and second kinds of constraints. It is important to
note that one can obtain relative constraints whenever pairwise constraints are
available. This can easily be done by choosing (x;,x;,x;) such that (x;,x;) € S
and (x;,%;) € D, but one cannot always obtain pairwise constraints when relative
constraints are available (Wang et al., 2013). In other words, relative constraints
are weaker than pairwise constraints. However, human labelers may respond
inconsistently in deciding whether two objects are similar or not, but they may

?

all agree on comparing objects like “x; is more similar to x; than to x;,” which is
more natural for human labelers. Clearly, this relative comparison provides more
general semantic relationships between examples than the preceding binary form.
Relative or triplet constraints have been empirically demonstrated to be effective
for distance metric learning (Li et al., 2017; Nguyen et al., 2016; Parameswaran and
Weinberger, 2010). However, selecting which triplets should be used for training

turns out to be very important in order to achieve a good performance.

2.2.3. Distance-based learning algorithms

Recent years have witnessed an increasing interest in the use of supervised learning
techniques for pattern recognition. Computers have demonstrated a recognition
rate better than or comparable to human performance in several tasks, such as
visual recognition and recommendation systems (Goodfellow et al., 2016). Despite
this success, many machine learning algorithms often require embedding of data
points into some space. Algorithms such as k-NN classification and neural networks
consider the embedding space to be R”, while kernel methods such as SVMs
consider the embedding space to be a Hilbert space. In any case, the notion of
distance metric has to be carefully considered. Without any additional knowledge,
the Euclidean distance metric is often used. However, learning a good distance
metric that fits the data well can provide a promising solution to increase the
performance of distance-based algorithms. Below we describe in detail the role of
distance metric in several classic machine learning algorithms.

k-nearest-neighbor classification

In pattern recognition, the k-nearest-neighbor (k-NN) algorithm (Cover and Hart,
1967) is among the simplest and most popular classifiers. It is a non-parametric
method and does not make any assumption about the data distribution. Essentially,
the k-NN classification rule assigns a test example to the majority class label of
its k nearest neighbors. In the simple case of k = 1, it just assigns the class label
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of its nearest neighbor. According to Cover (1968), the k-NN classifier has an
asymptotic error rate that converges to the Bayes error rate as k — oo and k/n — 0,
where n is the number of training examples. We refer to Mclachlan (2004) for a
more detailed discussion of k-NN classification. Despite its simplicity, the k-NN
classifier is well suited for multi-class classification problems with a large number
of training examples, which are relatively common in many pattern recognition
applications.

Given a training set {(x1,%1),-- ., (Xn,Yn)}, we first define (x, j) as a function
that returns the index of the j-th nearest neighbor of an example x in the training
set, which is defined by

argmin  d(x,x;) if j =1;
T(X,j) — 1=1,...,n

argmin d(x,x;) and @ ¢ {r(x,1),...,7(x,5 — 1)} otherwise,

1=1,...,n

where d denotes the distance metric defined on X'. Then, the posterior distribution
of a given example is defined as

Zx’EV(x) [[y/ = yﬂ
k b

pyx) =

where V(x) is the set of k nearest examples of x and [.] is an indicator function
that takes value 1 if its argument is true, and value 0 otherwise. Following the
decision rule of maximum a posteriori (MAP), an example is classified into the
most common class among its k£ nearest neighbors.

k-means clustering

Clustering is an important task in pattern recognition for data analysis. Among
various clustering techniques, k-means clustering (Lloyd, 1982) is one of the most
popular and most efficient techniques for general clustering tasks. The goal
is to partition a set of examples into disjoint clusters based on some notion
of (dis)similarity, such that related examples belong to the same cluster, while
unrelated examples belong to different clusters (Huang et al., 2014).

Given a set of n examples {xy,...,X,}, the goal of k-means clustering is to
find an assignment of these examples into k disjoint sets, which leads to a minimal
sum of squared distances between the examples and their corresponding cluster
center. Let Z = [z1, ..., 2z;] € RPX¥ be k center vectors and Y € {0,1}**" denote
the assignment matrix where Y, ; = 1 if example x; belongs to the c-th cluster,
otherwise Y. ; = 0. Following Peng and Wei (2007), the objective of k-means
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clustering can be formulated as

mirg}mize S Zi:l Yei d?(xi, 2c)

3

subject to Y € {0, 1}Fxn
rank(Y) =k, (2.3)
Y'1=1,
Z c RPxk

This problem is a mixed integer program with a nonlinear objective function, which
is NP-hard (Aloise et al., 2009). This is due to the fact that the constraints are
discrete and the objective function is nonconvex and nonlinear, making the problem
very challenging.

Learning with kernels

Kernel learning algorithms typically attempt to learn a kernel matrix over the
data (Abbasnejad et al., 2012). A nonlinear kernel can address limitations of
linear methods by implicitly mapping the nonlinearly-distributed data to a high-
dimensional feature space (Scholkopf and Smola, 2001). By formulating kernel
learning as a distance metric learning problem, one can learn the kernel matrix
without any assumption on the form of the kernel that implicitly generated it (Jain
et al., 2012). Thus, the resulting kernel matrix can generalize well to unseen
examples.

Consider a mapping ¢ from the input space X into a high-dimensional space
(the so-called Reproducing Kernel Hilbert Space) F, i.e. ¢: X — F. Note that the
dimensionality of F can be very high or even infinite. In such case, it becomes
hard to learn directly from the feature space due to the computational bottleneck.
To this end, kernel methods implicitly perform ¢ by replacing the inner product
with a positive semidefinite function K (x;,x;) = (¢(x;), #(x;)). Therefore, they
do not necessarily compute the new representations. Several kernel functions, such
as polynomials, x?, and exponential x? kernel functions, have been successfully
employed (see Schélkopf and Smola, 2001, for more examples of kernel functions).
In the context of distance metric learning, the Gaussian kernel is one of the most
often used kernel functions, given by

dZ(Xan))

o2

K(x;,x;) = exp (—

with o the kernel width. In this case, one can learn a better representation in
order to improve the performance of kernel methods (Weinberger and Tesauro,
2007).
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2.3. Why should we care about distance metric
learning?

Distance metric learning has become a field in itself in the machine learning
community. It has gained popularity in the last decades and has been the main topic
of several workshops at leading conferences such as NIPS, ICML, and ECML/PKDD.
Interested readers may refer to the surveys, such as Kulis (2012) and Bellet et al.
(2015), for further details on this topic. Below, we briefly highlight some of the
most important applications using distance metric learning.

2.3.1. Information retrieval

Ranking is a central problem in information retrieval. The goal is to provide the
user with a ranking containing the most relevant documents according to his/her
query. Given a good distance metric, a straightforward solution is achieved by
sorting the training set by increasing the distance from the query, in which relevant
documents are at the front of the list, while irrelevant documents are at the end.
Distance metric learning can be viewed as a special case of the query-by-example
paradigm in information retrieval. Many advances have been made in recent years
to improve the distance metric used for ranking (Lebanon, 2006; Lee et al., 2008;
McFee and Lanckriet, 2010; Lim et al., 2013; Paisitkriangkrai et al., 2015).

2.3.2. Computer vision

Computer vision is the most successful domain for distance metric learning. In
image classification, it involves learning an appropriate distance metric, and then
applying a simple nearest-neighbor classifier to tag new images (Frome et al.,
2007b; Hoi et al., 2006). The distance between images of the same category should
be less than the distance between images of different categories. In person re-
identification, given an image of a person, the main task is to identify the person
from images taken at a different location and/or from a different viewpoint across
non-overlapping cameras. It is important to remark that when a person disappears
from one camera, he/she can be recognized from other cameras. Distance metric
learning can implicitly suppress those cross-view variations between images (Hirzer
et al., 2012b; Kostinger et al., 2012). This is motivated by the fact that standard
distance metrics, such as the Euclidean and Manhattan distance metrics, are not
reliable and flexible enough because they usually assume that all features are
from the same domain with the same scale. Consequently, they become more
sensitive to irrelevant features and fail to preserve the geometric characteristics
of the data (Nguyen et al., 2017c). Moreover, distance metric learning has been
applied in face recognition (Guillaumin et al., 2009), visual tracking (Jiang et al.,
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2012), human activity recognition (Tran and Sorokin, 2008), and human body pose
estimation (Kulis et al., 2009b).

2.3.3. Dimensionality reduction

High-dimensional data arise in many important data mining applications, such
as mining texts, sounds, images, gene expression profiles, fMRI data, etc. These
application domains share the important property that examples are described by
thousands of features. It is well known that the performance of many machine
learning algorithms degrades as the number of features grows. This is often
referred to as the curse of dimensionality. Concretely, when working with high-
dimensional data sets, we might encounter some difficulties, such as the empty space
phenomenon, concentration of distances, or the peaking phenomenon (Frangois,
2008). The empty space phenomenon leads to poor and non-smooth approximation
of the true probability density function because of the sparsity of the input space.
Concentration of distances is the phenomenon that the distances between all
different samples are roughly equal, so it is very difficult to draw conclusions from
the data. The peaking phenomenon relates to the number of parameters of a model.
The parameters cannot be correctly estimated when the number of parameters
becomes large compared to the data size.

To handle such real-world data adequately, one needs to transform the high-
dimensional data into a meaningful representation of reduced dimensionality (Van
Der Maaten et al., 2009). Dimensionality reduction can alleviate the curse of
dimensionality and other undesirable properties of high-dimensional spaces. The
main idea is to learn an underlying low-dimensional space where geometric rela-
tionships (e.g., distance) between most of the observed examples are preserved.
Principal Component Analysis (PCA) (Jolliffe, 2005) and Linear Discriminant
Analysis (LDA) (Fisher, 1936) are typical examples of distance metric learning for
dimensionality reduction. Other nonlinear dimensionality reduction methods in-
clude ISOMAP (Tenenbaum et al., 2000), Locally Linear Embedding (LLE) (Roweis
and Saul, 2000), and Laplacian Eigenmap (Belkin and Niyogi, 2003).

2.3.4. Transfer learning and domain adaptation

Recent results have shown that training on one domain and then testing on
another domain often results in poor performance (Saenko et al., 2010). Transfer
learning aims at improving the ability of exploiting commonalities between different
learning tasks in order to share statistical strength and to transfer knowledge across
tasks (Pan and Yang, 2010). Once the distance metric is learned, we can use it
for other tasks as well, for which the source and target tasks are related and share
some common structure. The idea of transfer distance metric learning is to learn a
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distance metric from one task and then apply it for other related tasks due to the
lack of knowledge (Zhang and Yeung, 2010; Hu et al., 2015a), e.g. the unavailability
of labeled data. In this case, we assume that source and target tasks share the same
distance metric, which captures some common structure that allows to measure the
distance between examples (Luo et al., 2014). In the related domain adaptation
setup, the distributions of source and targets are different. The idea is to learn a
transformation that maps the data from one domain to the another (Kulis et al.,
2011).

2.3.5. Bioinformatics

Problems in bioinformatics usually involve comparing sequences such as DNA,
protein or time series. Learning a good distance metric can significantly increase
the performance. In this case, structured-distance metrics such as edit-distance
metrics are often used for strings or time series (Bellet et al., 2011, 2012). DNA
microarrays measure the expression levels of a huge number of genes simultaneously,
where the goal is to classify tissue samples according to their gene expression levels.
Based on these predictions, we can diagnose and predict various genetic disorders
including cancer. The k-NN classifier using distance metric learning has shown
superior results in some cases (Xiong and Chen, 2006; Takeuchi et al., 2009). In
addition, distance metric learning algorithms have recently been applied to enzyme
search (Kato and Nagano, 2010).

2.4. Optimization techniques for distance metric
learning

Mathematical optimization plays a central role in this thesis. This section serves as
a general introduction to the optimization techniques used for learning Mahalanobis
distance metrics. As mentioned before, the Mahalanobis distance metric can be
parametrized in terms of the matrix L or the matrix M. We should take into
account the fact that L uniquely defines M, while M defines L up to rotation (which
does not affect the calculation of distances). This equivalence suggests two general
approaches for distance metric learning: one can estimate a linear transformation
matrix L or estimate a PSD matrix M. Note that in the first approach, optimization
is unconstrained, whereas in the second approach, it is necessary to enforce the
positive semidefiniteness constraint on M. Although it is usually more difficult to
solve an optimization problem with many constraints, the second approach has
certain advantages. It can lead to convex optimization problems with positive
semidefiniteness constraints. It is beneficial to work with convex optimization
problems, as they can be solved in polynomial time (Boyd and Vandenberghe, 2004).
In general, there is no universally accepted optimization technique. Depending
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on the purpose of learning, the authors of most existing methods design their
own optimization techniques tailored to the individual methods. Below we will
discuss some of the most relevant optimization techniques used in distance metric
learning.

2.4.1. Semidefinite programming

Problem (2.2) belongs to the family of semidefinite programming problems, which
aims to minimize a linear objective function over the intersection of the cone of
PSD matrices with an affine-linear space (also called a spectrahedron). A general
semidefinite program can be expressed as

min‘iﬁr/nize (W, C)
subject to (W, A;) <b;, t=1,...,m
W0,

where matrices A; and scalars b; define m linear constraints. Semidefinite program-
ming can be seen as an extension of linear programming where the componentwise
inequalities between vectors are replaced by matrix inequalities. Most of semidefi-
nite programming solvers are based on primal-dual interior-point methods (Wright,
1997). Popular solvers include the Python Software for Convex Optimization
(CVXOPT) developed by Dahl and Vandenberghe (2004) and the Matlab Soft-
ware for Disciplined Convex Programming (CVX) developed by Grant and Boyd
(2014). However, general-purpose solvers usually need to calculate the Hessian
matrix, which requires a memory complexity of O(D*) and a time complexity of
O(DS®) in the worst case. For some real-world applications, they become almost
intractable.

2.4.2. Gradient descent

Gradient descent (Cauchy, 1847) is one of the simplest iterative first-order op-
timization algorithms for unconstrained optimization problems. To find a local
minimum, gradient descent operates as follows. At the ¢t-th iteration, it takes the
gradient (or an approximation of the gradient) V f of the objective function f at a
current solution Wy. Then, it steps proportional to the negative of the gradient,
ie.,

Wi =W, = V(W)

where n; > 0 denotes the step size. One can choose the step size in different ways.
A simple approach is to set 7; to a small fixed number. Another approach, referred
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to as line search, is to evaluate f(W — 0,V f(W;)) for several values of n; and
select the one that achieves the smallest objective function value.

Since the domain of a distance metric learning problem typically is the cone of
PSD matrices, standard gradient descent cannot be trivially applied. To this end,
one can factorize the Mahalanobis matrix M as LLT, then optimize the objective
function over the matrix L instead of M. By setting the number of columns of L
to be less than the dimensions (rectangular matrices), we simultaneously perform
distance metric learning and dimentionality reduction.

As an example, consider the Neighborhood Component Analysis (NCA) model
proposed by Goldberger et al. (2005). NCA aims to optimize the expected leave-one-
out error of a stochastic nearest-neighbor classifier in the projected space induced
by M. Let us define the probability of x; being the neighbor of x; as

exp(—||L % = L'x,[?)
T T ?
pij = § 2aziexp(—[|L x; — L x?)
0, ifi=7.

if i j;

Hence, the probability that x; is correctly classified can be computed as

bi = Z Dij -

{ilyj=vi}

NCA learns a linear transformation L by maximizing the expected number of
examples correctly classified, i.e.,

N
maximize fL) = Zpi . (2.4)
i=1

The gradient of f can be computed as
N
VL) ==2> | pi > puxaxi— Y. pixixl | L,
i=1 I {lys=y:}
where x;; = (x; — x;)(x; — x;)". Given the gradient, one can easily solve prob-
lem (2.4) by directly applying gradient descent optimization techniques, such as
L-BFGS (Bertsekas, 1999).

2.4.3. Projected gradient descent

To guarantee the convexity, one might apply the projected gradient descent
method (Goldstein, 1964). Instead of applying just a gradient step, we apply a
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gradient descent followed by an orthogonal projection onto the PSD cone as

Miy1/2 = My — V(M)

Mt+1 = argmin HA — Mt+1/2” .
A=0 P

The following lemma helps us to compute the projection in the second step.

RDXD

Lemma 2.1. Let M be a symmetric matriz in , its projection onto the cone

of PSD matrices has the closed-form solution

HS+(M) = Z )\iuiuj,

;>0

where (X\;,u;) is the i-th pair of eigenvalue and eigenvector of M.
Proof. The proof can be found in (Boyd and Vandenberghe, 2004). O

Similarly to gradient descent, it turns out that one should carefully select the
step size in order to guarantee the convergence of projected gradient descent.

Due to its simplicity and effectiveness, projected gradient descent has been
widely used in the distance metric learning literature. As an example, consider
the large-margin nearest neighbor (LMNN) model introduced by (Weinberger and
Saul, 2009). The authors aim to learn a Mahalanobis distance metric for k-NN
classification by exploiting the local structure of the data. LMNN does not make
any assumption about the distribution of the data, making it one of the most widely-
used distance metric learning methods (Torresani and Lee, 2007; Parameswaran
and Weinberger, 2010; Nguyen et al., 2017b). The goal is to learn a distance metric
under which each training example has k nearest neighbors that share the same
class label (i.e., target neighbors), while pushing away those examples with different
class labels (i.e., impostors). Finally, the problem is formulated as an instance of
semidefinite programming

ce . . 2 R 2 Cxl) g2 .
minimize (1—p) Z dyg(%3,%5) + Z [1 + dyg (%6, x5) — dyg (x5, %) .
(xi-,xj)es (xivxjvxl)eR

where S denotes the set of pairwise constraints for minimizing the distance between
x; and its target neighbors, R denotes the set of triplet constraints for reducing
the number of impostors, and p € [0, 1] denotes the regularization hyperparameter.
The authors developed a special-purpose solver based on projected subgradient
descent to make LMNN more practical on large-scale problems. Although LMNN
performs well in practice, it is sensitive to the way of selecting the target neighbors
and cannot be applied to high-dimensional problems.

29



CHAPTER 2. PRELIMINARIES

2.4.4. Stochastic gradient descent

One practical difficulty with gradient descent is that computing the gradient can be
costly, especially when the number of examples is large. To make the gradient-based
optimization technique tractable for large-scale problems, one should take into
account not only the number of iterations, but also the computational cost of
each iteration. Stochastic gradient descent (Bottou, 1991) provides a way to avoid
the full-gradient computation by considering only a single loss term at a time,

e., it minimizes the empirical loss based on one constraint or a small subset of
constraints (mini-batch). By randomly choosing an example at each iteration,
stochastic gradient descent can directly optimize the expected loss and remove the
time complexity dependency on the size of problem.

In particular, one can rewrite the objective function in (2.2) as

IRIZKWTZ ,

where ¢(W,r;) denotes the loss function penalizing the violation of one constraint
r; € R. Instead of computing the gradient of f(W) exactly, stochastic gradient
descent estimates this gradient based on the gradient of ¢(W,r;). At the ¢-th
iteration, it operates as follows

Wt+1 = Wt — ntVE(Wt, 7"1‘) .

Although stochastic gradient descent has been successfully applied to speed up
training time, it can still be computationally expensive when learning a Mahalanobis
matrix because the solutions need to lie within the cone of PSD matrices.

There have been a few attempts to make stochastic gradient descent more
practical in the context of distance metric learning. As an example, Qian et al.
(2015a) introduced an approach to reduce the number of updates in stochastic
gradient descent in order to improve the computational efficiency. More specifically,
it computes the gradient V/(Wy, ;) and samples a binary random variable with a
probability

p(Zy = 1) = [((Wy,m3)].

The distance metric is only updated when Z; = 1. Note that constraints with a
large loss will have a high chance to be used for updating the distance metric.
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§2.4. Optimization techniques for distance metric learning

2.4.5. Frank-Wolfe algorithms

The Frank-Wolfe algorithm was firstly developed by Frank and Wolfe (1956). In
literature, it is also known as the conditional gradient algorithm or the reduced
gradient algorithm. The Frank-Wolfe algorithm is an iterative procedure to mini-
mize a convex and continuously differentiable function over a compact and convex
set. At the current solution Wy, the algorithm considers the linearization of the
objective function f, and optimizes this linear function over the same domain,
ie.,

A =argmin  f(Wy) +(Vf(W;),W — W),
W
Wi =1 —=7)W; + 1A,

where ; is the step size. It is important to note that the minimizer of this linear
function is at a vertex of the feasible domain. This helps to maintain the sparsity of
the solution. For instance, in applications of low-rank approximation, one typically
starts with a low-rank solution and increases the rank by at most one after each
step (Jaggi, 2013). The latter is in contrast with projected gradient descent, which
often starts with a high-rank solution and projects onto a low-rank space.

As an example, consider the Distance Metric Learning with Figenvalue Op-
timization (DML-eig) model introduced by Ying and Li (2012). The authors
proposed to maximize the minimal squared distances between dissimilar examples
while keeping an upper bound for the sum of squared distances between similar
examples, i.e.,

maximize min  d3,(X;, X
e iy C) (2.5)
: 2
subject to Z(xi,xj)es dag(xi,x5) <1.
Adopting the authors’ notation, let X; = (x; — x;)(x; — x;) | and X5 = D oies Xis
problem (2.5) can be rewritten as

maximize min (X, M)
M>=0 (xi,x5)€ED

subject to  (Xs,M) < 1.

It has been shown that the above problem is equivalent to

umenAl rsneag <Z u Xy, S> = Hlem Amax (Z utXt> , (2.6)
teD teD
where

A:{UGR‘D‘\utZO,Zutzl},

teD
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P={S»0t(s)=1}.

X, = X;l/QXtXEI/z and Apax is the maximal eigenvalue. Problem (2.6) is well
known as minimizing the maximal eigenvalue of a symmetric matrix (Overton, 1988).
To make problem (2.6) more tractable, its smoothed version was introduced

mirslie%ize f(S) = ulog <Z exp(—(Xq, S>/M)> )

teD

where p > 0 denotes the smoothing parameter. To solve this positive semidefinite
program over the spectrahedron P, the authors use the Frank-Wolfe algorithm
extended by Hazan (2008). At each step, finding the minimizer for linear functions
is efficient because it corresponds to finding the largest singular vector of the
gradient V f(S;), which can be approximated in O(D?) (Golub and Van Loan,
1996).

2.4.6. Bregman projection

Bregman projection refers to a family of iterative first-order algorithms developed
by Bregman (1967). The idea is to optimize an objective function by choosing
one constraint at each iteration, then performing a projection so that the chosen
constraint is satisfied. We first introduce the Bregman matrix divergence, a measure
of closeness between two matrices w.r.t. a strictly convex and differentiable function

®,
Bys(X,Y) = ¢(X) = o(Y) — tr((X = Y) " Vo(Y)).

For instance, by setting ¢(X) = ||X||%, the Bregman divergence results in the
well-known squared Frobenius norm || X — Y||%. At each iteration, the Bregman
projection at a current solution X, can be found by solving

minimize  By(X,X;)
subject to  tr(XA;) <b;.

Note that only one constraint is involved in each iteration, making the optimization
simpler. Instead of an orthogonal projection as in projected gradient descent,
here the Bregman projection is being minimized. This optimization procedure is
repeated by cycling through all constraints. Censor and Zenios (1997) showed that
the method converges to a globally optimal solution under mild conditions.

As an example, consider the information-theoretic metric learning (ITML)
model (Davis et al., 2007). The authors have successfully integrated pairwise
constraints into a framework for learning a Mahalanobis distance metric. The idea
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consists in minimizing the differential relative entropy between two multivariate
Gaussian distributions subject to the pairwise constraints. More specifically, it
regularizes the distance metric to be as close as possible to a given Mahalanobis
distance metric, parameterized by Mgy. The closeness between M and My is
measured using the LogDet divergence, which is defined as

LogDet(M, My) = tr(MMg ') — log(det(MMg ') — D,

where det denotes the determinant of the matrix. Note that the LogDet divergence
corresponds to the Bregman divergence over positive definite matrices by setting
»(X) = log(det(X)) (see Kulis et al., 2009¢). In practice, My is often set to be
the identity matrix, and thus, the regularization tries to keep the learned distance
metric close to the Euclidean distance metric. Finally, must-link constraints
(denoted by M) and cannot-link constraints (denoted by D) are introduced into
the optimization problem as follows

minimize  LogDet(M, Mo) + A3, , &j

Mi=0
subject to  V(x;,x;) € M: dig(xi,%;) <u+&j, (2.7)
V(Xi,Xj) e D: d12v[(Xi,Xj) > | — fij R
&i; 20,

where u,l > 0 are threshold parameters, A is the regularization hyper-parameter,
and &;; are slack variables. Since the LogDet divergence is finite if and only if
M is positive definite, it suggests a cheap way to satisfy the positive definiteness
constraint on M. Indeed, ITML does not need to explicitly constrain the learned
matrices to be positive definite. The Bregman projection converges to the global
minimum, and the resulting distance metric performs well in practice. However,
ITML is sensitive to the way of choosing My, which is usually done by hand.
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3 Distance metric learning through
maximization of the Jeffrey divergence

In this chapter, we propose an optimization framework for distance metric
learning via linear transformations by maximizing the Jeffrey divergence between
two multivariate Gaussian distributions derived from local pairwise constraints.
In our method, the distance metric is trained on positive and negative difference
spaces, which are built from the neighborhood of each training example, so that the
local discriminative information is preserved. We show how to solve this problem
with a closed-form solution rather than using tedious optimization procedures. The
solution is easy to implement, and tractable for large-scale problems. Experimental
results are presented for both a linear and a kernelized version of the proposed
method for k-NN classification. We obtain classification accuracies superior to
the state-of-the-art distance metric learning methods in several cases while being
competitive in others.

The material of this chapter is based on the following publication:
Nguyen, B., Morell, C., and De Baets, B. (2017c). Supervised distance metric
learning through maximization of the Jeffrey divergence. Pattern Recognition,
64:215-225

3.1. Motivation

We begin by introducing a simple two-class classification problem that motivates
the key ideas in the proposed method. For this purpose, we construct a two-
dimensional data set, containing 100 positive examples and 100 negative examples
(see Fig. 3.1(a)). Both positive examples and negative examples follow a Gaussian
distribution with means pu,; = (—1.250;0.205) and p, = (0.60;0.07), respectively,
and the same covariance matrix 3 = (1.96, —0.55; —0.55,0.16). The training
accuracy of 5-NN using the Euclidean distance metric on this data set is very
poor, only 64.0%. However, this performance can be dramatically improved by
applying a linear transformation to the original data. In particular, using our
method (as we will describe later) we obtain the linear transformation A =
(20.11,—-3.02; 70.22,0.63), and consequently, the training accuracy is increased to
97.5% (see the resulting transformed data in Fig. 3.1(b)).

The key question is how to find such a linear transformation A (or, equivalently,
the corresponding Mahalanobis matrix M). Some insights can be obtained when
carefully observing how the differences are distributed. Let us informally define
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Figure 3.1: A synthetic data set illustrating the poor performance of the k-NN classifier
using the Euclidean distance metric. The data set consists of 200 examples drawn from
two aligned strips, each defining a different class. The red circles denote positive examples,
whereas the blue asterisks denote negative examples. (a) data set before applying the
linear transformation, (b) data set after applying the linear transformation.

the positive (resp. negative) difference space as the set of all differences (x; — x;)
between an example x; and its nearest neighbors x; from the same (resp. different)
class (see Section 3.2 for the formal definitions). Here, we use five nearest neighbors
with the same class label and five nearest neighbors with different class labels for
each training example. Figure 3.2 shows the probability density function® of data
belonging to the positive (Fig. 3.2(a)) and negative (Fig. 3.2(b)) difference spaces.
It allows us to see how the differences are distributed before applying the linear
transformation.

There is a slight difference between these two distributions. However, this
difference clearly reveals itself after applying the linear transformation specified by
A (see Fig. 3.3). Note that our illustration here is based on k = 5, but the same
phenomenon occurs for other values of k. This particular example suggests a way
to find such linear transformation, namely the one that maximizes the difference
between these two distributions. The intuition is based on a two-class classification
problem, however, it can be also used for multi-class classification problems since
the difference spaces are built independently for any number of classes. In the
rest of this chapter, we develop this idea. In short, our main contributions are the
following.

(i) We propose a novel distance metric learning method aimed at finding a
linear transformation that maximizes the Jeffrey divergence between two
multivariate Gaussian distributions derived from local pairwise constraints.

For illustrative purposes, we use maximum likelihood to estimate the probability density function
assuming that the data are normally distributed.
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Figure 3.2: Visualization of the probability density functions of the difference spaces
before applying the linear transformation.
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(a) Positive difference space (b) Negative difference space

Figure 3.3: Visualization of the probability density functions of the difference spaces
after applying the linear transformation.

We formulate this task as an unconstrained optimization problem and show
that it can be solved analytically (Subsection 3.3.1).

(ii) While the proposed method is limited to learn a global linear transformation,
we extend it into a kernelized version to tackle nonlinear problems. We show
that the kernelized version of the proposed method is more efficient and highly
flexible by using the “kernel trick” (Subsection 3.3.2).

(iii) The resulting distance metric, when used in conjunction with k-NN, leads
to significant improvements in the classification accuracy. We provide an
extensive experimental validation to support this claim (Section 3.5). Several
state-of-the-art distance metric learning methods (Section 3.4) have been
used for a fair comparison.
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3.2. Definitions

We first introduce some definitions in order to develop our proposal.

Definition 3.1 (k-positive neighborhood). Let k € N such that k > 1. The
k-positive neighborhood of x; € X s the set V,j(xi) consisting of the k nearest
neighbors of x; in the input space X \ {x;}, whose class label is equal to y;.

Definition 3.2 (k-negative neighborhood). Let k € N such that k > 1. The
k-negative neighborhood of x; € X is the set V, (x;) consisting of the k nearest
neighbors of x; in the input space X, whose class label is not equal to y;.

The set of all possible differences for any example x; and its k-positive neighbor-
hood is called the k-positive difference space. The set of all possible differences for
any example x; and its k-negative neighborhood is called the k-negative difference
space. They are formally defined hereafter.

Definition 3.3 (k-positive difference space). The k-positive difference space is the
following set:

S:{xi—xj|xi€Xande€V,j'(xi)}.

Definition 3.4 (k-negative difference space). The k-negative difference space is
the following set:

D:{xi—xj|xi€Xandxj€V,:(xi)}.

3.3. Proposed method

Motivated by the toy example above, the proposed method is based on learning
a linear transformation that maximizes the difference between the probability
distribution on the positive difference space and that on the negative difference
space. Such difference is often measured by the well-known Kullback-Leibler diver-
gence (Kullback and Leibler, 1951), which is widely used in many machine learning
applications, such as information retrieval (Bigi et al., 2000), text categoriza-
tion (Bigi, 2003), particularly in the classification of multimedia data with support
vector machines (Moreno et al., 2004). In the distance metric learning context, the
Kullback-Leibler divergence was introduced by Davis et al. (2007) in ITML and
later it was motivated in several other distance metric learning methods (Qi et al.,
2009; Jain et al., 2009; Mei et al., 2014; Globerson and Roweis, 2006). Since the
Kullback-Leibler divergence can yield substantially different values by changing
the order of its arguments, in this work we use the symmetric Kullback-Leibler
divergence (also called Jeffrey divergence).
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3.3.1. Problem formulation

Let P denote the distribution of the differences in the positive difference space and
let @ denote the distribution of the differences in the negative difference space. We
assume that P and Q are multivariate Gaussian distributions with zero mean? and
covariance matrices s and Xp, respectively. As described by Duda et al. (2012),
linear combinations of jointly normally distributed random variables are normally
distributed, even if the variables are not independent. Suppose we perform a linear
transformation x’ = ATX7 then the transformed distributions Pa and Qa have
zero mean and covariance matrices A’ XgA and ATSpA, respectively. Our goal
is to find the linear transformation that maximizes the Jeffrey divergence between
PA and QAZ

irgmax f(A) = I(L(PA7 QA) + KL(QA, PA) . (31)
cRDxm

As shown in A.1, the Jeffrey divergence between Pa and Qa can be calculated
as:

f(A) = %tr ((ATzsA)*l(ATEDA) - (ATEDA)*l(ATzsA)) —m.

Since the parameter m in f(A) is constant, we can simplify problem (3.1) to:

argmax J(A) = tr ((ATESA)—l(ATEDA)Jr (ATEDA)‘l(ATESA)) . (3.2)
AGRDX‘"L

Taking the derivative of J(A) with respect to A, by using (Petersen and Pedersen,
2012, Eq. (2.4.4)), we obtain

0
87AJ(A)

= 28sAATEsA) TATEPAATSsA) T+ 285 A(ATESA) !
— 25 pAATEPA) TATESA(ATEPA) T+ 285A(ATSHpA)
= (2ZpAX;3 — 2XsAT I TopE55) + (2EsAE; S — 2Xp AR, B0 T00)

first term second term

where o5 = AT ZsA and Zop = AT EpA. The optimal matrix A should satisfy
0J(A)/OA = 0. Although it seems very complex to solve 0J(A)/0A = 0 for A,
the first and second terms can be made zero separately as follows. For the first

In machine learning, Gaussian distributions are widely used to model continuous random variables
as they incorporate the least amount of prior knowledge into a model (Goodfellow et al., 2016).
In practice, if an example x; belongs to the neighborhood of an example x;, then x; usually
belongs to the neighborhood of x; as well. As a consequence, in practice, the distributions will be
symmetric with zero mean.

41



CHAPTER 3. DISTANCE METRIC LEARNING BASED ON THE JEFFREY DIVERGENCE

term, it should hold

25'EpA = AS Sop. (3.3)
For the second term, it should hold

T sA = AS s (3.4)

Before solving these problems, we would like to introduce a theorem, which will
help us to find the solution to these problems.

Theorem 3.1. Let A € RPX™ be a matriz of m linearly independent eigenvectors
of 27'%,. Then it holds that

TISHA = AATSA)THATEA).

Proof. Let D € R™*™ be the diagonal matrix containing the corresponding m
eigenvalues of 3735, then it holds by definition

»!3,A = AD. (3.5)
Multiplying both sides of Eq. (3.5) by the matrix A% yields
ATS,A=ATS,AD,

or, equivalently,
(ATS,A) " HATEA) =D. (3.6)

Multiplying both sides of Eq. (3.6) by A yields
AATSA)H(ATE,A) = AD. (3.7)
Substituting (3.5) into (3.7) leads to
TS A =AATSA)THATEA).
This concludes the proof. O

Consequently, we have the following corollary.

Corollary 3.1. Let A € RPX™ be a matriz of m linearly independent eigenvectors
of Eflﬁg and D € R™*™ be the diagonal matriz containing the corresponding m
eigenvalues. Then it holds that

tr ((AT21A)_1(AT22A)> — t2(D).
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Proof. By definition, it holds that
»13A = AD. (3.8)

Substituting 7 '3,A = A(AT3Z;A)"1(AT2,A) into Eq. (3.8) leads to

AATZ,A)"H(ATSA) = AD. (3.9)
Multiplying both sides of Eq. (3.9) by AT yields

(ATZ,A) Y ATSA) =D,
and hence
tr ((ATZ&A)*I(ATZQA)) — t2(D).

We conclude the proof. O

Note that Theorem 3.1 and Corollary 3.1 hold even when some eigenvalues
are zero. In order to satisfy Egs. (3.3) and (3.4) simultaneously, according to
Theorem 3.1, A can be a matrix of eigenvectors of both 25129 and 25125,
because the latter two share the same eigenvectors and their diagonal matrices of
corresponding eigenvalues are A and A™! as they are related by (EglEp)_l =
251 3 s. Therefore, by selecting m linearly independent eigenvectors of Eglﬁlp, we
satisfy both equations simultaneously and consequently it holds that 9J(A)/0A =
0. According to Corollary 3.1, the value of J(A) is:

J(A) :tr<

:tr(

= tr(A) + tr(A™1)
; (Ai + i) .

In order to maximize J(A), we must select the m linearly independent eigenvectors
of £5'Ep corresponding to the m largest values of (\; +1/);). The eigenvalue \;

(ATSsA) {ATSpA) + (AT2DA)-1(AT23A))
(ATEsA) " (ATSpA) ) +tr ((ATSpA) H(ATSsA))

of E;Ep can be found by solving the equation
Ypw; = \iXswi,

where w; is the corresponding eigenvector. It is also known as a generalized
eigenvalue problem. Note that we might select the target dimensionality m using a
validation set (subset of the training set) to find the dimensionality that realizes
the best performance.
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As shown in (Fukunaga, 1990), each eigenvalue \; of 25129 represents the
ratio between the variances of Q and P along its corresponding eigenvector w;.
Let w$ be the variance of P and let wP be the variance of @ along w;. When
these variances are the same, \; becomes 1 and (A; +1/A;) becomes 2, which is the
minimum value. Otherwise, when wg is larger or smaller than w?, then \; becomes
smaller or larger than 1. Consequently, (A\; + 1/X;) becomes larger than 2 in any
case. This intuition yields a straightforward explanation of why our formulation
is effective in extracting features that realize significant differences between two
distributions P and Q.

Using maximum likelihood estimation, the covariance matrices s and 3p are
computed as follows:

ESZ%Z Y xi—x)(xi—x;)T, (3.10)

YXp = |D| Z Z (% —x5)(x; — Xj)T . (3.11)

=1 x; €V, (x4)

We refer to the proposed method as Distance Metric Learning through Mazimization
of the Jeffrey divergence (DMLMJ). A simplified pseudo-code implementation of
DMLMJ is given in Algorithm 1.

Algorithm 1 DMLMJ
Input: Training set X, ); number of neighbors k; desired dimensionality m
Output: A
1: Build the difference spaces
2 S+ {xi —x;j | x; € X and x; € V|| (x;)
3 D(—{xl—xJ|x1€Xandx]6Vk( i)
4. Estimate the covariance matrices
5: s ﬁ Zuies uiu;r,
6
7
8

}
g

Yp ﬁ Y ueD wu;
: Find W and X of 25129 using the generalized eigenvalue decomposition.
: Construct A, whose columns are the m column vectors w; € W corresponding
to the m largest values of (A; +1/X;).

3.3.2. Nonlinear distance metric learning

Many real-world data sets contain nonlinearities that linear transformations are
unable to capture (He et al., 2004; Torresani and Lee, 2007). In this section, we will
derive the kernelized version of DMLMJ to tackle nonlinear problems. The idea
of kernelization is to learn a linear transformation in the nonlinear feature space
induced by a kernel function. This idea has been successfully applied in many other
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contexts, including nonlinear kernel principal component analysis (Scholkopf et al.,
1998), kernel Fisher discriminant analysis (Mika et al., 1999), and particularly in
SVMs (Scholkopf and Smola, 2001).

Let ¢ be a nonlinear function that maps the input space from R? into the
feature space F,

¢:RP —» F
X = P(x) .

As a result, each training example is mapped into a potentially nonlinear feature
space, in which we can perform linear transformations. Let ® = (¢(x1), ..., d(x,))
be the matrix whose columns are the images of the n training examples under
¢. Given two points u and v in RP, the function that returns the inner product
between their images in F is known as the kernel function, ker(u, v) = (¢(u), p(v)).
To find the linear transformation A in the feature space F, we aim to solve the
following problem

argmax J(A) = tr(<ATz§A>—1(ATz;‘;A) + (ATz;I;A)—l(AngA)) . (3.12)
AeRNXTn

where the covariance matrices £& and 33, are defined as:

=3 = ‘gﬂ Z > [elx) - o) [6x) — o(x,)]

=1 g(x;)eVi (o(xi))

D D S [T B0 S Een)

=1 g(x;) eV, (¢(xi))

Note that the dimensionality of F can be very high or even infinite. In such case, it
becomes hard to estimate A, Eg’ and E% directly in the feature space due to the
increased computational complexity. Moreover, the mapping ¢ is usually unknown.
To overcome these problems, we use the same trick as in (Scholkopf et al., 1998)
for kernel principal component analysis. Instead of explicitly expressing the linear
transformation, we find a solution that lies in the span of all training examples.
That is, each column vector w; of A is represented as a linear combination of
training examples in F:

wi =Y Bjid(x),
j=1

where the matrix B € R™*™ contains the expansion coefficients. Now, we need
to find the matrix B. Let U = @TE§<1> and V = @TE%(I), then the objective
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function in (3.12) becomes:

J(A) = tr ((Ang’A)—l(ATE%A) + (ATE;‘;A)*(ATEQ‘;A))
— tr ((BT@TEQ‘;@B)*(BT@TE%B) + (BTéTE%q)B)*l(BTq)Tz?;@B))
= tr ((BTUB)—l(BTVB) + (BTVB)—l(BTUB)) .

Hence, problem (3.12) can be rewritten as:

argmax  J(B) = tr ((BTUB)‘l(BTVB)+(BTVB)‘1(BTUB)> .

BERnxm
Analogously to (3.2), this problem can be solved by finding the eigenvectors of
U~ !'V. The maximizing solution is a matrix containing the m eigenvectors of
U~ 'V corresponding to the m largest values of (\;+1/);), where ); are eigenvalues
of U™'V. We refer to this method as Kernel Distance Metric Learning through
Mazimization of the Jeffrey divergence (KDMLMJ). A simplified pseudo-code
implementation of KDMLMJ is given in Algorithm 2.

Moreover, the matrices U and V can be expressed as:

U=2'x2®
1 - T T T T T
= S| Z Z {‘I’ (x;) — @ ¢(xj)} [<I’ H(x;) — ® ¢(Xj)}
=1 g(x;) eV (9(xi)

n

=1 g(x;) eV} (d(x1))
and
v=¢'x2s
_ ﬁ Sy [eTel) - @Tol)] [@To0x) - @ o]
=1 ¢(x;)eV, (6(x1))
S Y e K [ K] 619
=1 g (x;)EV, (d(x5))
where

K(u) =@ ¢(u) = [(¢(x1), s(u)s ..., (b(xn), d(w))] |

= [ker(x1,u),...,ker(x,, u)

Since U and V are expressed in terms of inner products, we can use a kernel
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function for mapping all examples and apply a kernel trick as in support vec-
tor machines (Scholkopf and Smola, 2001), or kernel principal component anal-
ysis (Scholkopf et al., 1998). Possible kernel functions are Gaussian radial basis
function kernels (RBF), ker(u,v) = exp(—|u — v||*/o), or polynomial kernels,
ker(u, v) = (u, v)?, for some positive constants o € R and b € N, respectively (see
Scholkopf and Smola, 2001) and the references therein for other kernel func-
tions).

Finally, the Mahalanobis distance in the feature space F is computed as:

2
dRa(0(w), 6(v)) = AT (6(w) - 6(v)

Algorithm 2 KDMLMJ

Input: Training set X', ); number of neighbors k; desired dimensionality m; kernel
function ker
Output: B
1: Compute the matrix U as in (3.13) and the matrix V as in (3.14) using the
kernel function ker.
2: Find the eigenvector matrix W and the eigenvalue vector X of U™V using
the generalized eigenvalue decomposition.
3: Construct the matrix B, whose columns are the m column vectors w; € W
corresponding to the m largest values of (\; +1/)\;).

3.3.3. Regularization

To get a stable solution (\; + 1/);), where \; are eigenvalues of ZglED, the
covariance matrices s and Xp are required to be non-singular, which is clearly
not always the case. Similarly as Mika et al. (1999), we propose a regularization
technique to avoid this problem by adding some constant value o €]0,1[ to the
diagonal of the covariance matrix. That is, instead of using the covariance matrix
directly, we use

Y=(1-a)X+ol.

Essentially, it renders the covariance matrix positive definite. Therefore, we make
sure that all eigenvalues are sufficiently far from zero, and as a consequence, avoid
numerical instability in computing the inverse.
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3.3.4. Computational complexity

We analyze the computational complexity of DMLMJ. The difference spaces S
and D can be built with a time complexity of O(kn?D). Next, we compute the
covariance matrices X g and 3p in Egs. (3.10) and (3.11) with a time complexity of
O(knD?). The generalized eigenvalue decomposition for 25129 can be performed
in O(D3). Summarizing, the overall time complexity for DMLMJ is O(kn?D +
knD? + D3).

Analogously, we analyze the computational complexity of KDMLMJ. We first
compute the kernel matrix K € R™*", where K;; = (¢(x;), ¢(x;)), with a time
complexity of O(n?D). Then the Euclidean distance between x; and x; in the
feature space F can be computed in O(1) as:

d(d(xi), 9(x5)) = llp(x:) = (x|

= J(600). 6(x) — 2(6(x:). 6())) + (D5, 6(;)
= \/K” — 2K1j + ij .

Therefore, we can find the positive and negative neighborhoods for each training
example with a time complexity of O(kn). The computation of the matrices U
and V in Egs. (3.13) and (3.14) can be performed in O(kn3). The time complexity
of the generalized eigenvalue decomposition for U™'V is O(n?). Summarizing, the
overall time complexity for KDMLMJ is O(n?D + kn?).

3.4. Related work

In order to take into account the positive semidefiniteness constraint, distance metric
learning methods are mostly formulated as convex semidefinite programs. However,
standard semidefinite programming solvers (Boyd and Vandenberghe, 2004) do not
scale well when the number of examples or the dimensionality is high, due to the
expensive computational cost in each iteration. A number of methods have been
proposed to reduce this heavy computational burden. Weinberger and Saul (2009)
suggested an efficient solver based on the projected subgradient descent method,
but it requires an eigen-decomposition to preserve the positive semidefiniteness
of the solution after each iteration. To avoid this eigen-decomposition, Ying
and Li (2012) used the Frank-Wolfe method, which only requires the largest
eigenvalue and corresponding eigenvector, to learn the distance metric. A similar
solution requiring only the computation of the largest eigenvalue and corresponding
eigenvector, based on a boosting-like method, was presented by Shen et al. (2012)
to learn a linear positive combination of rank-one matrices. An alternative method
proposed by Davis et al. (2007) was based on the iterative Bregman projection,
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where no eigen-decomposition is required. Shi et al. (2014) formulated distance
metric learning as learning a sparse combination of positive semidefinite rank-one
matrices.

Another paradigm aims to learn a distance metric through learning a linear
transformation. Since the positive semidefiniteness constraint in this case is not
required, the optimization problem can be efficiently solved by a first-order method,
such as gradient descent. However, the problem may be no longer convex, thus
suffering from spurious local minima. Consequently, the solution will depend on
the initialization point. Some popular methods include neighborhood component
analysis (Goldberger et al., 2005), large margin component analysis (Torresani and
Lee, 2007), and multi-task low-rank metric learning (Yang et al., 2011).

Unfortunately, the above methods typically require a very large number of
iterations for large-scale problems. In practice, it is impossible to satisfy all
constraints through online learning or stochastic optimization techniques. That
is why learning a Mahalanobis distance metric for large data sets becomes a
tremendous challenge as learning is limited by computational resources.

On the other hand, eigenvalue methods have been widely used to learn linear
transformations since they only need to compute an eigen-decomposition. The
most popular methods include principal component analysis (Jolliffe, 2005) and
Fisher’s linear discriminant analysis (Fisher, 1936). These methods can also be
used in a nonlinear input space by applying the kernel trick (Scholkopf et al., 1998;
Mika et al., 1999). Bar-Hillel et al. (2005) proposed a simple and efficient method,
called relevant component analysis (RCA), for semi-supervised applications. RCA
computes the Mahalanobis distance metric as a whitening transformation of the
within chunklet covariance matrix, which is built from the pairwise similarity
constraints. Yeung and Chang (2006) extended RCA by incorporating both
similarity and dissimilarity constraints. Hoi et al. (2006) proposed discriminative
component analysis (DCA), where the objective function is based on the ratio
of determinants between the within and the discriminative chunklet covariance
matrices. A method similar to DCA was introduced in (Xiang et al., 2008) by using
the ratio of traces between the covariance matrices as objective function, requiring
an iterative method to find the linear transformation. Despite our method being
also an eigenvalue method, it differs significantly from previous methods in the
way of finding the covariance matrices as well as in the objective function. By
considering the local constraints derived from the neighborhood of each training
example, our method can significantly improve the performance of k-NN, as will
be shown next.
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3.5. Experiments

In this section, we describe some experiments to evaluate the effectiveness of
distance metric learning methods. We compare the proposed methods to the
baseline Euclidean distance metric and four state-of-the-art distance metric learning
methods, including ITML (Davis et al., 2007), LMNN (Weinberger and Saul, 2009),
DML-eig (Ying and Li, 2012) and SCML (Shi et al., 2014). First, we use 27
data sets of different sizes to evaluate the linear distance metric learning methods.
Second, we conduct an experiment to evaluate the capability of our method to
perform dimensionality reduction. Finally, we use two synthetic highly nonlinear
data sets to evaluate the kernelized version of DMLMJ.

3.5.1. Experimental settings

In order to make fair comparisons, we use the following configurations throughout
this section. All experiments are empirically tested in the context of 5-NN and they
are carried out on a PC with 4 Intel Core i5-3570 CPUs (3.40 GHz) and 8GB RAM.
We use the source codes implemented in Matlab of ITML?, LMNN*, DML-eig®
and SCMLS supplied by the authors, and tune their parameters to get the best
results. The source codes of DMLMJ and KDMLM.J are available online”. For
DMLMJ and KDMLMJ, the k-positive neighborhood and k-negative neighborhood
are all based on k = 5 (see 3.5.4 for a more detailed analysis of the influence of
the number of neighbors). The regularization parameter is set to « = 0.001. The
target dimensionality m for DMLMJ is tuned using cross-validation.

The first general trend is that the classification accuracy of k-NN using the
Euclidean distance metric is significantly improved when using the Mahalanobis
distance metric learned by DMLMJ. In general, DMLMJ performs competitively
compared with other state-of-the-art methods (Subsection 3.5.2).

The second general trend is that DMLMJ can perform distance metric learning
and dimensionality reduction simultaneously. It outperforms other distance metric
learning methods using principal component analysis (PCA) (Jolliffe, 2005) to
reduce the dimensionality. Moreover, it is an order of magnitude faster than the
competing methods (Subsection 3.5.3).

The third general trend is that KDMLMJ can perform well on highly nonlinear
data sets, whereas a simple linear transformation cannot improve the performance

of k-NN (Subsection 3.5.5).

http://www.cs.utexas.edu/~pjain/itml/download/itml-1.2.tar.gz
http://www.cse.wustl.edu/~kilian/code/files/mLMNN2.3.zip
http://secamlocal.ex.ac.uk/people/staff/yy267/dml-eig-copy.zip
http://mloss.org/media/code_archive/SCMLv1.11.zip
http://users.ugent.be/~bacnguye/DMLMJ.zip
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3.5.2. Linear distance metric learning

We compare the linear distance metric learning methods on 27 data sets from
the Knowledge Extraction based on Evolutionary Learning (KEEL) (Triguero
et al., 2017) machine learning repository®. The information of these data sets is
summarized in Table A.1. The classification accuracies are obtained by averaging
over five runs of 10-fold cross-validation. All divisions of the data sets are randomly
split by the KEEL evaluation package. The features of these data sets are normalized
into the interval [0, 1].

Table 3.1 shows the average classification accuracies obtained by the competing
methods. On each data set, we rank the methods based on their classification
accuracy. We assign rank 1 to the method obtaining the highest accuracy, and rank
2 to the method obtaining the second higher accuracy, and so on. The average ranks
of the competing methods are listed in the last row of Table 3.1. To detect whether
there are significant differences among the results, we follow the recommendations
by Demsar (Demsar, 2006) for statistical comparisons of classifiers over multiple
data sets.

Firstly, we employ the Friedman test (Friedman, 1940) at a confidence level of
a = 0.05 to test the null hypothesis that all the distance metric learning methods
obtain the same results on average. The p-value for the Friedman test is 0.01274.
Since the p-value is less than the confidence level «, we reject the null hypothesis.
Therefore, we apply the Bonferroni-Dunn test (Dunn, 1961) to detect which
distance metric learning method performs equivalently or significantly different
from the best-ranked method (i.e., DMLMJ, which obtained the lowest rank).
The Bonferroni-Dunn test can identify significant differences between the control
method (in our case, the best-ranked method) and other methods by computing a
critical difference. Two distance metric learning methods are significantly different
in performance if their corresponding average ranks differ by at least the critical
difference:

ne(ne+1) o 576 % 1] 0% (6+1)

CD = g,
Qo X 611y 6 x 27

= 1.3116,

where n. and n; are the number of competing methods and the number of data
sets, respectively, and g, is the critical value (Sheskin, 2007). Figure 3.4 graphically
represents the significant differences among the performances of the different
distance metric learning methods. Any distance metric learning method with rank
outside this marked area is significantly different from the control method (i.e.,
DMLMJ).

Additionally, we also apply Holm’s step-down procedure (Holm, 1979) to com-
pare the best-ranked method with the remaining methods. Table 3.2 presents

8 http://sci2s.ugr.es/keel/datasets.php
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Table 3.1: Classification accuracies on the KEEL data sets.

Data set Euclidean ITML LMNN DML-eig SCML DMLMJ

APP 85.00 86.00 88.82 87.00 86.91 87.91
BAL 86.24 91.84 84.64 87.52 94.25 92.63
BAN 89.28 89.34 89.34 89.17 89.36 89.26
BUP 64.28 62.05 61.90 62.47 65.05 65.69
ION 85.17 87.17  89.75 84.90 86.33 89.75
IRI 95.33 94.67 96.00 96.67 97.33 95.33
LED 70.40 69.80 69.80 69.40 65.00 67.80
LET 95.55 95.37 96.72 84.42 96.54 97.50
MAG 83.60 83.73 83.74 83.15 84.79 84.30
MON 94.75 89.43 97.04 100.00 99.55 99.55
MOV 75.28 74.72  82.50 67.22 63.33 81.94
OPT 98.75 98.70  99.04 97.44 97.21 99.00
PAG 95.78 96.03 96.24 95.29 96.56 95.78
PHO 87.75 87.75 87.43 87.84 87.49 87.79
PIM 73.32 72.93 73.19 73.06 72.92 73.84
RIN 69.12 81.54 69.22 84.31 80.12 87.28
SAT 90.78 90.71 91.28 89.54 89.08 91.79
SEG 95.41 96.36 96.23 96.84 95.97 95.84
SON 84.52 81.69 84.05 85.05 80.19 85.05
SPA 87.77 87.91  90.08 89.82 88.04 89.39
TEX 98.49 99.29  99.89 98.98 99.58 99.51
TWO 96.99 97.08 96.97 97.54 97.09 97.28
VEH 71.75 73.77 77.89 72.81 75.89 80.97
VOW 94.85 91.82 95.35 94.65 94.04 95.45
WDB 97.01 96.83 96.30 97.36 96.48 95.95
WIN 95.49 96.67 97.78 96.63 98.86 98.33
WIS 97.09 96.80 97.10 96.96 96.67 96.51
Rank 4.167 4.056 2.944 3.648 3.574 2.611
CD = 1.3116
T y — | A | 3
DMLMJ ‘ 7 ‘ \— Euclidean
LMNN ITML
SCML DML-cig

Figure 3.4: Comparison of the control method against the others with the Bonferroni-
Dumn test. All methods with ranks outside the marked interval are significantly different
from the control.
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the z-value, p-value, and adjusted « for the Holm test at a confidence level of
a = 0.5. According to Table 3.2, the Holm test rejects hypotheses 4 and 5 since the
corresponding p-value is less than the adjusted «. But hypotheses 1 to 3 cannot
be rejected.

The statistical results allow us to draw the following conclusions. First, DMLMJ
significantly outperforms ITML, but it only shows a slightly better behavior
compared to LMNN, DML-eig and SCML in the context of k-NN. Second, the
Mahalanobis distance metric learned by DMLMJ consistently outperforms the
Fuclidean distance metric.

Table 3.2: Holm post-hoc test for the competing methods with « = 0.05.

Method z-value p-value Holm’s adjusted @« Hypothesis

.

5 FEuclidean 3.0551  0.0023 0.0100 Rejected
4 ITML 2.8368  0.0046 0.0125 Rejected
3 DML-eig 2.0367  0.0417 0.0167 Accepted
2 SCML 1.8912  0.0586 0.0250 Accepted
1  LMNN 0.6547  0.5127 0.0500 Accepted

3.5.3. Dimensionality reduction

We compare the performance of k-NN using DMLMJ against other distance metric
learning methods using PCA as a preprocessing step to reduce the dimensionality.
The main purpose is to highlight the fact that our distance learning method with
supervised information obtains better results when the dimensionality is reduced.
Our experiment is based on the Isolet (Isolated Letter Speech Recognition) data
set (Cole and Fanty, 1990), which consists of 6238 training examples, 1559 test
examples with 617 features and 26 classes corresponding to 26 spoken letters.
The Isolet data set has been used in various distance metric learning studies such
as (McFee and Lanckriet, 2010; Parameswaran and Weinberger, 2010). More details
about the features can be found in (Cole and Fanty, 1990). Training and test sets
were predefined?. All features are continuous, real values, and scaled into the range
[—1,1].

Figure 3.5(a) illustrates the classification accuracy of k-NN based on different
distance metric learning methods with a varying number of features. We observe
that DMLMJ performs better than other methods on this data set. When the
dimensionality is small, all methods perform poorly as a consequence of the loss
of information from the original feature space, however, DMLMJ is still much
more effective. PCA discards the valuable class label information contained in the

9 Available at https://archive.ics.uci.edu/ml/datasets/ISOLET
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training set, and the projection made by PCA may intertwine the useful features

and noisy features, thus leading to the poor performance of methods based on
PCA.
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Figure 3.5: Experimental results on the Isolet data set. (a) Classification accuracy vs.
dimensionality, (b) Training time vs. dimensionality

Figure 3.5(b) illustrates the training time (in seconds) of these five methods.
Clearly, our method is an order of magnitude faster than the other methods.

3.5.4. Influence of the choice of the difference spaces

In this subsection, we study the influence of the choice of the difference spaces on
the performance of DMLMJ. Since the difference spaces are built from the nearest
neighbors of each training example, it is interesting to compare the performance in
experiments using different neighborhood sizes. Let ki, ks denote the number of
neighbors for constructing the positive and negative difference spaces, respectively.
Figure 3.6 shows the accuracy of 5-NN classification on the balance data set with
different numbers of neighbors k1 and ks. From the figure, we can see that when
k1 > ko the classification accuracy is very low. This can be explained by the
fact that the positive neighborhoods are more likely to undergo divergence than
the negative neighborhoods, which implies that DMLMJ will extract the features
that maximize the variance between examples of the same class and minimize the
variance between examples of different classes. Consequently, the performance of
k-NN cannot be improved. On the other hand, if more examples of different classes
are considered to build the negative difference space, the classification accuracy is
significantly increased. When k; and ks approach 100, the difference spaces tend
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to use the information from the whole data set instead of using only information
contained in the neighborhoods. In this case, DMLMJ performs similarly to other
global distance metric learning methods, such as distance metric learning for
clustering (Xing et al., 2002) and ITML (Davis et al., 2007). The performance is
relatively stable when k; and k5 are small enough to find the local discriminative
information from the neighborhoods.

& b

100

=}
[

90 [

Accuracy (%)

k2 20 20 I

Figure 3.6: Experimental results on the balance data set. Classification accuracy of the
5-NN classifier versus the number of neighbors used for constructing the difference spaces,
where k1 denotes the number of neighbors used in the positive difference space and ks
denotes the number of neighbors used in the negative difference space.

3.5.5. Nonlinear distance metric learning

To illustrate the potential of KDMLMJ, we conduct experiments on two synthetic
two-dimensional data sets shown in Figs. 3.7(a) and 3.8(a). The first one consists
of 200 examples drawn from two concentric circles. The second one consists of 500
examples drawn from two banana-shaped distributions. All examples belonging
to the same class are shown in the same style and color. Similar experiments on
these data sets were discussed by Weinberger and Saul (2009), and by Baghshah
and Shouraki (2010b). According to the nonlinear structure in these data sets,

a linear transformation may not suffice to improve the classification accuracy of
k-NN.

In this experiment, the RBF kernel, ker(u,v) = exp(—|lu—v||?/o), where ¢ > 0
is the kernel width, is adopted for the KDMLMJ method. The parameter ¢ is tuned
by cross-validation on the training set considering as set of values {271°,...,23}.
For a visual representation, the data sets are plotted in the transformed space using
the nonlinear transformation learned by KDMLMJ (see Figs. 3.7(b) and 3.8(b))
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and the linear transformation learned by DMLMJ (see Figs. 3.7(c) and 3.8(c)).
Our illustration here is based on DMLMJ, but the same phenomenon occurs for
the other linear distance metric learning methods. According to Figs. 3.7 and 3.8,
KDMLMJ outperforms DMLMJ on both data sets since it is able to produce a
highly nonlinear decision boundary through the use of the kernel function.

2 -1
414 4145 415 415.5 416 416.5 j15 -10 -5 0 5 10 15
(a) Original space (b) Transformed space (¢) Transformed space

Figure 3.7: Illustration of a synthetic data set drawn from two concentric circles: (a)
original space, (b) transformed space learned by KDMLMJ using an RBF kernel, and (c)
transformed space learned by DMLMJ.
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Figure 3.8: Illustration of a synthetic data set drawn from two banana-shaped distri-
butions: (a) original space, (b) transformed space learned by KDMLMJ using an RBF
kernel, and (c) transformed space learned by DMLM.J.

3.6. Conclusion

In this chapter, we have developed a novel linear transformation method for distance
metric learning. We have shown that learning a linear transformation can be
formulated as maximizing the Jeffrey divergence between two distributions derived
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from local pairwise constraints. Then we have demonstrated that this problem
is equivalent to solving a generalized eigenvalue decomposition problem with a
closed-form solution. We have also developed the kernelized version of the proposed
method to handle nonlinear data sets. The experimental results on the synthetic and
real-world data sets demonstrate that the proposed method performs competitively
compared with other state-of-the-art distance metric learning methods, while being
an order of magnitude faster in training.
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4 Kernel-based distance metric learning
for person re-identification

Person re-identification is a fundamental task in many computer vision and
image understanding systems. Due to appearance variations from different camera
views, person re-identification still poses an important challenge. In the literature,
KISSME has already been introduced as an effective distance metric learning
method using pairwise constraints to improve the re-identification performance.
Computationally, it only requires two inverse covariance matrix estimations. How-
ever, the linear transformation induced by KISSME is not powerful enough for
more complex problems. We show that KISSME can be kernelized, resulting in
a nonlinear transformation, which is suitable for many real-world applications.
Moreover, the proposed kernel method can be used for learning distance metrics
from structured objects without having a vectorial representation. The effectiveness
of our method is validated on five publicly available data sets. To further apply
the proposed kernel method efficiently when data are collected sequentially, we
introduce a fast incremental version that learns a dissimilarity function in the
feature space without estimating the inverse covariance matrices. The experiments
show that the latter variant can obtain competitive results in a computationally
efficient manner.

The material of this chapter is based on the following publication:
Nguyen, B. and De Baets, B. (2019). Kernel distance metric learning using pairwise
constraints for person re-identification. IEFE Transactions on Image Processing,
28(2):589-600

4.1. Motivation

In recent years, the deployment of camera networks has grown exponentially in
wide-area public spaces, such as railway stations, airports, and office buildings. As
a result, many applications in person re-identification demand fast and effective
techniques that are capable of accurately searching images from video surveil-
lance (see e.g. Bedagkar-Gala and Shah, 2014, and the references therein). Given
an image of a person, the main task in person re-identification is to identify the
person from images taken at a different location and/or from a different viewpoint
across non-overlapping cameras. It is important to remark that when a person
disappears from one camera, he/she can be recognized from other cameras. A
good system should be able to keep track of a person throughout the network, i.e.
the appearances of the same person from different cameras have to be matched.
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Person re-identification is a highly challenging problem, even for humans, due to the
difficulty in characterizing the appearance and computing the similarity between
images (Bedagkar-Gala and Shah, 2014; Paisitkriangkrai et al., 2015; Liao et al.,
2015). These difficulties are mainly caused by changing view angles, resolution,
lighting, occlusions, and so on. See Fig. 4.1 for an illustration of challenges in
person re-identification.

L I

Figure 4.1: An illustration of challenges in person re-identification (from left to right):
different backgrounds, resolution, pose, view angle, lighting, partial occlusion, and similar
clothings.

In order to find the correct match for a probe image from a set of gallery images
captured by different cameras, two steps are employed. We first extract features
from both probe and gallery images using a suitable feature extraction method.
The identification results are then obtained by ranking the similarities between
the probe and gallery images. Accordingly, the re-identification performance is
measured by the top rank k matching rate, which is the percentage of probe
images with correct matches found in the top-k ranked gallery images. That is why
person re-identification can be formulated as a ranking problem (Prosser et al.,
2010). Consequently, having an effective feature representation and a good distance
metric can improve significantly the performance of re-identification (Liao et al.,
2015).

Most of the existing studies focus on extracting more relevant or informative
features that are able to discriminate different appearance patterns. A number of
effective methods have been proposed to perform feature extraction for an image,
including the scale invariant feature transform (SIFT) (Lowe, 2004), the ensemble
of local features (ELF) (Gray and Tao, 2008), local binary patterns (LBP) (Ojala
et al., 2002), Fisher vectors (LDFV) (Ma et al., 2012), and weighted histograms of
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overlapping stripes (WHOS) (Lisanti et al., 2015). These handcrafted descriptors
allow to significantly improve the performance of person re-identification. However,
computing a set of representative and robust features is not always an easy task
due to cross-view variations in appearance of images. Another interesting approach
is to use a tensor representation rather than a vectorial representation for the input
data (Tao et al., 2018, 2016a). Under several realistic viewing changes, most visual
features and their combinations are neither stable nor reliable. In contrast to using
complex handcrafted features computed from the raw images, deep convolutional
neural networks (DCNNs) have been exploited to learn a set of representative
features that captures the variability of person appearance across views (Ahmed
et al., 2015; Xiao et al., 2016; Ding et al., 2015). One of the major problems with
DCNNs is that they often require the availability of a huge number of images to
obtain a model that is generalizable to data beyond the training set.

A recent trend tries to learn a good distance metric by implicitly suppressing
those cross-view variations between images (Hirzer et al., 2012b; Kostinger et al.,
2012). This is motivated by the fact that standard distance metrics, e.g. the
Euclidean or Manhattan distance metric, are not reliable and flexible enough
because they usually assume that all features are from the same domain with the
same scale. Consequently, they become more sensitive to irrelevant features and
fail to preserve the geometric characteristics of the data (Nguyen et al., 2017¢). An
ideal distance metric should accurately reflect the true underlying relationships
between images, i.e. small distances for similar images and large distances for
dissimilar or unrelated images. Previous studies (Yang et al., 2016; Paisitkriangkrai
et al., 2015; Hirzer et al., 2012b; Kostinger et al., 2012; Zhao et al., 2017; Sun et al.,
2017) have shown that optimizing a distance metric can significantly improve the
performance of person re-identification.

The distance metric used may not fully reflect human judgments of dissimilarity
without additional information from the users or from the training examples, such
as class labels. One way to provide this information is through a set of constraints.
As is common in person re-identification, we describe the information in the form of
must-link and cannot-link pairwise constraints. Must-link constraints, e.g. images
of the same person, are used to specify that the two examples should be in the same
class. Cannot-link constraints, e.g. images of different persons, are used to specify
that the two examples should be in different classes. These pairwise constraints
have the following advantages that enable them to be applied in a wide range of
application domains. First, collecting fully labeled training examples is a difficult
task and also time-consuming. Particularly, annotating images with identity from
every camera is prohibitively expensive in a large camera network. Second, it is
often easier to collect pairwise relations, which are usually expressed in the form of
pairwise constraints. The pairwise relations can be obtained, for instance, through
interacting with the users by asking feedback whether two images are from the
same person or not. Unlike the general procedure of asking feedback in the form of
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annotating images with exact labels, the users are not required to have experience
or prior knowledge with the data set.

Given a set of constraints, distance metric learning is mostly cast as solving
a convex optimization problem over the cone of positive semidefinite matrices.
While many efforts (Shen et al., 2012; Weinberger and Saul, 2009) have been
devoted to reduce the computational complexity of semidefinite programming, they
still require an expensive iterative optimization procedure. Based on a statistical
inference perspective, Kostinger et al. (2012) introduced a pairwise distance metric
learning approach named KISSME to avoid this computational burden. KISSME
has the advantage of being simple and obtains a good recognition rate in person
re-identification (Yang et al., 2014). One of the main problems is that KISSME may
yield rather poor estimates of covariance matrices when the number of constraints
is small, thus leading to a poor generalization ability. Several extensions (Tao
et al., 2016b, 2015) have been proposed to address this problem, however, they
are still limited to the use of a linear transformation and cannot capture the
nonlinear structure of the input space. It is also important to note that KISSME
can suffer from the curse of dimensionality in high-dimensional settings, just like
other conventional distance metric learning methods that parameterize the distance
metric by a matrix that scales quadratically with the dimensionality.

A common guiding principle for learning a distance metric from pairwise
constraints is that the distances between examples in must-link constraints should
be small, while the distances between those in cannot-link constraints should be
large. Additionally, there are also several requirements for a good distance metric
learning method: (1) it should reflect the true similarity relationships between
examples in order to generalize well to unseen examples; (2) it should be easy to
implement and to compute efficiently; (3) it should be flexible enough to handle
different learning settings and data types. Based on these considerations, this
chapter presents the following two main contributions:

(i) We propose the use of kernels for KISSME, named k-KISSME, which allows
to capture the nonlinear structure in a data set. Our method operates in the
kernel spaces, yielding a highly flexible distance metric. Compared to the
original KISSME method, k-KISSME is not only more robust, but can also
be used for naturally structured objects that have no vectorial representation.

(ii) Most of the kernel methods employ a “batch” setting, i.e. all examples need
to be available during training. Unfortunately, in applications like video
surveillance where images are collected sequentially, processing the whole
data set upon the arrival of a new pairwise constraint can be computationally
expensive. To alleviate this computational burden, we present an incremental
update strategy for k-KISSME.

In the next section, we briefly review some of the most relevant works on person
re-identification. In Section 4.3, we will revisit KISSME. Its kernel version, i.e.
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k-KISSME, is presented in Section 4.4. Subsequently, we show that k-KISSME
can be incrementally updated by relaxing the positive semidefiniteness constraint.
Experiments on person re-identification benchmarks are conducted in Section 4.5,
followed by some concluding remarks in Section 4.6.

4.2. Related work

In this section, we briefly review various relevant methods for learning an optimal
distance metric in supervised settings that have been successfully applied to person
re-identification tasks.

Typically, the supervision is induced in the form of pairwise constraints, i.e. must-
link and cannot-link constraints. In the context of face identification, Guillaumin
et al. (2009) introduced logistic discriminant metric learning (LDML), which aims
to make the distances between examples of similar pairs smaller than the distances
between those of dissimilar pairs. Based on pairwise constraints, Davis et al. (2007)
formulated distance metric learning as a LogDet optimization problem, which can
enforce the positive semidefiniteness constraint automatically to avoid the projection
onto the positive semidefinite cone. Interestingly, Hirzer et al. (2012b) showed
that relaxing the positive semidefiniteness constraint can dramatically simplify
the problem of learning a Mahalanobis distance metric while still guaranteeing
promising results. Recently, Sun et al. (2017) presented a person re-identification
framework based on distance metric learning with latent variables. Yang et al.
(2016) used only must-link constraints to learn an effective similarity function. The
method most closely related to ours is the KISSME method proposed by Kostinger
et al. (2012), which will be discussed in Section 4.3. To perform KISSME in
high-dimensional settings, Liao et al. (2015) employed the generalized Rayleigh
quotient to find a discriminant low-dimensional subspace in which to perform
the KISSME method. Tao et al. (2017) showed that the performance of the
latter can be further improved when using deep learning features in conjunction
with handcrafted features. Another extension of KISSME was proposed by Tao
et al. (2016b), including a smoothing technique to improve the estimation of the
covariance matrices. Zhao et al. (2018) considered a QR decomposition that maps
the data into a low-dimensional space and subsequently perform KISSME to learn
a robust Mahalanobis matrix in the projected space.

Triplet constraints are another common form of supervision, i.e. object x;
is more similar to object x; than to object x;. Weinberger and Saul (2009)
introduced the large-margin nearest neighbor (LMNN) method that aims to pull
target neighbors (of the same class) close together while pushing impostor neighbors
(of different classes) far apart. LMNN performs well for k-nearest-neighbor (k-
NN) classification. In order to handle the rejection case for k-NN, which is quite
common in person re-identification tasks, Dikmen et al. (2011) proposed LMNN
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with rejection (LMNN-R). Similarly, Zheng et al. (2013) proposed a probabilistic
relative distance comparison (PRDC) method that maximizes the probability of
a correct-match pair having a smaller distance than that of an incorrect-match
pair.

Due to large variations in pose and illumination changes, it is unlikely that a
linear transformation induced by the Mahalanobis distance metric can discriminate
individuals satisfactorily. Instead of operating directly in the original input space,
Xiong et al. (2014) introduced the use of kernels in order to learn a distance metric
in the feature space. In doing so, we obtain a more flexible linear transformation
in the feature space, which can be applied inductively to new examples. Although
kernelized versions of various distance metric learning methods exist (Nguyen
et al., 2017¢c; Davis et al., 2007; Jain et al., 2012), kernelizing a distance metric
learning method is not always a trivial and straightforward task. In this chapter,
we show how to kernelize KISSME, making it more efficient and robust to person
re-identification tasks.

4.3. KISSME revisited

To motivate our approach, we briefly review KISSME as introduced in (Kostinger
et al., 2012). Let us consider the difference x; — x; between two examples x; and
x;. Consequently, two disjoint probability spaces of differences are defined, €y for
differences of examples from different classes and €2y for those from the same class.
Let pg and p; denote the probability density functions of differences in 2y and €y,
respectively. A possible way to verify whether or not x; and x; belong to the same
class is through the use of a log-likelihood ratio statistic:

o(xi,x;) = log <p“(x_xf)> . (4.1)

p1(xi —%;)

A high value of o(x;,x;) indicates that x; and x; likely belong to different classes.
In contrast, a low value of o(x;, x;) indicates that x; and x; likely belong to the
same class. Assuming that the differences in ¢ and Q; are normally distributed
with zero mean, Eq. (4.1) can be rewritten as

s P (C3 (% — %) 55 (% — %))
o(x;,%x;) = log T T S—
WQXP(_i(Xi—Xﬂ 2 (xi - %))
1 by
= L) T B (s — xy) + log (=1,
2 |30

where ¥y and X, denote the covariance matrices of py and p1, respectively. Note
that the zero mean assumption was also argued by Moghaddam et al. (2000) in a
similar formulation as for each sample x; — x; there always exists a sample x; — x;.
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Since the constant terms do not affect the log-likelihood ratio statistic for use in
statistical hypothesis testing, we can simplify it to

o (%, %)) = (xi = %) (S = g (% — %),

Finally, learning a Mahalanobis distance metric amounts to estimating two inverse
covariance matrices, i.e. M = 35 1 21_1, as o and dpg share very similar properties.
To guarantee that dpg is a distance metric, we use instead the projection of
(=, ! 371 onto the cone of PSD matrices. Using maximum likelihood estimation,
the covariance matrices Xy and X, are computed as follows

20 = ni Z (Xi — Xj)(Xi — Xj)T 5 (42)
O (x:,x,)€D
=Y X -x)T (4.3)

n
! (xi,x;)€ES

>

where ng = |D| and ny = |S].

As another alternative to the use of o(x;,x;), one may argue that a high value
of p1(x; — x;) can indicate that x; and x; likely belong to the same class and
a low value of pi(x; — x;) can indicate that x; and x; likely belong to different
classes. Accordingly, the distance metric is only parameterized by the inverse of
the covariance matrix X1, which is defined as the Mahalanobis distance between
an example and a normal distribution. From this point of view, KISSME can
be regarded as an extension of relevant component analysis (RCA) (Bar-Hillel
et al., 2005), a simple method for learning distance metrics using only must-link
constraints.

Although KISSME is very effective on low-dimensional data sets, it quickly
becomes intractable when increasing the number of features. This is due to the fact
that KISSME has a high memory complexity O(D?), which is prohibitive for many
applications that involve thousands of features. Besides, computing the inverse
covariance matrices is expensive and tends to be an ill-posed inverse problem as
the covariance matrices are likely to be singular in higher dimensions. Next, we
consider the idea of using kernels to overcome these limitations.

4.4. Kernel distance metric learning

In this section, we propose a nonlinear variant of KISSME. By introducing a
regularizer into the covariance matrices, our method k-KISSME becomes more
robust and stable. Moreover, to avoid recomputation of k-KISSME on the arrival
of a new constraint, which is computationally expensive, an incremental version of

k-KISSME is developed.
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4.4.1. Kernel KISSME

The idea of kernel methods is to implicitly perform a nonlinear map ¢ from the input
space X into a high-dimensional feature space F, i.e. ¢: X — F, by replacing the
inner product with an appropriate positive semidefinite function. Formally, for any
PSD kernel matrix K, there exists a nonlinear map ¢ such that K;; = ¢(x;) " ¢(x;).
The matrix K can be computed efficiently using a kernel function K that computes
the inner product between two examples in the feature space without carrying out
the explicit map, i.e. K(x;,%x;) = ¢(x;) ¢(x;). Several kernel functions, such as
polynomials, radial basis functions, and exponential x? kernel functions, have been
successfully used in the context of distance metric learning (Nguyen et al., 2017c;
Davis et al., 2007; Xiong et al., 2014). Motivated by the fact that kernel methods
can overcome many limitations of their linear counterpart, in this subsection, we
describe how to kernelize KISSME. Clearly, a direct computation of the inverse
covariance matrices 3g ' and 37! is not feasible since the dimensionality of F is
too high, or even infinite.

Assuming that the pairwise constraints in S and D are given, we start by
introducing some notations. Let 1; be a column vector that has the value 1 at
the i-th entry and 0 at the other entries. Let By (resp. B1) be an n x n diagonal
matrix whose diagonal vector contains at the i-th entry the number of constraints
in D (resp. S) of which the first element is x;, i.e.

diag(Bo); = {7 | j € {1,...,n} and (x;,x;) € D}/,
diag(B1); = {j | 7 € {1,...,n} and (x;,%;) € S}|.
Let Eg (resp. Eq1) be an n x n diagonal matrix whose diagonal vector contains

at the j-th entry the number of constraints in D (resp. S) of which the second
element is x;, i.e.

ding(Bo); = [{i [i € {1.....n} and (x;,x,) € D},
diag(E1),; = [{i |i € {1,...,n} and (x;,%x;) € S}|.

Let Wy (resp. W1) be an n x n matrix whose entry at the i-th row and j-th
column is 1 if (x;,x;) € D (resp. (x;,%;) € S), otherwise it takes value 0. Using
the preceding notations, we can rewrite the matrix X in Eq. (4.2) as

1

To=— > (xx] —xx] - xix] +xx])
0 (xi,x;)€D
1
LS (XliIZTXT - X1,/ X7 - X1,1] X" + X1j1jTXT)
ng
(xi,x;)€D

1
- X (BOfWOT —W0+E0)XT
no
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1

= —XHX',
no

where Hy = Bg — Wg — Wy + Eq. Similarly, we can rewrite the covariance matrix
3, in Eq. (4.3) as

> = iXHle,
n
where H; = By — WI — W, + E;. Note that 3y and ¥; can be singular due
to the lack of sufficient pairwise constraints. Therefore, to avoid the problem of
inverting a singular matrix, we propose the use of a regularizing term by adding
some small positive constant value € to the diagonals of 3y and 34, i.e.

. 1 -~ 1
So=el+ —XHX", & =+ —XH;X'. (4.4)
no ni

According to Friedman (1989), this method can obtain a more robust and stable
estimation than using maximum likelihood estimation. To evaluate the inverses
of these matrices, we consider the Kailath formula (Petersen and Pedersen, 2012)
given by

(A+BD)"'=A'-A'BI+DA'B)"'DA'. (4.5)

Applying Eq. (4.5) to the covariance matrices in (4.4), results in

—1
~—1 1 1 1
3, =-I-—XH, (I + XTXHO) X',
€ nop€ noe
-1
1 1 1 1
5, = 1- —XH, (I " XTXHl) X7
€ nie nie

Finally, the difference between these two inverse covariance matrices can be com-
puted as

N SN
1 1t - 1 7 e
- X Hy (1+ —X'XH,) - —H,(I+—X"XH, X
nge? nge nye2 nie
1 1 o 1  —
=X Hy (I+ —KH, - H, (I+ —KH,; X
nge? nge nye2 nie
= XCX'T,

where K = X "X denotes the n x n kernel matrix and

-1

1 1
H, (I + KHO) -
e

n0€2

1

n1€2

C:

1 -1
H, (I + KHl) .
nie
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a1 -1
It is easy to see that if 33, — 3, is a PSD matrix, then the matrix C needs to be
PSD as well. Hence, we use the projection of C onto the cone of PSD matrices, i.e.
C =IIs+ (C), to compute the squared distance between two examples x; and x; as
follows

d%\A(Xi,Xj) = (Xi — Xj)TXGXT(Xi — Xj)

= (kxi - kx]‘)—ré(kxq: - kxj) )

where ky = X 'x. Clearly, the computations above only involve the inner products
between examples. Therefore, we can easily replace the inner product by a kernel
function to perform distance metric learning in the feature space F. The great
advantage is that the linear KISSME method is extended to nonlinear scenarios in
a straightforward way through the use of kernel tricks.

Another advantage of this kernelization is that it allows to apply KISSME
on data sets containing structured objects on which kernel functions are defined.
Since only a kernel function is required, many real-world data without an explicit
vectorial representation (e.g., sequences, trees, and general graph-structured data)
can be effectively dealt within our kernel-based framework. Several attempts have
been made to design efficient kernel functions for such data. For instance, Leslie
et al. (2002) adopted the spectrum kernel on sequences for protein sequences.
Collins and Duffy (2002) showed how a kernel function can be applied to natural
language structures. Gértner et al. (2003), proposed kernels on labeled graphs with
arbitrary structure. As the main focus of this chapter is on person re-identification,
interested readers may refer to the survey by Gértner (2003) for further details on
defining kernel functions for structured data.

The overall computational complexity of k-KISSME mainly depends on the
computation of the matrix C. Due to the matrix multiplications and matrix inver-
sions, this computation scales as O(n?). It is worth pointing out that k-KISSME
has an advantage for problems where the number of features is significantly larger
than the number of examples, i.e. D > n.

4.4.2. Incremental settings

In person re-identification, a learning method should be less sensitive to appearance
changes, such as varying lighting conditions, clothing, poses, and so on. It is
desirable to formulate a computationally tractable distance metric learning frame-
work in an incremental setting to address such dynamic behavior. However, to
keep the Mahalanobis matrix being PSD, we always need to employ an eigenvalue
decomposition, which is computationally expensive if this procedure has to be
carried out upon the arrival of every new pairwise constraint. Therefore, instead
of learning a Mahalanobis distance metric, we relax the positive semidefiniteness
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constraint and focus on learning a dissimilarity function. This relaxation strategy
has already been adopted in various distance metric learning studies (Hirzer et al.,
2012b; Chechik et al., 2010). We first define the dissimilarity function and then
propose an efficient method for incrementally updating this dissimilarity function.
As the new pairwise constraint can contain new examples, which are not observed
in the training set, we also describe how to add these examples efficiently to the
training set.

A dissimilarity function

In order to compute the dissimilarity of two examples in the feature space, it is
necessary to redefine the covariance matrices. Since € is a regularization constant,
by redefining its value we can rewrite 3y and X in (4.4) as follows

1 ~ 1
= —(XHoX +¢l), = =—(XH X' +¢1I),

no ny

o

where €y and €; are small positive constants. Applying Eq. (4.5) to compute the
inverses of these covariance matrices, it yields

-1

~— 1

S5, = 2oy Mxp, (I + KH()) X",
€0 €0 €0

—1

__ 1

S oMoy (14 —KH,) X7
1 € 62 €
1 1 1

Subsequently, the dissimilarity dism(x;,%;) of two examples x; and x; is defined
as

diSM (Xi, Xj)
~—1

= (xi—x)" (ifl -3 ) (x; — x;)

-1

1

= (x; — ;) [”11 - 2xH, (I + KHl) xT
€1 €7 €1

-1
1
-1 4 BOxH, (I + KHO) XTl (xi — x;)
€0 €0 €0

n o T T T
= ( — > (x; xi — 2%, Xj +X; X;)
€1 €0

1 —1
+ (K, — k) ["SHO (1 T KH0>
€0 €0

1 -1
M, (1 + KH1> ] (kx, — ki, ) -
€1 €1
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Note that disyg only depends on the inner products and, therefore, it can be
learned in the feature space by applying the kernel trick. It is clear that the matrix
21—1 - f]g ! obtained is not always PSD, consequently, the dissimilarity function
dispg is not a pseudometric. However, our empirical experiments show that dispg
obtains competitive results compared to dyg, while being significantly faster to
compute. Next, we show how to perform an efficient update for disy; upon the

arrival of a new pairwise constraint.

Updating the dissimilarity function

Incremental learning usually arises in the case that images (examples) are se-
quentially collected, which is very common in a video surveillance system. An
incremental learning system can be constructed, for instance, by adding additional
cameras, or in a more general framework, by adding more knowledge from user
interactions. It then follows that constraints are incrementally added using pairwise
combinations of the new image and the images already in the training set. The
following procedure only shows how the dissimilarity function is updated upon the
arrival of a single constraint, but it is still possible to update efficiently given a set
of constraints in a sequential manner. We consider the arrival of a new pairwise
constraint (x;,x;), which can be a must-link or a cannot-link constraint. Since
disp mainly depends on the inverses of the two covariance matrices 20 and il,
we need to perform an update for these inverses. We will assume that (x;,x;) is a
cannot-link constraint and discuss how to update the inverse of 20. The case of a
must-link constraint (x;,x;) can be treated in a similar way.

Let us assume that x; and x; are examples in the training set, hence, the
input matrix X and the kernel matrix K remain the same, while the inverse of X
becomes

-1
a1 1 1 1
zJnew = Mot I- o —2’— XHnew <I + KHnew) XT, (46)
€o €0 €o
where
Hoew = Ho+1,1] — 1,1 —1;17 +1;1]. (4.7)

One immediately observes that the inversion of f]new in Eq. (4.6) involves the
computation of

1 —1
Tnew = Hnew (I + KHnew) .
€0

In order to compute Ty efficiently, we will perform the update for Hy in four
steps instead of one as in Eq. (4.7). In each step, we add only a rank-one matrix
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to Hp, while keeping track of the matrix Tyew. From Eq. (4.7), it is easy to see
that Hg involves only four types of rank-one matrix update that are 11-11-T , —11-1;7
-1, 12»T, and 1; 1jT. By abuse of notation, we continue to write Hey to denote the
matrix Hy after adding one of those rank-one matrices, i.e.

H,w = Hy +al,1] , (4.8)

where @ € {—1,1} and a,b € {i,j}. At each step, we also keep track of the
matrices

1
Zo =1+ —KHy,
€0

—1
1
T, = Hy (I + KHO) =HoZ,"',
€0

and Z, 1 The reason for doing so is to avoid extra computations by storing the
previous computation results in each update. Next, we will show that
1 _ _
Znew =1+ :KHnew s Tnew = Hnewznelwa and Znelw
0
can be computed with a complexity of O(n?) instead of O(n?) as the naive method.

After each step, we set Zg = Zyew, To = Thew, Ho = Hyew, and Zal = Z;elw to
perform the next step.

We now explain how to perform the update in one step. Substituting Eq. (4.8)
into Zpew gives

1 1
Zoew =1+ —KH, o, =1+ —K(Hy +al,1))
€0 €0
1
—T+ —KHy+ 2K, 1] =Zo+ 2K.,.1, .
€0 €0 €0

The modification on Zyey involves only the computation of K_al;r7 which scales as
-1
new?’

O(n?). In order to compute Z we consider the Sherman-Morrison formula (Pe-

tersen and Pedersen, 2012) given by

A_71 dTA71
(A+cd' ) t=A"1— % .
1+4d A "¢
Accordingly, it follows that
21—zt 0% KallZ' o0 o

c0+1, 250K,

where u = aZy 'K o /(e0 + 1] Zg 'aK ) and v = 1] Z;'. Note that both vectors
u and v are computed in O(n?), therefore, the computation of Z_} also scales as
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O(n?). Consequently, Tpey can be computed in O(n?) as

Thew = HnewZ71 = (HO + ozlale)(Zgl — uvT)

new

=Ty — (Hou)v—r +a(l- 1Ju)1av—r .

So far, we have assumed that x; and x; are examples in the training set. Of
course, upon the arrival of a new pairwise constraint that is formed by new examples,
we should also add these new examples to the training set before performing the
above updates. The task now is to keep track of the matrices Zg, Ty and Zal
efficiently. Next, we will explain how to perform this task after adding a new
example to the training set in O(n?).

Adding a new example

In the following, we will denote by x the newly arrived example. Without loss of
generality, assuming that x will be added at the end of the training set, the input
matrix X becomes X, ow = (X x). It follows that the kernel matrix K and the

matrix Hy are changed to
bl K X'x
Knew = (X ) = ;
(xT > x (xTX XTX>

H
Hnew = o 0 )
0 O

where 0 is a zero matrix with the appropriate dimensions. Note that K., and
H,.c,, are computed in O(n?). Consequently, we should update the matrices Zg, Ty,
and Z ! to make the update procedure in the previous subsection feasible.

We start by computing Z., as follows

1 1({ K X'x\(H, 0
Znew =1+ *Kneanew =14+ —
€0 €0 (xTX XTX> ( 0 0)

1 KHy, O Zy 0
:I+— T = 1T .
o \xTXH, 0 LxTXH, 1

The modification of Z,e, depends only on the computation of x" XHj, which
scales as O(n?). Applying block matrix inversion (Petersen and Pedersen, 2012)

-1
A B\ F~! ~A'BG™!
D E/] \-G'DA™! G! ’

given by
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where F = A — BE™'D and G = E — DA™ 'B, we can compute Z_' as fol-

-1
7-1 _ Zo 0 _ Z,* 0\
new Ix"XH, 1 —éxTXHozgl 1
This computation also scales as O(n?). Finally, Tyew can be decomposed as
Hy, 0 Zy'" 0
Thew = anwzr:clw = 0 1,7 " —1
0 0 —ox XHoZ," 1
_ (HoZg' o\ [Ty 0
L o o) \o o/

Finally, we set Zo = Zuew, To = Tnew, Ho = Hyew, Zg ' = Zo ko, X = Xpow, and

new)

lows

K = K, cw to perform the next step.

Pseudocode

To summarize the whole procedure of incorporating a new pairwise constraint
(x4,%;), a pseudocode is given in Algorithm 3. We use ¢t € {0,1} to denote the
type of the constraint (x;,x;), i.e. t = 0 for a cannot-link constraint and t = 1 for
a must-link constraint.

Algorithm 3 Incremental update for k-KISSME

Input: A pairwise constraint (x;,x;) of type t € {0,1};

Output: The updated matrices Z;, T, Zt_,1 H;, X and K;
1: for x + {x;,x;} do

. for (a,a,b) « {(1,4,4),(1,4,7),(=1,4,7),(—=1,4,4)} do
Update Z;, Ty, and Z;l as in Subsection 4.4.2;

10: Update H <+ H + odal,;r ;

11: end for

2: if x ¢ X then > adding a new example
3: Insert x into X, then update K and H;

4: Update Zgy, Ty, and Zal as in Subsection 4.4.2;

5: Update Z;, Ty, and Zfl as in Subsection 4.4.2;

6: end if

7: end for

8

9:
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4.5. Experiments

In this section, we evaluate the performance of our method on the task of identifying
people for five publicly available data sets from real-world surveillance video. First,
we describe the experimental settings. Then, we provide experimental results along
with discussions.

4.5.1. Experimental settings

Competing distance metric learning methods

We have implemented k-KISSME! in Matlab in order to compare its performance
with other distance metric learning methods, including the information-theoretic
metric learning (ITML) (Davis et al., 2007), the large-margin nearest neighbor
(LMNN) (Weinberger and Saul, 2009), the original KISSME (Kostinger et al.,
2012), and the cross-view quadratic discriminant analysis (XQDA) (Liao et al.,
2015). For k-KISSME, we apply the x? kernel (Vedaldi and Zisserman, 2012),
given by

2uﬂ)i

D
K(u,v) :Zu'—i—v"

i=1

Following Liao et al. (2015), the regularization parameter ¢ = 0.001 is chosen.
The constraints are extracted by forming all pairwise combinations of the training
examples. As the number of cannot-link constraints can be significantly larger than
that of must-link constraints, we use random subsampling to set the number of
cannot-link constraints to ten times the number of must-link constraints to prevent
very unbalanced problems.

Evaluation protocol

We adopt a single-shot experimental setting as evaluation protocol. More specifi-
cally, we randomly select all images of p persons to form the test set and the rest
to form the training set. Following the same experimental settings as used in (Liao
et al., 2015; Kostinger et al., 2012; Xiong et al., 2014), we split each data set into
two equal parts, one half for training and the other half for testing. Each test
set contains a gallery set and a probe set. We randomly select an image for each
person to form the gallery set and use the rest to form the probe set. In order to
facilitate the comparison with previously published results, the average cumulative

Source codes are available at
http://users.ugent.be/~bacnguye/k-KISSME.v1.0.zip
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§4.5. Experiments

matching accuracies at rank 1, 5, 10 and 20 are reported over ten runs to evaluate
the performance of a distance metric learning method.

Feature representation

We use the local maximal occurrence representation (LOMO) recently proposed
by Liao et al. (2015) to employ feature extraction for all the distance metric learning
methods. First, a multiscale Retinex transformation (Jobson et al., 1997) is applied
for image processing, resulting in a good representation of color and lightness. Then,
LOMO applies the scale-invariant local ternary pattern method (SILTP) (Liao
et al., 2010) to avoid intensity scale changes. Specifically, it locally constructs two
scales of SILTP histograms and one HSV histogram of pixel features in a sliding
window of size 10 x 10 to address viewpoint variations while maintaining local
characteristics of a person. Finally, LOMO applies a log transform to normalize
both HSV and SILTP features to unit length and obtains a 26,960-dimensional
descriptor for each image. Due to the very high dimensionality, we project the
extracted features into a 100-dimensional subspace using principal component
analysis (PCA). In addition, we also report the performance of k-KISSME and
XQDA based on the raw LOMO features because both of them can operate in a
high-dimensional input space without reducing the dimensionality. Empirically,
we have found that the results based on the raw LOMO features and its PCA
subspace can be significantly different.

4.5.2. Experiments with re-identification benchmark data
sets

We conduct extensive experiments on five data sets, including iLIDS (Zheng et al.,
2009), CAVIARA4REID (Cheng et al., 2011), 3DPeS (Baltieri et al., 2011),
PRID450S (Roth et al., 2014), and CUHKO1 (Li et al., 2013a), to validate
the effectiveness of the proposed k-KISSME method. A brief description of these
data sets is given in Table 4.1. These data sets are widely used and provide
many challenges in person re-identification, such as pose, viewpoint, background,
resolution, and so on. We report the experimental results in two groups: (1) the
performance comparison between k-KISSME and other distance metric learning
methods using the low-dimensional features, (2) the performance of k-KISSME
compared to other state-of-the-art methods. For the first group, we report the
cumulative matching rates of all the competing distance metric learning methods
based on the same 100-dimensional features using PCA. Additionally, the explicit
feature map ¢(u) = 1, where 4; = sign(ui)\/m , which resembles the Hellinger
kernel embedding (Vedaldi and Zisserman, 2012), is employed to turn KISSME into
a baseline nonlinear method (PCA+Helli.+KISSME) in the feature space mapped
by ¢. For the second group, we report the performance of k-KISSME using the raw
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Table 4.1: A brief description of the data sets used in our experiments.

Data set # individuals # images p

iLIDS 119 476 60
CAVIAR4REID 72 1,220 36
3DPeS 192 1,011 95
PRID4508 450 900 225
CUHKO1 971 3,884 486

LOMO features against previously published results. A more detailed description
and evaluation for each data set are described next.

The iLIDS data set? contains 476 images of 119 pedestrians taken from two non-
overlapping cameras at an airport. For each individual, the number of images varies
from 2 to 8. All images are normalized to the same size of 128 x 48 pixels. Most
of them contain several occlusions caused by luggage and people. We randomly
choose images of 60 persons to form the test set, i.e. p = 60. The performances of
k-KISSME and XQDA using the raw LOMO features against several state-of-the-
art methods, including LATENT-re-id (Sun et al., 2017), PCCA (Mignon and Jurie,
2012), LFDA (Pedagadi et al., 2013), SVMML (Li et al., 2013b), rPCCA (Xiong
et al., 2014), kLFDA (Xiong et al., 2014), MFA (Yan et al., 2007), and DCNNs (Ding
et al., 2015), are reported in Table 4.2. As can be seen from the table, k-KISSME
consistently outperforms the recent XQDA and other state-of-the-art methods.
Even compared to the deep net proposed in (Ding et al., 2015), k-KISSME obtains
a higher matching rate for rank 5, 10, and 20. Interestingly, k-KISSME achieves a
significantly higher performance at rank 1 on PCA features.

The CAVIAR4REID data set? contains 1,220 images of 72 persons taken from
two cameras at a shopping center in Lisbon. This data set is particularly designed
with the aim of maximizing appearance variations in resolution changes, lighting
conditions, and pose changes. There are 50 persons with both camera views and
the remaining 22 persons with one camera view. The number of images for each
individual varies from 10 to 20. Since the image sizes vary from 39 x 17 to 144 x 72
pixels, we normalize all images to the same size of 128 x 48 pixels in order to
extract the same set of features as is done in (Xiong et al., 2014). Table 4.3
shows the cumulative matching accuracy with p = 36 for k-KISSME and XQDA
using the raw LOMO features against several state-of-the-art methods, including
PCCA (Mignon and Jurie, 2012), LEFDA (Pedagadi et al., 2013), SVMML (Li et al.,
2013b), rPCCA (Xiong et al., 2014), KLFDA (Xiong et al., 2014), MFA (Yan et al.,
2007), and RMLLC (Chen et al., 2015). We can observe that k-KISSME obtains
a competitive result compared to XQDA and outperforms other state-of-the-art

https://www.gov.uk/guidance/imagery-library-for-intelligent-detection-systems
http://www.lorisbazzani.info/caviar4reid.html
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Table 4.2: The top matching rates (%) on the iLIDS data set. The best results are
highlighted in boldface.

Method Rank 1 Rank 5 Rank 10 Rank 20 Ref.
PCA+ITML 45.2 69.2 80.5 90.4 -
PCA+LMNN 43.5 66.6 77.8 88.1 -
PCA+KISSME 40.7 64.6 75.1 86.0 -
PCA+XQDA 42.2 65.7 77.2 89.2 -
PCA+Helli. +KISSME  40.8 64.7 75.5 86.2 -
PCA+k-KISSME 48.3 70.3 80.9 90.7 -

PCCA 23.0 51.1 67.0 83.3  (Xiong et al., 2014)
LFDA 32.2 56.0 68.7 81.6  (Xiong et al., 2014)
SVMML 20.8 49.1 65.4 81.7  (Xiong et al., 2014)
rPCCA 26.6 54.3 69.7 84.5  (Xiong et al., 2014)
kLFDA 36.5 64.1 76.5 88.5  (Xiong et al., 2014)
MFA 32.6 58.5 71.5 84.4  (Xiong et al., 2014)
DCNNs 52.1  68.2 78.0 88.8  (Ding et al., 2015)
LATENT-re-id 46.2 70.2 80.7 91.3 (Sun et al., 2017)
XQDA 43.5 69.9 81.8 93.3 -
k-KISSME 44.0 70.0 82.6 93.4 -
methods.

The 3DPeS data set* contains 1,011 images of 192 individuals captured from
8 different surveillance cameras. This data set is particularly designed for people
tracking and person re-identification. The number of images for each individual
varies from 2 to 26. Since the image sizes vary from 100 x 31 to 267 x 176 pixels,
we normalize all images to the same size of 128 x 48 pixels. Table 4.4 reports the
cumulative matching accuracy with p = 95 for k-KISSME and XQDA using the raw
LOMO features against other state-of-the-art methods, including PCCA (Mignon
and Jurie, 2012), LFDA (Pedagadi et al., 2013), SVMML (Li et al., 2013b),
rPCCA (Xiong et al., 2014), KLFDA (Xiong et al., 2014), and MFA (Yan et al.,
2007). The results show that k-KISSME achieves the best overall performance. In
particular, it achieves a recognition rate of 48.7% at rank 1.

The PRID450S data set® contains 900 images from 450 single-shot image pairs
captured by two different surveillance cameras. It is a very challenging data set due
to different viewpoint changes, background interference, and partial occlusion. In
our experiment, each image is normalized to 128 x 48 pixels. Since the PRID450S is
a newly constructed data set, there are only a few results reported in the literature.
We show the cumulative matching rate with p = 225 of k-KISSME and XQDA using

4 http://imagelab.ing.unimore.it/visor /3dpes.asp
5 https://www.tugraz.at/institute/icg/research/team-bischof/Irs/downloads/prid450s/
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Table 4.3: The top matching rates (%) on the CAVIAR4REID data set. The best results
are highlighted in boldface.

Method Rank 1 Rank 5 Rank 10 Rank 20 Ref.
PCA-+ITML 25.3 53.6 71.7 89.6 -
PCA+LMNN 38.2 59.4 71.7 86.4 -
PCA+KISSME 44.3 72.6 85.7 96.6 -
PCA+XQDA 41.8 71.0 84.8 96.2 -
PCA+Helli.+KISSME  44.9 72.8 85.9 96.6 -
PCA-+k-KISSME 46.0 74.6 86.8 96.9 -

PCCA 29.1 62.5 79.7 94.2  (Xiong et al., 2014)
LFDA 31.7 56.1 70.4 86.9  (Xiong et al., 2014)
SVMML 25.8 61.4 78.6 93.6 (Xiong et al., 2014)
rPCCA 30.4 63.6 80.4 94.5  (Xiong et al., 2014)
kLFDA 36.2 64.0 78.7 92.2  (Xiong et al., 2014)
MFA 37.7 67.2 82.1 94.6  (Xiong et al., 2014)
RMLLC 41.2 73.5 85.0 94.4 (Chen et al., 2015)
XQDA 42.3 71.8 86.0 96.0 -
k-KISSME 41.9 71.5 85.5 96.1 -

Table 4.4: The top matching rates (%) on the 3DPeS data set. The best results are
highlighted in boldface.

Method Rank 1 Rank 5 Rank 10 Rank 20 Ref.
PCA+ITML 26.8 51.3 64.9 79.7 -
PCA+LMNN 39.5 62.3 74.6 85.4 —
PCA-+KISSME 45.7 69.7 79.1 88.2 -
PCA+XQDA 44.4 69.7 80.0 89.4 -
PCA+Helli.+KISSME  45.3 68.9 78.1 87.9 -
PCA+k-KISSME 45.7 69.8 79.3 88.2 -

PCCA 36.4 66.3 78.1 88.6  (Xiong et al., 2014)
LFDA 39.1 61.7 71.8 82.6  (Xiong et al., 2014)
SVMML 27.7 58.5 72.1 84.1  (Xiong et al., 2014)
rPCCA 40.4 69.5 80.5 90.0 (Xiong et al., 2014)
kLFDA 48.4 72.5 82.1 89.9  (Xiong et al., 2014)
MFA 42.3 65.3 75.2 84.8  (Xiong et al., 2014)
XQDA 46.7 70.7 81.2 91.0 —
k-KISSME 48.7 72.6 83.9 92.1 -

the raw LOMO features compared to some state-of-the-art methods, including
EIML (Hirzer et al., 2012a), SCNCN (Yang et al., 2014), ECM (Liu et al., 2015b),
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Table 4.5: The top matching rates (%) on the PRID450S data set. The best results are
highlighted in boldface.

Method Rank 1 Rank 5 Rank 10 Rank 20 Ref.
PCA+ITML 30.6 60.4 73.2 85.3 -
PCA+LMNN 45.7 74.9 84.7 91.2 -
PCA+KISSME 41.6 71.3 81.1 89.4 -
PCA+XQDA 48.7 7T 86.1 93.2 -
PCA+Helli.+KISSME  41.7 71.9 80.2 89.8 -
PCA+k-KISSME 47.4 76.4 85.0 91.9 -

EIML 35.0 - 68.0 77.0  (Yang et al., 2014)
SCNCD 41.6 68.9 79.4 87.8  (Yang et al., 2014)
ECM 419 663 769 842  (Liuet al, 2015b)
QRKISS 57.1 80.7 88.0 - (Zhao et al., 2018)
XQDA 49.6 77.6 86.3 92.4 -
k-KISSME 53.9 81.0 88.8 94.5 -

and QRKISS (Zhao et al., 2018), in Table 4.5. Clearly, k-KISSME obtains the best
performance on most of the reported ranks.

The CUHKO1 data set® contains 3,884 images of 971 pedestrians captured from
two disjoint cameras on a college campus. Each camera has taken two images of
every individual. In our experiment, all images are downsized to a resolution of
128 x 48 pixels to reduce the computation time. We set p = 486 in order to facilitate
the comparison with other methods. Table 4.6 shows the cumulative matching
accuracy of k-KISSME using the raw LOMO features against some state-of-the-
art methods, including kKLFDA (Xiong et al., 2014), Ensembles (Paisitkriangkrai
et al., 2015), IDLA (Ahmed et al., 2015), ImpTrpLoss (Cheng et al., 2016), and
DeepRanking (Chen et al., 2016). Clearly, k-KISSME achieves the best matching
performance among the competing distance metric learning methods on the PCA
features. Despite its simplicity, k-KISSME obtains a better performance than deep
learning methods at rank 1, while being less accurate at rank 5, 10, and 20. This
result is not surprising since deep learning methods use advanced techniques such
as data augmentation (Cheng et al., 2016) and additional training data (Chen
et al., 2016) to improve the matching rate as well as to avoid overfitting.

6 http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
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Table 4.6: The top matching rates (%) on the CUHKO1 data set. The best results are highlighted in boldface.

Method Rank 1 Rank 5 Rank 10 Rank 20 Ref.
PCA+ITML 22.6 40.6 50.4 61.5 -
PCA+LMNN 42.3 61.5 70.5 79.2 -
PCA+KISSME 52.8 73.6 81.2 87.1 -
PCA+XQDA 50.6 72.4 80.5 87.3 -
PCA+Helli.+KISSME  51.9 73.8 80.9 87.6

PCA+k-KISSME 54.6 75.4 82.5 88.6 -

kLFDA 32.8 59.0 69.6 79.2 (Chen et al., 2016)
IDLA 47.5 71.5 80.0 - (Ahmed et al., 2015)
Ensembles 53.4 76.3 84.4 90.5 (Paisitkriangkrai et al., 2015)
DeepRanking 50.4 75.9 84.1 91.3 (Chen et al., 2016)
ImpTrpLoss 53.7 84.3 91.0 96.3 (Cheng et al., 2016)
XQDA 53.5 75.8 83.9 89.9 -
k-KISSME 54.3 74.2 80.5 87.0 -
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According to the overall results, we can see that the kernelized version of
KISSME leads to significant improvements over the original KISSME. Our method
k-KISSME yields the best performance on most data sets, demonstrating a great
flexibility and accuracy for matching compared to other competing methods. It is
also interesting to note that k-KISSME consistently obtains high rank r matching
rates with small values of r. This provides important information for a person
re-identification system because the top matched images are usually verified by a
human operator (Gray et al., 2007). We also note that k-KISSME outperforms
most of the linear methods on the PCA features. The reason for this may lie in the
fact that the projection made by PCA may intertwine the useful features and the
noisy features. Consequently, the data set may be transformed into a nonlinearly
separable problem, thus making it difficult for linear methods. As commonly used
in computer vision, an explicit feature map, such as the signed square root, can
approximate nonlinear distance metric learning methods in the feature space by
linear ones. Although this approach is scalable for large data sets, the improvement
is still very limited (see the results of PCA+KISSME and PCA+Helli.+KISSME).
In contrast, k-KISSME employs the kernel trick to find a good solution in the
implicit feature space, making it more robust for complex tasks.

4.5.3. Running time

The average training times of the competing distance metric learning methods on
the low-dimensional as well as the raw LOMO features are shown in Table 4.7. The
running time is computed on a laptop with 4 Intel Core i5-5200U CPUs (2.20GHz)
and 8GB RAM. Note that the results include the time for computing the kernel
matrix. As can be seen from the table, XQDA is the least time consuming on
all these data sets, followed by KISSME. It should be noticed that k-KISSME
is significantly faster than other iterative methods such as ITML and LMNN on
small-sized data sets. The slower speed on large-sized data sets of k-KISSME is a
result of computing the kernel matrix. Further running time improvements can
be anticipated by using advanced techniques to speed up the calculation of the
kernel matrix. Although our method has mainly been implemented in MATLAB, a
careful implementation can significantly improve the real computation time. More
importantly, k-KISSME can perform efficiently on very high-dimensional data sets,
which could be computationally challenging for those methods that directly learn
a distance metric from the input space. It requires significantly less memory and a
lower training time compared to the deep neural networks. Moreover, k-KISSME
is very simple to implement, computationally efficient, and serves our main goal,
which is to develop an efficient system for person re-identification.
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Table 4.7: Average training time (in seconds) of the competing distance metric learning
methods. The best results are highlighted in boldface.

Method iLIDS CAVIAR4REID 3DPeS PRID450S CUHKO1

ITML 78.96 76.03 57.63 63.33 38.68
LMNN 61.23 209.54 231.41 267.51  2,908.68
KISSME 0.09 0.54 0.24 0.06 1.03
XQDA 0.03 0.02 0.08 0.05 0.33
k-KISSME  1.49 22.65 7.23 1.82 51.17

4.5.4. Experiments with dimensionality

In this subsection, we investigate how the performance of distance metric learning
methods varies with different subspace dimensions. For this purpose, we report
the matching rate at rank 1 for ITML, LMNN, KISSME, XQDA, and k-KISSME
on the iLIDS data set with different dimensions extracted by PCA (see Fig. 4.2).
We keep the same experimental settings for all the competing methods. As can be
seen from this figure, k-KISSME consistently outperforms other methods over all
the reported dimensions. We found that KISSME is very sensitive to the choice of
the number of PCA dimensions, yielding a relatively high variance over different
dimensions. This behavior was also noted by Xiong et al. (2014). Nevertheless,
we observe that XQDA and k-KISSME tend to have a more stable performance
over the different dimensions. The latter can be easily explained by the fact that
both XQDA and k-KISSME add a small regularizer to the diagonal elements of
the covariance matrices, making the estimation more smooth and robust, especially
when the dimensionality is increased.

4.5.5. Experiments with incremental learning

We further verify the efficiency and effectiveness of using the incremental update
procedure described in Subsection 4.4.2 for k-KISSME. As an illustration, we
compare k-KISSME and the method that learns a dissimilarity function (denoted
by k-KISSME (inc)) in terms of training time and rank 1 matching rate on
the CAVIARAREID and 3DPeS data sets (see Fig. 4.3). The same experimental
settings are used. We keep on randomly adding a pairwise constraint on each
update. As we pointed out in Subsection 4.4.2, ¢y and €; act as hyperparameters
that can be used to adjust the regularizing terms of the covariance matrices. For
the CAVIAR4REID and 3DPeS data sets, we set the values of ¢y and €1 to 1 and
0.05, respectively, which yield the best results in most of our experiments. Clearly,
these hyperparameters should be determined by the characteristics of the data sets
as well as the pairwise constraints.
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Figure 4.2: Illustration of rank 1 matching rate vs. number of dimensions on the iLIDS
data set.

As expected, using the incremental update procedure yields a significant speedup,
while obtaining a competitive performance. Like many online learning algorithms,
fluctuations in performance are mainly due to the randomness of adding constraints.
However, this incremental technique ensures that the similarity function is im-
mediately trained and will become more accurate over time as more new points
and pairwise constraints are added. The advantage of incremental k-KISSME is
particularly apparent when there is an unbounded stream of possible constraints
to learn from.

4.6. Conclusion

Person re-identification is a challenging problem in video surveillance due to the
large variations in appearance by using different cameras. To deal with this chal-
lenge, we have proposed a distance metric learning method, named k-KISSME, by
incorporating kernels into the KISSME method. This allows k-KISSME to operate
in a nonlinear feature space induced by a kernel function. As a result, k-KISSME
improves the recognition rate and could be applied in learning a distance metric
from structural objects without having a vectorial representation. Moreover, we
have also introduced a fast version for k-KISSME avoiding expensive recompu-
tations in an incremental setting. Experiments on five real-world data sets have
demonstrated the effectiveness of k-KISSME compared to other distance metric
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Figure 4.3: Illustration of the incremental update procedure on the CAVIAR4REID
and 3DPeS data sets (left) training time (in seconds) vs. number of constraints, (right)
rank 1 matching rate vs. number of constraints.

learning methods for person re-identification tasks.
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5 Case study: Learning single-cell
distances from cytometry data

Recent years have seen an increased interest in employing data analysis tech-
niques for the automated identification of cell populations in the field of cytometry.
These techniques highly depend on the use of a distance metric to measure the
similarities between single cells. Without any additional knowledge, the Euclidean
distance metric is commonly used, yielding a suboptimal solution. In this chapter,
we exploit the availability of single-cell labels to find an optimal distance metric
from the data. The usefulness of such a distance metric is discussed in various
applications. We show that current distance-based methods can be improved by
using an appropriate Mahalanobis distance metric. In particular, our approach
is illustrated for cytometry data from two different origins, i.e. flow cytometry
applied to microbial cells and mass cytometry for the analysis of human blood cells.
Experiments indicate that the resulting distance metric can significantly improve
the cell-population identification.

The material of this chapter is based on the following publication:
Nguyen, B., Rubbens, P., Kerckhof, F.-M., Boon, N., De Baets, B., and Waegeman,
W. (2019b). Learning single-cell distances from cytometry data. Cytometry Part
A, submitted

5.1. Motivation

Due to the fact that the amount of data and the number of dimensions (e.g. the size
of multicolor panel designs or the introduction of mass cytometry) are increasing in
the field of cytometry, automated data analysis techniques are becoming increasingly
popular (O’Neill et al., 2013; Brinkman et al., 2016; Saeys et al., 2016; Rahim
et al., 2018). These techniques include a number of preprocessing steps, such as
specific transformations and quality controls of the data (Finak et al., 2010; Monaco
et al., 2016). They are often followed by dimensionality reduction and clustering
techniques to visualize the data or to determine cell populations (Ge and Sealfon,
2012; Amir et al., 2013; Van Gassen et al., 2015; Levine et al., 2015). The latter
techniques usually depend on a predefined distance metric in order to measure
the distance between single cells. In most cases, a simple choice is the Euclidean
distance metric. Other distance metrics, such as the Mahalanobis distance metric,
have been considered (Pyne et al., 2009; Aghaeepour et al., 2011; Pouyan et al.,
2016), but are less popular.
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In addition, the availability of single-cell annotation has opened the door
to exploring the use of supervised or semi-supervised machine learning tech-
niques (Rubbens et al., 2017a; Lux et al., 2018). In particular, distance met-
ric learning exploits such available knowledge by learning a distance metric that
preserves similarity relationships in the data. The goal is to learn a distance
metric that results in small distances between examples of the same class and large
distances between examples of different classes. Recent developments in distance
metric learning have shown that using an appropriate distance metric can lead
to great performance for distance-based techniques (Weinberger and Saul, 2009;
Bellet et al., 2015). In addition, once the distance metric is learned, it can be
incorporated into downstream multivariate analysis techniques. Therefore, distance
metric learning is particularly appealing for experiments in which prior knowledge
such as single-cell labeling is available.

In this chapter, we perform an analysis of cytometry data using distance metric
learning. More specifically, we determine a Mahalanobis distance metric using the
Distance Metric Learning through Maximization of the Jeffrey divergence (DMLM.J)
method, which is described in Chapter 3. DMLMJ enables the quantification of
single-cell distances in a data-driven way. In order to characterize and validate the
functionality of distance metric learning for single-cell data, several experiments are
conducted for two different cytometry data sets, one generated by flow cytometry
of a synthetic microbial ecosystem and one generated by mass cytometry (CyTOF)
for human blood cells. Data are retrieved from experiments that are publicly
available. Experiments and evaluation metrics are reported per data set. Readers
are referred to the original publications for a full overview of data collection and
preprocessing. The performance of DMLMJ is compared to the baseline Euclidean
distance metric. Experiments and evaluation metrics are reported per data set. All
processed data sets, MATLAB code for DMLMJ and Python scripts can be found
at https://github.com/bacnguyencong/CytoDMLMJ.

5.2. Synthetic microbial communities

5.2.1. Data description

Data set 1: In stlico bacterial communities

Data from 20 individual bacterial cultures measured through flow cytometry (FCM)
are retrieved from FlowRepository ID: FR-FCM-ZY6M (Rubbens et al., 2017b).
In brief, samples are stained with SYBR Green I and measured subsequently. Most
bacterial cultures (n = 17) are in early-to-mid stationary phase, the rest (n = 3)
still are in exponential or linear growth phase. The samples are analyzed on a 3-laser
FACSVerse flow cytometer (BD Biosciences), which contains two scatter detectors
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(forward and side) and eight fluorescence detectors, in which the FITC-detector
(527/32 nm) is the targeted detector. Because peak area, height and width signals
are captured, the experiment results in 30 measured variables in total. All variables
are considered in DMLM.J, although only a subset of them contain biologically
relevant information (Rubbens et al., 2017b). In this way, the functionality of
DMLMJ can be evaluated, as we know that a linear transformation should discover
this information automatically. A full description of experimental details and
preprocessing can be found in Rubbens et al. (2017b). After measurement, samples
are denoised in the asinh-transformed bivariate FITC-H — PerCP-Cy5.5-H space,
using a robust digital gating strategy (Props et al., 2016). To ensure the quality of
the data, the data are additionally filtered using the automated package flowAl
(v1.4.4., default settings, target channel = FITC, changepoint detection penalty =
200) (Monaco et al., 2016). A full list of bacterial species and experimental details
can be found in Rubbens et al. (2017a,b).

Data set 2: In silico autofluorescent microbial communi-
ties

Data are collected from FlowRepository ID: FR-FCM-ZYLB (Sgier et al., 2016), in
which cyanobacterial and algal cultures are cultured and measured by FCM, using
a Beckman-Coulter Gallios flow cytometer. As these microbial populations exhibit
autofluorescence, no fluorescence staining is needed. Ten fluorescence and two
scatter detectors measure area, height and width signals from the pulse, resulting
in 36 variables in total describing the experiment. Only samples that contain more
than 500 cells per replicate are considered, resulting in 31 individual strains, which
are used for further analysis.

5.2.2. Experimental setup

Microbial communities are created in different compositions using a data-aggregation
step. In other words, cells are sampled from bacterial populations that are measured
individually and combined into artificial communities, so-called in silico communi-
ties (Rubbens et al., 2017a). The same number of cells (n = 10,000 for the first
data set, n = 1,000 for the second data set) are sampled for every population,
distributed over the number of technical replicates that are available. Half of the
cells are added to a training set and the other half to the test set for every in
silico community. The complexity of a community can be expressed in terms of the
observed species richness S, denoting the number of distinct microbial populations
that are combined in a community. The total number of cells in both training and
test set amounts to S x n. The following experiments are conducted for both data
sets. In silico communities are assembled for every increment of S ranging from
two to ten. Performance is evaluated in terms of classification accuracy of cells
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that are part of a held-out test set. In all cases, cells are classified according to
their phylogeny using k-NN classification based on the Euclidean distance metric or
the Mahalanobis distance metric learned by DMLMJ. Experiments are carried out
using two different settings, on the raw data and on data for which each variable is
asinh-transformed.

5.2.3. Results

A total of 90 different microbial communities were assembled by using a data-
aggregation step, creating in silico communities. Ten communities were sampled for
every increment of S = 2, ..., 10, in which S denotes the total number of microbial
populations that were present in a community. Note that these populations were
determined beforehand, and upon creation of an in silico community, a number of
these populations will overlap. The impact of the use of a learned Mahalanobis
distance metric on k-NN classification was evaluated in terms of the classification
accuracy, which denotes the fraction of correctly labeled cells according to the
phylogeny of a single cell. We compared the Mahalanobis distance metric learned by
DMLMJ to the Euclidean distance metric in the context of k-NN classification with
and without transforming with the use of asinh. The accuracy was evaluated using
a held-out test set. This was done for two different data sets, the first containing
20 bacterial populations stained with SYBR Green I, the second containing 31
microbial populations (cyanobacteria and algae) with autofluorescent properties
(see Fig. 5.1).

Using the arcsine hyperbolic function as a preprocessing step for microbial
flow cytometry data improved classification accuracy for both data sets (average
increase in accuracy was 4.1% for data set 1 and 7.9% for data set 2). Performance
increased subsequently when DMLMJ was applied on asinh-transformed data (on
average 5.4% for data set 1, 2.7% for data set 2). An increase in the number of
populations resulted in a drop in accuracy for all methods. DMLMJ was able
to boost the performance to a larger extent when applied to data that was not
transformed (average increase in accuracy now becomes 11.8% for data set 1 and
5.5% for data set 2). Note that optimizing the distance metric without transforming
the data resulted in the best performance for data set 1 (average accuracy over all
communities was 77.7%), while for data set 2 a combination of asinh and DMLMJ
resulted in the best predictions (which resulted in an average accuracy over all
communities of 88.6%). However, when using the Euclidean distance metric, the
use of asinh improved identification considerably for both data sets. A number of
variables for data set 1 did not contain biologically relevant information, which
DMLMJ was able to successfully filter out by means of a linear transformation.
We conclude that DMLMJ captured the similarity between examples of the same
phylogeny and gave rise to a linear transformation of the data resulting in an
improved classification of single cells.
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Figure 5.1: Classification accuracy of k-NN classification for an increasing population
richness S with and without the use of DMLM.J. Each boxplot contains the classification
accuracy for ten communities. Each box displays the 25% and 75% quartiles of the
classification accuracy, of which the whiskers extend the range to maximal 1,5 times the
interquartile range. Points that lie outside this range are visualized as outliers.

5.3. Mass Cytometry

5.3.1. Data description

Data set 1: 13-dimensional CyTOF Data
Data originate from one healthy individual, in which bone marrow mast cells

(BMMCs) were analyzed using a 13-color panel. Cell populations were labeled
after manual gating using all markers; all markers were used for data analysis.
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This data set, as processed by Weber and Robinson (2016), is publicly available on
FlowRepository (ID: FR-FCM-ZZPH).

Data set 2: 32-dimensional CyTOF Data

The second CyTOF data set originates from two healthy individuals, in which
BMMCs were analyzed using a 32-color panel. Cell populations were labeled after
manual gating, which was done using 19 out of the 32 surface markers. All markers
were used for data analysis. This data set, as presented by Weber and Robinson
(2016), is publicly available on FlowRepository (ID: FR-FCM-ZZPH).

5.3.2. Experimental setup

Following Weber and Robinson (2016), data were preprocessed using an asinh
transformation with a standard cofactor of 5, f(z) = asinh(z/5). Training and test
sets were created in a stratified manner. For the first data set, 20,000 labeled cells
were added to the training set and test set, respectively. For the second data set,
data were divided according to the individual (ID 1 or 2), before the creation of a
training and test set, which each contained 15,000 cells. The following experiments
were conducted:

1. Single-cell classification was compared using the Euclidean distance metric
and the Mahalanobis distance metric learned by DMLMJ in the context
of k-NN classification. The hyperparameters were tuned to maximize the
average Fl-score per cell class, which accounts for imbalanced data sets.
The Fl-score is calculated as the harmonic average of the precision (which
quantifies the number of false positives) and recall (which quantifies the
number of false negatives), and lies between zero and one. An Fl-score of
one resembles perfect cell label classification.

2. The visualization performance was assessed using t-SNE (van der Maaten
and Hinton, 2008) on test sets using the Euclidean distance metric and the
Mahalanobis distance metric learned by DMLMJ.

5.3.3. Results

DMLMJ was evaluated for two mass cytometry (CyTOF) data sets. Data were
first split in a training and test set, after which the Mahalanobis distance metric
was determined based on the training sets in function of the average F1-score over
all cell populations. Performances of k-NN classification are reported for the test
sets (Fig. 5.2). Although identification performance using the Euclidean distance
metric is high, DMLMJ improved the performance to some extent.
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Figure 5.2: Fl-score with and without the use of DMLMJ using k-NN classification of
single-cell labels for CyTOF data. Boxplots show the distribution of F1-scores per data
set and per cell population, in which each cell population is represented by a black dot.
Each boxplot displays the 25% and 75% quartiles of the Fl-score, of which the whiskers
extend the range to maximal 1,5 times the interquartile range. Points that lie outside
this range are visualized as outliers.

Next, we employed t-SNE on the test sets for visualization purposes, with and
without the use of DMLMJ to visualize the data (Figs. 5.3, 5.4, and 5.5). Although
t-SNE already returned an acceptable visualization of the data, DMLMJ improved
the visualization to some extent. Most notably, megakaryocyte and erythroblast
cells were more separated for the Levine_13dim data set as opposed to a fully
unsupervised analysis of the data. In the Levine_32dim data set, CD16+ natural
killer (NK) cells were clearly separated from CD16- NK cells for individual 1. For
individuals 1 and 2, basophils were separated from plasmacytoid dendritic cells
(pDCs) and the CD34+/CD38+/CD13+ hematopoietic stem and progenitor cells
(HSPCs). In general, separation between large cell populations that were already
separated improved slightly because of DMLMJ.
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Figure 5.3: Visualization of cell populations using t-SNE the 2-dimensional space for
the Levine_13dim data set, with and without the use of DMLMJ.
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Figure 5.4: Visualization of cell populations using t-SNE the 2-dimensional space for
the Levine_32dim data set, with and without the use of DMLMJ.
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Figure 5.5: Visualization of cell populations using t-SNE in the 2-dimensional space for
the Levine_32dim data set, with and without the use of DMLM.J.

5.4. Discussion and conclusion

In this chapter, we have explored the use of Distance Metric Learning through
Maximization of the Jeffrey divergence (DMLMJ) for single-cell data analysis. A
thorough survey was performed considering the functionality of distance metric
learning for different cytometry data sets. While the Euclidean distance metric is
often used for identification of cell populations, we have showed that the performance
of distance-based multivariate analysis techniques can be improved by employing an
appropriate distance metric. A few studies have discussed the impact of alternative
distance measures for automated cell population identification. For instance,
Van Gassen et al. (2015) reported that the Euclidean distance metric gave the
best results compared to the Manhattan and Chebyshev distance metrics for the
FlowSOM algorithm. Boddy et al. (2000) noted that a Mahalanobis distance metric
consistently resulted in a 4% increase in classification accuracy compared to scaled
Euclidean distances for the classification of phytoplankton single cells using neural
networks.
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Distance metric learning can provide an alternative way to incorporate domain
knowledge. When cell population annotation is available for at least one sample,
this information can be included in automated cell annotation techniques to analyze
samples that have been studied with the same experimental setup. Naturally, the
performance of distance metric learning depends on the quality of the manually
annotated dataset. We hypothesize that the quality of the data affected the
results for the Levine_32dim dataset, in which the distance metric determined for
individual 1 resulted in a comparable performance when used for the analysis of
individual 2, but this did not hold in the opposite way.

The performance of distance-based data analysis techniques depends on the
used distance metric. Distance metric learning provides a solution to improve their
performance when some supervised information, e.g. single-cell labels, is available.
Since distance metric learning is a robust property of the data setup at hand, it
offers a way to incorporate domain knowledge into additional multivariate analyses,
which can help to address sources of variability, such as microbial heterogeneity or
batch effects in mass cytometry.
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DISTANCE METRIC LEARNING
USING TRIPLET CONSTRAINTS

95






6 Scalable large-margin
distance metric learning using

stochastic gradient descent

In this chapter, we propose a large-margin-based approach, named Large-Margin
Distance Metric Learning (LMDML), for learning a Mahalanobis distance metric.
LMDML employs the principle of margin maximization to learn the distance metric
with the goal of improving k-NN classification. The main challenge of distance
metric learning is the positive semidefiniteness constraint on the Mahalanobis
matrix. Semidefinite programming is commonly used to enforce this constraint, but
it becomes computationally intractable on large-scale data sets. To overcome this
limitation, we develop an efficient algorithm based on stochastic gradient descent
(SGD). Our algorithm can avoid the computations of the full gradient and ensure
that the learned matrix remains within the positive semidefinite (PSD) cone after
each iteration.

The material of this chapter is based on the following publication:
Nguyen, B., Morell, C., and De Baets, B. (2018b). Scalable large-margin dis-
tance metric learning using stochastic gradient descent. IEEE Transactions on
Cybernetics, accepted

6.1. Motivation

Most studies focus on learning a Mahalanobis distance metric due to its wide use
in many real-world applications (Bellet et al., 2015). The Mahalanobis distance
metric is parametrized by a symmetric positive semidefinite (PSD) matrix M €

RPXP where the distance between two examples u and v in R is computed as

dm(u,v) = y/(u—v)TM(u — v). Alternatively, several authors propose to learn
a similarity function instead of a distance metric (Chechik et al., 2010; Liu et al.,
2014, 2015a). They focus on learning a bilinear similarity function, parametrized

RPXP where the similarity between two examples u

by an arbitrary matrix M €
and v in R” is computed as syr(u, v) = u' Mv. The bilinear similarity function
is very close to the cosine function when M is set to be the identity matrix and u,
v are normalized to unit length. In general, the matrix M is not required to be

PSD, or not even to be symmetric.

Nevertheless, in both cases, the positive semidefiniteness and the symmetry
constraints on the matrix M may provide a useful regularization tool to prevent over-
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fitting on high-dimensional data sets (Chechik et al., 2010). Furthermore, we can
project the data into a new space by factorizing M = LL", such that the distance
or similarity is computed in the transformed space u = L " u, where the Euclidean
distance corresponds to dy and the dot product corresponds to spg.

In recent years, the computational efficiency of distance metric learning ap-
proaches has been substantially improved by using the projected gradient de-
scent (Weinberger and Saul, 2009), coordinate descent (Nguyen et al., 2016),
Frank-Wolfe (Ying and Li, 2012), and Bregman projection (Davis et al., 2007)
algorithms. However, there still remain some scalability issues in the current
literature on learning a distance metric.

The first scalability issue is related to the number of features. Learning a
Mahalanobis distance metric requires to estimate a D x D matrix. This quadratic
dependency poses a huge challenge for real-world problems that involve thousands
of features, since the performance of a learning algorithm degrades as the number
of features grows (Duda et al., 2012). This is often referred to as the “curse
of dimensionality.” Another limitation arises from the positive semidefiniteness
constraint on the Mahalanobis matrix which requires projections onto the PSD
cone, which scales as O(D3). In high-dimensional settings, most of the existing ap-
proaches become quickly intractable. Although there exist dimensionality reduction
techniques such as principal component analysis (PCA) (Jolliffe, 2005), it may be
still impossible to satisfactorily reduce the number of features without a significant
loss of information contained in the training data. For these reasons, many distance
metric learning algorithms are successful in low-dimensional settings (Bar-Hillel
et al., 2005; Wang, 2011a; Weinberger and Saul, 2009; Ying and Li, 2012; Xing
et al., 2002; Shen et al., 2012), however, they fail when applied in high-dimensional
settings.

The second scalability issue is related to the number of training examples.
Considering the increasing amount of data, the computational complexity of a
learning algorithm becomes a critical limitation. One solution is to use online
learning algorithms, particularly stochastic gradient descent (SGD) (Robbins and
Monro, 1951), which considers only a single example at each iteration. The
SGD algorithm is significantly more scalable than the batch gradient descent
algorithm (Bottou, 1991). However, in the distance metric learning context, both
algorithms share a common limitation: they need to make a projection of the
Mahalanobis matrix onto the PSD cone after each iteration.

Our distance metric learning algorithm is motivated by these issues. In par-
ticular, we propose an efficient strategy based on SGD in which each iteration
requires a cheaper computation than performing the eigen-decomposition to keep
the solution within the PSD cone. By using a hinge loss function for learning
the Mahalanobis distance metric, our algorithm can further reduce the number of
updates and projections. In short, our main contributions are the following:

98



§6.2. Related work

(i) We propose a distance metric learning approach for k-NN classification based
on the principle of margin maximization inspired by the margin definition
in (Weinberger and Saul, 2009). By considering the trace-norm minimization,
our approach can lead to a low-rank solution, thus reducing the risk of
overfitting. We refer to the proposed approach as Large-Margin Distance
Metric Learning (LMDML).

(ii) To apply LMDML in large-scale settings, we develop an efficient online
algorithm based on SGD. Our algorithm, named LMDML-A, keeps the
solution always within the PSD cone by computing an appropriate step size
in each iteration. We use the Schur complement to find an upper bound of
the step size that guarantees that the solution remains within the PSD cone.

The remainder of this chapter is organized as follows. Section 6.2 briefly reviews
some related work, focusing on the main problems of large-scale distance metric
learning with existing algorithms that are addressed by our algorithm. Section 6.3
introduces our distance metric learning approach (LMDML). Section 6.4 presents
an online learning algorithm based on SGD to apply LMDML in large-scale
settings. We also analyze the computational complexity of the proposed algorithm
and provide some useful recommendations for the implementation to reduce the
training time. We conduct extensive experiments to evaluate our algorithm in
Section 6.5. Finally, we give a discussion of future work and some conclusions in
Section 6.6.

6.2. Related work

Distance metric learning has been successfully used in many different disciplines and
applications, such as classification (Weinberger and Saul, 2009), regression (Wein-
berger and Tesauro, 2007; Nguyen et al., 2016), computer vision (Kostinger et al.,
2012; Yang et al., 2014), and so on. Many previous approaches have been pro-
posed, including neighborhood component analysis (NCA) (Goldberger et al.,
2005), maximally collapsing metric learning (MCML) (Globerson and Roweis,
2006), information-theoretic metric learning (ITML) (Davis et al., 2007), large
margin nearest neighbor classification (LMNN) (Weinberger and Saul, 2009), and
metric learning through maximization of the Jeffrey divergence (DMLMJ) (see
Chapter 3). However, it becomes a very challenging problem for machines when
the number of training examples is large or the dimensionality is high. Below we
briefly review some recent work that has attempted to tackle this challenge. To be
more specific, we will discuss three keys issues that are addressed by our approach:
high-dimensional data, large data sets, and low-rank distance metrics.

The main computational challenge is the positive semidefiniteness constraint,
especially when dealing with high-dimensional data. A number of approaches (Davis
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et al., 2007; Ying and Li, 2012; Shen et al., 2012; Jin et al., 2009) have been proposed
to reduce the expensive cost of projections onto the PSD cone. Hazan and Kale
(2012) replaced the projection step by solving a constrained linear program, which
is simpler than the projection onto the PSD cone. Mahdavi et al. (2012) addressed
this problem by avoiding intermediate projections. Ying and Li (2012) reduced
this computational burden by using the Frank-Wolfe algorithm, which requires
only the minimum eigenvalue and corresponding eigenvector at each iteration.
Unfortunately, the computational efficiency of these approaches is limited for large
data sets because the computational cost of each iteration is still expensive.

Recent approaches (Davis et al., 2007; Chechik et al., 2010; Shalev-Shwartz et al.,
2004; Gao et al., 2014; Qian et al., 2015a) addressed this challenge using online
learning algorithms. In the context of similarity learning, Chechik et al. (2010)
introduced an online learning approach, named OASIS, focusing on large-scale
data sets with millions of training examples. However, OASIS may increase the
risk of overfitting since it does not take into account the possibility that examples
lie in a low-dimensional subspace. In contrast to OASIS, our approach enforces
the low-rank constraint as well as the positive semidefiniteness constraint on the
Mahalanobis matrix. Consequently, our approach would intuitively reduce the risk
of overfitting. In more closely related work, Qian et al. (2015a) addressed this
challenge by exploiting the SGD algorithm. To reduce the number of projections
onto the PSD cone, they proposed a stochastic updating procedure, which consists
in giving difficult constraints more chance to be used for updating. Compared
to the approach proposed in (Qian et al., 2015a), our approach is simpler and
more efficient because it uses a simple hinge loss function to reduce the number of
projections (Shalev-Shwartz et al., 2004; Chechik et al., 2010).

Many other approaches (Nguyen et al., 2016; Gao et al., 2014; Schultz and
Joachims, 2004; Shi et al., 2014) aim to speed up the training on large-scale data
sets by enforcing the learned matrix to be diagonal. These approaches have a
significant advantage in computational complexity as well as in memory complexity,
making them tractable in large-scale settings. However, the resulting distance
metric or similarity function is very restrictive because it neglects the possible
correlation between features.

Another research direction focuses on learning a low-rank distance metric via
learning a linear transformation. By imposing the low-rank constraint explicitly on
the linear transformation matrix, one can limit the number of parameters of the
learned distance metric, thus reducing the risk of overfitting. Unfortunately, most
of the approaches that focus on learning a linear transformation lead to nonconvex
optimization problems (Goldberger et al., 2005; Liu et al., 2013; Lim and Lanckriet,
2014). Hence, they can suffer from spurious local minima and require careful tuning
of the matrix rank. In (Zhang and Zhang, 2017), the authors exploit the low-rank
structure of intermediate solutions in order to reduce the computation and space
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complexity. The projection onto the PSD cone can be addressed efficiently using
incremental SVD, but it is not clear how the low-rank constraint is guaranteed at
each iteration, and consequently, it may not always result in the desired performance.
Another solution is to learn a linear combination of rank-one matrices (Qian et al.,
2015b), which enjoys the convexity property. However, it also requires specifying the
number of basis matrices. In contrast to these approaches, our approach can find a
low-rank Mahalanobis matrix, which induces a low-rank linear transformation, and
it ensures to achieve a global convergence since it is formulated as solving a convex
optimization problem. Unlike in (Zhang and Zhang, 2017), we do not make any
low-rank assumption on the intermediate solutions during training.

6.3. Problem formulation

We will consider the standard supervised classification problem. The set of training
examples is denoted by D = {(x;,v;) | i € {1,...,n}} C X x Y, where X C R”
denotes the set of feature vectors and ) denotes the set of class labels. Let us
introduce the definitions of hit examples and miss examples.

Definition 6.1 (Hit examples). Let x; be an example in X. The hit examples of x;
are the elements of the set H(x;) consisting of the examples in X \ {x;} that share
the same class label with x;, i.e. H(x;) = {x; | j€{l,...,n},j #i,y; =i}

Definition 6.2 (Miss examples). Let x; be an ezample in X. The miss examples
of X; are the elements of the set M(x;) consisting of the examples in X that do not
share the same class label with x;, i.e. M(x;) = {x; |j€{l,....,n},y; #vi }.

Recently, margins have been extensively studied in the distance metric learn-
ing context. We can formulate the margin as a function depending on the PSD
matrix M. Empirical evidence (Moutafis et al., 2017; Weinberger and Saul, 2009;
Parameswaran and Weinberger, 2010; Torresani and Lee, 2007) has demonstrated
that distance metric learning approaches employing the principle of margin maxi-
mization are more robust than other distance metric learning approaches such as
NCA (Goldberger et al., 2005) and RCA (Bar-Hillel et al., 2005).

Due to the nature of the decision rule of the k-NN classifier, each example should
share the same class label with the majority of its k nearest neighbors. If we ensure
that the neighbors of the same class are closer than the neighbors of the other
classes, then the k-NN classifier will be successful. Adopting the same terminology
as in (Weinberger and Saul, 2009), we define 7 (x;), called target neighbors of x;,
as a set of k examples in H(x;) that should be close to x; and that share the same
class label with x; in the training set. The goal is to learn a distance metric that
makes the target neighbors of x; become its k nearest neighbors. Target neighbors
can be selected based on prior knowledge (if available) or simply by searching the
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k nearest neighbors with the same class label using the Euclidean distance metric.
Note that the target neighbors do not change during the training stage.

We define the margin of a labeled example x; for the purpose of measuring the
confidence of the k-NN classifier as follows.

Definition 6.3. Let x; be a labeled example in X. The margin of X; corresponding
to the Mahalanobis distance metric parameterized by M is defined as:

dn(xi) = dig(xi,%7) — dig(xi,x7)

where
x; = arg max di;(x;,%;) ,
x; €T (xi) (6 1)
X; = argmin dig(xi, ;).
x; EM(x;)

As is common in distance metric learning, we use the squared Mahalanobis
distances to express the margin, leading to a convex function in terms of M.
Roughly speaking, the margin is the difference between the squared distance from
X; to the nearest example with a different class label and the squared distance
from x; to the farthest example in its target neighbor set. A similar definition
of a margin was also introduced in (Nguyen and Guo, 2008). Using this margin
definition, we now turn to develop our distance metric learning approach, which is
the result of two fundamental aims.

’ /
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Figure 6.1: Illustration of the intuition behind LMDML. Examples belonging to the
same class are denoted in the same color and style. (a) A separating ellipse with a small
margin. (b) A separating ellipse with a large margin.

Our first aim is that the learned distance metric should guarantee that many
examples have large margins. We follow the large-margin principle that has been
successfully used in SVMs (Cortes and Vapnik, 1995), AdaBoost (Schapire et al.,
1997), and LMNN (Weinberger and Saul, 2009) algorithms. The aim of our distance
metric learning approach is to maximize the sum of all local margins. Using a
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hinge loss function with margin one, the latter is equivalent to minimize

n

(M) = 37 [1+ dRaloes ) = dRaloei )]

1=1 +

where the function [.]4 denotes the positive part of its argument.

Our second aim is that the learned distance metric should be able to detect
irrelevant or noisy features in the input space. Assume that the input examples
lie in a low-dimensional subspace R, where m < D, then the Mahalanobis
matrix with low rank m can satisfactorily distinguish any two distinguishable
examples (Cong et al., 2014). Thus, a high-rank Mahalanobis matrix may be
suffering from overfitting effects as the training data always contain noisy features
in practice. To this end, we force the low-rank constraint on the Mahalanobis
matrix M. That means, among the Mahalanobis matrices that maximize the
margins, we prefer the low-rank ones. As is commonly done, we use the nuclear
norm to approximate the rank function. The nuclear norm of the matrix M is
defined as ||[M||, = >, 0;, where o; are the singular values of M. Since M is
PSD, it holds that ||M]||. = tr(M). Note that the trace norm of a PSD matrix is
equal to the ¢1-norm of its diagonal elements, which is used by the popular Lasso
algorithm (Tibshirani, 1996). The theoretical justification of the ¢;-norm can be
found in (Donoho and Elad, 2003) and the references therein.

Finally, we combine the two aims, the loss function ¢(M) based on margins
and the low-rank constraint on M, into a single objective function for learning the
distance metric. It leads to the following optimization problem

i[lﬂlM (xi, %) — dig(xi, %7 )L, (6.2)

i=1

3\'—‘

minimize C'tr(M) +
M

=

where C' > 0 is a hyper-parameter. We refer to the proposed approach as Large-
Margin Distance Metric Learning, abbreviated as LMDML. Figure 6.1 illustrates
the idea behind LMDML. Although the distance metrics in both cases are able to
classify well the example x;, a better generalization is expected from the distance
metric with a larger margin.

Problem (6.2) is a convex semidefinite program, therefore, it can be solved by
standard semidefinite optimization algorithms, such as interior-point methods (Boyd
and Vandenberghe, 2004). However, these algorithms usually need to calculate
the Hessian matrix, which requires a memory complexity of O(D*) and a time
complexity of O(D%®) in the worst case. For some real-world applications, they
become almost intractable. Another alternative for minimizing the objective
function in (6.2) is to use a simple first-order algorithm such us batch gradient
descent as in (Weinberger and Saul, 2009; Xing et al., 2002; Globerson and Roweis,
2006). The use of first-order algorithms can reduce the time complexity per iteration
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since they only require the information from the first derivative of the objective
function. Unfortunately, these algorithms do not scale well to large data sets
because they need the full-gradient computation in each iteration. In the next
section, we will introduce our algorithm to overcome these limitations.

6.4. Online distance metric learning

To make the optimization technique tractable for large-scale problems, we should
take into account both the number of iterations and the computational cost of
each iteration. SGD provides a way to avoid the full-gradient computation by
considering only a single loss term at a time. SGD has been successfully exploited
in many machine learning algorithms such as SVMs (Shalev-Shwartz et al., 2007),
neural networks (Bottou, 1991), and Lasso (Shalev-Shwartz and Tewari, 2011). By
randomly choosing an example at each iteration, SGD can directly optimize the
expected loss (Bottou, 1991) and remove the time complexity dependency on the
size of problem. Besides, SGD is extremely simple to implement and highly scalable,
which make it particularly suitable for large-scale learning problems. However,
like other gradient descent techniques, it requires a projection step to get the
solution back to the PSD cone after each iteration. In this section, we develop an
online algorithm based on SGD that needs no projection steps in order to keep the
solution within the PSD cone.

6.4.1. Stochastic gradient descent for distance metric learn-
ing

For any fixed C' > 0 in problem (6.2), there is always some choice of B > 0 such
that the optimal solution of problem (6.2) results in the same objective function
value as the optimal solution of

minimize  f(M) = 23" |1+ d3g(xi, %) — dag(xi, x:)}

n

+
subject to tr(M) < B, (6.3)

M =0.

The formulation of problem (6.2) is also known as the Lagrangian version
of problem (6.3). We now focus on solving problem (6.3) due to its interesting
expression: the objective function in (6.3) has the form of a sum of loss functions
associated with each example used for training, which allows us to use a stochastic
optimization algorithm. We refer to the proposed algorithm as LMDMI-A.

At the t-th iteration, LMDML-A operates as follows. First, it chooses a random
training example x; by picking an index i € {1,...,n} uniformly at random. Then,
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it replaces the objective function of problem (6.3) with an approximation based on
the single randomly picked example,

JiM0) = [1+ iy, (xi, x7) = i, (xi,x7)]
+

If 14 d3y, (xi, %) < 3, (xi,x; ), then the subgradient of the above approxi-

mate objective function V f;(M;) becomes zero (i.e., there is no need to update

the Mahalanobis distance metric). Otherwise, the subgradient V f;(IM;) is given

by

V(M) = (i —x) (i = %) T = (3 —x7) (% — %) T

Next, we update the matrix M; in the direction of the subgradient with a step size
N = c/\/f, where ¢ > 0 is a constant,

M, 13 =M; — 0V fi(My),
M sa/3 = Igp (Mit1/3) ,
Mt+1 = miIl(B/tr(Mt+2/3), 1)Mt+2/3 .

The last two steps are used to keep the solution within the PSD cone and to
satisfy the trace-bound constraint, respectively. According to the Interlacing
Theorem (Golub and Van Loan, 1996), the matrix My, /3 contains at most one
negative eigenvalue. Similarly to the method proposed by Shalev-Shwartz et al.
(2004), we can compute M, 5,3 using the following formulation,

M, y2/3 = Myt1/3 — min(Ayin, 0) Wpnin Wiy, »
where Ayin is the smallest eigenvalue of M, /3 with corresponding eigenvector
Upin- Finding the smallest eigenvalue of the symmetric matrix M, /3 is equivalent
to finding the largest eigenvalue of —M;,4/3. In (Kuczynski and Wozniakowski,
1992), it was shown that the largest eigenvalue of a positive definite matrix can
be approximated in O(D?) time using the Lanczos method or the power method
with a random start vector. However, the matrix —M; /3 is not always positive
definite. To circumvent this, we can add a large enough constant r > 0, so that
A = rI — M,,,/3 becomes positive definite. Finally, the smallest eigenvalue of
M, 1/3 becomes r — Apax(A), where Apax(A) is the largest eigenvalue of A with
the corresponding eigenvector Uy

Although the cost of the projection onto the PSD cone has been reduced, its
computational efficiency is limited because it requires a numerical approximation to
compute, at each iteration, the smallest eigenvalue and corresponding eigenvector
of the updated Mahalanobis matrix. For instance, the Lanczos method requires
O(log(n)/\/7) iterations (Kuczynski and Wozniakowski, 1992) to approximate a
unit vector u such that u' Au/Apax(A) > 1 — . This iterative procedure may
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be expensive when the number of features is relatively large. We address this
challenge by finding an appropriate step size to keep the solution within the PSD
cone. Therefore, we can avoid the projection step of the Mahalanobis matrix onto
the PSD cone. This idea of approximating the solution through finding a step size
was also introduced in (Jin et al., 2009) for learning a distance metric based on
pairwise constraints. In order to compute the step size, Jin et al. (2009) used the
conjugate gradient method, which is still slow in high-dimensional settings. We
employ the Schur complement to compute an upper bound of the step size.

We begin by introducing two important theorems that help us to develop
our proposal. The first theorem is a modification of the generalized inverse
theorem (Campbell and Meyer, 1979), which will allow us to compute the pseudo-
inverse of a symmetric matrix plus a rank-one symmetric matrix. Thus, the six
cases in (Campbell and Meyer, 1979) reduce to only three cases, and the update
formulas can be significantly simplified.

Theorem 6.1. For A € SP*P x ¢ R?, and a € R, let k = ATx, h = xT AT,
u=(I-AANx, v=x"(I-ATA), and 3 =14+x" A'x. Then the Moore-Penrose

inverse of A + axx ' is computed as follows.

(i) If u # 0, then

(A +axx" ) = AT —ku' —vih+ (1/a— 1+ B)viul.
(i) Ifu=0 and 1+ (8 —1)a # 0, then

(A+axx ) =AT—1/(1/a—1+ B)kh.

(i) Ifu=0 and 1+ (8 —1)a =0, then
(A +axx")t = AT —kkTAT — ATh'h + (kKTAThT)kh .

Proof. The result follows directly from (Campbell and Meyer, 1979, Theorem 3.1.3)
and a careful inspection of its proof. O

The second theorem will allow us to find necessary and sufficient conditions
that guarantee that a symmetric PSD matrix A plus two rank-one symmetric
matrices of the form A — a(aa’ —bb"), where a is a positive scalar and a, b are
real vectors, remains within the PSD cone.

Theorem 6.2. For A € SP*P a c¢ RP, b € R”, and a € R, where A = 0
and a >0, letk =A'b, h=b'AT, u=(I-AAHb, v=Db"(I-ATA), and
B=1+b'A'b. Then the following constraint

A—afaa’ —bb") =0 (6.4)

is satisfied if and only if any of the following sets of conditions holds (assuming
that 1/0 = +00):
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(i) u#0, (I—AA" —uuh)a=0,1-a"viufa>0, and
a<(1—a'viula)/(a’Ta),
where T = AT —kuf —vih+ (3 — 1)viul.
(i) u=0, (I- AANa =0, and
a<2/(-B+VB2-4C),
where B=f+a'Afa—1, and C = —a” (AT(8 — 1) — kh)a.

Proof. Since a > 0, according to the Schur complement theorem (Gallier, 2010,
Theorem 4.3), constraint (6.4) is equivalent to

A+abb' a
=0.
al 1/a

Note that (A + ozbbT) = 0, and as a consequence, it is possible to use again the
Schur complement theorem. Hence, the following two conditions must hold:

1/a—a" (A +abb )fa>0 (6.5)
and
(I-(A+abb")(A+abb")Ha=0. (6.6)

In other words, the inequality constraint (6.4) is replaced by conditions (6.5) and
(6.6). First, we find an upper bound on « satisfying the inequality constraint (6.5).
Since & > 0 and A 3= 0, implying 1 + (8 — 1)ae > 0, according to Theorem 6.1, we
only have to consider two disjoint cases for the proof.

In the first case, the conditions u # 0, (6.5) and (6.6) should be satisfied. Using
Theorem 6.1, we have
(A+abb") = AT —ku' —vih+ (1/a — 1+ )viuf
=T+ (1/a)viul, (6.7)
hence, condition (6.5) is equivalent to (1/a)(1 —a'vfufa) > a’Ta. Since T is

PSD!, it holds that a' Ta is nonnegative. Clearly, if 1 —a'viufa <0, then there
does not exist a > 0 that satisfies (6.4). If a' Ta # 0, inequality (6.5) becomes

a<(l-a'viufa)/(a'Ta). (6.8)

When a becomes infinite, the PSD matrix (A + cybbT)Jr =T + (1/a)viut becomes T. Thus,
the matrix T must also be PSD.
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Otherwise, if a'Ta = 0, the variable a can take any positive value in order
to satisfy (6.4). We can easily include this case in (6.8) by setting 1/0 = +oo.
Moreover, substituting (6.7) into (6.6) yields

a(bb'Ta) + (Aviu'a)/a+ (a— ATa—bb viufa)=0. (6.9)

By definition of the pseudo-inverse (Golub and Van Loan, 1996), it holds that
(ATA)T = ATA, and b' vl = 1. Using b 'k = 3 — 1, it is easy to see that

bb'Ta=b(b'Afa— (—1)ufa—b"Afa+ (5 —1)ufa)=0.
Using Av' = 0, we obtain Aviufa = 0. Hence, Eq. (6.9) is equivalent to
a— (AA" — Aku' — Avih + (8 - 1)Aviuf)a —bufa=0. (6.10)

Using Avt =0, b"vf =1, and Ak = b — u, Eq. (6.10) becomes a— AATa+ (b —
u)ufa — buta = 0, and results in (I — AAT — uuf)a = 0. Therefore, we conclude
the first part of Theorem 6.2.

In the second case, the conditions u = 0, (6.5) and (6.6) should be satisfied.
Using Theorem 6.1, we have

(A+abb")f =AT—1/(1/a —1+ B)kh. (6.11)

Substituting (6.11) into (6.5) leads to 1/ —a” (AT —1/(1/a — 1 + B)kh)a > 0.
This results in

(1/a)? —(1-B+a’Afa)/a —a (AT(3—1) —kh)a>0,
or, equivalently,
(1/a)? +(1/a)B+C >0. (6.12)

Note that C' is nonpositive because AT(3—1)—kh is PSD2. Therefore, (6.12) always
has a nonnegative root, 1/a > (—B + vB? —4C)/2. If (-B + vB? —4C) # 0,

then we have the following upper bound on a:
a<2/(-B++vB%2-40C). (6.13)

Otherwise, if (=B + v B? — 4C') = 0, then « can take any positive value in order
to satisfy (6.4). We can easily include this case in (6.13) by setting 1/0 = +o0.
Next, we prove that (A + abb')(A 4+ abb')f = AAT. Since u = 0, it holds that

When o becomes infinite, the PSD matrix (A + ozbbT)Jr = A" —1/(1/a — 1 + B)kh becomes
At — (1/(8 — 1))kh. Thus, the matrix AT(8 — 1) — kh must also be PSD.
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AA'b =b. Using (6.11), one obtains

(A +abb')(A +abb")f
= (A+abb")(AT—1/(1/a— 1+ B)kh)
=AA"—1/(1/a —1+ B)Akh +abb" AT —1/(1/a — 1+ B)abb'kh
=AAT+1/(1/a—1+B)(—AATbbT AT
+bb AT+ abb"ATbb AT — abb"ATbb" AT)
= AAT. (6.14)

Substituting (6.14) into (6.6) leads to (I— AAT)a = 0, and we conclude the second
part of Theorem 6.2. O

Given the matrix M, and its pseudo-inverse MI, using Theorem 6.2 we can
analytically find an upper bound «; such that for any step size n; € [0, ay], the
matrix

M, — 7 V(M) = My = (x5 — %) (s = %) T = (3 = x7)(xi —x;) ")
remains within the PSD cone. Evaluating efficiently the upper bound of n;
requires that we maintain the updated pseudo-inverse matrix M'. Due to the
simplicity of updating M (since the update makes use of only two rank-one
matrices in each iteration), we can derive the update of the pseudo-matrix Mt

from Theorem 6.1 in the following way. First, we update M; and MI by adding
the matrix (x; — x; )(x; —x; )" as follows:

M1y = (Mg +nf (xi —x; ) (xi —%; ) 1),

. B B (6.15)
M,y = (M + ) (x — ;) (xs — %) T)F

~

i
t+1/3
)T as follows:

Second, we use M, /3 and M to update M, and MI by adding the matrix

(xi — %) (% —x°

M 2/3 = (Myy1/3 —nf (% — %) (% — X; )",

. (6.16)
MI+2/3 = (Myq1/3 —ny (xi — Xj)(xi - XT)T)T .

Using Theorem 6.1, both matrices MI +1/3 and MI +2/3 are efficiently computed

with a time complexity of O(D?). Finally, we truncate the solution to satisfy the
trace-bound constraint:

Mt+1 = min(B/tr(Mt+2/3), 1)Mt+2/3 ,
M, = max(tr(Myy2/5)/B, )M], 5 .

Note that all of these operations can be analytically computed with a time complex-
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ity of O(D?), which is faster than those methods that use a numerical approximation
procedure to find the smallest eigenvalue and corresponding eigenvector, such as
POLA (Shalev-Shwartz et al., 2004), DML-eig (Ying and Li, 2012), SDPMet-
ric (Shen et al., 2010), and BoostMetric (Shen et al., 2012). The pseudo-code of
LMDMI-A is given in Algorithm 4.

Algorithm 4 LMDML-A
Input: {(x1,11),(X2,%2),..., (Xn,¥n)}, B, ¢, T for SGD
Output: Mp

1: Set My + I and M! « I

2: fort«+1,...,T—1do

3: Choose ¢ € {1,...,n} uniformly at random

4 Find x;” and x; as in (6.1)

5 if diy, (xi,x;7) + 1> d}y, (x4,%;) then

6: Find upper bound a; to make M;— a;Vf;(M;) = 0
7 Select 0 < nf < min(ay,c/v/t)

8 Compute M, /3 and MI+1/3 as in (6.15)

9: Compute M, 5/3 and MI+2/3 as in (6.16)

10: Set Mt+l — mil’l(B/tI'(Mt+2/3), I)Mt+2/3

11: Set MI—;—l < max(tr(Myqo/3)/B, 1)MI+2/3

12: end if

13: end for

6.4.2. Convergence analysis

The convergence of SGD has been theoretically studied for decades (see for instance
J. Kushner and Yin, 2003, and the references therein). However, these classical
convergence bounds require some non-trivial assumptions on the objective function,
such as strong convexity or smoothness. Unfortunately, this is not the case for our
objective function in problem (6.3). To address this issue, we use a more general
convergence result of SGD for non-smooth optimization developed by Shamir and
Zhang (2013).

It is well known that the convergence of SGD is dependent on the value of
the step size. However, the step size in our method is only upper-bounded using
the Schur complement, which involves many constants that cannot be evaluated
exactly. As a consequence, the result presented in this section may only provide
a conservative estimate of what can be achieved by our method. In practice, we
observe that LMDML-A converges faster for a larger step size (but still relatively
small to keep the Mahalanobis matrix within the PSD cone, i.e. 7} < min(ay, c/v/)).
The following theorem shows that the last iteration of SGD converges to an optimal
solution of problem (6.3) with a rate of O(log(T)/VT).
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Theorem 6.3. Let M* € S? be the optimal solution for the objective function
fin (6.3). Let My,...,Mr be a sequence of matrices such that My € S¥ and
fort >0, My = HSE(Mt — eV fi(My)), where n; = ¢/t and ¢ > 0 is a
constant. Suppose that for allt > 0 and x; € X, it holds that |V fi(My)||r < G
and tr(M;) < B for some constants G and B. Then, for any T > 1, we have

2 (6]
) (21:0) 2250

Proof. The result follows directly from (Shamir and Zhang, 2013, Theorem 2) and
the corresponding proof. Since M; € Sf and tr(M;) < B for all ¢ > 0, it holds for
any t,t' > 0 that

[M; — My ||p < [[M]|F + My r

= \/tr(MtTMt) + \/tr(MtT,Mtr)
S tI‘(Mf) + tI‘(Mt/)
<2B,

where the second inequality holds because tr(AB) < tr(A)tr(B) for all A, B € SP.
This concludes the proof. O

Empirically, we have found that the convergence of LMDML-A is slightly slower
than that of the standard SGD method (see Section 6.5).

6.4.3. Computational complexity

In this subsection, we analyze the time complexity of LMDML-A. Let n denote
the number of training examples, let D denote the dimensionality, and let k£ denote
the number of target neighbors for each training example. We first consider the
search for the target neighbors. Using linear search we can easily perform this
computation in O(kn?D). In order to reduce the complexity of searching for the
nearest neighbors for large-scale data sets, we can use sophisticated data structures,
such as Cover Tree (Beygelzimer et al., 2006), Ball Tree (Omohundro, 1989), and
k-d-Tree (Moore, 1991). Next, we analyze the time complexity in each iteration.
Recomputation of x;” and x; as in (6.1) scales as O(kD? + nD?) due to the
quadratic time complexity in the dimensionality of computing the Mahalanobis
distance. Unfortunately, this computation can make the algorithm impractical
on high-dimensional data sets. To reduce this computational burden, we observe
that

dip(xi,x5) = (x{ Mx; + x] Mx;) — (2u/ x;),
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where u; = Mx;. For each training example x;, if we keep track of the value of
x; Mx;, then we can reduce the cost of searching for x;” and x; to O(kD-+nD+D?),
since the first term (X:MXZ‘ + X;erj) can be computed in constant time, the
second term (2u; x;) can be computed in O(D), and the computation of u; scales
as O(D?). On the other hand, M is always updated by adding a rank-one matrix
in the following form M <~ M + cuu', where a € R. Consequently, the value of
x; Mx; can be efficiently updated in O(D) as

(3

= x; Mix; + a(x/ u)?.

x; (M 4 auu')x; = x; Mx; + a(x; u)(x; u)
2

As mentioned in Subsection 6.4.1, LMDML-A requires to update the pseudo-inverse
of the Mahalanobis matrix and to find an upper bound on the step size, which
scales as O(D?). Summarizing, the overall time complexity of each iteration for
LMDML-A is O(D? + nD). The time complexity of one pass over all training
examples is O(nD? + n2D).

Although one can notice some improvement, the preceding complexity is still
impractical for very large data sets. The bottleneck of LMDML-A is mainly due

to the search for x; , which, in theory, is of linear time complexity O(nD?) in

i
the number of training examples. To overcome this limitation, we observe that
x; usually lies nearby the local neighborhood of x;, which means that it is not
always necessary to search for the whole set containing examples of different classes.
Consequently, we can approximate M(x;) with a set of m nearest neighbors of x;
with different class labels, which can be precomputed using the Euclidean distance
metric. Note that this set does not change during the execution of the algorithm.
By doing so, the time complexity of searching for x; is reduced to O(mD?) and the

time complexity of one pass over all training examples is O(nmD? + nkD?).

6.5. Experiments

In this section, we evaluate the effectiveness and efficiency of the proposed al-
gorithm by conducting an extensive set of experiments on standard benchmark
data sets. The performance of LMDML-A is compared with other state-of-the-art
distance metric learning algorithms in the context of k-NN classification. We
will demonstrate that our algorithm is fast and scalable, making it more suitable
for large-scale applications. First, we evaluate the effectiveness of the proposed
algorithm on fourteen data sets of varying size and difficulty in Subsection 6.5.1.
Second, we empirically verify the convergence rate of the proposed algorithm in
Subsection 6.5.2. Finally, we compare the performance of LMDML-A with different
learning algorithms on large-scale data sets in Subsection 6.5.3. All features are
normalized (to have zero mean and unit standard deviation) over the training data
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to avoid the influence carried by the scale of each feature for the distance metric or
similarity function.

6.5.1. Experiments on the KEEL data sets

In this subsection, we aim to demonstrate the effectiveness of the principle of margin
maximization, which inspired our approach. For this purpose, several experiments
are carried out using publicly available data sets to compare our approach with
five other distance metric learning approaches.

Competing approaches

We will compare the proposed LMDML-A algorithm with different distance
metric learning algorithms, including the baseline Euclidean distance metric,
POLA (Shalev-Shwartz et al., 2004), ITML (Davis et al., 2007), LMINN (Wein-
berger and Saul, 2009), DML-eig (Ying and Li, 2012), and DMLMJ (Nguyen
et al., 2017c). These are the most prominent methods in distance metric learn-
ing. LMDML-A is closely related to LMNN in the sense that both methods are
particularly designed to maximize the margin of k-NN classification. Other meth-
ods, including POLA, ITML, DML-eig, and DMLMJ, use a margin criterion over
pairwise constraints, i.e. distances between examples of the same class are smaller
than distances between those of different classes.

To get the best results for all algorithms, the hyper-parameters are tuned
via cross-validation. For ITML, we set the maximum number of iterations to
10° and tune the slack parameter v considering as set of values {1072,...,103}.
Based on the authors’ recommendation (Davis et al., 2007), the lower bound !
and upper bound u are set to be the 5-th and 95-th percentiles, respectively, of
the distribution of all distances between training examples. For DML-eig, we
set the maximum number of iterations to 1,000. Since POLA, ITML, DML-eig,
and DMLM.J are based on pairwise constraints, for a fair comparison, we use
the same pairwise constraints for POLA, ITML, DML-eig, and DMLM.J. These
constraints are generated by pairing each training example with its k nearest
neighbors of the same class and its k nearest neighbors of different classes. For
LMNN, we set the maximum number of iterations to 1,000 and tune the trade-off
parameter 4 considering as set of values {0.125,0.25,0.5}. For LMDML-A, we
tune the trace-bound parameter B considering as set of values {0.1,1,10,100}.
We set the maximum number of epochs to 10 for both POLA and LMDML-A.
Empirically, we find that a value of 1 as the initial constant of the step size
¢ for LMDML-A can be applied to obtain good results. The source codes in
Matlab and C-mex of these approaches are available online from the corresponding
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authors’ websites®. The source codes of LMDML-A can also be downloaded from
http://users.ugent.be/~bacnguye/LMDML-A.v1.0.zip.

Data sets and experimental setup

We use fourteen data sets from KEEL (see Table A.1 for a brief description). In
particular, a 10-fold cross-validation is employed to estimate the classification
accuracy. All partitions of the training and test sets are collected by stratified
sampling from all classes. The classification accuracy and the training time are
obtained by computing the average over ten runs. Following (Weinberger and
Saul, 2009; Ying and Li, 2012), for all data sets, we set k = 3 to perform k-NN
classification.

Results and discussion

Table 6.1 summarizes the classification accuracy and training time of the competing
distance metric learning algorithms on each data set. Note that the training time
takes into account the time for tuning the hyper-parameters. On each data set, we
rank the competing algorithms based on their classification accuracy, i.e., we assign
rank 1 to the algorithm with the highest accuracy, rank 2 to the algorithm with
the second highest accuracy, and so on. The average rank based on classification
accuracy is shown in the penultimate row of Table 6.1. Based on the experimental
results, we can draw some conclusions as follows:

(i) LMDML-A consistently improves the performance of k-NN classification using
the Euclidean distance metric on most data sets. In general, our margin-based
approach (i.e. LMDML) performs better than other distance metric learning
approaches (i.e., POLA, ITML, DML-eig, and LMNN). Both approaches
LMNN and ITML perform equally well.

(i) LMDML-A performs slightly better than POLA and the recent method
DMLMJ. Since DMLMJ only involves the computation of solving a generalized
eigenvalue decomposition problem, it is very efficient on low-dimensional data
sets. In particular, LMDML-A is considerably faster than DMLMJ on large-
scale data sets (e.g., letter and magic).

(iii) LMDML-A is the fastest algorithm on most data sets. In general, POLA,
ITML and DML-eig run faster than LMNN because they do not have to per-
form the full eigen-decomposition at each iteration. Additionally, LMDML-A
is significantly more efficient than LMNN on large data sets (e.g., letter,

3 ITML: http://www.cs.utexas.edu/~pjain/itml/
LMNN: http://wuw.cse.wustl.edu/~kilian/code/code.html
DML-eig: http://empslocal.ex.ac.uk/people/staff/yy267/software.html
DMLMJ: http://users.ugent.be/~bacnguye/DMLMJ.zip
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magic, and ring), which highlights the advantages of using SGD methods
compared to batch gradient descent methods on large data sets.
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Table 6.1: Classification accuracy (standard deviation) and training time on the KEEL data sets of the competing algorithms. The best
result is highlighted in boldface.

Id Accuracy Training time (in seconds)
Euclidean POLA ITML LMNN DML-eig DMLMJ LMDML POLA ITML LMNN DML-eig DMLMJ LMDML
APP 83.18 (9.2) 85.00 (6.2) 84.09 (8.5) 84.00 (4.4) 85.00 (8.7) 84.09 (8.5) 86.91 (6.4) 1.22 28.06 13.00 0.28 0.02 0.02
BAL 83.68 (2.2) 90.47 (3.8) 90.51 (3.7) 87.04 (3.1) 85.42 (5.7) 90.24 (3.9) 90.70 (4.5) 539 37.44 18.01 049  0.17 0.21
BUP 65.49 (3.4) 65.1 (10.3) 65.47 (6.7) 67.20 (6.1) 64.58 (6.0) 64.8 (11.0) 67.49 (5.7) 4.11 3237 20.43 0.19 0.08 0.10
IRI  94.67 (5.3) 96.00 (4.7) 98.00 (3.2) 96.00 (4.7) 94.67 (5.3) 96.67 (4.7) 95.33 (4.5)  1.11 30.93 12.52 018  0.03  0.03
LET 94.98 (0.5) 97.55 (0.4) 97.23 (0.3) 96.48 (0.5) 87.70 (0.6) 97.51 (0.4) 96.83 (0.5) 223.2 138.8 364.2 872.9 396.4  58.42
MAG 83.66 (0.5) 84.15(0.9) 83.71 (0.8) 83.72 (0.6) 82.91 (1.2) 84.06 (0.7) 84.93 (0.5) 267.5 132.6 1007 792.5 238.3  46.58
MON 95.85 (3.6) 100.0 (0.0) 99.53 (1.0) 97.91 (3.0) 100.0 (0.0) 99.07 (2.2) 98.37 (3.6) 3.67 3575 12.49 0.38 0.12 0.14
MOV 80.00 (7.0) 84.17 (5.2) 81.94 (7.1) 83.61 (5.8) 72.50 (9.5) 81.39 (5.4) 84.72 (5.7) 58.83 180.9 37.52 2.39 1.03 1.26
OPT 97.94 (0.6) 99.02 (0.4) 98.35 (0.5) 98.90 (0.3) 97.83 (0.7) 98.83 (0.6) 98.74 (0.6) 166.5 199.4 171.1 58.61 118.8  26.36
RIN  71.81 (1.7) 76.22 (1.6) 80.89 (1.0) 71.61 (1.8) 86.38 (1.2) 87.36 (1.0) 74.07 (1.6) 1459 89.16 324.1 101.7 63.14 15.41
SEG  95.45 (1.0) 96.36 (1.2) 97.45 (1.7) 96.67 (1.1) 95.06 (1.4) 96.80 (1.2) 96.75 (1.2) 24.96 57.37 61.15 6.05 597  2.40
WDB 97.01 (1.7) 97.52 (1.4) 97.01 (2.6) 96.66 (2.1) 95.61 (2.1) 96.48 (1.4) 97.54 (2.5) 12.50 5410 17.95 1.36 064  0.44
WIN  96.01 (3.9) 97.71 (4.1) 98.30 (2.7) 96.60 (4.8) 97.19 (4.0) 98.89 (2.3) 97.75 (2.9)  1.39 33.80 12.05 038  0.05 0.07
WIS 96.78 (1.7) 96.34 (1.2) 96.34 (2.0) 96.63 (2.1) 95.90 (1.7) 95.90 (0.9) 96.63 (1.8) 5.01 40.40 17.16 0.57 0.33 0.32
5.57 2.93 3.25 4.36 5.64 3.57 2.68 921.43 1,091.2 2,089.6 1,838.15 825.1 151.76

Average rank Total training time
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6.5.2. Evaluation of the convergence

In this subsection, we empirically compare the convergence rate of LMDMIL-A
to that of the standard SGD method (LMDML-S) that solves problem (6.3).
Note that LMDML-S only involves the computation of the smallest eigenvalue and
corresponding eigenvector at each iteration (see Subsection 6.4.1). As an illustration,
we only perform experiments on the sonar data set used in Subsection 6.5.1.
LMDML-A is configured with the same settings as in the previous experiments.
Figure 6.2 shows the convergence rate versus the number of epochs (a full pass
through the training set). On the left side of Fig. 6.2, we show the objective
function value versus the number of epochs. On the right side of Fig. 6.2, we show
the training accuracy based on the 3-NN classifier versus the number of epochs.
We observe that our algorithm converges after a few number of epochs. Since the
objective function in problem (6.3) is convex, LMDML-A should indeed converge to
the optimal objective function value. Once a certain number of epochs is reached,
the training accuracy remains more or less the same. As expected, both algorithms
LMDML-A and LMDML-S obtain similar results. The convergence of LMDML-A
is only slightly slower than that of LMDML-S.
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Figure 6.2: Performance illustration of LMDML-A and LMDML-S on the sonar data
set. Left figure: objective function value vs. number of epochs. Right figure: training
accuracy (%) vs. number of epochs.

6.5.3. Experiments on large-scale data sets

In this subsection, we study the behavior of the proposed algorithm in large-scale
settings. We compare LMDML-A with the baseline Euclidean distance met-
ric, POLA, LMDML-S and OASIS (Chechik et al., 2010), a bilinear similarity
learning algorithm. OASIS aims to learn a bilinear similarity function over sparse
representations for improving image retrieval performance. OASIS is a current
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state-of-the-art similarity learning algorithm in large-scale settings. The source
codes in Matlab and C-mex of this approach are available online from the corre-
sponding authors’ website*. For OASIS, only one projection onto the PSD cone is
applied. Cross-validation is used for setting the following hyper-parameters: the
aggressiveness parameter C' € {107%,...,102?} for OASIS; and the trace-bound
parameter B € {0.1,1, 10,100} for LMDML-A and LMDML-S. To get the best
performance, we set the maximum number of iterations to 10® for OASIS and 10°
for POLA, LMDML-S, and LMDMIL-A. OASIS often requires a large number of
iterations in order to achieve a good performance. This is due to the fact that
the matrix learned by OASIS is not guaranteed to be PSD or even symmetric
after each iteration. In our experiments, only one projection onto the PSD cone is
applied at the end of OASIS, and as a result, it may lead to a suboptimal solution
which is far away from the optimal one.

We carry out an experiment on several publicly available large-scale data sets,
including the Isolet (Cole and Fanty, 1990), Connect-4, Poker, Sensit, and
Protein (Chang and Lin, 2011) data sets. Table 6.2 summarizes the information
of these data sets. The Isolet® data set contains 7,797 examples with 617 features
collected from 150 different speakers. They pronounced the name of each letter
in the English alphabet twice. The task is to recognize what letter was been
uttered. The speakers are formed into sets of 30 speakers each, referred as Isolet1,
Isolet2, Isolet3, Isolet4, and Isolet5. The first four subsets are used for training
and validation to tune the hyper-parameters. The last subset is used for testing.
This data set was used in several distance metric learning studies (Parameswaran
and Weinberger, 2010; Qian et al., 2015a; Nguyen et al., 2016). The remaining
data sets, including Protein, Connect-4, Poker, and Sensit, were downloaded from
LIBSVMS. These data sets are challenging because they contain a very large
number of training examples with the number of features varying from 10 to 357.
For instance, the Poker data set contains up to one million examples, while the
Protein data set contains 24,387 examples with 357 features. All training and test
sets are predefined, except for the Connect-4 data set where 70% of the data is
randomly selected for training and the remaining 30% is used for testing. To make
the comparison of the competing algorithms as fair as possible, for each training
example, we use 3 nearest neighbors of the same class and 5 nearest neighbors of
different classes to generate 15 triplet constraints and 8 pairwise constraints. Due
to the very large number of training examples, we also limit the number of miss
examples to 5 for both LMDML-S and LMDML-A in order to reduce the time
complexity (see discussion in Subsection 6.4.3). All the experiments are repeated
five times.

Table 6.3 shows the classification accuracy of the competing algorithms in the

OASIS: http://ai.stanford.edu/~gal/Research/0ASIS/
Available at: https://archive.ics.uci.edu/ml/datasets/ISOLET
Available at: https://wuw.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Table 6.2: Description of large-scale data sets used in our experiment.

# Data set Features Classes Training examples Test examples
1. Connect-4 126 3 54,045 13,512
2. Isolet 617 26 6,238 1,559
3.  Poker 10 10 1,000,000 25,010
4. Protein 357 3 17,766 6,621
5. Sensit 100 3 78,823 19,705

Table 6.3: Classification accuracy (standard deviation) on large-scale data sets of the
competing algorithms. The best result is highlighted in boldface.

# Euclidean POLA OASIS LMDML-S  LMDML-A
1. 69.17 (0.00) 78.81 (0.30) 74.06 (0.01) 78.20 (0.54)  78.21 (0.34)
90.38 (0.00) 92.62 (0.01)  94.42 (0.26)  94.46 (0.38) 94.47 (0.25)

)

)

(0.00)
61.40 (0.00) 63.07 (1.26) 39.07 (0.09)  62.90 (0.99

(0.00)

(0.00)

2.

3. 62.80 (0.80)
4. 51.87 (0.00) 65.00 (0.03) 65.97 (0.16) 64.84 (0.53)  64.74 (0.43)
5. 81.12 (0.00) 81.51 (0.12) 69.11 (0.29) 81.60 (0.01) 81.53 (0.02)

context of 3-NN classification. As can be seen, LMDML-A consistently outperforms
the baseline Euclidean distance metric, and it maintains a superior or equal
performance compared to other algorithms on all data sets. OASIS yields very
poor results on the Poker and Sensit data sets. We also observe that LMDMI-A
and LMDML-S obtain similar results since both algorithms are developed on the
basis of the same problem formulation.

Table 6.4 reports the final rank of the Mahalanobis matrix learned by the
competing algorithms. The results show that LMDML-A can capture the underlying
low-dimensional structure of data, thus reducing the risk of overfitting. These
results also confirm the validity of using the trace norm to impose the low-rank
constraint on the Mahalanobis matrix.

We further compare the average training time of the competing algorithms in
Table 6.5. The training time takes into account the time for tuning the hyper-
parameters. Our algorithm is significantly faster than the competing algorithms,
especially on the Isolet and the Sensit data sets. When the dimensionality is low
(e.g. the Poker data set), there is no significant difference in training time between
LMDML-A, LMDML-S, and POLA. Note that the training time of OASIS highly
depends on the sparseness of the data sets. This may explain why LMDML-A
runs significantly faster than OASIS. Although LMDML-S and LMDML-A have
the same time complexity, LMDML-A is still faster than LMDML-S due to the
efficient way of keeping the solution within the PSD cone.
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Table 6.4: Average rank of the Mahalanobis matrix learned from large-scale data sets
by the competing algorithms.

# FEuclidean POLA OASIS LMDML-S LMDML-A

1. 126.00  82.00 120.00 90.80 87.00
2. 617.00 462.00 607.00 607.80 608.20
3. 10.00  10.00 6.00 10.00 9.00
4. 357.00 356.00 250.00 348.00 333.00
o. 100.00  98.00  100.00 91.00 89.00

Table 6.5: Training time (in seconds) of the competing algorithms on large-scale data
sets. The best result is highlighted in boldface.

# POLA OASIS LMDML-S LMDML-A

1 1,012.36  1,989.16 1,844.40 200.66
2. 11,897.17  8,979.97 13,622.83 1,816.97
3. 462.21 1,809.79 430.92 421.50
4. 10,755.13 6,842.63 11,641.36 1,363.93
5 953.56 1,863.74 1,332.32 152.91

6.6. Discussion and conclusion

We conclude this work by summarizing our main contributions in this chapter and
discussing some related work that motivated our approach. The main contribution
of this chapter is the proposal of a novel distance metric learning approach for k-NN
classification. The intuition behind our approach is based on the principle of margin
maximization. In order to make the proposed approach practical on large-scale
data sets, we have developed an efficient algorithm to reduce the expensive cost
of projections onto the PSD cone. The experimental results have demonstrated
that our algorithm is capable of handling large-scale data sets, when the number
of examples is large or the dimensionality is high.

Our approach shares the same goals of local learning as LMNN (Weinberger
and Saul, 2009) and NCA (Goldberger et al., 2005). Local learning can preserve
the discriminative information contained in the neighborhood and allows to capture
the local structure of the data. Our approach is based on local learning and
follows a similar idea as the margin-maximization principle of SVMs (Cortes and
Vapnik, 1995), AdaBoost (Schapire et al., 1997), and LMNN (Weinberger and Saul,
2009).

On the other hand, many distance metric learning approaches based on feature
extraction, such as PCA (Jolliffe, 2005), LDA (Fisher, 1936), RCA (Bar-Hillel et al.,
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2005), and DMLMJ, require implicit assumptions about the distribution of the
data. When these assumptions do not hold, these approaches may extract irrelevant
features that are not useful for k-NN classification. In contrast to these approaches,
our approach requires only information about the neighborhood of each training
example, while no assumption about the distribution of the data is made. For
this reason, our approach can preserve the strengths of k-NN classification, which
is a nonparametric method, and makes no assumptions about the distribution
of the data. Not surprisingly, our approach can boost the performance of k-NN
classification.

Our proposed approach is closely related to LMNN (Weinberger and Saul, 2009)
in the sense that both approaches solve a convex optimization problem, with the
goal of making the k nearest neighbors of each training examples share the same
class label, while pushing away examples with different class labels. Unlike LMNN|,
our approach enforces the low-rank constraint on the Mahalanobis matrix to reduce
the risk of overfitting in high-dimensional settings. Due to the simplicity of our
margin definition, we can significantly reduce the number of constraints in the
problem formulation, and as a consequence, our algorithm is orders of magnitude
faster than LMNN.
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7 Distance metric learning
based on difference of
convex functions programming

In this chapter, we develop a supervised distance metric learning method that
aims to improve the performance of nearest-neighbor classification. Our method
is inspired by the large-margin principle, resulting in an objective function based
on a sum of margin violations to be minimized. Due to the use of the ramp
loss function, the corresponding objective function is nonconvex, making it more
challenging. To overcome this limitation, we formulate our distance metric learning
problem as an instance of difference of convex functions (DC) programming. This
allows us to design a more robust method than when using standard optimization
techniques.

The material of this chapter is based on the following publication:
Nguyen, B. and De Baets, B. (2018a). An approach to supervised distance metric
learning based on difference of convex functions programming. Pattern Recognition,
81:562-574

7.1. Motivation

Mahalanobis distance metric learning can be formulated within a convex opti-
mization framework, which enjoys significant advantages in that the convexity
guarantees to reach the global optimum and is not sensitive to initial conditions.
A large number of optimization methods have been proposed to deal with convex
optimization problems (Boyd and Vandenberghe, 2004). In particular, convex
distance metric learning methods are often cast as solving semidefinite programs,
therefore, standard semidefinite programming solvers can be used. In order to
make the problem more tractable in large-scale settings, Weinberger and Saul
(2009) developed an efficient subgradient descent method based on the active set
techniques. Davis et al. (2007) introduced an iterative Bregman projection method
to avoid the projection of the Mahalanobis matrix onto the cone of symmetric
positive semidefinite (PSD) matrices. Shen et al. (2012) proposed a boosting-based
method that learns a linear combination of trace-one rank-one matrices. Recently,
Atzmon et al. (2015) suggested an efficient solver based on the block-coordinate
descent method to avoid the projection and computation of full gradients. Other
methods such as the Frank-Wolfe (Ying and Li, 2012) and the projected gradient
descent (Xing et al., 2002) methods have also been employed in the context of
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distance metric learning.

Convex optimization has become very popular in the pattern recognition com-
munity over the last few decades, because of its empirical performance and because
it facilitates a deeper mathematical analysis. Unfortunately, in many practical
settings, convexity is not always guaranteed, and one has to resort to nonconvex
optimization methods (Collobert et al., 2006b). Various researchers (Mason et al.,
2000; Liu et al., 2005; Fujiwara et al., 2017) have argued that using nonconvex loss
functions to approximate the misclassification rate can yield a better performance
than using convex loss alternatives such as the hinge loss and the exponential loss.
Recent research in this direction has provided a number of nonconvex functions
in order to alleviate the limitation of convex functions. Shen et al. (2003) and
Liu and Shen (2006) proposed a W¥-learning framework that replaces the hinge
loss function in Support Vector Machines (SVMs) by a nonconvex W-loss function.
In a similar variant of the ¥-loss function, Collobert et al. (2006b) and Ertekin
et al. (2011) introduced the ramp loss function, which gives a constant penalty
for large losses. Both the U-loss and ramp loss functions have been shown to be
effective in practice. Therefore, it is important to investigate the use of nonconvex
loss functions in the context of distance metric learning. In particular, we pay
attention to the ramp loss function, since it can be easily written as a difference of
convex functions (DC). Consequently, an effective method for DC programming
can be applied to solve the problem. To the best of our knowledge, the method
presented in this chapter is the first distance metric learning method that exploits
the benefits of DC programming.

Due to the simplicity and effectiveness, this chapter focuses on improving
the performance of nearest-neighbor classification. It is well known that the
misclassification error rate of the nearest-neighbor classifier converges asymptotically
to at most twice the Bayes error rate (Cover and Hart, 1967), however, it is extremely
sensitive to noise. In order to overcome the latter drawback, we develop a distance
metric learning method making the nearest-neighbor classifier more robust to
outliers. In short, our main contributions are summarized as follows:

(i) A distance metric learning framework is proposed to minimize the misclassifica-
tion rate of the nearest-neighbor classifier. Particularly, our method is inspired
by the success of the large-margin principle (Vapnik, 1998). Due to the use
of the ramp loss function, our objective function for margin maximization
has a strong ability to avoid the influence of outliers.

(ii) Since the objective function can be decomposed into a DC program, a DC
algorithm (DCA) (Pham Dinh and Le Thi, 1997) is adopted to solve this
problem. Our method iteratively solves a sequence of convex subproblems.
We refer to the proposed method as Distance Metric Learning using DC
programming (DML-dc).

(iii) We show that the generalization error analysis of the proposed approach has an
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important theoretical implication in explaining that minimizing the objective
function may improve the generalization performance of nearest-neighbor
classification. In particular, the generalization performance is guaranteed via
the fat-shattering dimension of Lipschitz classifiers through the combination
of a large margin and a low-rank Mahalanobis matrix.

The remainder of this chapter is organized as follows. Section 7.2 gives some
preliminaries that will be used throughout this chapter. Section 7.3 briefly reviews
some existing approaches that are closely related to our work. Section 7.4 presents
our distance metric learning formulation and the corresponding DCA algorithm.
Subsequently, Section 7.5 provides the generalization error of the proposed approach
using the large-margin criterion. Experimental results are discussed in Section 7.6,
followed by some concluding remarks in Section 7.7.

7.2. Preliminaries

To evaluate the performance of a classifier, it does not suffice to consider the
training error, but it is also necessary to consider the confidence of the predictions
made by the classifier. The margin is one of the geometric measures for evaluating
this confidence (Crammer et al., 2003). It provides theoretical generalization
bounds on the effectiveness of a classifier, i.e. the higher the confidence is, the
lower generalization error the classifier obtains. Many machine learning algorithms
have been analyzed using margin concepts, such as SVMs (Vapnik, 1998) and
AdaBoost (Schapire et al., 1997).

Given a distance metric d, Crammer et al. (2003) define the margin by which a
labeled example x; is classified correctly as

¢(XZ) = d(X“NM(Xl)) - d(Xi, NH(XZ)) 5 (71)

where NM(x;) and NH(x;) are the elements of M(x;) and H(x;) (see the definitions
of M(x;) and H(x;) in Section 6.3) that are closest to x;, called nearest miss (NM)
and nearest hit (NH), respectively. This margin was originally defined using the
Euclidean distance metric for feature selection purposes. The intuition behind
this formulation is that it measures how much x; can travel in the input space
before being misclassified. This margin definition is also adopted implicitly in the
well-known RELIEF algorithm (Kira and Rendell, 1992). RELIEF predefines the
NH and the NM in the original input space using the Euclidean distance metric,
and it leads to a convex optimization problem. The major issue with RELIEF is
that the NH and the NM in the original input space are not always the same in
the transformed space.
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7.3. Related work

Our method is closely related to feature selection methods such as RELIEF (Kira
and Rendell, 1992), I-RELIEF (Sun et al., 2010), and SIMBA (Gilad-Bachrach
et al., 2004). The reader is referred to (Robnik-Sikonja and Kononenko, 2003) for
a more detailed discussion about this family of algorithms in a unified framework.
These methods are developed for selecting a set of features that capture the relevant
properties of the data by maximizing the margin of nearest-neighbor classification.
We use a similar idea of defining the margin as those methods, i.e. the difference
between distances of a given example to its NM and NH. However, instead of
learning a simple weight vector over the feature set, we learn a full Mahalanobis
distance metric. Therefore, the correlations among features are also taken into
account, yielding a more powerful model. It is important to note that the NHs
and NMs vary when the distance metric is updated, making the optimization
problem hard to solve (Sun, 2007). Several approaches have been proposed to avoid
this problem. For instance, instead of calculating the NHs and NMs explicitly,
Chang (2010) proposed a method using kernel density estimation to estimate the
distances to NHs and NMs. By doing so, the problem becomes easier and can
be solved by standard optimization techniques such as gradient descent or the
EM algorithm. The idea of using kernel density estimation for NHs and NMs is
also employed in Neighborhood Components Analysis (NCA) (Goldberger et al.,
2005) and Large Margin Subspace Learning (LMSL) (Liu et al., 2013). Based
on pairwise constraints, Zhang et al. (2012b) proposed Constrained large Margin
Local Projection (CMLP) for multimodal dimensionality reduction. Differently
from these methods, we directly minimize the losses based on margin violations
defined by NHs and NMs, which may provide a more reliable solution.

Research on distance metric learning has been very active in the past decade (Bel-
let et al., 2015). Here, we limit ourselves to the discussion of several distance metric
learning methods for classification problems. Empirical evidence has demonstrated
that distance metric learning methods that employ the large-margin concept usually
perform better than other alternatives (Weinberger and Saul, 2009; Shen et al.,
2012; Hu et al., 2015b; Zou et al., 2016). One of the most successful methods,
namely LMNN (Weinberger and Saul, 2009), aims to learn the distance metric
under which each training example has nearest neighbors that share the same class
label (i.e. target neighbors), while pushing away those examples with different class
labels (i.e. impostor neighbors). The main drawback of LMNN is that the target
neighbors are specified a priori and remain unchanged during the training process.
Consequently, the performance of LMNN heavily depends on the choice of the target
neighbors, since these might be quite different under the optimal distance metric
for k-NN classification. In contrast to LMNN, our method adaptively updates the
target and impostor neighbors during the training process.
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Viewed from an alternative perspective, our method shares the same goals of
local learning as LMNN (Weinberger and Saul, 2009), NCA (Goldberger et al.,
2005), LDDM (Mu et al., 2013), and DMLMJ (see Chapter 3). Unlike global
distance metric learning methods, which usually try to satisfy all the constraints,
these local methods only use the neighborhood information, resulting in a suitable
model for local classifiers like the nearest-neighbor classifier. This is due to the fact
that nearest-neighbor classifiers are mostly influenced by the examples that are
close to the test examples. A common guiding principle for local distance metric
learning methods is to satisfy the local constraints derived from the neighborhood of
each training example (Ying and Li, 2012). While the previous methods are based
on local learning, they completely differ in their problem formulation. Therefore,
it is unclear whether they have the same theoretical properties as ours.

Recently, there have been several attempts to make the distance metric robust
to outliers, which become particularly problematic in noisy data classification.
For instance, Wang et al. (2014a) introduced an objective function based on the
£1-norm instead of the usual squared /5-norm which could be highly influenced by
outliers. Similarly to Xiang et al. (2008), they aim to find a linear transformation
that minimizes the ratio between the distances of the examples in the must-link
constraints and those in the cannot-link constraints. Alternatively, to reduce the
influence of noisy examples, Mu et al. (2013) proposed an ensemble framework
that combines locally learned distance metrics for the final prediction. Unlike these
methods, we use the ramp loss function, which has the strong ability of suppressing
the influence of outliers (Collobert et al., 2006b; Ertekin et al., 2011).

7.4. Proposed method

The previous section recalled the importance of margins in order to develop a
consistent classifier, i.e. a classifier with a misclassification rate that converges to
the best possible. In this section, we present a distance metric learning method that
intends to maximize the margin of the nearest-neighbor classifier. We first define
the margin in Eq. (7.1) based on the Mahalanobis distance metric. Our distance
metric learning method then aims to maximize the margin of each training example.
Although the formulation is nonconvex, we show that it belongs to the class of DC
programming problems. Subsequently, an efficient algorithm is introduced to solve
this problem. Finally, we discuss the convergence and computational complexity of
the proposed algorithm.
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7.4.1. Problem formulation

Formally, the Mahalanobis distance between two feature vectors x; and x; takes
the following form:

dni (%, %) = \/(Xz‘ —x;)TM(xi — %),

where M 3= 0 is a PSD matrix. Due to the linearity in M, the squared Mahalanobis
distance metric di; is usually used to minimize the distances between similar
examples (x;,x;) and to maximize the distances between dissimilar examples
(x;,%;) simultaneously (Weinberger and Saul, 2009; Davis et al., 2007; Shen et al.,
2012; Ying and Li, 2012). This goal is often formulated as maximizing:

i (xi, x1) — dig (x4, %)
= [dm(x, %) — dn(xi,%;5) ] [dn (x5, %1) + dna(x4,%5)] - (7.2)

Even though the squared distance and the distance are monotonically related, it is
not the case that maximizing the difference of squared distances necessarily amounts
to maximizing the difference of distances, because the summation in (7.2) will
break the monotonicity property. For this reason, we will consider the Mahalanobis
distance metric dng, which is a concave function of M on SE . Accordingly, we can
rewrite the margin in Eq. (7.1) based on the distance metric dyp as

ng(XZ) = dM (X“NMM(Xl)) — dM (Xi,NHM(Xi))
= [—dM (XZ,NHM(XZ))] — [—dM (XZ,NMM(XZ))]
= (M) — h;y(M),

where

9;(M) = — min {dm(x;,x;) | x; € H;},
h;(M) = —min {dM(Xi,Xj) | x; € ./\/li}7

are convex functions of M on Sf .

After having defined the margin, distance metric learning can be performed
within the large-margin framework. As is commonly done, the large-margin method
maximizes the margin of the example with the smallest margin for a separable
classification problem (Schoélkopf and Smola, 2001), i.e. the goal is to maximize
min {(;SM (xi) |2, € X } To deal with the nonseparable case, we introduce a soft
margin to relax this condition, i.e. some examples are allowed to violate their
margins by adding additional penalty terms to the objective function. For this
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purpose, we formulate our distance metric learning problem as follows:

n

mi&ir;aize Atr(M) + % ;E(¢M(Xi)) , (7.3)

where / is a loss function penalizing the margin violations and A > 0 is a hyper-
parameter controlling the trade-off between the margin violations and the regular-
ization. The reason for using the trace norm is that the trace of M is equal to its
nuclear norm, therefore, minimizing the trace norm can lead to a low-rank solu-
tion (Kulis, 2012). As a result, it helps to reduce the risk of overfitting. Moreover,
the trace norm has been shown to be effective in several distance metric learning
studies (Jain et al., 2010; Liu et al., 2015a).

3r— T T T
A x ——Ramp loss s = —0.5
v A RS Hinge loss
1\ |==-Exponential loss
ol U it Squared loss

-1 . . +
-2 -1 0 1 2

Figure 7.1: An illustration of the ramp loss function with s = —0.5 and some convex
loss functions

Minimizing the objective function in (7.3) with respect to M implicitly increases
the margins ¢nm(x;). However, with the soft margin, misclassified examples like
outliers also tend to have a large margin loss because the misclassification penalty
is unbounded. As a consequence, they will have a dominant effect on the decision
rule of the classifier. In order to alleviate this problem, we consider the ramp loss
or truncated hinge loss function (Collobert et al., 2006b), given by

Rs(z) = max {O, 1-— z} — maX{O,s — z} ,

where s < 1 is a parameter; we refer to Fig. 7.1 for an illustration of the ramp loss
function compared to the hinge loss function. The idea behind the ramp loss is
to truncate large losses with the constant s, making the classifier more robust to
outliers (Collobert et al., 2006b; Ertekin et al., 2011). Moreover, the ramp loss
function has been shown to give better results than the hinge loss function (Chapelle
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et al., 2009; Collobert et al., 2006a). Applying the ramp loss function to ¢ni(x;)
yields

qivie )
=max {0,1 — g;(M) + }—max{O,s—gi(M)—&-hi(M)}
= max {1+ h;(M), g;(M } ¢i(M) — max {s + h;(M), g;(M) } + g;(M)

= max {1+ h;(M), g;(M)} — max{s+h (M), g;(M)} .

In order to simplify the mathematical notation, let us define

G(M) = Atr(M) + %Zmax {1+ n;(M),g:(M)},

- %Zmax{s + hi(M)agi(M)} )

then the objective function in (7.3) can be decomposed into a convex part G(M)
and a concave part —H (M). Finally, problem (7.3) can be cast as an instance of
DC programming, given by

milr\l/limizc GM)-HM). (7.4)
Problem (7.4) is a nonsmooth nonconvex optimization problem, which is difficult
to solve in general. Fortunately, a DC program can be solved globally using
optimization methods such as branch and bound (Horst and Thoai, 1999), but this
can be slow in practice. Next, we will explain how to find a local minimizer for
this problem using DCA (Pham Dinh and Le Thi, 1997), which allows to solve
large-scale DC programs.

7.4.2. Algorithm

As a starting point for explaining the proposed algorithm, we give a brief intro-
duction to DCA, one of the most effective algorithms for solving DC programs.
Essentially, the idea is to linearize the concave part and subsequently solve the
convex subproblem. When the objective function is differentiable, DCA can be
seen as the Concave-Convex Procedure (CCCP) (Yuille and Rangarajan, 2002).
Such algorithms have already been used in SVMs (Collobert et al., 2006b; Ertekin
et al., 2011), clustering (Bagirov et al., 2016), regression (Pham Dinh et al., 2014),
and so on. We refer the reader to (Pham Dinh and Le Thi, 1997) and the references
therein for further details on DCA. Although DCA converges to local optima,
Pham Dinh and Le Thi (1997) showed that, in practice, it often converges to the
global one. The theoretical results on DCA, such as its convergence properties, can
be applied directly to our algorithm. A pseudocode of our algorithm DML-dc is
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given in Algorithm 5. Next, we will explain the two basic steps in each iteration of
DML-dc.

Algorithm 5 DML-dc: Distance Metric Learning using DC programming

Input: Parameter ¢
Output: M;;; =0

1: Let Mg = 0 be an initial solution

2: Set the iteration counter ¢ « 0

3: repeat

4: Linearize the concave part by computing U; € 0H (M)

5: Compute M, by solving the following convex semidefinite program
M1 milr\l/limize GM) — (M, Uy)

6: Increase the iteration counter t <t + 1

7. until |M; — My ||r <€

Linearizing the concave part

Assume that M, is the solution at the ¢-th iteration in Algorithm 5. The main
idea of DCA is to replace in the original DC program (7.4), at the current solution
M., the second component H (M) with its affine minorization, given by

H/(M) = HM,) + (M — My, Uy), U, € 0H(M,).

By doing so, problem (7.4) can be approximated by solving a convex program
since H;(M) is a linear function of M. In order to approximate the concave part,
we need to compute the subgradient U;. Note that H(M) is a sum of pointwise
maxima of convex functions, which is nondifferentiable. To find the subgradient
of a maximum of functions at a point, we can choose one of the subgradients
of any function that achieves the maximum at that point. Particularly, in our
implementation, Uy is chosen as

1
Uye—| > on(My)+ Y 9g:(My) |,
n €A ieA,

where A; is the set consisting of indices i satisfying the condition s + h;(IM;) >
g:(M;) and A, is the set consisting of indices i that do not satisfy this condition, i.e.
s+ hi(M;) < g;(M;). Similarly, we can compute a subgradient p;(M;) € dg;(M;)
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and a subgradient ¢;(M;) € 0h;(M,) as follows!:

[x,- — NHpm, (Xz)} [xi — NHyy, (Xz)] !

- .fd Z,NH + s ’
pi(M) = Bina, (o N () (o N, (50) 20

0 , otherwise ;

[X,- — NMp, (Xl):| [xi — NMypy, (xi)} !

- if ., NMay, (x; ;
%(Mt) = 2de (Xi7NMMt (Xl)) 5 1 th (Xzy M, (XZ)) # O7

0 , otherwise ;

where 0 denotes a matrix of zeros. Finally, the subgradient of H(M) at M, is
computed as

U; = 711[ Z pi(My) + Z qi(Mt)‘| .

i€EA, i€A;

Solving the convex subproblem

After obtaining a subgradient U; of H(M) at M;, we can replace H(M) by its
linearizion. Therefore, problem (7.4) is approximated by the following convex
semidefinite program:

Mt+1 = argmin G(M) - H(Mt) - <M - Mt, Ut> ,
M>>0

or, equivalently,

M;;1 = argmin - G(M) — (M, Uy) . (7.5)
M=0

Semidefinite programming can be used to solve problem (7.5), however, it does not
scale well on large data sets. To overcome this limitation, we will consider first-order
algorithms. The reason for choosing such algorithms is that they only require
the first derivative of the objective function and, therefore, they can reduce the
time complexity per iteration. In particular, we perform the projected subgradient
descent due to its simplicity and effectiveness. This algorithm has already been
applied to distance metric learning by Weinberger and Saul (2009),Globerson and
Roweis (2006), and Xing et al. (2002).

At the k-th iteration, let My be the current solution of (7.5). Our algorithm
operates as follows. First, we compute a subgradient Gy of the objective function

A matrix S is a subgradient of a function f at X if for all Z in the domain of f, the following
condition is satisfied: f(Z) > f(X) + (Z — X, S).
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in (7.5). In our implementation, Gy, is chosen as follows:

Gir =M+ > pi(Mg)+ > (M) — Uy, (7.6)
1EBy ie?k

where By, is the set consisting of indices 7 satisfying the condition 1 + h;(IMy) >
g:(M},) and By is the set consisting of indices 7 that do not satisfy this condition, i.e.
1+ hy(My) < g;(My). Note that p;(Mg) and ¢;(My) are subgradients of h;(IMy)
and g;(My), respectively, as defined in the previous subsection. Subsequently,
we can update the Mahalanobis matrix in the direction of the subgradient Gy
as

Mk+1/2 =My —nGy,

where 7 is the step size. Finally, to keep the solution within the cone of PSD
matrices, we perform the following projection:

My 41 = Hgp (Mpt1/2) = V12 max{Ay 12, O}VZH/Q )

where Ay /o is a diagonal matrix whose diagonal vector contains the eigenvalues
of My41/2 and V15 is the corresponding eigenvector matrix. One can easily see
that the complexity of this algorithm at each iteration scales as O(N2D+ D?). This
is mainly due to the computation of NHs and NMs, which scales as O(N2D). To
reduce this computational burden, we observe that for each training example, its NH
and NM lie very nearby. Consequently, we only need to check a subset of examples
that likely contains the NH and NM in order to simplify the computation. More
specifically, for each training example x;, we restrict H; to be the set containing
the m nearest examples of the same class and M; to be the set containing the
m nearest examples of different classes. These subsets are dynamically updated
after a certain number of iterations. By doing so, we reduce the complexity of
our algorithm to O(NmD + D?) per iteration. See Algorithm 6 for a pseudocode
summary of these steps.

7.4.3. Convergence and computational complexity

Our algorithm DML-dc has a linear convergence, which is derived from the general
convergence properties of DCA (Pham Dinh and Le Thi, 1997). It is also worth
pointing out that the objective function value in (7.4) is decreasing, even without
considering any line search at each iteration. Due to the computation of NH
and NM for each training example, the complexity of computing a subgradient of
H(M) scales as O(N2D + ND?). However, we observe that DML-dc converges
after very few iterations (less than 15 iterations). In each iteration of DML-dc, we
also have to find the solution of a convex semidefinite program, which scales as
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Algorithm 6 Projected Subgradient Descent for solving (7.5)

Input: Parameters T, n, U;, m
Output: Mr =0
1: Let Mg %= 0 be an initial solution
2: Initialize all sets H; and M, containing only the m nearest examples
3: for k< 0toT —1do
4: if (k41 mod some_constant) = 0 then
Recompute all sets H; and M;
end if
Compute the subgradient Gy as in Eq. (7.6)
Set My 1172 < My — Gy,
9: Project onto the PSD cone as M1 < HSE (Mj11/2)
10: end for

O(T(NmD + D?)). Therefore, the total complexity of DML-dc at each iteration
scales as O(N?D + ND? + TNmD + TD3).

7.5. Theoretical analysis

In this section, we use the large-margin principle to analyze the effectiveness of
the method introduced in Section 7.4. The main purpose of the analysis is to
explain the link between the margin and the generalization error of the metric-based
method when no assumptions are made about the underlying data distribution.
We provide the generalization error for the case of the nearest-neighbor classifier
for binary classification problems. The latter restriction is due to the fact that
we will rely on results from statistical learning theory that are available for such
problems.

We recall some basic concepts of statistical learning theory. Let Z be an input
space in RP. We assume that the training data are generated independently
according to a probability distribution P on Z x {—1,1}. Let F be a class of real-
valued functions (hypotheses) defined on Z. For the hypothesis f € F, let erp(f)
denote the probability that a random couple (x,y) € Z x {—1,1} is misclassified,
ie.

erp(f) =P (sgn(f(x)) #v) ,

where sgn(.) is a threshold function that takes value —1 if its argument is negative,
and value 1 otherwise. We define the empirical error of f on the training set
D = {(xi,y;) | i € {1,...,n}} with respect to v > 0 as

érh(f) :%Hie {1,...,n} | yif(x:) <7H .
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We formally define the hypothesis of the nearest-neighbor classifier as follows.
Let NNy be a real-valued function such that the sign of NNy (x) is the class label
of x assigned by the nearest-neighbor classifier using the Mahalanobis distance
metric dyg on D. The magnitude of NNpg(x) is given by

|NNM(X)| = dM (X7 NMM(X)) - dM (X, NHM(X)) y (77)

where NHpp(x) is the nearest example of x that shares the same class label with
x, and NMp(x) is the nearest example of x whose class label is different from
the class label of NHp(x). The main result of this section is summarized in the
following theorem.

Theorem 7.1. Let D be the training set containing n examples that are generated
independently according to a probability distribution P on Z x {—1,1}. Assume
that the data space Z lies inside a ball of radius R induced by the Fuclidean norm
on RP. Then, with probability at least 1 — o, for any Mahalanobis distance metric
dm with tr(M) < B and for any v > 0 such that ér}y (NNv) = 0, the true error
of NNy can be bounded by

2 34 4
erp (NNyp) < - (clog2 (Cen> log,(578n) + log, ()) .
g

Furthermore, if ér)y (NNy) # 0, with probability at least 1 — o, we have that

erp (NNyp) < 6r), (NNpp) + \/i <c1n (34f”> log, (578n) + In (i)) :

128rvE "
gl ) '

Remark 7.1. Theorem 7.1 shows that maximizing the lower bound - of the margin
defined by the hypothesis NNys will make the nearest-neighbor classifier able to
generalize well to unseen data. Therefore, by maximizing ¢p on the training
examples, we attempt to maximize the margin of the nearest-neighbor classifier.
Additionally, Theorem 7.1 also provides a theoretical justification to enforce the

In both cases, the constant ¢ satisfies ¢ < (

low-rank constraint in our distance metric learning method as the rank of M
appears in the exponent of the bound as well.

Before giving the proof of Theorem 7.1, let us introduce some useful lem-
mas.

Lemma 7.1. The hypothesis of the nearest-neighbor classifier using the Maha-
lanobis distance metric dyg on the training set D can be rewritten as

NNM(X) = dM(Xv Xy:fl) - dM(Xv Xy:l) s
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where Xy—_1 and Xy—, denote the subsets containing the training examples whose
class labels are —1 and 1, respectively.

Proof. Let z; and z, be the nearest points of x using the Mahalanobis distance
metric dy on Xy—_; and Xy—1, respectively. We have to consider two different

cases in order to prove this lemma.

In the first case, if dv(x,21) > dav(X, Z2), then NNy (x) > 0 and

INNm(%)| = dm(x,21) — dm(x, 22)
= dM (X, NMM (X)) - dM (X7 NHM (X)) .

In the second case, if dm(x,21) < dm(x,z2), then NNp(x) < 0 and
|NNM(X)| = dM(Xa ZQ) - dM(X7Z1)
= dM (X, NMM (X)) - dM (X, NHM (X)) .

O

Lemma 7.2. Let x be a point inside a ball of radius R induced by the Euclidean
norm on RP and let M € RP*P be a PSD matriz such that tr(M) < B. Then it
holds that |L" x| < RVB, where M = LL .

Proof. Since L' x is a vector, it holds that |L'x|| = |L" x| 7. Using the submulti-
plicative property of the Frobenius norm (Golub and Van Loan, 1996), we obtain
ILTxl|r < L7l llxll e = /tr(LLT) x| < RVB. O

Lemma 7.3. Let X be a set of points in RP and let M € RP*P be o PSD matriz.
Then for any x1,Xs € RP, it holds that

ldmi(x1, X) — dv (%2, X)| < dmi(x1,%2) .

Proof. Let z; and zs be the nearest points of x; and x5 using the Mahalanobis
distance metric dyg on X, respectively. By definition of dag(x1, X), it holds that

dM(XL X) = Cll\/[(Xl7 Z]_) S dM(Xl,Zg) .
Using the triangle inequality of the distance metric dng, we have that

dm(x1,22) < dm(x1,Xx2) + dv(x2,22)
= dM(Xl,Xg) —+ dM(X27 X) .

The last expression implies

dM<X1,X)—dM(X2,X) SdM(Xl,Xg). (78)
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Exchanging the roles of x; and x3, we obtain in a similar way
dM(XQ,X) —dM(Xl,X) S dM(Xl,Xg). (79)

From (7.8) and (7.9), we conclude the proof. O

Lemma 7.4. Let D be a training set containing labeled examples in Z x {—1,1}
and let M € RP*P be a PSD matriz. Then, for any x1,% € RP, it holds that

|NNM(X1) - NNM(X2)| < QdM(Xl,Xg) .
Proof. Using Lemma 7.1, we can write

INNm (x1) — NNm(x2)| = [dm(x1, Xy=—1) — dna(x1, Xy=1)
—dn(x2, Xy—_1) + dm(x2, Xy=1)|
< dm(x1, Xy=—1) — dm(x2, Xy=—1)|
+ ldm(x1, Xy=1) — dm(x2, Xy=1)| -

Using Lemma 7.3, we obtain

ldn (%1, Xy——1) — dm(x2, Xy——1)| < dm(x1,X%2),
|dn(x1, Xy=1) — dm(x2, Xy=1)| < dm(x1,%2),

and hence [NNpg(x1) — NNp(x2)| < 2da (X1, X2) - O

The result in Theorem 7.1 can be proved using the theorem presented by Bartlett
(1998), which provides a way to relate the generalization error to the empirical
error at a margin 7.

Theorem 7.2. (Bartlett, 1998) Let D be the training set containing n examples
that are generated independently according to a probability distribution P on Z X
{=1,1}. Let F be a set of real-valued functions mapping X to R and define
¢ = fat(F,X,v/16). Then, with probability at least 1 — o, for any f € F that has
margin at least v on all examples of D, it holds that

erp(f) < % <clog2 (340%> log,(578n) + log, (i)) .

Furthermore, if ér)(f) # 0, with probability at least 1 — o, we have that

erp(f) < &b (f) + \/i (cln (34:”> log, (578n) + In (j)) .

We now present the proof of Theorem 7.1.
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Proof. In order to use Theorem 7.2, we need to compute the fat-shattering dimen-
sion of the nearest-neighbor classifier using the Mahalanobis distance metric dpy;.
According to Lemma 7.4, the function NNy is Lipschitz continuous with Lipschitz
constant L = 2 on the metric space (X, dn). Therefore, the fat-shattering dimen-
sion of the nearest neighbor classifier can be bounded by the covering number
N(X,~v/32,dm) (see Bartlett, 1998, Theorem 13).

In general, it is difficult to estimate the covering number for an arbitrary metric
space. There are only a few results on covering numbers, e.g., the fact that the
covering number of a closed ball of radius R induced by the Euclidean norm on
RP can be bounded by (4R/e)P (see Cucker and Smale, 2002, for instance), where
€ is the radius of the disks covering the ball.

Since the Mahalanobis distance metric dy can be seen as the Euclidean distance
metric in the transformed space X’ by performing the linear transformation x’ =
L"x, where M = LL " and rank(M) = rank(L), the covering number in the metric
space (X,dm) can be seen as the covering number in the transformed metric space
(X', dy). In particular, if X is a closed ball of radius R induced by the Euclidean
norm in R?, then due to Lemma 7.2, the transformed metric space X’ is a closed
ball of radius Rv/B in R****(M)_ Hence, according to Cucker and Smale (2002),
the covering number N (X,7/32,dn) is bounded by (128 RvVB/~)™*(M) | proving
Theorem 7.1. O

7.6. Experiments

In this section, several experiments are conducted to evaluate the effectiveness of
our method in the context of nearest-neighbor classification. First, we carry out
experiments on various classification benchmark data sets. Second, we conduct
additional experiments on real images to validate the robustness of our method.
Third, we report results on a synthetic data set containing noise to demonstrate
the benefit of using the ramp loss function. Finally, we empirically verify the
convergence rate of the proposed algorithm. The experimental settings are detailed
in the next subsection.

7.6.1. Experimental settings

We compare the following distance metric learning methods:

1. Euclidean: The baseline Euclidean distance metric, which corresponds to the
case when the Mahalanobis matrix is the identity matrix.
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. ITML: Information-theoretic metric learning (Davis et al., 2007). This method
learns a Mahalanobis distance metric in a global sense, i.e., it satisfies all pair-
wise constraints, while minimizing the differential relative entropy between two
multivariate Gaussian distributions to keep the solution as close as possible
to a given Mahalanobis distance metric. The formulation results in a convex
optimization problem, which can be solved using the Bregman projection algo-
rithm. For ITML, the slack parameter «y is chosen considering as set of values
{1073,...,10%}.

. LMMCC: Learning a Mahalanobis matrix for data clustering and classifica-
tion (Xiang et al., 2008). This method maximizes the ratio of the sum of
distances between examples in the cannot-link pairs and the sum of distances
between those in the must-link pairs. Due to the orthogonality constraint, the
problem cannot be analytically solved. To this end, the authors developed an
iterative procedure to find the solution in an efficient way.

. LMNN: Large margin nearest neighbor classification (Weinberger and Saul,
2009). As previously mentioned, LMNN aims to realize that the nearest neigh-
bors of each training example share the same class label, while pushing away
examples of other classes. The authors developed an efficient solver based
on the subgradient descent method. For LMNN; the trade-off parameter p is
chosen considering as set of values {0.125,0.25,0.5}. Following Weinberger and
Saul (Weinberger and Saul, 2009), we use principal components analysis (PCA)
as a preprocessing step for LMNN.

. DML-eig: Distance metric learning with eigenvalue optimization (Ying and Li,
2012). This method learns a Mahalanobis distance metric by solving a convex
optimization problem, which is inspired on the distance metric learning method
for clustering introduced by Xing et al. (2002). The authors proposed an efficient
solver based on the Frank-Wolf algorithm, which requires only the computation
of the largest eigenvalue and corresponding eigenvector in each iteration to keep
the solution within the PSD cone.

. DMLMJ: Distance metric learning through maximization of the Jeffrey diver-
gence. This method learns a linear transformation that maps the input data to
a new space, in which the Jeffrey divergence between two Gaussian distributions
derived from local constraints is maximized. For DMLMJ, we use five nearest
neighbors to estimate the difference spaces.

. DML-dc: Distance metric learning using DC programming described in Algo-
rithm 5. For DML-dc, we tune the trade-off parameter A considering as set of
values {0.001,0.01,0.1,1}. Based on empirical observations, the parameter s is
set to —1, which yields the best results in most of our experiments.

The source codes of these methods are available online from the corresponding
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authors’ websites?. The source code in MATLAB of DML-dc can also be downloaded
from http://users.ugent.be/~bacnguye/DML-dc.v1.0.zip.

7.6.2. Benchmark data sets

We perform experiments on fifteen benchmark data sets from the KEEL repository
and three data sets from LIBSVM?, namely mnist (MNIST), pendigits (PEN),
and satimage (SAT). All data sets are normalized to have zero mean and unit
variance over the training data. Experimental results are obtained by averaging
over 10 runs. In each run, the classification accuracies are computed using a 5-fold
cross-validation except for the three data sets from LIBSVM where the training
and test sets are predefined. Due to the high dimensionality of the MNIST data set,
PCA is employed as a preprocessing step to reduce the dimensionality to 100.

The results obtained by the competing methods are reported in Table 7.1.
In general, the performance of nearest-neighbor classification is improved using
distance metric learning methods. This result confirms that having a good distance
metric can lead to improvements for metric-based problems. Our method is
competitive with other state-of-the-art distance metric learning methods: ITML,
LMMCC, LMNN, DML-eig, and DMLMJ. In most of the cases, DML-dc obtains
the best performance. Among the competing methods, LMMCC performs slightly
worse than the others. This can be explained by the fact that LMMCC aims to
satisfy all possible pairwise constraints, which may constitute a difficult problem.
In contrast, local methods such as LMNN, DMLM.J and DML-dc perform quite
well in most cases, resulting in a significant improvement in the overall performance
of nearest-neighbor classification. As expected, DML-dc outperforms LMNN on
various data sets, e.g. balance, bupa, monk-2, and ring. This is due to the fact that
LMNN predefines the target neighbors using the Euclidean distance metric, whereas
DML-dc adaptively updates the target neighbors during the training process. To
give a fair comparison, on each data set, we also rank the competing methods based
on their classification accuracy. The method with the highest accuracy is assigned
rank 1, the one with the second highest accuracy is assigned rank 2, and so on.
The average rank of each method over all data sets is presented in the last row of
Table 7.1. From these results, we can see that DML-dc achieves the best average
rank, demonstrating its robustness and stability for classification tasks.

ITML: http://www.cs.utexas.edu/~pjain/itml/

LMMCC: https://sites.google.com/site/feipingnie

LMNN: http://www.cse.wustl.edu/~kilian/code/code.html

DML-eig: http://empslocal.ex.ac.uk/people/staff/yy267/software.html
DMLMJ: http://users.ugent.be/~bacnguye/DMLMJ.zip

LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 7.1: Classification accuracies (standard deviations) of the competing distance metric learning methods on the KEEL data sets. Best

results are highlighted in boldface.

Id Euclidean ITML LMMCC LMNN DML-eig DMLMJ DML-dc
APP  83.07 (3.84) 79.26 (6.29) 79.31 (6.90) 83.03 (5.37) 83.90 (6.50) 81.17 (6.56)  82.99 (4.38)
BAL  78.88(2.69) 90.52 (2.23)  83.52 (2.30) 79.52 (1.93) 8224 (5.58)  90.40 (2.19)  90.72 (1.93)
BUP  64.93 (4.02) 5855 (4.42) 60.29 (4.18) 61.16 (4.02) 65.51 (2.38) 60.29 (8.67) 65.51 (4.02)
IRI 94.67 (4.47)  95.33 (3.80)  94.67 (5.06)  94.67 (4.47)  94.00 (3.65)  94.67 (4.47)  96.00 (3.65)
LET 95.05 (0.41)  95.38 (0.54)  96.36 (0.23)  96.47 (0.14)  95.09 (0.57)  97.58 (0.10)  96.99 (0.27)
MAG  81.57 (0.41) 8171 (0.46)  80.07 (0.16)  81.46 (0.40)  81.27 (0.58)  81.74 (0.42) 81.96 (0.49)
MON  73.84 (2.45) 82.39 (14.66) 92.34 (9.55) 85.42 (13.36) 100.0 (0.00)  98.60 (1.91)  98.14 (3.03)
MOV  84.44 (5.50) 82.78 (6.48) 85.56 (4.00) 87.78 (3.73) 79.72 (6.26)  83.06 (3.60)  83.33 (5.20)
OPT  97.99 (0.52) 97.92 (0.52)  97.95 (0.55) 98.61 (0.55)  98.47 (0.18)  98.67 (0.51) 98.68 (0.34)
RIN 74.61 (1.50)  79.30 (2.00)  75.96 (1.09)  74.95 (1.14)  83.05 (1.12)  84.43 (1.13)  84.57 (1.00)
SEG 96.15 (0.91)  96.75 (1.00)  95.71 (1.24)  96.67 (1.25)  94.94 (0.91)  96.93 (0.86)  97.06 (0.82)
SON  84.59 (4.50) 85.55 (4.63) 84.60 (4.13) 84.16 (4.27)  84.12 (2.79)  84.62 (5.82) 86.52 (6.50)
WDB  96.13 (1.33) 97.01 (1.00) 94.90 (0.40)  96.31 (2.28)  95.78 (1.15)  96.66 (1.16)  96.31 (1.57)
WIN  94.97 (3.60) 96.62 (2.36)  97.21 (3.40) 98.86 (2.56)  96.08 (2.51)  97.78 (3.62)  98.32 (1.54)
WIS 95.61 (1.87)  95.90 (2.23)  95.76 (2.16) 96.19 (1.97)  95.90 (2.35)  95.90 (1.42)  95.61 (1.63)
MNIST 97.16 (0.00)  97.16 (0.00)  97.08 (0.00)  97.56 (0.00)  85.64 (0.00)  97.39 (0.00)  97.71 (0.00)
PEN  97.40 (0.00) 97.60 (0.00)  97.46 (0.00)  97.43 (0.00) 97.80 (0.00)  97.68 (0.00)  97.71 (0.00)
SAT 88.80 (0.00)  88.80 (0.00)  84.05 (0.00)  89.70 (0.00)  88.90 (0.00)  90.05 (0.00)  90.35 (0.00)
Rank 5.27 4.27 5.11 3.72 4.58 2.94 2.08
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The training time of the competing methods on each data set is reported in
Table 7.2. Note that the training time also includes the time for tuning hyper-
parameters. All the experiments are run in MATLAB using the same PC. DML-eig
is the fastest method because it does not require tuning any hyper-parameter,
however, its performance is much lower than other distance metric learning methods.
LMMCC also runs quite fast as it has an exponential convergence rate. DMLMJ is
the third fastest method since it only needs to perform an eigenvalue decomposition
in order to find the linear transformation. Our method is only slightly slower
than ITML and LMNN in most cases. This slowness is a result of the fact that
DML-dc requires solving several convex subproblems. It is also important to
note that our method has mainly been implemented in MATLAB, but further
running time improvements can be anticipated. For instance, using intelligent
data structures like Ball-Trees and Kd-Trees can speed up the search of nearest
neighbors; using C-mex functions can speed up functions written in MATLAB; using
online learning techniques can efficiently solve the convex subproblems. Clearly, a
careful implementation can make a significant difference in the real computation
time.

Table 7.2: Training time (in seconds) of the competing distance metric learning methods
on the KEEL data sets. Best results are highlighted in boldface.

Id ITML LMMCC LMNN DML-eig DMLMJ  DML-dc
APP 8.36 0.06 7.38 0.28 0.03 13.17
BAL 62.57 0.02 12.03 0.47 0.11 25.96
BUP 9.88 0.01 10.88 0.26 0.06 19.55
IRI 42.94 0.01 7.59 0.20 0.03 9.70
LET 243.33 28.79 121.96 8.09 95.85 1,439.89
MAG 64.84 15.41 728.50 6.99 57.14 634.91
MON 11.73 0.01 5.23 0.44 0.08 21.16
MOV 523.98 0.11 15.53 1.04 0.41 100.71
OPT 368.01 1.57 72.61 8.94 35.50 715.46
RIN 21.79 2.80 111.61 1.42 20.69 977.38
SEG 132.50 0.27 27.71 0.38 1.59 111.64
SON 9.42 0.05 9.52 0.64 0.15 56.97
WDB 12.38 0.02 9.78 0.53 0.23 44.62
WIN 52.67 0.01 6.86 0.39 0.05 16.33
WIS 9.10 0.02 9.91 0.33 0.15 24.68
MNIST 2,280.02  1,546.18 5,013.76 188.28 9,815.32 15,826.41
PEN 105.30 7.64 59.98 7.00 69.06 520.94
SET 112.83 8.13 848.47 2.82 49.93 326.61
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7.6.3. Experiments on image data sets

To demonstrate the effectiveness of the proposed method, we further compare DML-
dc with ITML, LMMCC, LMNN, DML-eig, and the baseline Euclidean distance
metric on two image data sets. The first one is the Coil-100* data set (Nene et al.,
1996), which has been widely used in the object recognition literature (Zou et al.,
2012; Liu and Srivastava, 2002). This data set consists of 100 objects. Each object
comes with 72 images, which are obtained by rotating the object every 5 degrees
w.r.t. a fixed color camera (some examples are shown in Fig. 7.2(a)). We convert
all images to grayscale and downsample them to 32 x 32 pixels. Each image is
then represented by a 1024-dimensional feature vector. Due their high-dimensional

nature, these feature vectors are reduced to 100-dimensional feature vectors using
PCA.

The second one is the Extended Yale B (Y-Faces)® data set (Soleimani and
Matwin, 2016), consisting of 2,424 frontal face images of 39 individuals, which
were taken under different illumination conditions (some examples are shown in
Fig. 7.2(b)). For each individual, 64 images were captured (a few individuals are
represented with fewer images). We use the cropped images and resize them to
32 x 32 pixels. Apart from pixel features, we also adopt LBP features (Ahonen et al.,
2006) computed from local regions to represent each face image (Y-Faces+LBP).
Due to the high dimensionality, PCA is employed to obtain a 100-dimensional
feature vector for each image. This data set has been used in several distance
metric learning studies (Weinberger and Saul, 2009; Yu et al., 2014).

Table 7.3 shows the average classification accuracy and standard deviation of the
competing methods. The results here are reported using 5-fold cross-validation in
the context of nearest-neighbor classification. As we can see from the results, using
the Mahalanobis distance metric leads to a great improvement in the performance
of nearest-neighbor classification over the Euclidean distance metric. Interestingly,
when using LBP features, DML-dc is still able to improve the performance. We
observe that our method outperforms other competing methods, demonstrating the
effectiveness of the proposed method. It is important to note that some methods,
including LMMCC and DML-eig, cannot even perform better than the Euclidean
distance metric.

4 Available at: http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
5 Available at: http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html
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Figure 7.2: Examples of the images in (a) the Coil-100 and (b) the Extended Yale B data sets.

Table 7.3: Classification accuracies (standard deviations) of the competing distance metric learning methods on the Coil-100 and Y-Faces
data sets. Best results are highlighted in boldface.

Data set Euclidean ITML LMMCC LMNN DML-eig DMLMJ DML-dc
Coil-100 96.46 (0.23) 98.31 (0.27) 96.43 (0.23) 98.46 (0.28) 93.28 (0.90) 98.36 (0.28) 99.36 (0.21)
Y-Faces 90.39 (0.53) 92.49 (0.92) 90.59 (0.75) 93.36 (0.48) 84.28 (2.11) 94.18 (0.47) 94.97 (0.38)

Y-Faces+LBP  98.93 (0.23) 97.81 (2.60) 98.84 (0.31) 98.35 (0.76) 95.50 (5.13) 99.38 (0.39) 99.46 (0.31)
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7.6.4. Sensitivity to noise

This subsection aims to compare the sensitivity to noise of the competing methods.
For this purpose, we carry out an experiment on handwritten digit recognition
(USPS) (Hull, 1994). This data set contains 16 x 16 grayscale images of the numbers
0-9 written on postal materials. All features are normalized into the interval [0, 1].
Since the number of features is large, PCA is employed to reduce the dimensionality
to 100 in order to avoid a high computational burden. The training set consists of
7,291 examples and the test set consists of 2,007 examples. Following Ertekin et al.
(2011), we generate synthetic data sets with different noise levels by randomly
changing the class labels of the training examples. Each noise level corresponds
to a different subset of training examples of which the class label will be changed.
In our experiment, the percentage of noise is varied from 1 to 10 percent of the
training examples. Test accuracies of each method are reported in Table 7.4 by
averaging the results over 10 runs. Note that we use the same test set for all
methods.

As we can see from this table, all methods (except DML-eig) perform competi-
tively on the original data set without noise. LMMCC is sensitive to the presence of
outliers due to the fact that its objective function is based on the squared ¢5-norm
distances, making the covariance matrices are very sensitive to outliers. This has
also been observed by Wang et al. (2014a). Both DMLMJ and ITML are less
sensitive to noise. DMLMJ uses a set of nearest neighbors to estimate the difference
spaces instead of using only one nearest neighbor, resulting in a distance metric
that is less affected by noisy neighbors. ITML randomly chooses a set of pairwise
constraints to learn the distance metric. Therefore, the probability of selecting
“wrong” pairwise constraints is low when the noise level is low. In contrast, there
is a significant decrease in performance for LMNN when the noise level increases.
This behavior is caused by the “wrong” target neighbors in the training set. Our
method alleviates the effect of these “wrong” target neighbors by using the ramp
loss function, making it robust to noise.
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Table 7.4: Classification accuracies (standard deviations) of the competing distance metric learning methods on the USPS data set with

noise. Best results are highlighted in boldface.

%moise  Euclidean ITML LMMCC LMNN DML-eig DMLMJ DML-dc

0 94.52 (0.00) 94.53 (0.14) 94.47 (0.00) 94.57 (0.00) 91.88 (0.00)  94.67 (0.00) 95.27 (0.00)
1 93.53 (0.24) 93.70 (0.33) 93.45 (0.22) 92.27 (0.48) 91.67 (0.55)  94.15 (0.21)  94.29 (0.23)
2 92.60 (0.38) 92.74 (0.35) 92.55 (0.42) 90.66 (0.25) 90.47 (0.94) 93.52 (0.38)  93.07 (0.35)
5 89.89 (0.35) 89.98 (0.38) 89.82 (0.56) 87.54 (1.24) 86.67 (0.92)  90.59 (0.42) 90.64 (0.38)
7 88.05 (0.69) 87.73 (0.93) 87.89 (0.73) 85.22 (1.30) 83.71 (0.87) 88.68 (0.39) 88.74 (0.46)
10 85.23 (0.43) 85.70 (0.53) 85.12 (0.53) 81.88 (0.75) 80.61 (0.81)  85.46 (0.60) 86.10 (0.54)
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Figure 7.3: Classification accuracy of DML-dc versus different values of s in the ramp loss function.
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We also study the behavior of DML-dc when varying the value of s in the ramp
loss function. For this purpose, we report the performance of DML-dc on the USPS
data set against different values of s in Fig. 7.3. When s takes large negative values,
the ramp loss becomes the hinge loss, i.e., it cannot help to remove the outliers
from the data. On the other hand, increasing the value of s to be close to 1 may
prevent the influences of misclassified examples, which are the most informative
examples. As a consequence, this will decrease the generalization performance of
DML-dec.

7.6.5. Convergence rate

In this subsection, we empirically verify the convergence rate of DML-dc. As
an illustration, Fig 7.4 shows the convergence of DML-dc on the balance data
set. We show the objective function value and the classification accuracy versus
the number of iterations. The training accuracy is computed using leave-one-out
cross-validation. As we can see from this figure, DML-dc converges after only five
iterations. Both training and test accuracies remain more or less the same once a
certain number of iterations is reached.
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Figure 7.4: An illustration of the convergence rate for DML-dc on the balance data set:
(a) objective function value versus number of iterations and (b) classification accuracy
versus number of iterations.

7.7. Conclusion

In this chapter, we have proposed a large-margin distance metric learning method
for nearest-neighbor classification. In contrast to previous work on margin maxi-
mization in distance metric learning, our method replaces the traditional convex
loss function with the ramp loss function, making it more robust in the presence of
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noise. To deal with both the nonconvexity and the nonsmoothness of the objective
function, an efficient DC programming algorithm has been introduced. It amounts
to solving a sequence of convex optimization problems and usually requires a few
iterations only. Furthermore, the theoretical foundations of DML-dc have been
analyzed, proving that our method yields a good generalization ability to unseen
examples. Finally, we provided empirical results demonstrating the effectiveness of
our method on several standard benchmark data sets. In general, DML-dc is only
slightly slower, however, it performs better than other state-of-the-art distance
metric learning methods for nearest-neighbor classification.
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& An efficient method for

clustered multi-metric learning

Although there has been an increasing interest in the distance metric learning
field, learning a global distance metric is insufficient to obtain satisfactory results
when dealing with heterogeneously distributed data. A simple solution to tackle
this kind of data is based on kernel embedding methods. However, it quickly
becomes computationally intractable as the number of examples increases. In
this chapter, we propose an efficient method that learns multiple local distance
metrics instead of a single global one. More specifically, the training examples are
divided into several disjoint clusters, in each of which a distance metric is trained
to separate the data locally. Additionally, a global regularization is introduced to
preserve some common properties of different clusters in the learned metric space.
By learning multiple distance metrics jointly within a single unified optimization
framework, our method consistently outperforms single distance metric learning
methods, while being more efficient than other state-of-the-art multi-metric learning
methods.

The material of this chapter is based on the following publication:
Nguyen, B., Ferri, F. J., Morell, C., and De Baets, B. (2019a). An efficient method
for clustered multi-metric learning. Information Sciences, 471:149-163

8.1. Motivation

A successful application of distance metric learning is to improve the performance
of k-NN classification. Despite its simplicity, k-NN is well suited for multi-class
problems with very large numbers of training examples. It is well known that the
performance of k-NN crucially depends on the choice of distance metric (Davis
et al., 2007; Mu et al., 2013). Although there is a large amount of works on
distance metric learning, most of them simply learn a global distance metric. In
many real-world applications, such methods may fail to handle the nonlinearity
inherent in the data, especially data from a multimodal distribution. In such cases,
there exists no single distance metric that appropriately satisfies all the constraints
derived from the data.

A simple solution is to use kernel embedding methods (Schélkopf and Smola,
2001). The idea is to map the input data into a high-dimensional feature space,
in which a linear transformation could separate well the data. Many kernel
distance metric learning methods have been developed, including ITML (Davis
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et al., 2007), LMCA (Torresani and Lee, 2007), and KDMLMJ (see Chapter 3). A
general kernel-based framework for distance metric learning can be found in (Jain
et al., 2012). By learning a distance metric in the kernel-induced feature space,
we can capture any nonlinearity in the original feature space. Following the
representer theorem (Scholkopf et al., 2001), the optimal distance metric is implicitly
represented by a matrix, which scales quadratically with the number of training
examples. As a consequence, the computational burden of these kernel-based
methods limits their application to large-scale data sets. Another solution is
to learn multiple distance metrics, referred to as multi-metric learning, where
each distance metric captures a different region of the data. In the literature,
multi-metric learning has recently been studied (Bohné et al., 2014; Parameswaran
and Weinberger, 2010; Ramanan and Baker, 2011; Shi et al., 2014; Weinberger
and Saul, 2009). However, the scalability on large data sets is not satisfactorily
addressed.

Motivated by the above discussion, we propose a novel method, namely clustered
multi-metric learning (CMML), for heterogeneously distributed data. In particular,
we first divide the data into several clusters using, for instance, k-means cluster-
ing (Hartigan and Wong, 1979), then learn a single distance metric for each cluster
based on triplet constraints. Moreover, a global distance metric is introduced to
capture the common structure among all the clusters, which requires that the
distance metric in each cluster should be as close as possible to the global one. On
the one hand, the global distance metric serves as a regularization that controls
overfitting; on the other hand, it can lead to the propagation of side-information
among clusters, resulting in a more robust and stable model. To make CMML
scalable for large data sets, we adopt the block-coordinate descent algorithm (Tseng,
2001), which enables us to solve the optimization problem efficiently. For each
block, we develop an efficient algorithm based on stochastic gradient descent (SGD).
The proposed algorithm only needs the computation of the smallest eigenvalue and
corresponding eigenvector of the Mahalanobis matrix at each iteration. Due to
the convexity of the stated optimization problem, our algorithm is guaranteed to
converge to an optimal solution.

The remainder of this chapter is organized as follows. In Section 8.2, we briefly
review several related works. In Section 8.3, we discuss our problem formulation for
clustered multi-metric learning and present the proposed algorithm. In Section 8.4,
we conduct extensive experiments on various standard benchmark data sets to
validate the effectiveness of the proposed algorithm. Finally, we provide some
concluding remarks and suggestions for future work in Section 8.5.

150



§8.2. Related work

8.2. Related work

In the literature, various approaches have been proposed to learn multiple distance
metrics that efficiently handle heterogeneously distributed data. The common idea
is to locally adjust the distance metric to the properties of the training data in
each region. For instance, one distance metric is learned for each class (Weinberger
and Saul, 2009), for each training example (Frome et al., 2007a,b; Mu et al., 2013),
or for each test example (Domeniconi et al., 2001; Hastie and Tibshirani, 1996).
According to Ramanan and Baker (2011), these local distance metrics can provide
an approximation to the geodesic distance computed by a metric tensor that defines
a possibly different distance metric at each point in the input space. The result
may explain the advantage of using multiple distance metrics over a single global
one. Below, we review some relevant approaches for each of those categories.

In an early work, Hastie and Tibshirani (1996) used local linear discriminant
analysis (LDA) to estimate a distance metric from the neighborhood of each
test example (DANN). Similarly, Domeniconi et al. (2001) proposed adaptive
metric nearest neighbor (ADAMENN), which learns a local distance metric for
each test example such that its neighborhood is elongated along less relevant
feature dimensions and shrunk along the most influential ones. Although DANN
and ADAMENN can significantly improve the performance of k-NN classification,
training a distance metric for each test example is computationally expensive,
especially when the number of test examples is large. To reduce this computational
burden, Weinberger and Saul (2009) partitioned the training data into clusters
and learned a single distance metric for each cluster using LMNN (mmLMNN).
Unlike DANN and ADAMENN, mmLMNN learns all the local distance metrics
within a unified optimization framework, making them meaningfully comparable
for purposes of retrieval and classification. Bohné et al. (2014) proposed LMLML,
which first partitions the input space by a Gaussian mixture model and subsequently
learns a local distance metric associated with each cluster. In another work, Frome
et al. (2007b) jointly learned a weight vector for each training example, yielding
local distance functions that capture the relationship in the neighborhoods. Mu
et al. (2013) proposed the local discriminative distance metrics (LDDM) algorithm,
which learns a distance metric from the neighborhood of each training example. In
order to reduce the risk of overfitting and high training cost, Wang et al. (2012)
restricted each local distance metric as a linear combination of only a few basis
matrices. This framework can be seen as learning a smooth metric matrix function
over the data manifold. Similarly, Shi et al. (2014) decomposed the Mahalanobis
matrix as a weighted sum of rank-one matrices and learned a smooth function that
maps any example to the weighted sum defining its local distance metric. Our
method CMML differs from the above methods by the use of global regularization,
which assumes that distance metrics from different clusters share some common
properties.
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Other recent research has focused on dealing with multiple feature representa-
tions for multimodal classification problems (Hu et al., 2018; Liang et al., 2018;
Zhang et al., 2017). The idea is to extract knowledge from multiple sources rep-
resenting the same example in order to improve the performance of using only a
single source. Unlike conventional methods that learn a distance metric on the
concatenated features, these methods jointly learn different distance metrics for
different feature representations (modalities). In (Zhang et al., 2017), the distance
metric in each modality is defined as the product of an individual matrix from
a modality and a global matrix shared across different modalities. Similarly, Hu
et al. (2018) forced to learn a shared representation for different modalities in order
to preserve their common properties. Instead of learning from different feature
representations, our method tries to learn different distance metrics from different
regions of the input space.

Multi-task multi-metric learning is also related to our method in the sense that
both frameworks learn multiple distance metrics from different subproblems. More
specifically, each cluster can be seen as a single task and the global regularization
corresponds to the common structure, which is shared by each task. Along with
this research direction, there have been several efforts to improve the classifica-
tion performance. For instance, Parameswaran and Weinberger (2010) extended
LMNN (Weinberger and Saul, 2009) to the multi-task paradigm, following the
formulation of multi-task SVMs (Evgeniou and Pontil, 2004). Yang et al. (2013)
introduced the geometry-preserving criterion among the related tasks based on
the von Neumann divergence between two matrices. Recently, Hao et al. (2017)
proposed to learn multiple similarity functions for related tasks simultaneously
from the triplet constraints via online learning. Zheng et al. (2017) proposed the
hierarchical multi-task sparse distance metric learning algorithm that can learn
a tree of multiple sparse distance metrics hierarchically over a visual tree. Even
though multi-task multi-metric learning methods and our method use information
from several subproblems, there exist crucial differences between them in the
problem formulation as well as in the objective. In multi-task learning, each task
is an independent sample of possibly different distributions, while in our method,
each cluster is a disjoint subset of the same sample from the same distribution.
More importantly, the objective of multi-task learning is to improve the perfor-
mance of all tasks simultaneously by enforcing a common regularization. Our
objective is to simplify the original problem by partitioning it into several smaller
subproblems.

In particular, our method is inspired by an extension of support vector machines
(namely CSVM) by Gu and Han (2013). This method is developed using several
linear support vector machines to handle nonlinearly distributed data. Instead
of learning separating hyperplanes, CMML learns different Mahalanobis distance
metrics based on local triplet constraints. Note that these triplet constraints can
involve examples from different clusters, while in CSVM, only examples from the
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same cluster are used for training individual support vector machines. Due to the
positive semidefiniteness constraint, our problem is more difficult to solve than the
one in (Gu and Han, 2013). To this end, we propose an efficient algorithm that
can quickly converge to an optimal solution.

8.3. Clustered multi-metric learning

In this section, we develop a multi-metric learning method that learns multiple
distance metrics in order to tackle heterogeneously distributed data. In particular,
the training data set is divided into several clusters such that each training example
belongs to only one of the clusters. These clusters should be representative and
contain enough discriminative information (i.e. triplet constraints). In this chapter,
we use k-means as the baseline clustering algorithm due to its simplicity and
efficiency. The prediction of an unseen example is performed using the local
distance metric learned from its corresponding cluster. Next, we will describe in
detail our formulation as well as the optimization procedures for training.

8.3.1. Problem formulation

We will consider the standard classification problem defined in RP. Let D =
{(xi,y:)}¥, denote the training set, where x; € RP denotes the i-th training
example with its corresponding label y;. The Mahalanobis distance between two
examples x; and x; is defined as

dni(%i, %) = \/(Xz‘ —x;) TM(x; — %),

where M = 0. Assume that the training set is divided into T" > 1 disjoint clusters
D=CBHuyu...uc®. For each cluster C(°), we aim at learning a Mahalanobis
distance metric dy;) that satisfies a given set of triplet constraints

T = {(xi,xj,xl) | x; € € and x; is closer to x; than to xl} )

In particular, our formulation aims to satisfy the following criteria. First,
similarly to the single distance metric learning case, each local distance metric
should satisfy as many triplet constraints as possible. Let dy;(), where M) =0,
denote the local distance metric for the c-th cluster, then we aim to enforce

daico) (X4, X7) > dypeo (X3, %)

for any (x;,x;,%x;) € T() 1< ¢<T, which can be achieved by maximizing the
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margin
di/[(c) (xi,x1) — di/[(c) (Xiaxj) = <M(C)a Z,),

where Z, = (x; — x;)(x; —x;) T — (x; — %;)(x; —x;) | with a subscript 7 to denote
the triplet (x;,x;,%;). As the triplet constraints are enumerable, by abusing
the notation slightly, we will also call a triplet constraint as r. Several loss
functions, such as the square or logistic loss, can be used to maximize the above
margin. In particular, we consider to minimize the hinge loss with margin one,
i.e. max(1 — (M9, Z,),0). The margin is set to one since its value only has
an impact on the scale of M® and not on the performance of nearest-neighbor
retrieval.

Second, following the intuition behind multi-task learning (Gu and Han, 2013,;
Parameswaran and Weinberger, 2010; Yang et al., 2013), an appropriate sharing
of information among different distance metrics may result in several benefits. It
might allow for the propagation of side-information among clusters, thus avoiding
overfitting in each cluster. For this purpose, let dy ), where MO o 0, denote
the global distance metric, then we enforce each local distance metric dygc) to be
similar to dyg0) using the squared Frobenius norm, i.e. [M® —M© |2, 1< ¢ < T.
By doing so, all local distance metrics are related with each other. Additionally, a
trace-norm regularization is applied to the global distance metric, which implicitly
imposes the low-rank constraint (Recht et al., 2010) on M and as a result, it
also reduces the risk of overfitting. Note that this regularization may affect all
local distance metrics since these are enforced to be close to the global one.

Summarizing, we can formulate our multi-metric learning problem as an instance
of the following optimization problem

2
inimi (0) 1T B ©) _ M@ 1
MI%)I}.I.EHRI/IZ('ET) atr(MT) + 7 Fem [QHM M p NG 2reT® fr‘|

subject to (M@, Z,)>1—-¢.,&>0,VreT® ce{l,...,T}
MO M) =0,

(8.1)
where N () denotes the number of constraints in 7(¢), & > 0 and 8 > 0 are hyper-
parameters, and &, are slack variables. Clearly, problem (8.1) is jointly convex
with respect to all parameters in V = {M(O), .. .,M(T)}. It can be seen that
when increasing « (while keeping 3 relatively small), the matrix M tends to 0.
Consequently, our multi-metric learning problem amounts to learning independent
distance metrics, which are trained in each cluster separately. On the other hand,
when increasing 5 (while keeping « relatively small), all the local distance metrics
tend to be similar. Consequently, the above formulation can be thought of as a
generalization framework between learning one single distance metric and learning
several independent ones.
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For illustrative purposes, Fig. 8.1 shows the main idea behind our method.
There are three clusters, each of which contains three classes. Examples belonging
to the same class are denoted by the same shape; the red, green and blue colors are
used to represent the training examples, while the yellow color is used to represent
the test examples. On the left-hand side of the figure, if the distance metrics are
trained independently, M® is easily overfitted to the training data, since the third
cluster contains very few training examples and as a result, it cannot represent
the distribution of the data accurately. On the right-hand side of the figure, by
jointly learning all the distance metrics, we expect that the global distance metric
can capture the shared information between different clusters. In this case, the
distance metric defined by M® tends to be similar to the global one, making the
prediction more reliable.

Independently Jointly

Global distance metric

M( )

OO Test examples
B % @ Training examples

Figure 8.1: An illustration of CMML. Examples belonging to the same class are denoted
by the same shape. Left-hand side: all local distance metrics are trained independently.
Right-hand side: all local distance metrics are jointly trained.

8.3.2. Optimization solver

Although problem (8.1) is convex, it is very expensive to directly solve it using
standard semidefinite programming techniques (Boyd and Vandenberghe, 2004).
Another common solution is to use first-order algorithms such as batch gradient
descent as in (Weinberger and Saul, 2009; Xing et al., 2002). However, these
algorithms are not scalable in practical settings. This is mainly due to the large
number of triplets as well as the positive semidefiniteness constraints. To address
this computational burden, we adopt the bock-coordinate descent method (Tseng,
2001) to solve problem (8.1) in a more efficient manner. In particular, we solve the
problem based on a single distance metric, while keeping the remaining distance
metrics unchanged. This optimization procedure is cycled over all parameters in V
until it converges, i.e. the objective function corresponding to problem (8.1)

JMO o MD)
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1 c
~o > max (1- (M, Z,),0)
re7(©

2 s
F

T
zatr Z

(8.2)

no longer decreases in successive iterations. All the distance metrics are initialized
using the identity matrix. Algorithm 7 briefly summarizes the optimization proce-
dure of our method. As shown below, the global distance metric can be obtained
as a closed-form solution, while each local distance metric will require a further
optimization procedure.

Algorithm 7 Block-coordinate descent to solve problem (8.1)

IHPUt: {(Xiayi) i= 17 {T C)}c 15 & 757 €

Output: V, = {MS M,
1: Initialize Méc) —Ifore=0,...,T > Initialize all parameters
2. Compute the objective function Jo in (8.2) at Vo = {M?}Z_,
3: Set s+ 0

4: repeat

5: Increase the iteration counter s < s+ 1
6: Update the global distance metric

7: Set M(? « M using Eq. (8.4)

8: Update the local distance metrics

9: forc+1,...,T do

10: Run Algorithm 8 to obtain M

11: end for

12: Compute the objective function J, in (8.2) at V, = {M©}7_,
13: until ‘J — J5,1| <e€

Solving for the global distance metric

Keeping V' \ M© fixed, we can obtain the matrix M(?) by solving the following
optimization problem

M — iﬁ%ﬁ? atr(M©) + % i gHM(O) MO i , (8.3)
which admits, in fact, a simple closed-form solution.
Theorem 8.1. The optimal solution to problem (8.3) is given by
1 & o
MO = Py, <T > M- BI) . (8.4)

c=1

Proof. Multiplying the objective function in (8.3) with 2/8 and using the standard
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properties of the Frobenius norm yield

T

T
argmin 2—atr(1\/[(0)) + HM(O)Hi _2 Z <M(O), M(C)> + 1 Z HM(C)”% .
M =0 B T c=1 T c=1

Adding a constant term
T T
1 |2 1 2
il () _ & _ = ()
ISR S Sl
to the objective function, we obtain the following equivalent problem
2 1 & o} 1 < a_||2
in - [MO7 - 2(M©, 2> M@ - Z1) H* Y MO - —IH
argmin H HF T 2 3 + T 2 5 p

M@ =0
T
1 « 2
= Mm@ - (f M(C)——I)H .
H T; I} F

The latter is known as the nearest PSD matrix approximation problem under the
Frobenius norm (Higham, 1988), and as a result, the optimal solution is given by
Eq. (8.4). O

According to Theorem 8.1, we can easily find the optimal solution for prob-
lem (8.3) in O(D?) by performing only one projection onto the cone of PSD
matrices.

Solving for the local distance metric

Keeping V \ M@ fixed, we update M(?, 1 < ¢ < T, by solving the following
problem

imize BlIM© _ pmO| L 1
ml&l(rglze §HM -M HF—FWZTE7—<C> &

subject to (M@, Z,) >1—¢&., & >0,VreT® (8.5)
M© 0.

In order to solve this problem, we employ stochastic subgradient descent (SGD),
which has been widely used for neural networks (Bottou, 1991) and SVMs (Shalev-
Shwartz et al., 2007). Unlike batch gradient descent methods (Parameswaran
and Weinberger, 2010; Weinberger and Saul, 2009), SGD consists in drawing an
example at random and optimizing the objective function based on that example,
avoiding the full-gradient computation. In particular, SGD is suitable for large-scale
learning problems since its computational complexity does not depend on the size
of problem.
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We start by writing the objective function in (8.5) as a sum of loss functions
associated with each triplet constraint, i.e.

2 1
FM©) = gHM(C) - M<0>HF + v Y max (1 (MY.Z,),0).

re7(©

Using this formulation, our algorithm performs as follows. At the ¢-th iteration, we
replace the objective function F’ (M(C)) with an approximation based on a single
triplet constraint r € 7, i.e.

2
A1) = 200 (s~ 34,201

We consider the subgradient at M,EC)7 given by
Vi) =y - M) — (M7, 2,) <1] Z,, (8.6)

where [.] denotes the indicator function which takes value 1 if its argument is true
and 0 otherwise. Subsequently, we update Mﬁc) to Mgi)l by setting

(c)
Mt+1/2

ng-)l = PSJr (Mij_)yz) 5

= M1EC) - ntVEC) )

()
t+1/2
cone of PSD matrices scales as O(D?), the latter update can be computationally

expensive, especially when the dimensionality is high. Due to the fact that F(M(C))
is B-strongly convex, by setting n; = 1/(8t) as is commonly done (Shalev-Shwartz
et al., 2007), we obtain

where 7y > 0 denotes the step size. Since the projection of M onto the

1

0 1 .
D= (1= )M + MO . 2,) < 1]Z,. (8.7)

(¢)
t+1/2

negative eigenvalue (Golub and Van Loan, 1996). As a consequence, ng_)l can be
efficiently computed using the following formulation,

Since Z, is the difference of two rank-one matrices, M has at most a single

M9, =M, /2 = 100 (Amin, 0) Urnin Ui
where Ay is the smallest eigenvalue of ME% /2
Upin. Using the Lanczos method or the power method (Golub and Van Loan,
1996) with a random start vector, Amin and Unyi, can be approximated in O(D?).
A similar idea to reduce the computational burden of this projection was also

with corresponding eigenvector

introduced in (Shalev-Shwartz et al., 2004). Consequently, the computational
complexity of updating the matrix M per iteration scales as O(D?) instead of

158



§8.3. Clustered multi-metric learning

O(D?). The entire optimization procedure is summarized in Algorithm 8, where
K > 0 denotes the maximum number of iterations. Note that we initialize the
local distance metric with M(©).

Algorithm 8 Stochastic subgradient descent to solve problem (8.5)

Input: 7, M© 8, K
Output: M(I?—s-l
1: Set M{? « M©

2: for t < 1,dots, K do

3: Choose 7 € T(®) uniformly at random

4: Set ny ﬁ

5. if (Z,,M\”) < 1 then

6: Set M7, ), 1= (1= 1)M{? + IM©) 4+ 7,
7: Compute (Amin, Umin) for ng—)lﬂ

8: Set M:Ei)l — M£21/2 — min ()\min, 0) uminu;in
9: else

10: Set MY, « (1 - %)Mic) +1iMm©@

11: end if

12: end for

8.3.3. Convergence

In this subsection, we show that the proposed method converges to an optimal
solution. Typically, the convergence of block-coordinate descent requires that
the objective function is strictly convex (or quasiconvex and hemivariate) and
differentiable (Sargent and Sebastian, 1973) because the method may otherwise
get stuck at a nonstationary point for a nondifferentiable function. Unfortunately,
this is not the case for the objective function in Eq. (8.2). The latter forces us to
use the convergence result of block-coordinate descent for nonsmooth optimization
developed by Tseng (2001) when the nondifferentiable part is separable.

In particular, we make use of Proposition 5.1 (Tseng, 2001) (see A.2) by
extending the objective function in Eq. (8.2). We start by introducing an indicator
function o that takes value 0 if its argument is true and 4oco otherwise. The
resulting extended-valued function is then

T
LM®, . MT) = LM, MD) 4 Ly (M) + 3 Lo(M©),

c=1
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where
B < ?
LoM®@, .. . MT) = 257 M - m©)
0( ) B ) 2T; F7
1
©) — o(M© - (M
Lo(M9) = o(M 5 0) + ;>max(1 (M, 2,),0),
reT e

c=1...,T,
Lri(MQ) = oM@ 3 0) + atr (M) .

We demonstrate that the following conditions are satisfied:
(B1) Ly is continuous since the squared Frobenius norm is continuous.

(B2) For each t € {0,1,...,T} and M(®), ¢ # ¢, the function at each coordinate
block £,(M®) = L(M@ ... M®, ... MD) is quasiconvex and hemivari-
ate. Due to the fact that L is jointly convex, ¢; is quasiconvex. Since the
squared Frobenius norm is strictly quasiconvex, it is easy to show that ¢; is
also hemivariate (Ortega and Rheinboldt, 1979).

(B3) Ly,...,Ly41 are lower semicontinuous. Since S is a closed set, the extended-
valued function L., 1 < ¢ < T + 1, remains lower semicontinuous (Hiriart-
Urruty and Lemaréchal, 2012). Clearly, Lo is lower semicontinuous because
it is a continuous function.

(C2) Since Ly contains only the squared Frobenius norm, dom Ly = RP*P x
o x RP*P and dom L, =RP*P 1 <e¢<T+1.

We have shown above that Lo, ..., Ly1; satisfy assumptions (B1)-(B3) and (C2)
in Proposition 5.1 (Tseng, 2001). In our block-coordinate descent method, the
essentially cyclic rule (Tseng, 2001) is employed. Moreover, for each small block,
we employ SGD in Algorithm 8, which has an O(log K/K) convergence rate. This
result directly follows from (Shamir and Zhang, 2013).

Theorem 8.2 ((Shamir and Zhang, 2013)). Let M®) be an optimal solution for
problem (8.5). Consider a sequence of PSD matrices Mﬁ”), . ,Mg?) such that
Mgfr)l = P+ (M, — ﬁVic)) fort > 1. Assume that ]E[||V§C)H%} < G? for all t,
then, for any K > 1, it holds that

< 17G*(1 4 log K)

E[F(Mg?) - F(Mg))} BK

Therefore, our block-coordinate descent method is guaranteed to converge to
an optimal solution.
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8.3.4. Computational complexity

The computational complexity of CMML involves the identification of the clusters
and solving the overall optimization problem. First, we analyze the complexity of
partitioning the training data using a clustering algorithm. One of the reasons for
choosing k-means clustering is its simplicity and efficiency. It is well known that
the complexity of k-means scales as O(N T x D * I), where I denotes the number
of iterations (Hartigan and Wong, 1979) and T denotes the number of clusters.
In our experiments, we employ the standard implementation for k-means with
a maximum of 100 iterations, but further improvements can be anticipated, for
instance, using the triangle inequality (Elkan, 2003b) to speed up k-means.

Empirically, we have found that the block-coordinate descent method to solve our
optimization problem converges after very few iterations (less than 20 iterations) in
the outer loop. In each iteration, we need to solve a sequence of convex semidefinite
programs, each of which scales as O(K * D?) for the local distance metric case and
O(D?) for the global distance metric case. Summarizing, the overall complexity of
block-coordinate descent at each iteration scales as O(T * K * D? 4+ D?3).

8.3.5. Testing phase

Once the clusters are defined and the corresponding local distance metrics are
trained, we need to select a proper local distance metric which will be employed
to classify a test example. This selection can be done efficiently by determining
to which cluster the test example belongs. Essentially, it consists in selecting the
cluster whose center is the nearest center with respect to the test example. The
same distance metric should be used to perform k-means clustering as well as
to determine the cluster. Depending on the application, there may exist some
auxiliary information or prior knowledge about the distance metric that naturally
leads to a good partition. In the absence of prior knowledge, a simple strategy is
to adopt the Euclidean distance metric. Note that unlike other approaches such
as PLML (Wang et al., 2012) and SCML (Shi et al., 2014), which combine all the
basis distance metrics to define the local distance metric, CMML only uses a single
local distance metric from one cluster.

An ideal distance between two examples should be computed as the geodesic
distance using different local distance metrics on a Riemannian manifold (Ramanan
and Baker, 2011; Shi et al., 2014; Wang et al., 2012). However, this requires a
computationally expensive optimization and complicated algorithm. Therefore, we
only adopt the local distance metric of the test example to compute its nearest
neighbors, which results in a very fast search. An intuitive explanation for this
simple strategy is that the class label assigned by the k-NN classifier for a test
example only depends on its neighborhood. If the local discriminative information
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is preserved by using an appropriate distance metric, then we can still improve the
performance of k-NN classification. Next, we will show how to select the triplet
constraints in order to preserve the local discriminative information.

8.3.6. Strategy of selecting triplet constraints

Since conventional clustering methods only consider the similarity between examples,
they often group examples of the same class together. As a consequence, the clusters
tend to be pure and the local distance metrics result in a trivial solution. To avoid
this situation, we ensure that triplet constraints contain examples from all classes.
More specifically, we generate triplet constraints by using k& nearest neighbors
of the same class and k nearest neighbors of different classes for each training
example (Ying and Li, 2012). This has the advantage of avoiding the large number
of triplet constraints, which scales as O(N?) for all possible triplets, making the
optimization algorithm more tractable. Moreover, it exploits the fact that if each
training example is surrounded by & neighbors of the same class, then the k-NN
classification will succeed (Weinberger and Saul, 2009). Therefore, only triplet
constraints derived from the neighborhood of each training example should be
considered. When no prior knowledge is available, the search for the nearest
neighbors is based on, for instance, the Euclidean distance. Note that the nearest
neighbors are searched in the entire training set. Therefore, the selection of triplet
constraints is not influenced by the clustering algorithm.

After having obtained a set of triplet constraints (x;,x;,%;), we can divide
it into T subsets of constraints according to the cluster membership of x;. As
mentioned above, one triplet constraint may involve examples of more than one
cluster. By satisfying all triplet constraints simultaneously, we implicitly learn the
local distance metrics in a “global” sense. This strategy also makes sure that there
is no cluster with an empty set of constraints, since there always exists a set of
triplet constraints for each training example. We expect that CMML can perform
consistently well in terms of classification accuracy, even on small data sets.

8.4. Experiments

In this section, we conduct extensive experiments on several publicly available data
sets to show the effectiveness of our proposed method in terms of classification
performance and running time. As is commonly done in various distance metric
learning studies (Weinberger and Saul, 2009; Ying and Li, 2012), all experimental
results are reported in the context of k-NN classification with k£ = 3. Next, we will
detail the experimental settings and results.
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8.4.1. Experimental settings

We compare the following distance metric learning methods:

1.
2.

Euclidean: The baseline Euclidean distance metric.

LMNN! (Weinberger and Saul, 2009): It is a representative method using
the large-margin principle to improve the performance of k-NN classification.
The authors proposed an efficient solver based on projected subgradient
descent. As proposed in (Weinberger and Saul, 2009), we set the maximum
number of iterations to 1,000 and tune the trade-off parameter p considering
as set of values {0.125,0.25,0.5}.

. ITML? (Davis et al., 2007): This method minimizes the LogDet divergence

between two matrices while satisfying pairwise constraints on the distance
metric. The authors introduced a fast and scalable algorithm based on the
Bregman projection. We set the maximum number of iterations to 10° and
tune the slack parameter v considering as set of values {1073,...,10%}.

. DML-eig? (Ying and Li, 2012): Inspired by the work in (Xing et al., 2002),

this method learns a Mahalanobis distance metric by solving a convex op-
timization problem. The solver is based on an eigenvalue optimization
framework, which requires only the computation of the maximum eigenvalue
in each iteration.

. mmLMNN* (Weinberger and Saul, 2009): This method learns several

distance metrics in different clusters of the input space, where each class
corresponds to a cluster. The distance to a target example is computed
using the local distance metric associated with the cluster to which the target
example belongs. Similarly to LMNN, a convex optimization framework is
developed to learn the local distance metrics simultaneously.

. kmLMNN: This is a simple baseline. We first divide the training set into

several clusters using k-means, then learn a Mahalanobis distance metric
for each cluster using LMNN. Note that all the distance metrics are learned
independently.

. DANN (Hastie and Tibshirani, 1996): As mentioned above, it is a state-

of-the-art multi-metric learning method. Following Hastie and Tibshirani
(1996), the number of nearest neighbors used to estimate the distance metric
is set to max(N/5,50) and the regularization parameter e is set to 1. For
each test example, DANN is trained with 5 iterations.

http://www.cse.wustl.edu/~kilian/code/code.html
http://wuw.cs.utexas.edu/~pjain/itml/
http://empslocal.ex.ac.uk/people/staff/yy267/software.html
http://www.cse.wustl.edu/~kilian/code/code.html
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8. SCML? (Shi et al., 2014): For learning multiple local distance metrics, SCML
learns a smooth function that maps an example to a weighted sum defining
its local distance metric. We tune the hyperparameter 5 considering as set of
values {107%,...,1072}. Following the authors, kernel PCA is performed to
learn the embedding of each example so that the weights can vary nonlinearly.
The number of basis matrices is set to 400 and the embedding dimension
to 40. Similarly to CMML, the triplet constraints are generated using three
nearest neighbors of the same class and three nearest neighbors of different
classes for each training example.

9. CMML: We tune the hyper-parameter « considering as set of values {0.001,
0.1,10} and 8 considering as set of values {0.001,0.01,0.1}. For the SGD
algorithm in Algorithm 8, we set the maximum number of iterations to 10°.
The Euclidean distance metric is used to perform k-means and to determine
the corresponding cluster for each test example. The source code in MATLAB
of CMML can be downloaded from https://github.com/bacnguyencong/
CMML.

8.4.2. A synthetic data set

We first illustrate CMML with a synthetic data set for which a single distance metric
is not sufficient to improve the performance of k-NN classification (see Fig. 8.2(a)).
The data set consists of six classes, each of which is randomly generated from a
bivariate normal distribution. Examples of the same class are represented with the
same color and style. The data set is partitioned into three clusters in order to
train CMML. Figures 8.2(b) to 8.2(d) show how examples of the same class are
grouped together in the transformed spaces induced by the corresponding local
distance metrics. These results confirm that CMML can fit well the distance metric
over different regions of the input space.
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Figure 8.2: An illustration of CMML on a synthetic data set: (a) Original data generated
by normal distributions, (b)-(d) Projection of the data in the space induced by each local
distance metric.

http://researchers.lille.inria.fr/abellet/code.html
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8.4.3. Benchmark KEEL data sets

We use eighteen benchmark data sets from the Knowledge Extraction based on
Evolutionary Learning (KEEL) (Triguero et al., 2017) (see Table A.1). All features
are normalized to have zero mean and unit standard deviation over the training
data. The average classification accuracy and standard deviation are estimated
using 5-fold cross-validation. Each experiment is repeated five times to remove
the randomness in the sampling process. All partitions for training and testing
are collected by stratified sampling from all classes. To get the best results for all
methods, the hyper-parameters are tuned via internal validation using only the
training data. For CMML and kmLMNN, we set the number of clusters to 3 for
small data sets (N < 1,000) and 10 for large data sets. In the next section, we
empirically show that CMML is not very sensitive to this number.

The average classification accuracies are shown in Table 8.2. For each data set,
we assign rank 1 to the method with the highest accuracy, rank 2 to the one with
the second highest accuracy, and so on. The average rank for each method over
all data sets is reported in the last row of Table 8.2. From the results, we can
see that the performance of k-NN classification is significantly improved by using
the distance metrics learned from the data. Generally, the methods that learn
multiple distance metrics (i.e. mmLMNN, DANN, SCML, and CMML) outperform
the methods that learn a single distance metric (i.e. ITML, LMNN, and DML-eig).
According to the average rank, CMML performs the best among the competing
methods, followed by SCML as second best. Interestingly, DANN does not always
obtain a better performance than that of single distance metric learning methods.
This is mainly due to the lack of training examples, since DANN only estimates the
distance metric based on information from the neighborhood of each test example.
In most cases, mmLMNN performs slightly better than LMNN. There are relatively
few cases in which kmLMNN outperforms LMNN. This means that jointly learning
multiple distance metrics (i.e. mmLMNN and CMML) can perform better than
learning multiple distance metrics separately (i.e. mkLMNN). The results also
confirm that CMML consistently performs well, even on small data sets.

Table 8.1: Unadjusted p-value and adjusted p-values according to the Wilcoxon test
and different post-hoc tests over eighteen data sets based on classification accuracy using
CMML as the control method.

Method pUnadj pBonf pHolm pHoch pHomm Hypothesis

Euclidean 8.2439E-7 6.5951E-6 6.5951E-6 6.5951E-6 6.5951E-6 Rejected
kmLMNN 2.3407E-5 1.8725E-4 1.6384E-4 1.6384E-4 1.4044E-4 Rejected
DML-eig  3.9923E-5 3.1939E-4 2.3954E-4 2.3954E-4 2.3954E-4 Rejected

ITML 0.0019 0.0153 0.0096 0.0085 0.0057 Rejected
DANN 0.0032 0.0253 0.0126 0.0085 0.0063 Rejected
LMNN 0.0035 0.0279 0.0126 0.0085 0.0070 Rejected
mmDLMNN  0.0042 0.0339 0.0126 0.0085 0.0085 Rejected
SCML 0.0106 0.0847 0.0126 0.0106 0.0106 Rejected
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Table 8.2: Classification accuracies (standard deviation) of the competing distance metric learning methods on the KEEL data sets. The best
results are highlighted in boldface.

Id Single metric Multiple metrics
Euclidean ITML LMNN DML-eig mmLMNN  kmLMNN DANN SCML CMML

APP 83.03(5.4) 83.98(5.3)  82.08(4.0) 84.89(5.3) 82.08(4.0)  80.17(4.1)  84.89(5.3) 83.98(5.3) 84.98(2.5)
BAL 83.04(2.0) 91.84(2.3) 87.84(2.2) 87.68(3.1) 86.72(1.8) 88.80(3.4) 95.52(0.9) 87.68(2.6) 92.48(1.7)
BUP 65.51(3.3)  63.19(4.3)  62.90(2.2) 62.32(5.3) 65.22(3.1)  64.35(3.5) 69.57(5.1) 70.72(4.7) 66.96(9.6)
ION 84.90(4.8)  87.19(2.6)  90.03(3.9) 85.48(4.7)  94.29(2.7) 87.18(3.3) 86.90(3.4) 87.75(4.9) 87.76(4.5)
IRI 94.00(3.7)  94.67(3.0)  96.00(1.5) 95.33(3.0) 95.33(1.8)  94.67(3.8)  95.33(3.0) 96.00(2.8) 96.67(2.4)
MON  96.07(2.7) 98.84(2.0) 97.22(2.5) 100.0(0.0) 97.22(2.5) 97.22(1.8) 93.75(1.8) 97.68(2.7)  100.0(0.0)
SON 85.12(3.4)  85.10(5.7) 86.97(5.7) 84.12(2.3) 86.05(4.0)  80.73(7.5)  59.63(8.3) 83.64(7.1) 85.56(5.1)
VEH 70.33(2.1)  79.90(3.5)  78.37(1.3) 71.04(1.3) 75.77(1.8)  78.02(1.8) 83.33(0.5) 77.89(2.3) 77.90(2.3)
VOW  95.76(1.5) 96.46(1.2)  96.77(1.6) 94.95(1.4) 98.38(0.7) 97.17(0.8)  95.56(2.3) 96.36(1.4) 97.97(1.6)
WDB 97.19(0.7) 97.01(1.8)  96.66(1.3) 96.31(1.4) 97.01(1.0) 96.66(1.9) 88.40(3.4) 97.19(1.3) 97.19(1.0)
WIN 95.51(1.5) 97.75(1.3)  96.62(1.3) 97.21(2.0) 97.75(1.3)  94.95(2.3) 94.38(2.0) 98.33(2.5) 97.76(1.3)
LET 94.61(0.5)  97.04(0.3)  96.23(0.3) 87.61(0.4) 97.22(0.3)  96.20(0.4)  95.86(0.5) 96.33(0.5) 97.29(0.2)
MAG  83.33(0.5) 83.30(0.3) 83.39(0.6) 82.70(0.2) 82.39(0.6) 83.30(0.4) 84.51(0.7) 84.00(0.6) 84.40(0.5)
PAG 96.69(0.4)  96.67(0.4)  96.80(0.4) 95.74(0.9) 96.35(0.4)  96.64(0.5)  96.69(0.6) 96.56(0.4)  96.88(0.4)
PHO  88.29(0.6) 88.38(0.6) 88.01(0.6) 88.55(0.7) 88.27(0.7)  88.55(0.8) 88.88(0.5) 88.45(0.8) 88.58(0.6)
RIN 70.89(1.6)  80.38(0.8)  71.12(1.7) 86.41(1.0)  95.20(0.4) 82.66(1.3) 93.41(0.5) 73.69(1.4) 86.47(0.9)
SPA 91.10(0.5)  91.97(0.7)  92.28(0.4) 92.15(1.1) 92.30(0.6)  92.04(0.4)  90.49(1.0) 91.04(0.3)  92.36(0.2)
TWO 96.39(0.4) 96.22(0.5) 96.54(0.4) 97.32(0.3) 96.51(0.3)  95.38(0.8)  97.24(0.3) 97.19(0.4) 96.86(0.4)

Rank 6.69 5.03 4.86 5.94 4.81 6.06 4.89 4.53 2.19
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In order to determine whether there exist significant differences in classification
performance among the results reported in Table 8.2, we follow the recommendations
made by Demsar (2006). First, the Friedman test is employed at a confidence
level of o = 0.05 with the null hypothesis that all the competing methods obtain
the same results on average. Since the p-value was 1.2423 x 10™4, we reject the
null hypothesis. This implies that there exist statistically significant differences
between at least two competing methods. Subsequently, we employ the Wilcoxon
signed-rank test and several post-hoc tests, including Bonferroni-Dunn, Holm,
Hochberg, and Hommel, to determine whether a competing method performs
equivalently or significantly different from the control method (i.e. CMML, which
has the lowest rank). In order to compensate for multiple comparisons (Demsar,
2006), the p-values in post-hoc tests are adjusted. If the adjusted p-value for a
particular null hypothesis is less than o = 0.05, then that hypothesis is rejected.
Table 8.1 reports the unadjusted p-value (pUnadj) computed by the Wilcoxon
signed-rank test, the adjusted p-values computed by the Bonferroni-Dunn (pBonf),
Holm (pHolm), Hochberg (pHoch), and Hommel (pHomm) tests. These test results
show that CMML significantly outperforms the other competing methods (except
in one case, namely SCML for the Bonferroni-Dunn test with a confidence level of
a = 0.05).

Tables 8.3 and 8.4 report the average running time of the competing methods
in terms of training as well as testing time, respectively. To facilitate a comparison
among the competing methods, we also show the total running time in the last
row of these tables. Note that the training time reported in Table 8.3 takes into
consideration the time for tuning the hyper-parameters. DANN only estimates the
distance metric in the test phase. Clearly, DML-eig is the fastest method since it
learns a single distance metric and does not require tuning any hyper-parameter.
In most cases, CMML runs faster than other multi-metric learning methods (i.e.
SCML, mmLMNN and kmLMNN) although the latter two do not require tuning
hyper-parameters. Because the number of clusters is small, CMML is significantly
faster than ITML and LMNN in terms of training time. The overall running time
in the test phase of mmLMNN, kmLMNN, and CMML is approximately equal
to that of single distance metric learning methods. In contrast, DANN requires
a running time proportional to the number of test examples. This may limit the
application of DANN to real-world problems when the number of test examples is
relatively large. SCML requires to compute the embedding of each test example
in the feature space using kernel PCA, making the test process relatively slow on
large data sets.

8.4.4. Real data sets

In this subsection, we evaluate our method on several real challenging data sets,
including USPS (Hull, 1994), MNIST (Lecun et al., 1998), and ISOLET (Cole
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Table 8.3: Training time (in seconds) of the competing methods on the KEEL data sets.
Best results are highlighted in boldface.

" Single disance metric Multiple distance metrics

ITML LMNN DML-eig mmLMNN kmLMNN SCML CMML
1. 44.38 20.78 0.31 9.22 10.97 9.53 0.68
2. 60.63 27.19 0.43 20.72 21.26  102.36 2.35
3. 51.59 27.38 0.16 3.31 20.48 39.66 3.40
4. 65.91 32.67 1.32 16.04 21.16 45.6 17.90
5. 49.66 19.81 0.20 10.67 12.59 13.43 0.33
6. 55.91 17.83 0.50 8.97 18.08 53.02 1.63
7. 155.11 29.99 1.42 16.68 20.55 27.25 54.66
8. 67.39 43.12 0.59 29.54 23.47  118.46 70.74
9. 69.81 29.61 0.87 29.26 23.96  137.26 18.52
10. 73.34 25.80 1.42 14.89 15.72  167.98 15.66
11. 53.77 19.69 0.48 10.09 0.85 24.69 1.14
12. 175.19  294.38 224.77 686.34 238.6 1305.10 171.53
13. 162.26  798.58 169.78 886.87 526.74 1513.75 119.29
14. 83.23  256.25 9.51 149.58 104.66  228.13 22.53
15. 79.03  191.51 9.27 232.69 138.82  269.87 23.14
16. 93.00  253.55 18.13 121.28 210.00  593.48  173.31
17. 222.17  133.75 9.49 66.99 59.67 512.7  487.23
18. 93.89 60.02 18.17 24.09 81.11  633.40 84.20

Total 1656.27 2281.91 466.82 2337.23 1548.69 5795.67 1268.24

Table 8.4: Testing time (in seconds) of the competing methods on the KEEL data sets.

" Single disance metric Multiple distance metrics

ITML LMNN DML-eig mmMNN kmLMNN DANN SCML CMML
1. 1.47E-03 1.50E-03 1.38E-03 6.06E-03 4.01E-03 0.17 0.15 2.87E-03
2. 3.45E-03 4.15E-03 3.70E-03 6.67E-03 6.08E-03 0.86 1.13 4.50E-03
3. 1.81E-03 2.20E-03 1.70E-03 2.67E-03 3.38E-03 0.40 0.29 3.57E-03
4. 2.60E-03 3.10E-03 3.49E-03 5.66E-03 6.13E-03 1.05 0.35 5.03E-03
5. 1.22E-03 1.24E-03 1.04E-03 2.27E-03 2.84E-03 0.16 0.13 2.49E-03
6. 2.56E-03 2.61E-03 2.66E-03 3.25E-03 5.75E-03 0.55 0.39 5.06E-03
7. 2.89E-03 2.24E-03 2.03E-03 4.07E-03 5.29E-03 0.93 0.29 5.52E-03
8. 4.72E-03 4.74E-03 5.04E-03 6.81E-03 0.01 2.49 1.48 8.08E-03
9. 5.13E-03 5.48E-03 5.18E-03 9.13E-03 0.01 3.03 2.1 8.93E-03
10.  3.22E-03 4.85E-03 3.40E-03 5.02E-03 8.40E-03 1.85 1.72 6.94E-03
11. 2.39E-03 1.78E-03 3.64E-03 2.41E-03 2.72E-03 0.23 0.19 2.71E-03
12. 1.24 1.27 1.25 1.74 1.33 588.13 568.74 1.42
13. 1.12 1.14 1.13 0.67 1.17 387.47 484.9 1.16
14. 0.08 0.09 0.09 0.06 0.10 4249 28.44 0.10
15. 0.08 0.09 0.09 0.05 0.10 35.17  30.31 0.09
16. 0.15 0.17 0.16 0.10 0.17  93.04  60.57 0.18
17. 0.07 0.07 0.07 0.05 0.10 9370 21.21 0.10
18. 0.19 0.17 0.16 0.10 0.17 86.73 92.11 0.19
Total 2.96 3.03 2.98 2.82 3.20 1338.45 1294.50 3.30

and Fanty, 1990). The first two correspond to handwritten digit recognition
problems while the third one is about letter speech recognition. These data sets
are widely used in several distance metric learning studies (Shalev-Shwartz et al.,
2004; Weinberger and Saul, 2009; Yang et al., 2013). The USPS® data set contains

6 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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7,291 examples of digits for training and 2,007 for testing of size 16 x 16 pixels.
The MNIST” data set contains 60,000 examples of digits for training and 10,000 for
testing of size 28 x 28 pixels. All partitions for training and testing are predefined.
The ISOLET data set was collected from 150 different speakers (each one spoke
the name of each letter of the alphabet twice), where the objective is to recognize
what letter was been uttered. There are 26 classes corresponding to the letters of
the alphabet. Since the data set consists of five groups, the first four groups are
used for training and the last one for testing. We summarize the characteristics
of the data sets in Table 8.5. Due to the high dimensionality, PCA is employed
as a preprocessing step to reduce the dimensionality of the input data to 100. All
the competing methods are configured with the same settings as in the preceding
experiments.

Table 8.5: Description of real data sets used in our experiments.

# Data set Features Classes Training Test

1. ISOLET 617 26 6,238 1,559
2. MNIST 784 10 60,000 10,000
3. USPS 256 10 7,291 2,007

Table 8.6 shows the classification accuracy on the test sets of the competing
methods. Clearly, distance metric learning leads to a significant improvement in
letter speech recognition. We observe that CMML performs competitively with
mmDLMNN] while it performs significantly better than other competing methods.
It is interesting to see that the baseline kmLMNN method also performs well on
the ISOLET and MNIST data sets. However, it obtains a very poor performance
on the USPS data set.

Table 8.6: Classification accuracies of the competing distance metric learning methods
on real data sets.

“ Single distance metric Multiple distance metrics

Euclidean ITML LMNN DML-eig mmLMNN kmLMNN DANN SCML CMML
1. 90.19 9487 95.15  91.28 95.13 94.23 94.42 94.68 95.25
2. 9733 9751 9766  73.50 98.68 97.67 96.36 9741 97.73
3. 9487 9357 94.77  90.33 95.12 92.92 92.03 94.88 95.22

We also conduct experiments to investigate the classification performance of
CMML under changes in the number of clusters. For this purpose, we vary the
number of clusters from 5 to 20. Figure 8.4 illustrates the classification accuracy
of CMML versus the numbers of clusters on the test sets. As expected, CMML
obtains a stable performance with different number of clusters. This is mainly

7 http://yann.lecun.com/exdb/mnist/
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due to the strategy of selecting triplet constraints, which guarantees that all local
distance metrics are correlated.

It is important to mention that the training time of CMML is approximately
proportional to the number of clusters (see Subsection 8.3.4). Since the prediction
of CMML is not very sensitive to the number of clusters, we could choose a low
number of clusters to balance between the effectiveness and efficiency.
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Figure 8.3: Classification accuracy of CMML versus number of clusters on real data
sets.

8.4.5. Convergence

We further verify the convergence of block-coordinate descent. For this purpose, we
empirically show the convergence of CMML on three real data sets, namely ISOLET,
MNIST, and USPS (see Fig. 8.4). As an illustration, the hyper-parameters are set
as follows: a = 0.01 and 8 = 0.1. As can be seen from the figure, CMML converges
after only 10 iterations. The objective function values remain more or less the
same when a certain number of iterations is reached.
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Figure 8.4: Convergence of CMML versus number of iterations on real data sets.
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8.5. Conclusion

In this chapter, we have developed a multi-metric learning method to handle
heterogeneously distributed data. A divide-and-conquer strategy has been proposed
to address this kind of data. More specifically, data are divided into several clusters,
in each of which a distance metric is trained to separate the data locally. We
have also introduced an additional global distance metric, which requires the
local distance metrics being similar to the global one. This global regularization
allows for sharing information between clusters. Experimental results on several
benchmark data sets show that the proposed CMML method outperforms single
distance metric learning methods and other multi-metric learning methods while
having a low computational cost.
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9 Distance metric learning for
k-nearest-neighbor regression

This chapter presents a distance metric learning method for k-nearest neighbors
regression. We define the constraints based on triplets, which are built from the
neighborhood of each training example, to learn the distance metric. The resulting
optimization problem can be formulated as a convex quadratic program. Quadratic
programming has as disadvantage that it does not scale well in large-scale settings.
To reduce the time complexity of training, we propose a novel dual coordinate
descent method for this type of problem. Experimental results on several regression
data sets show that our method obtains a competitive performance when compared
with the state-of-the-art distance metric learning methods, while being an order of
magnitude faster.

The material of this chapter is based on the following publication:
Nguyen, B., Morell, C., and De Baets, B. (2016). Large-scale distance metric
learning for k-nearest neighbors regression. Neurocomputing, 214:805-814

9.1. Motivation

One of the oldest and simplest regression methods is k-nearest neighbors regression
(k-NNR) (Cover and Hart, 1967). The k-NNR method attributes the same weight
to all neighbors, ignoring the similarity between the test example and its neighbors.
To counter this issue, we can assign higher weights to more similar neighbors. The
weight of each training example can be computed using a kernel function, which
depends on the distance (as opposed to similarity) between itself and the test
example. A common distance metric used to measure the distance between two
examples is the Euclidean distance metric. However, using this distance metric
may not be appropriate for every application domain, because it does not take into
account the correlation between attributes and it ignores the presence of irrelevant
attributes (Weinberger and Saul, 2009). The ideal distance metric should preserve
the similarity relationships in the data, i.e., similar examples should be close to
each other and dissimilar examples should be far away from each other. In this
work, we focus on the Mahalanobis distance metric, which provides a well-studied
and successful framework for distance metric learning. Using the Mahalanobis
distance metric is a flexible way to learn an appropriate distance metric, thus
allowing for arbitrary linear rotations and scaling of attributes.

One of the most important requirements for a distance metric learning method
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is that the algorithm should be fast and scalable. Most of the previous optimization
algorithms for distance metric learning tend to require a larger computation time
for large-scale problems, where they may become computationally intractable. In
particular, learning a Mahalanobis distance metric typically requires estimating a
matrix with D? parameters (where D is the data dimensionality). This quadratic
dependency poses a huge challenge for learning a good Mahalanobis distance metric
in high-dimensional settings. Here, we consider a distance metric defined by a
diagonal matrix to simplify the distance metric learning problem.

For this purpose, we extend the distance metric learning method proposed
by Schultz and Joachims (2004) to the regression setting. The original method is
intended to be used in information retrieval applications, but it is general enough
to be applied in other contexts. This method uses a diagonal matrix and avoids
costly projections of the Mahalanobis matrix onto the positive semidefinite cone.
The formulation results in a quadratic program, which can be solved by standard
quadratic programming solvers. However, the general-purpose solvers tend to scale
poorly in the number of constraints. Motivated by these reasons, we:

(i) Extend the previous work of Schultz and Joachims (2004), so that it can be
used in the context of k-NNR. We refer to the proposed method as large-scale
distance metric learning for k-nearest neighbors regression (LDMLR).

(ii) Introduce a novel strategy to define the constraints. Instead of randomly
selecting triplet constraints to satisfy an application-specific criterion, we
extract the constraints from the local neighborhood of each training example,
which allow us to preserve discriminative information from this neighborhood.

(iii) Propose a special solver for this type of optimization problem. The proposed
method is simple to implement, and it ensures very fast training, which can
be computationally tractable for large-scale data sets.

(iv) Conduct an empirical study evaluating our method on twenty data sets. The
experiments show that the proposed method is comparable with the state-
of-the-art distance metric learning methods in terms of regression accuracy,
while being much more efficient in terms of training time.

The remainder of this chapter is organized as follows. In Section 9.2, we
introduce our distance metric learning method for regression. The proposed
method is based on solving a constrained optimization problem. First, we describe
the selection of constraints in Subsection 9.2.1. Second, we formulate our proposal
as a quadratic program in Subsection 9.2.2. To make problem solving more
straightforward and effective than a general-purpose solver, we present a dual
coordinate descent method in Subsection 9.2.3. In Section 9.3, we discuss the
related work to highlight the main differences of our method compared to existing
methods, focusing on the problems that are addressed by our method. In Section 9.4,
we evaluate the capabilities of the proposed method by comparing its regression
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accuracy on several public standard data sets to that of various state-of-the-art
distance metric learning methods. Finally, we present some concluding remarks in
Section 9.5.

9.2. Distance metric learning for regression

In this section, we focus on distance metric learning in the regression setting. In
contrast to the classification setting, in this case the output space )} can be a set
of real values. It turns out to be difficult to build two sets of pairwise constraints
S and D. In order to preserve the similarity relationships among the data in
the transformed space, we learn a distance metric that satisfies a set of relative
constraints 7. First, we present a strategy for selecting the triplet constraints
making up the set 7. Then, we formulate our distance metric learning problem
based on those triplet constraints. Finally, we present a coordinate gradient descent
method in order to solve our distance metric learning problem.

9.2.1. Selection of triplet constraints

The major assumption underlying example-based learning methods, such as k-
NN (Cover and Hart, 1967), is the commonsense principle suggesting that “similar
problems have similar solutions.” This “similarity hypothesis” serves as a basic
inference paradigm. In the classification context, it is translated into the assertion
that similar examples have similar class labels. In the regression context, it means
that two examples that are close to each other in the input space are also close in
the output space. The intuition behind our method is to learn a distance metric
that guarantees the fulfillment of the given principle for each training example. It
may be difficult to globally satisfy all constraints for each example, so we will keep
track of each example x(¥) only by means of its neighborhood V(x(*"), which is the
set of the nearest neighbors of x(* in X'. More specifically, our method will identify
a set of triplet constraints in the neighborhood of each example that enforce the
resulting distance metric to agree with the similarity hypothesis. A distance metric
induces, for any example, a total ordering of its neighborhood. Such ordering will
be correct if the outputs associated with the neighbors can be ranked in the same
order. That is, an example x(* should be closer to xU) than to x(*) if 4 is closer
to y@) than to y®.

Let us define the order-preserving function Fp as a real-valued function on
the metric space €2 associated with a distance metric dg for a triplet 5;{ k=
(u®, ul) u®)) e Q3 as

Fo(03%) = do(u?,u) — do(u® u®).
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The triplets in the input space X and the output space ) are denoted as cﬁgk =
(x® x0) x*)) and 6§fk = (y®,y) 4(*)) respectively. In the absence of prior
knowledge or information about the distance metric, we can use the Euclidean
distance metric on both spaces X and ), in order to compute the order-preserving
function. We define 7 (4, j, k) as the indicator function given by

1, if Fy(69%) < 0;
w(i,j,k) =1, if Fy(6%") = 0 and Fx(3%") < 0;

0 , otherwise.

Finally, we define the set T of triplet constraints as:

T = { (xD,x, x®)Y [ x x®) ¢ P(xDY and (i, j, k) = 1 }

In order to build the set 7, we need to find the neighborhood of each example
in the training set. Using linear nearest neighbor search, the time complexity is
quadratic in terms of the number of examples O(s?). To reduce the cost of the
nearest neighbor search, for bigger data sets, we can use sophisticated tree data
structures, such as Cover Tree (Beygelzimer et al., 2006), Ball Tree (Omohundro,
1989) or k-d-trees (Moore, 1991).

9.2.2. Problem formulation

Similarly as Schultz and Joachims (2004), we are interested in learning the Maha-
lanobis distance metric parameterized by a linear transformation A and a diagonal
matrix W, such that

clf;7‘,\,(u7 v)=(u—-v)TAWA (u —v).

In order to guarantee that da w is a distance metric, W has to be a diagonal
matrix with non-negative values and A can be any real matrix of rank m, where
A c RP*™ W € R™*™ and m < D. The magnitude of each diagonal element of
W represents the relevance of the corresponding attribute in the input space after
applying the linear transformation A.

In particular, for the setting that example x(9) is the i-th column of the matrix
A, we obtain

dQA’w(u, v) = (AT (u— V))TW(AT(u -v))

- Z Wi ((u,x®) = (v, xD))*. (9.1)

Equation (9.1) only depends on the inner products of two vectors, hence we can
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apply the “kernel trick” to do the mapping implicitly by a kernel function instead of
inner products (Schélkopf and Smola, 2001). Kernel functions can represent inner
products in a high- or even infinite-dimensional space, which provides a flexible
way to learn non-linear transformations in the input space.

Input space X Output space Y Input space X Output space Y
(a) Before training (b) After training

Figure 9.1: Illustration of the intuition behind our distance metric learning method for
k-NNR. examples x99 and x® are nearest neighbors of x® . Before learning, the triplet
constraint (x(i),x(j)7x<k)) is violated (y(i> is closer to ¥ than to ¥y, but x? is closer
to x® than to x¥)). After learning, the new distance metric induces the same ranking
and example x® is pushed away from x) by a safe margin.

The learned distance metric should make sure that for each triplet constraint
(x®, xU) x(*)) in T, it holds that in the transformed space the squared distance
between examples x( and x(¥) is at least € > 0 greater than the squared distance
between x(* and x) (see Fig. 9.1). Furthermore, a good distance metric should
be able to remove noisy attributes in training data, while leading to a reduced
dimension. For this purpose, among all distance metrics that satisfy the set of
constraints 7, we are only interested in the one that results in a minimum #;-norm
of the eigenvalues of AWA ". However, it is difficult to use this norm directly,
so we use the squared fy-norm of the eigenvalues of AWA ", which is equal to
the squared Frobenius norm of AWA . Finally, we aim to solve the following
optimization problem

minimize  1||AWA |2 +C 2 ik ik

W>0
subject to  V(x(,x0) x®)y e T, 9.2)
dkw(x(i)’ X(k)) - di,w(x(i)v X(j)) > €—&ijk
&ijr 2 0,

where &;;, are slack variables used to penalize the constraints that cannot be
satisfied, and the parameter C' > 0 controls the trade-off between the slack variable
penalties and the squared Frobenius norm.

Furthermore, the distance metric da w can be expressed in the following
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form:
dQA,W(u: v)=w' [(ATu —ATv)o(ATu—ATv)|,
where w is the diagonal vector of the matrix W. Let us define:

L=(ATA)o(ATA),
A" =(ATu—A"v)o(ATu-ATv),

28 _ AxDx® A xD <)

Since z(%*) are enumerable, we can change the superscripts (ijk) to an enumerable
set {1,2,...,n}. Hence, problem (9.2) can be rewritten as:
minimize IwLw+CY ! &
subject to w'z(® >e— &,
&>0, i=1,...,n,
w; >0, 7=1,...m.

(9.3)

Note that L is positive definite, therefore problem (9.3) is a convex quadratic
program.

For the constraints, we introduce multipliers A, u,t > 0 for the Lagrangian
function £: R™ x R™ x R™ x R™ x R™ — R, and obtain:

1 n n )
Lw,& A p,t) = §WTLW +OY &= w2 —e+¢)
1=1 =1

n m
= ik =Y taw;.
i=1 i=1

To minimize the objective function in (9.3), we have to find the saddle point of the
function L(w, &, A, p, t), i.e., we have to minimize over the primal variables w, &
and maximize over the dual variables A, i, t. Setting the derivatives with respect
to the primal variables equal to zero yields the following equations:

oL

aiw(waévAauat) = Oa

resulting in

w=L"! <Z iz + t) , (9.4)
i=1
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and

oL

%(W7£7)‘7H7t) =C—-XN—pi =0,

resulting in
C=X\~+ . (95)

Substituting these expressions back into £(w, &, A, p,t) leads to the Wolfe dual
optimization problem which has as objective function (to be maximized):

n m
g, p,t) = *WTLW+OZ§ Z/\ T2 —et &) =) ki =Y tiwi
i=1 i=1
= §WTLW + Zfi(C -\ — ) — Z A\wlz® 4+ ei)\i —w't
i=1 i=1 i=1

=0

1 n ) n
ngLw w LL™! (Z iz +t> +EZ)\,'
1=1 1=1

=W

1 n
= —inLw + EZ)\i

i=1

e () -y
- (tTL_lz)\iz(i)> +GZAZ-.
=1 i=1

To simplify the notation of the function g(\, u,t), let us define the functions
h(t) = 3t"L7't and I(t,A) = t ' L2137  \z(). We also define the matrix
H ¢ R" " given by H;; = (z?)"L~(z1)). From (9.5), since p; > 0 implies
A; < O, the primal problem (9.3) is converted into the dual problem:

minimize  f(X,t) = IXNTHN + h(t) +1(6,X) — e X0, A

)

subject to C > \; >0, i=1,...,n, (9.6)
t; >0, j=1,....m

Problem (9.6) can be solved by standard quadratic programming solvers, such as
CPLEX (ILOG, 2012) and MOSEK (Mosek, 2010), but they quickly tend to scale
poorly in the number of constraints. In the following subsection, we will describe a
dual coordinate descent method to solve this problem more efficiently and faster
than a general-purpose solver.

179



CHAPTER 9. DISTANCE METRIC LEARNING FOR k-NEAREST-NEIGHBOR REGRESSION

9.2.3. Learning a distance metric with coordinate descent

The coordinate descent method is a powerful optimization technique that has been
used to solve a number of machine learning tasks, such as linear SVMs (Hsieh et al.,
2008) and Lasso regression (Friedman et al., 2007). In general, the coordinate
descent method is efficient if each single iteration can be performed with a minimal
cost. The convergence analysis of coordinate descent methods can be found
in (Shalev-Shwartz and Zhang, 2013; Luo and Tseng, 1992). In this subsection, we
describe our coordinate descent method for solving problem (9.6).

Notations

We introduce some notations to express the optimization procedure conveniently.
The optimization procedure starts from an initial point ()\O,to) € R™™ and
generates a sequence of vectors {(AF, tF)}20 . We refer to an outer iteration as
the process of updating from (Ak,tk) to ()\Hl,tk“). At each outer iteration,
()\kH, tk*1) is constructed by sequentially updating each component of ()\k', th).
In other words, in each outer iteration we have n 4+ m inner iterations, so that
Alyeeos An,t1, ..., by are updated. Thus, each outer iteration generates vectors
(AP tF)y e R*T™ fori=1,...,n+1, and (A*F1 t57) e R*H™ for j =1,...,m+1,
such that A% = AF, XL = AL gl — gk ghmtd = gk ang

ABE = (AL AR AR AR T

thi = (t’fﬂ...,tfﬁ,t?,...,t’;)T )
First, we update each component of A* and then we update each component of t*.
We describe in detail the method for updating from (/\k’i, t*) to ()\]‘3’”17 t*) and
from (A £%7) to (AFF1 %7+1) in each inner iteration.

Solving for (A" t)

To update from ()\k’i, t*) to ()\k’H'l, t*), we solve the following one-variable sub-
problem:

minimize f(/\’f+1, AL d R Nk ,tfn)
= f(AP 4 de(® t¥) (9.7)
subject to C >d+ A\F >0,
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where e® = (0,...,1,...,0)T. The objective function in (9.7) is a simple quadratic
function of variable d:

. . 1 i
FO o+ de® %) = 2 Hyd® 4+ Vif (N, £%)d + constant,

where V; f(AF7 t¥) is the i-th component of the gradient Vf, which is defined
as:

ol
Vif (WM, tF) = ZHz)\;“—i— ZHﬂA’” o — (AR ) — e

K2

HijA;:’i + (Z(i))TL_ltk — €

<
Il
—

|

(Z(Z))TL_lz(j)Af7L =+ (Z(i))TL—ltk‘ —€

|

Jj=1
— ()T L Z)\?,iz(j) IR B
j=1
= (") w—e. (9.8)

It is easy to see that (9.7) has as optimal solution d = 0 (i.e., no need to update
MY if and only if:

VPR 4 de® th) =0, (9.9)

where VF f(\, t) is the projected gradient (Lin and Moré, 1999), which is calculated
as:

Vif(At) Lifo< )\ < C
VEFAE) = min(0, V, f(A 1)), if A; = 0;
max(0, Vi f(At)) , if A =C.

We only update in case (9.9) does not hold, i.e., the projected gradient V' f(A, t) #
0. Since f()\]m + de t*) is a simple quadratic function of a single variable d,
the optimal point that minimizes the objective function f()\k’Z + de®, tF) when
H;; > 0is:

Vif (A", tF)

d=—
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Subsequently, we need to truncate the argument (A¥ + d) into the interval [0, C] to
obtain a feasible solution:

' Cpiyki ik
)xf’”'l = min (max (/\f — W,O) ,C) . (9.10)

If Hy; =0, ie., (2) L7 (z()) = 0, then z(Y) = 0. Therefore, due to (9.8), we
have that Vif(/\k’z, t¥) = —¢, and the optimal solution of (9.7) is d = C' — \¥, thus
AR — & We can also include this case in (9.10) by setting 1/0 = +o0.

To calculate V, f ()\k’i,tk ), we need to update w throughout the coordinate
descent procedure. This can be easily computed as follows:

W~ W+ dL1z®

To reduce the complexity of this process, we can pre-compute the values of L~1z(%).
Hence, this update only takes O(m) operations to update w in each inner iteration.
Finally, we set the value of (A®"1 %) as

(AR R (AP 4 de®) tF)

Solving for (A" tki+1)

To update from ()\kH, th9) to (/\kﬂ7 tF9+1) we solve the following one-variable

subproblem:

e k+1 k41 sk+1 k+1 k 4k k
minimize f()\l T VAR PN il 1,d+tj7t]+17...,tm>

PR g 4 del) (9.11)
subject to d+ t;? >0,

where /) = (0,...,1,...,0)T. The objective function (9.11) is also a simple
quadratic function of a single variable d:

) . 1 .
FOEFL g0 4 geld)) = §Lj_j1d2 + Vinaj) FFT t57)d + constant ,

where V(n+j)f()\k+1, t57) is the (n + j)-th component of the gradient V f, which
is defined as:

R oh
V<n+j>f(>\‘““,t’“’”)=5z LT 4 S ZL J(t’”)

j
-1 lw ( 12)\k+1 (z))

I
'M
th

J
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—ZLN (T )\’“H))j, (9.12)

where T(A) = L7131 | \;z(). As for the objective function in (9.7), we do not
need to update t;‘f if and only if:

Vi y FOFFL 657 4 deV)) =0, (9.13)

where Vglﬂ)f()\,t) is the projected gradient (Lin and Moré, 1999), which is
calculated as:

Vit (A ) , ift; > 0;

> PO
Vintn A1) = min(0, Vnij f(A, 1), if t; =0.

Hence, when (9.13) does not hold, the optimal solution that minimizes the function
FONEFL t57 4 de@)) is given by:

v(n+j)f()‘k+17 tk’j)
_ — .
Ji

Subsequently, we need to truncate the argument (t;C + d) to the interval [0, +o0] to
obtain a feasible solution of (9.11):

: Vinaiy fAFTL tRI
t?’JJrl:max(tf— (n+)J )’0 .

-1
ij

We can calculate V(nﬂ)f()\k“,tk’j) in a time complexity of O(m). Since the
first term Y27, L7157 in (9.12) can be computed in O(m) and the second term

Ji Vi

(T()\))j can be computed in O(1) if we pre-compute T'(A) and update it throughout

the coordinate descent procedure after updating each A™, this only takes a time
complexity of O(m):

T(A) < T(A) + A+ - AL =150)
Finally, we set the value of (z\kﬂ7 thI+l) as

()‘k-‘rl’tk,jJrl) - ()\k+17tk7j n de(j)).
After updating t*, we must update w as follows:

W w o+ LR - gy
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Random permutation of subproblems

The above coordinate descent method solves the one-variable subproblems in
the order of A1,..., An,t1,...,tm. As discussed by Chang et al. (2008), when
the components of A or the components of t are correlated, the order of the
components may affect the training speed. To improve the convergence, we
randomly permute the subproblems at each outer iteration, i.e., at the k-th outer
iteration, we construct a random permutation w5 of {1,...,n} and a random
permutation 7 of {1,..., m}, then sequentially solve the subproblems in the order
of >\7r>\(1)a ceey >\7r>\(n)7 tﬂ't(l)? cee 7tﬂ't(m)~

The initial value for w can be set to 0 by using A = 0 and t = 0. A brief
description is given in Algorithm 9. Our method has time complexity of O(nm+m?),
which is much more efficient than O(n® + nm + n?m), the time complexity of the
normally used coordinate descent method in each outer iteration.

Algorithm 9 A dual coordinate descent method for regression (LDMLR)

e Given initial values of A, t and the corresponding
w L7 (320 Az +t)
T+ LY Nz
e While A, t are not optimal (outer iteration)
o Randomly permute (1,...,n) to (7(1),...,7(n))
(a) For ¢ = w(1),...,m(n), (inner iteration)
(1) Gy + (2))Tw — ¢
G ,if0< N <Oy
(2) Py + min(O, G)\) s if \; = 0;
max(0,Gy) , ifN=C.
(3) If |P)\| # 0, then
)\?ld — A\
A; < min (max ()\Z- - %, O) ,C)
w w4+ (A — AL 1z0)
T« T+ (A — AL~ 120)

(b) t ¢
o Randomly permute (1,...,m) to (7(1),...,m(m))
¢) For j =m(1),...,m(m), (inner iteration)
(1) Gy« X0 L + Ty
G ift; >0;
@) P )l 2T

min(0,G;) , ift; =0.
(3) If |P| # 0, then

tj<—max t]’—G 0

t
=)

L
Ji

(d) w « w+ L7 (t — to)
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9.3. Related work

In the literature, a number of methods have been proposed recently to learn a
Mahalanobis distance metric (Yang and Xu, 2016; Miao et al., 2015; Wang et al.,
2014b; Baghshah and Shouraki, 2010a; Zhang et al., 2012a). However, there are
only few methods that are developed to be used in the regression setting. Next,
we review some distance metric learning methods that are closely related to our
method.

Weinberger and Tesauro (2007) have successfully incorporated distance metric
learning into the kernel function, leading to a great improvement of the regression
accuracy. The main idea of their method, which is called metric learning for kernel
regression (MLKR), is to learn a Mahalanobis matrix for a Gaussian kernel via
the minimization of the leave-one-out regression error. Inspired by MLKR, Huang
and Sun (2013) introduced kernel regression with sparse metric learning (KR--
SML). To reduce the risk of overfitting, KR_.SML enforces the sparsity constraint
on the Mahalanobis matrix. MLKR and KR_SML can perform well on small
data sets, however, they may suffer from local optima since the problems are not
convex.

Assi et al. (2014) adapted the large margin nearest neighbor method (Wein-
berger and Saul, 2009) for regression settings (LMNNR). It learns a Mahalanobis
matrix by solving a semidefinite program, and it has the same formulation as the
original method for classification. The optimization process is also based on triplet
constraints, but they only focus on the violated triplets. That is, they look for
triplets that have an ordering in the input space X that is different from the ordering
in the output space ). The main drawback of this work is the lack of regularization.
It may lead to overfitting in case of high-dimensional data sets.

Problem (9.2) resulting from our formulation has the same form as the one
proposed by Schultz and Joachims (2004). Their work uses a random procedure to
select triplet constraints. That is, it randomly selects three examples x(¥), x(9)| and
x(*) from the training set. If x* and xU) are from the same class and x(*) is from
a different class, then they add the triplet (x(?,xU) x(*)) to 7. This selection
may lead to a loss of the information contained in the discarded training examples.
However, in our work, we propose a different way to select the triplet constraints.
We just focus on the neighborhood of each example, and try to preserve its local
similarity relationships.

Taking into account the similarities of our formulation with support vector
machines (SVM) (Scholkopf and Smola, 2001), we proposed a solver that is inspired
by the coordinate descent method used to train large-scale linear SVM (Hsieh
et al., 2008). The authors of the latter work also solved the dual problem with the
coordinate descent method, and the key technique for making coordinate descent
iterations fast is to keep track of the vector w during optimization. The main
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difference with (Hsieh et al., 2008) is that in our formulation the first term of
the objective function contains an embedded positive definite matrix L and the
additional constraints w; > 0, for j = 1,..., m. Therefore, our problem is more
difficult to solve than the one in (Hsieh et al., 2008).

9.4. Experiments

In this section, we present some experiments to highlight the advantages of the
proposed method in regression settings. We compare the performance of LDMLR
with LMINNR (Assi et al., 2014), MLKR (Weinberger and Tesauro, 2007),
MLRC (Schultz and Joachims, 2004) and k-NNR using the Euclidean distance
metric (Euclidean). All methods were implemented in Matlab, and the experi-
ments were carried out on a PC with 4 Intel Core i5-3570 CPUs (3.40 GHz) and
8GB RAM.

9.4.1. Data description and configuration

In our experiments, we used twenty regression data sets (see Table 9.1 for a brief
description). These data sets represent an important challenge for the selected
methods. The first 16 data sets were taken from the Data for Fvaluating Learning
in Valid Experiments (DELVE)! collection. These data sets were generated by two
synthetic robot arms?. Half of the sixteen data sets contain 32 input attributes
and the other half contain 8 input attributes. Each data set was randomly split
into four disjoint sets containing 2048 examples, 1024 examples were used for
training and 1024 examples were used for testing. The final result for each data
set was the average of the four individual runs. We chose the DELVE data sets for
assessing the performance of our method since there are several published papers
on these data sets (Weinberger and Tesauro, 2007; Huang and Sun, 2013; Williams
and Rasmussen, 1996). The last four data sets were taken from the Knowledge
Extraction based on Evolutionary Learning (KEEL) (Triguero et al., 2017) machine
learning repository>. These data sets cover a range from 3 to 85 attributes and
from 2178 to 22784 examples. The KEEL package randomly splits each data
set to perform 5-cross validation. We conducted experiments on the KEEL data
sets to also evaluate our method on more complex problems. For LDMLR, the
hyperparameter € is set to € = 1.

The predicted output value §9) for a test example x() is computed as the

DELVE: http://www.cs.toronto.edu/~delve/data/datasets.html
For more details on the specific data sets, see:
http://www.cs.toronto.edu/~delve/data/pumadyn/desc.html

and http://www.cs.toronto.edu/~delve/data/kin/desc.html
KEEL: http://sci2s.ugr.es/keel/datasets.php
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locally weighted average of the values of its nearest neighbors in the training set
using the Gaussian kernel, which is defined as:

1

2ro

d(u,v)> 7

K(U,V) = o2

: exp( —
where d is the learned Mahalanobis distance metric. Thus, we can compute )

as:

0 1(x® € x@))y@ K (x@), x@)

30) —
Y S 1(x0) € V(x0)) K (x0), x0)

where 1(.) is a function that takes value 1 if its argument is true, otherwise it
takes value 0. In our experiments, we only considered ¢ = 1 and five neighbors
of each test example. For LDMLR, we also used five nearest neighbors to get the
triplet constraints; the transformation matrix A was set to the identity matrix. To
improve the quadratic nearest neighbor search for some big data sets, we used a
sophisticated data structure named Ball Tree (Omohundro, 1989). The trade-off
parameter C in the objective function of LDMLR and MLRC was tuned by cross-
validation on the training set considering as set of values {0.001,0.01,...,1000}.
For MLRC, we use a dual active-set method to solve the optimization problem.
We adapt MLRC to be used in regression settings by randomly selecting triplets of
the type (x(¥,x() x(*), where |y — y(j)| < |y® — y(k)|.

To compare the performance of the proposed method with other related methods,
we use the root mean squared error (RMSE):

St

1 . .
RMSE = | — U) — g2,
" ;:1 (y y\9))

where s; denotes the number of test examples.

9.4.2. Methodology

To compare the performance of several methods over multiple data sets, we follow
the recommendation in (Demsar, 2006; Garcia and Herrera, 2008) associated with
the computation of the p-value. First, we apply the non-parametric Friedman test
(Friedman, 1940), which is equivalent to the repeated-measures ANOVA (Fisher,
1959), to test the null hypothesis that all methods obtain the same results on
average. After the Friedman test rejects the null hypothesis, we can apply a
post-hoc test to analyze which methods perform significantly different from the
best-ranked method. To this end, we apply the Bonferroni-Dunn test (Dunn,
1961), which permits to identify significant differences between a control method
(in our case, the best-ranked method) and other methods. One method performs
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Table 9.1: Description of the data sets used in the experiment

# Dataset Features Examples #  Data set Features Examples
1.  kin8fth 8 1024 11. puma8nh 8 1024
2. kin8fm 8 1024 12. puma8nm 8 1024
3.  kin8nh 8 1024 13. puma32fh 32 1024
4. kin8nm 8 1024 14. puma32fm 32 1024
5. kin32fh 32 1024 15. puma3d2nh 32 1024
6. kin32fm 32 1024 16. pumad2nm 32 1024
7.  kin32nh 32 1024 17. house 16 22784
8. kin32nm 32 1024 18. pole 25 14998
9. puma8fh 8 1024 19. quake 3 2178
10. puma8fm 8 1024 20. tic 85 9822

significantly different from the best-ranked method if the corresponding average
rank differs by, at least, a critical distance (CD), which is calculated as:

ne(ne + 1)

CD = ¢qo X
o 67’Lt

, (9.14)

where n. and n; are the number of methods and the number of data sets, respec-
tively, and g, is the critical value (Sheskin, 2007). Finally, we use Holm’s step-down
procedure (Holm, 1979) to complement the multiple comparison statistical analy-
sis.

9.4.3. Experimental results and discussion

Table 9.4 shows the training time for each method on each data set. Clearly, LDMLR
is significantly faster than LMNNR, MLKR, and MLRC. In Table 9.3, we highlight
the lowest RMSE on each data set and the average rank (Rank) of each method
according to the Friedman test at a confidence level of 0.05. Since the p-value for
the Friedman test was 0.00194, we rejected the null hypothesis that all competing
methods obtained the same results on average. Therefore, to detect which distance
metric learning method performed significantly different from the best-ranked
method (i.e., LDMLR), we applied the Bonferroni-Dunn test at a confidence level
of @ = 0.05. The performance of two methods is significantly different if their
corresponding average ranks differ by at least the critical difference:

C C 1
ne(et 1) o Jog « % —1.249.

CD =¢.
Qa X ¢ X 2
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Figure 9.2 visualizes the significant differences among the RMSE values of the
different distance metric learning methods. Any distance metric learning method
with a rank outside this marked area is significantly different from the control
method (i.e., LDMLR).

CD
| Ll I 2] I 3] 2l 4
I T T T | T T I 1
LDMLR
MLKR Euclidean
MLRC
LMNNR

Figure 9.2: Visualization of the post-hoc Bonferroni-Dunn test of RMSE.

We also applied Holm’s step-down procedure at a confidence level of a@ = 0.05
to compare the best-ranked method (i.e., LDMLR) with the remaining methods.
Table 9.2 presents the z-value, p-value, and adjusted « for the Holm test. The
methods are ordered with respect to the p-value. The Holm test rejected the
first and second hypothesis (i.e., Euclidean and MLRC obtain the same results on
average as LDMLR) since the corresponding p-value was smaller than the adjusted
«. But the third and fourth hypothesis (i.e., RLMNN and MLKR obtain the same
results on average as LDMLR) could not be rejected as the corresponding p-value
was greater than the adjusted a.

Table 9.2: Holm’s post-hoc test for the competing methods with o = 0.05 (control
method: LDMLR).

Method z-value p-value Holm’s adjusted @« Hypothesis

Euclidean 3.1500 0.0016 0.0125 Rejected
MLRC 3.0000  0.0027 0.0167 Rejected
RLMNN 1.5000 0.1336 0.0250 Accepted
MLKR 0.3500  0.7263 0.0500 Accepted

The statistical results allow us to conclude some trends:

(i) Our strategy for building the triplet constraints leads to an improved per-
formance compared with the subsampling strategy proposed in Schultz and
Joachims (2004) (see the RMSE results of LDMLR and MLRC).

(ii) Our dual coordinate gradient descent is significantly faster than a general-
purpose solver for finding the solution of a quadratic program (see the training
time results of LDMLR and MLRC). Since the time complexity of LDMLR
is O(mn + m?) in each outer iteration, we could expect LDMLR to perform
well for more complex problems, where other methods, such as LMNNR and
MLKR, could not achieve a good performance due to the high computational
complexity in each iteration.
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(iii) LDMLR exhibits a slightly better behavior compared to LMNNR and MLKR.
This unexpected result is due to the fact that our method learns only a
diagonal matrix, which has fewer parameters than other methods that learn
a full Mahalanobis matrix.

(iv) Methods that learn a full Mahalanobis matrix require a memory complexity
of O(D?), which poses a huge challenge when handling high-dimensional
problems. In contrast, LDMLR only stores a diagonal matrix with a memory
complexity of O(D).

Table 9.3: Experimental results in terms of RMSE.

Euclidean ~ RLMNN MLKR MLRC LDMLR

#

1 0.051563  0.051220 0.049009  0.054875 0.056518
2 0.028276  0.027087 0.016588  0.029336  0.028129
3. 0.196502  0.197256  0.190883  0.21574 0.202931
4. 0.150332  0.149030  0.109057  0.205514  0.139877
)
6
7
8
9

0.360485  0.341728  0.317247 0.363681 0.340263
0.272334  0.238165  0.144129 0.303363  0.237400
0.483901 0.481393 0.521417  0.512054  0.503052
0.446595 0.440956  0.447151 0.467792  0.449575

. 3.688479  3.684056  3.508015 = 3.455432  3.496472
10. 1.813290 1.737894 1.191496 1.213079  1.158852

11. 4.152913  4.137456 3.573474  3.481092  3.394903
12. 2.994171 2.881655 1.294109 1.573102  1.174007
13. 0.024956  0.024781 0.025927  0.022591  0.022444
14. 0.012350  0.010897  0.004860 0.005406  0.005235
15. 0.036197  0.036081 0.030225 0.035769  0.028683
16. 0.029167  0.028801  0.011677  0.029050  0.017354
17. 39249.24  42230.38 39249.24  41832.60 38582.66
18. 8.067374  6.251509  7.521751  29.647121  7.419996
19. 0.200677  0.200868 0.201301 0.205264  0.200547
20. 0.250528  0.248829 0.261938  0.248818  0.250846

Rank  3.775000  2.950000 2.375000 3.70000  2.200000

9.5. Conclusion

In this chapter, we have proposed a new distance metric learning method to
improve the performance of k&-NNR. This was accomplished by formulating a
convex optimization problem. To solve this problem, we have developed a special
solver based on the coordinate descent method. We evaluated the method on a
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Table 9.4: Experimental results in terms of training time (in seconds).

# RLMNN MLKR MLRC LDMLR

1. 9.81000 2.38556 217.518 0.77911
2. 9.89502 2.44267 213.220 0.81447
3. 9.70097  2.51613 213.497 0.77781
4. 8.09799  2.50395 213.150 0.78570
5. 24.8306 6.50735 454.399 1.82979
6. 219150 6.43434 460.688 1.63494
7. 20.3224  6.55719 325.564 1.55986
8. 18.2022  6.30261 299.474 1.81043
9.  8.42433 2.46434 207913 0.71277
10.  8.72317  2.47085 200.182 0.78939
11.  10.2451 2.38182 211.207 0.86834
12.  8.62751  2.44820 209.708 0.72931
13.  16.8085 6.35133 266.689 1.45746
14.  15.2522  6.34046 195.784 1.59970
15. 157750  6.42428 270.898 1.59220
16. 15.1270 6.62855 271.122 1.50747
17. 1301.84 7832.16 2052.01 70.4357
18, 274.734  577.405 2041.11 36.6199
19.  133.610 3.43870 1919.36 0.56642
20. 183.197 1760.30 1828.70 31.9248

collection of twenty publicly available data sets. Experimental results show that
our method outperforms the standard k-NNR using the Euclidean distance metric,
while obtaining comparable results compared to the state-of-the-art methods MLKR
and LMNNR. The results also show that our method is an order of magnitude faster
than its competitors. The proposed method also enjoys a significant advantage in
memory complexity, making it more practical for real-world applications, which are
not tractable using the full Mahalanobis distance metric learning methods. Future
work will include a deeper theoretical analysis, the inclusion of kernel functions
and a deeper experimental analysis on high-dimensional data sets.
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10 Distance metric learning
for ordinal classification

Ordinal classification is a problem setting in-between nominal classification
and metric regression, where the goal is to predict classes of an ordinal scale.
Usually, there is a clear ordering of the classes, but the absolute distances between
them are unknown. Disregarding the ordering information, this kind of problems
is commonly treated as multi-class classification problems, although this is not
appropriate from a semantic point of view. Exploring such ordering information
can help to improve the effectiveness of classifiers. In this chapter, we propose
a distance metric learning approach for ordinal classification by incorporating
local triplet constraints containing the ordering information into a conventional
large-margin distance metric learning approach. Specifically, our approach tries to
preserve, for each training example, the ordinal relationship as well as the local
geometry structure of its neighbors, which is suitable for use in local distance-
based algorithms such as k-NN classification. Different from previous works that
usually learn distance metrics by weighing the distances between training examples
according to their class label differences, the proposed approach can directly satisfy
the ordinal relationships where no assumptions about the distances between classes
are made.

The material of this chapter is based on the following publication:
Nguyen, B., Morell, C., and De Baets, B. (2018a). Distance metric learning
for ordinal classification based on triplet constraints. Knowledge-Based Systems,
142:17-28

10.1. Motivation

Ordinal classification (also called ordinal regression) has recently become an impor-
tant research topic as a consequence of the growing amount of human preference
information in many real-world applications, such as human age estimation (Chang
et al., 2011), face recognition (Kim and Pavlovic, 2010), medical research (Pérez-
Ortiz et al., 2014), social sciences (Fullerton and Xu, 2012), and so on. This
learning task consists in predicting a target variable on an ordinal scale. Very often,
for qualifying objects, humans prefer using ordinal labels instead of continuous
scores. An ordinal variable can represent, for instance, the grades of students,
which are usually represented in linguistic terms such as bad, average, good, and
excellent. Clearly, average is more preferable than bad, and good is better than
both. In contrast to nominal (binary or multi-class) classification, there exists a
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linear ordinal relationship among the different class labels, which can be written as
bad < average < good < excellent, where < denotes the order relation.

At least two important challenges can be identified from the differences between
nominal classification and ordinal classification (Gutiérrez and Garcia, 2016). First,
it is important to consider the ordering information among class labels. An ordinal
classifier not only needs to recognize what class the data belong to, but it should
also preserve the ordinal relationships of the data. Second, the measure used
for assessing the performance of ordinal classifiers should take into account the
deviations of the predictions from the true class labels as well as the consistency
of the relative ordering among the class labels. In the literature, different types
of solutions have been proposed to address this kind of problems. According
to Gutiérrez et al. (2016), ordinal classification approaches can be divided into
three categories: naive approaches, threshold approaches, and ordinal binary
decomposition approaches.

Naive approaches treat ordinal classification problems as standard classification
or regression problems by making some simplifying assumptions on the class labels.
By ignoring the ordinal relationship among classes, unseen data can be classified
using conventional nominal classifiers, such as support vector machines (Vapnik,
1998) and neural networks (Anthony and Bartlett, 2009). Although it is possible
to directly use nominal classifiers, the classification accuracy may be limited due
to the loss of training information. Another early effort in this category was
proposed by Kramer et al. (2001). The idea is to transform the target variable
into a real-valued and continuous variable, and then solve the ordinal classification
problem using regression trees. The main drawback of this approach is that the true
distances among the class labels are unknown in most cases, and as a consequence,
it is difficult to estimate an appropriate function to map the class labels.

Threshold approaches try to overcome the aforementioned limitation by auto-
matically estimating the distances between the class labels. They assume that the
target variable is a one-dimensional latent continuous variable and learn thresholds
that divide the real line into consecutive intervals. Each class label corresponds to
an interval delimited by these thresholds. Different from naive approaches, the dis-
tances between class labels are estimated during the learning process. Approaches
belonging to this category are also popular in problems of learning to rank (Shashua
and Levin, 2002). Within this context, Chu and Keerthi (2005) extended support
vector machines to deal with ordinal classification. Two approaches were proposed
to find parallel discriminant hyperplanes that separate examples of different classes.
An interesting property of the second approach is that the constraints on thresholds
are implicitly satisfied at the optimal solution.

Ordinal binary decomposition approaches, on the other hand, transform an
ordinal classification problem into a set of binary (two-class) classification problems,
which are separately solved by binary classifiers (Frank and Hall, 2001; Lin and Li,

194



§10.1. Motivation

2012). Hence, class labels are predicted by combining the binary outputs. Using
the ranking information contained in the class labels, a simple definition of the set
of binary classification problems can be made, for instance, by asking “if the class
label of an example x is greater than ¢” (Frank and Hall, 2001). It is important
to note that, apart from the way of defining two-class classification problems, the
performance of approaches belonging to this category also depends on the way of
combining the outputs.

Distance metric learning is now a well-established discipline in pattern recog-
nition, but much of the attention has been focused on classification and cluster-
ing (Bellet et al., 2015). Due to the significant different characteristics of ordinal
classification (Li et al., 2015), most of the previous works in distance metric learning
cannot be directly applied for dealing with ordinal classification. One solution is to
use additional constraints that indicate the ordinal relationships among examples
of different classes, e.g., “examples A and B are closer in preference than A and
C,” which imposes ranking constraints A < B < C or C < B < A. In the
context of distance metric learning, these triplet constraints mean “A should be
closer to B than to C.” Therefore, by learning a distance metric that satisfies
the ordinal relationships, we can address ordinal classification problems using
distance-based classifiers. In particular, we aim to incorporate local triplet con-
straints into a conventional large-margin distance metric learning approach to
improve the performance of k-nearest-neighbor (k-NN) classification (Cover and
Hart, 1967). Although distance metric learning has been explored in some previous
studies for ordinal classification (Li et al., 2012a, 2015; Fouad and Tino, 2013; Tian
et al., 2016), to the best of our knowledge, there is no existing work that directly
formulates this problem using triplet constraints. In short, our main contributions
are summarized as follows:

(i) To bridge the gap between distance metric learning and ordinal classification,
we propose a large-margin distance metric learning approach by adapting the
ordering information on the training examples. Unlike previous works, the
proposed approach makes no assumptions about the distances between the
classes, thus leading to a better performance.

(ii) To further capture nonlinear structures in a complex data set, we extend the
proposed approach to a kernelized version. We first map the input space into
a Hilbert space by a nonlinear kernel function, then the distance metric is
learned in the transformed space.

(iii) To validate the effectiveness of the proposed approach, we conduct exten-
sive experiments using public benchmark data sets for ordinal classification.
We show that the proposed approach improves the performance of k-NN
classification.

The remainder of this chapter is organized as follows. Section 10.2 describes
some basic concepts and background in distance metric learning. Subsequently, we
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review some distance metric learning approaches closely related to ours, focusing
specifically on the case of ordinal classification. Section 10.3 introduces the main
idea of the proposed approach and its nonlinear kernelized version. Subsequently,
an analysis of the computational complexity of the proposed approach is discussed.
Section 10.4 discusses some issues and challenges in evaluating the performance
of ordinal classifiers. Section 10.5 provides the experimental results, analyzing
different aspects of the proposed approach. Finally, some concluding remarks and
future work are presented in Section 10.6.

10.2. Preliminaries

The main goal of distance metric learning approaches is to estimate a distance
metric that satisfies some application-specific requirements, but all follow the same
guiding principle: similar examples should be close together and dissimilar examples
should be far away from each other. In this section, we briefly describe the general
framework of distance metric learning. An overview of challenges in distance metric
learning is also provided.

10.2.1. Notations

We start by introducing some notations that will be used throughout this chapter.
Let D = {(xi,y:) | ¢ =1,...,n} denote the training set, where example x; belongs
to the input space X C RP and its corresponding class label 7; belongs to the
output space Y = {C1,...,C,}. An ordinal classification setting can be seen as
a special case of nominal classification where there exists a linear order relation
among the class labels, i.e., C; < -+ < C,.

10.2.2. Problem definition

Among the many different ways of learning a distance measure, we aim at finding
the Mahalanobis distance metric (Weinberger and Saul, 2009), due to its simplicity
and flexibility in incorporating the correlation between different features into the
distance. The Mahalanobis distance metric can be seen as the Euclidean distance
metric after performing a linear transformation on the input space. In other
words, learning a Mahalanobis distance metric corresponds to learning a linear
transformation (Nguyen et al., 2017c). Formally, the squared Mahalanobis distance
between two examples x; and x; is defined as

dia (xi,%5) = (3 —x;) TM(x; — %) = (M, (x5 — %) (xi = %;) '),
where M = 0 is a symmetric positive semidefinite (PSD) matrix.
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In the general distance metric learning framework, given a set of constraints R,
one can formulate the problem as a constrained optimization,

miII\1/Iir>nize areg(M) + (M, R), (10.1)
with reg a regularization function to reduce the risk of overfitting, ¢ a loss function
penalizing violations of constraints in R, and a > 0 a trade-off parameter. Essen-
tially, our objective is to learn dissimilarities between examples by determining the
importance of the input features and their correlations.

There have been several successful approaches for solving problem (10.1). The
main challenge is to satisfy the positive semidefiniteness constraint on the matrix M.
Using a convex loss function and a convex regularizer, problem (10.1) then turns
into a convex semidefinite program which can be solved in polynomial time by
standard semidefinite programming methods (Boyd and Vandenberghe, 2004). The
drawback of this technique is that it quickly becomes computationally intractable on
large-scale data sets. To further reduce the computational complexity, Weinberger
and Saul (2009) proposed an efficient solver based on the subgradient descent
method. Davis et al. (2007) introduced an iterative Bregman projection method.
More advanced optimization methods such as the Frank-Wolfe algorithm (Ying
and Li, 2012), the block-coordinate descent (Qi et al., 2009; Atzmon et al., 2015),
and the Boosting-like algorithm (Shen et al., 2012) are also studied in the context
of distance metric learning.

In the literature, the constraints in R are usually represented in a pairwise (Xing
et al., 2002) or triplet form (Schultz and Joachims, 2004). A pairwise constraint
(4,7, yi;) indicates whether two given examples, x; and x;, belong to the same
class (y;; = 1) or not (y;; = —1). A triplet constraint (¢, ,1) indicates a relative
comparison among three given examples such as “x; is more similar to x; than to
x;.” Triplet constraints can be seen as an extension of pairwise constraints since
two pairwise constraints of the form (4, j,1) and (4,1, —1) imply a triplet constraint
(4,4,1), but not vice versa. That is, given a triplet constraint (i, 7,1), it does not
necessarily mean that x; and x; belong to the same class, neither that x; and x;
belong to different classes. Due to this flexibility, we will exploit triplet constraints
to impose the ordinal relationships on learning a Mahalanobis distance metric. In
the next section, we show how to implement this idea.

10.2.3. Related work

Although there is a large number of works in distance metric learning (Weinberger
and Saul, 2009; Shen et al., 2012; Nguyen et al., 2016), most of them only concentrate
on nominal classification. One of the most popular methods is the large margin
nearest neighbor (LMNN) proposed by Weinberger and Saul (2009) for improving
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the performance of k-NN classification. In essence, LMNN aims to maximize
margins between target neighbors and all examples of different classes, leading to
solve a convex semidefinite program. Compared with LMNN, our approach also
follows the large-margin principle, but the formulation is quite different. While
LMNN ignores any ordering information present in the data and solely focuses on
increasing the classification performance of k-NN, our approach tries to preserve the
ordinal relationships, entailing an even larger increase in performance. Our main
contribution is the use of the matrix trace norm, which yields a simple explanation
in the hypothesis space, thus reducing the risk of overfitting. Additionally, to
avoid a large number of unnecessary constraints, we introduce a strategy to select
only the local triplet constraints derived from neighborhoods of each training
example.

Recently, several proposals have been formulated to reduce the gap between
distance metric learning and ordinal classification. Compared to nominal distance
metric learning approaches, ordinal approaches take the ordering information into
account, thus resulting in more accurate predictions, especially when data sets are
small (Gutiérrez et al., 2016). Below, we review some distance metric learning
approaches particularly designed for dealing with ordinal classification.

Xiao et al. (2009) introduce a distance metric learning approach with the
goal of preserving the local neighborhoods in the semantic space for human age
estimation. To be more specific, the learned distance metric tries to keep the
pairwise distances between examples of the same class in the local neighborhoods
unchanged, while pushing examples of different classes far away. The limitation
of such methodology is that the ordinal relationships with examples of different
classes is neglected.

Fouad and Tino (2013) extend the information-theoretic metric learning (ITML)
method (Davis et al., 2007) for ordinal classification by weighing pairwise constraints
according to the differences between their class labels (OITML). However, this
method may lead to suboptimal performance due to the assumption that the
learned distance metric should be as close as possible to a predefined distance
metric, e.g., the Euclidean distance metric.

Li et al. (2015) propose an ordinal distance metric learning method (LDMLR)
for image ranking. The idea is to preserve the local structure for each training
example with its target neighbors, while the ordinal relationships are preserved
by weighing the distances between training examples according to the differences
between their class labels. Nevertheless, this simple strategy may not be powerful
enough for preserving the ordinal relationships.

Tian et al. (2016) attempt to preserve the ordinal relationships by minimizing
distances between examples of the same class and simultaneously making all classes
orderly distributed in the transformed space. The main limitation of this approach
is that many hyper-parameters need to be tuned, which can make the selection
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difficult in practice. Compared to this approach, our approach is much simpler and
easier to implement.

Most of the existing approaches are based on the idea of weighing distances
between examples to preserve the ordinal relationships among the class labels.
Assuming that the class labels are represented by a set of consecutive integers, the
weighing function depends on the differences between the class labels. This implies
that all pairs of consecutive class labels in the ordinal scale have the same distance,
which is not the case in many real-world ordinal classification problems (Gutiérrez
et al., 2016). Therefore, this assumption is not always reasonable, and as a
consequence, it may cause serious errors in the estimation of distance metrics.
In contrast to these approaches, our approach tries to naturally preserve the
ordinal relationships using triplet constraints, where no assumptions about the
true distances between class labels are made.

10.3. Distance metric learning in ordinal settings

In this section, we present a novel distance metric learning approach based on the
large-margin principle to improve the performance of k-NN in ordinal classification
settings. We substitute the loss function in (10.1) by the widely applied hinge
loss function resulting in a convex optimization framework. By imposing triplet
constraints, the ordering of the data set is locally preserved, which makes it suitable
for local methods such as k-NN classification. We also extend the proposed approach
into a kernelized version to capture nonlinearities in the data. In the following, we
will describe the proposed approach and its extension in more detail.

10.3.1. Linear distance metric learning

For the purpose of improving the performance of k-NN classification, our distance
metric learning approach is based on the following considerations. First, each
training example should share the same class label with its k nearest neighbors due
to the majority voting rule of k-NN classification. Second, the ordinal relationships
between a training example and its neighbors should be preserved in terms of
distances, which makes the k-NN classifier more reliable in ordinal classification
settings.

Similar to many existing distance metric learning approaches for nominal
classification (Weinberger and Saul, 2009; Shi et al., 2014), the learned distance
metric should preserve the local structure of each training example. That is, each
training example is surrounded by k examples with the same class label, namely
target neighbors (Weinberger and Saul, 2009). The target neighbors can be specified
as k nearest neighbors of the same class using the Euclidean distance metric. For
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the sake of simplicity, let n;; be an indicator variable that takes value one when
example x; is a target neighbor of example x;, otherwise it takes value zero. Ideally,
we would like to make distances from x; to its target neighbors x; smaller than to
all examples x; of different classes by at least a safe margin. However, this may
cause a large number of constraints, which is computationally challenging. Instead,
we approximate these full constraints by considering only local constraints in the
neighborhood of each training example. Let N (x;) be the neighborhood of x;,
which is a set of its nearest neighbors. The local neighborhood constraint can be
defined as the following set of triplet constraints

Ri={(,50)]450le{l,...,n},x e N(x;),m;; =1, and y; #y }.  (10.2)

On the other hand, for each training example, the ordering information in
its neighborhood should be preserved as well. Instead of considering only large
margins between target neighbors and examples of different classes, we also keep
a safe margin between different classes, thus making the ordinal relationships of
classes explicit. That is, the larger the class dissimilarity of two examples is, the
larger the distance between these two examples is. In other words, if y; < y; < y;
or y; < y; < ¥, then examples of class y; should be separated from those of class
y; by at least a safe margin. This consideration leads to the following sets of triplet
constraints

R2 = { (%]J) | iajvl € {]—w"»n}vxjvxl GN(Xi) and yr < Yj = yz}a (103)
Rs = {(i,j,l) l4,7,0 € {1,...,n},xj,x; € N(x;) and y; <y, <yl}. (10.4)

It is important to remark that we cannot determine any triplet constraint when
Y < ¥ < yjory; <y <y, since the true distances between class labels are
unknown. In these cases, it is not clear whether the distance between x; and x;
should be smaller than the distance between x; and x; or not.

Finally, combining all triplet constraints given in (10.2), (10.3), and (10.4) we
obtain the following set of constraints

R=RiUR2UR3.

Inspired by the large-margin principle, we aim to estimate a Mahalanobis distance
metric that satisfies, for any triplet constraint (¢, j,1) in R, the inequality

dag(xi,x;) + 1 < dig(xi,%1) - (10.5)

The margin in (10.5) is set to 1 since its value only has an impact on the scale
of M and not on the performance of k-NN classification. In order to allow for
some inequalities to be violated, a soft margin is introduced to deal with the
non-separable case. Following the general framework for distance metric learning
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in (10.1), we define our problem as

milﬁ/ilmize fr(M) = atr(M) + % Z(i,jJ)eR &iji

5

subject to  di;(x;,%;) — dip(xi,x;) > 1— &1y (10.6)
gijl Z 0 fOI‘ (ZajJ) € R7
M50,

where m denotes the number of constraints in R and &;;; are slack variables to
handle the case of soft margins for the sake of computational feasibility. In addition,
the trace norm on M yields a sparse solution in eigenspectrum (Recht et al., 2010),
thus our approach can simultaneously perform feature selection along with distance
metric learning. This regularization function is also an implementation of Occam’s
razor principle according to which one should favor the simplest explanation
consistent with the training examples (Vapnik, 1998).

Class ordering Ordinal

Norinal O<E<0 <Pr<A

target neighbors

Figure 10.1: An illustration of distance metric learning for nominal (left) and ordinal
(right) classification. Examples from different classes are represented as different shapes
filled with different colors. The ellipse represents all examples having the same distance
to example x;.

Table 10.1: Constraints derived from nominal and ordinal distance metric learning
approaches with respect to example x; in Fig. 10.1.

Nominal Ordinal
deo<dem deo<dem
d©@0)<d©®0) d@0<d©0)

dem<d®©en)
d@0)<d©ew deo<dew)
d(©.0)<d(©,4) d©0)<d(©,4)
d@9<d@ a)
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For illustrative purposes, Fig. 10.1 shows the differences between the nominal
(left-hand side) and ordinal (right-hand side) approaches. In both approaches,
example x; is surrounded by three target neighbors (shown as circles filled with
green color). Although the nominal approach has a larger margin separating its
target neighbors and other neighbors of different classes than that of our ordinal
approach, the latter should be more favorable since the ordinal relationships are
preserved. More concretely, example x; is closer to the square example than to the
pentagon example and x; is closer to the star example than to the triangle example.
Therefore, the probability of misclassifying x; as pentagon is less than that of
misclassifying it as square and the probability of misclassifying x; as triangle is
less than that of misclassifying it as star. It is important to note that the ordinal
relationships are no longer guaranteed in the nominal approach. Additionally,
Table 10.1 lists all constraints derived from the nominal distance metric learning
approach and those from our ordinal approach. Clearly, our approach imposes
more useful constraints than the nominal approach, thus making it more suitable
for ordinal classification tasks.

To further understand the objective function in (10.6), we rewrite it into another
form,

1
Al = ot + 2 IZ)R[l o Raxir%)) = daxi3)]
75

1
=atr(M)+— > [1 +tr(MX,;) — tr(MXil)] R
(i,5,1)ER

where X;; = (x; — x;)(x; — x;) | and [2]; = max(z,0). Hence, the subgradient of
fr can be computed as

1o} 1
gL(M) = me =aol+ E Z Bijl(xij - Xil) ’ (10'7)
(i,,1)eR
where

5 {1 L if 14 tr(MX;) — tr(MXy) > 0;
ijl =

0 , otherwise.

To find the solution for problem (10.6), we employ the projected subgradient
descent method due to its simplicity and effectiveness (Weinberger and Saul, 2009).
Let M, be the solution at the ¢-th iteration, then My, can be computed as

M1 =M, —v9(My) ,

where v denotes the step size. To guarantee that M, ; is PSD, we project it
onto the cone of PSD matrices using eigendecomposition. First, we perform the
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eigendecomposition of Mt+1 as
t+1 t+1t+1 VY 41 -

Then, the projection of My, onto the cone of PSD matrices can be computed
as

M, = Vipimax(Ayyq, O)VL .

A brief overview of our algorithm is given in Algorithm 10. We refer to the proposed
algorithm as LODML.

Algorithm 10 Linear distance metric learning for ordinal classification
Input: {(x;,y;)|i=1,...,n} k, v;
Output: M; = 0;

1: Set Mg + I and t + O;
2: Construct a set of local triplet constraints R;
3: while not converged do
4 Compute the subgradient gz, (IM;) using (10.7);
5: Set Mt+1 — Mt — ")/gL(Mt),
6
7
8

Project M1 onto the PSD cone;
Set t « t+ 1;
: end while

10.3.2. Nonlinear distance metric learning

A simple Mahalanobis distance metric might not always be appropriate for a
supervised learning problem (Schoélkopf and Smola, 2001), especially in solving
complex problems. In this subsection, we extend LODML into a kernelized version,
which can overcome this limitation. Similarly as in (McFee et al., 2011), the
kernelized algorithm can be performed as follows.

Let ¢ denote a function, possibly nonlinear, that maps each example from
the input space X C RP into a feature space F with a high, possibly infinite,
dimensionality. Instead of learning directly a distance metric in the input space, we
are interested in learning a distance metric in the feature space mapped by ¢.

Since M 3= 0, we can factorize the matrix M into M = AT A. According to
the representer theorem (Schélkopf et al., 2001), the optimal linear transformation
A corresponding to the optimal Mahalanobis matrix M, lies within the span of all
training examples mapped by the function ¢,

A=AD",
where & = (¢(x1),...,6(x,)) and A is the coefficient matrix. Thus, the Maha-
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lanobis distance between two examples x; and x; in the feature space F can be
computed as follows

daa(6(xi), 6(x;)) = (d(x:) — (XJ ) "M(¢(xi) — (x;))

G TA8T(6(x:) - 6(x,))
[@T - qs(xj))fffi[qﬂw(xn — 6(x,))]
= (K; — K, )Tﬁ(Kl - K,)

= dﬁ (Ki7 Kj) )

~T ~

where K; = ®T¢(x;) and M = A A. In a similar way, we can rewrite the
regularization function in (10.6) as

(M) = tr(®A AST)

—tr(A A®T®)

= tr(MK),
where K = &' ® = (K, ...,K,) is the kernel matrix. Let R be the set containing
triplet constraints in the feature space using the Euclidean distance metric by

setting A to be the identity matrix I, our distance metric learning problem (10.6)
can be reformulated as

minimize  fg (ﬁ) = atr(ﬁK) + % Z Eijl

M. (i,4,1)ER
subject to dQM(Ki,KZ) - dIQ\A/I(Ki’ K;)>1-&ji, (10.8)
&1 >0 for (4,5,1) € R,
M:=0.

Note that problem (10.8) has a very similar form as problem (10.6) in the sense
that if we slightly change the regularization function and substitute each training
example in (10.6) by a column vector of the kernel matrix, then we obtain prob-
lem (10.8). Most interestingly, the kernel matrix K can be evaluated using the
kernel trick (Scholkopf and Smola, 2001), which consists in replacing the inner
product by an arbitrary kernel function. Thereby, we can avoid explicitly expressing
the mapping ¢, which is usually unknown and difficult to estimate due to the high
dimensionality.

Similar to LODML, we perform the projected subgradient descent method to
solve problem (10.8). First, we remove the slack variables and rewrite the objective
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function in (10.8) as follows

fK(ﬁ) = atr MK

x>:—|

Z 1+d% (K, K;) - d%ﬁ(Kz—,Kz)L
Z

= atr MK

x>:—|

1+ tr(MX,;) — (ﬁf{il)} R

AS\HAS\H

where )A(ij = (K;—K;)(K; —K;)". Hence, the subgradient of fx can be computed
as

g (M) = /\fK = oK + — Z Bin (X — Xa), (10.9)
(1 7, l)ER
where
B\ {1 s if 1 + tr(ﬁf(u) — tr(ﬁf(ﬂ) > Oa
ijl =

0 , otherwise.

Algorithm 11 Nonlinear distance metric learning for ordinal classification
Input: {(x;,4;)|i=1,...,n}, k, v, K;
Output: ﬁt = 0;

1: Setﬁ0<—1andt:0;
2: Construct a set of local triplet constraints ﬁ;
3: while not converged do
4 Compute the subgradient gx (Mt) using (10.9);
5: Set Mt+1 ~M, - 'ng(Mt)
6
7
8

Project Mt+1 onto the PSD cone;
Set t + t+1;
: end while

Let ﬁt be the solution at the t-th iteration, then the solution ﬁt_H can be
computed as

M1 =M, —y9r (M) .

Subsequently, we need to project ﬁtH onto the cone of PSD matrices. First, we
perform the eigendecomposition of M, as

— ~ ~ ~T
Mt+1 = Vt+1At+1Vt+1 .

Then, the projection of matrix M1 onto the PSD cone can be computed as

~

-~ -~ ~T
Mt+1 = Vt+1 maX(At+1, 0>Vt+1 .
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Algorithm 11 gives a brief description of our algorithm. We refer to the proposed
algorithm as KODML.

10.3.3. Computational complexity

We now analyze the computational complexity of LODML presented in Algo-
rithm 10. The search for target neighbors can be performed in O(kn? + Dn?) using
linear nearest neighbor search. Similarly, we can find the neighborhood for each
training example in O(vn? + Dn?) where v denotes the size of neighborhood. The
time complexity of computing the subgradient gy as in (10.7) is O(mD?). The
projection of M onto the cone of PSD matrices scales as O(D?). The overall time
complexity of LODML per iteration is O(D? + mD?).

Note that the computation of subgradient g; requires to perform the outer
products X;;, which scale quadratically with the dimensionality O(mD?). When
the number of triplet constraints is large, the computation of gr, using brute-force
methods might be limited due to the high computational cost. Let A; denote the
set of active constraints, containing all triplet constraints (7, j,{) that satisfy the
following inequality

d%/[t (xi,x5)+1> dﬁ/[t (xi,%1) -

Following Weinberger and Saul (2009), we observe that only the differences between
two sets of active constraints are required to compute g;, which enables us to reduce
the computational burden of g;, as follows

1
gL(Mt+1) = gL(Mt) - %Ut y
where

U, = Z (Xij — Xir) — Z (Xi; — Xip) -

(i,5,) €A\ As g1 (4,5,1) €A 41\ Ar

That is, the update of gr,(M;41) is computed by adding contributions of triplet
constraints that become active and subtracting the contributions of triplets that
are no longer active.

The computational complexity of KODML presented in Algorithm 11 can be
analyzed as follows. We first compute the kernel matrix K in O(Dn?). The target
neighbors and neighborhood of each training example are performed in the feature
space using the Euclidean distance metric

d(b(xi). 6(x;)) = 1/ (9(x:) — 6(3,)) T (B(xi) — 9(x;))
= \/K” — 2K1] + ij s
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which scales as O(1). Thus, the time complexity of searching target neighbors
and neighborhoods is O(kn? + vn?). The regularization function tr(ﬁK) in (10.8)
can be computed in O(n?). The computation of subgradient g in (10.9) scales
as O(mn?). The projection of M onto the cone of PSD matrices scales as O(n?).
Summarizing, the time complexity of KODML per iteration is O(mn?+n?). Let A,
denote the set of active constraints at the ¢-th iteration. Similar to the computation
of g1, to further reduce the time complexity of computing gk, we can perform

. - 1
gx (Miy1) = g (My) — —Us,

where

U, = > (X — Xir) — > (Xij — Xa).-

(6,4,0) €A\ Ar 11 (i,5,1) €A1\ Ay

The update of gx can be computed using only the differences between two sets of
active constraints.

10.4. Performance evaluation

In this section, we briefly discuss some performance measures for assessing the
performance of ordinal classifiers, along with their shortcomings. As the main goal of
classification is to produce a hypothesis h: X — ), very often, the misclassification
rate or Mean Zero-One Error (MZE) is considered (Chu and Keerthi, 2005; Chu
and Ghahramani, 2005). Let n; denote the number of test examples, then the MZE
is computed as

MZE = nitz' ly; # h(x;)],
j=1

where [.] is the indicator function that takes value one if its argument is true,
and zero otherwise. This measure, however, treats every misclassification equally,
which is not robust to evaluate the performance of ordinal classifiers (Gutiérrez and
Garcia, 2016). For instance, in the system of predicting student grades, labeling a
good student as bad is not the same as labeling it as average. To overcome this
limitation of MZE, we can use alternative measures that also take into account the
magnitude of the prediction errors. One of the most commonly used measures is
the Mean Absolute Error (MAE) (Baccianella et al., 2009). Assuming that class
labels are represented by numbers, the MAE is computed as

1 &
MAE = - >y = h(x))|-
j=1
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To be more specific, MAE is defined as the average deviation of the predicted class
labels from the true ones. Since the true distances between class labels are usually
unknown, the performance given by MAE is strongly influenced by the numerical
representation of the class labels.

To avoid this kind of influence, one solution is to consider only the ordinal
relationships between the predicted and the true class labels (Gutiérrez and Garcia,
2016). Along this line, the C-index or the concordance index (Goénen and Heller,
2005) is reported as one of the most popular measures. Formally, the C-index is
defined as the ratio of the number of concordant pairs to the number of comparable
pairs, i.e.

1

) 1
C-index = wyj%jg[[h(xj‘l) < h(x,)] + 5[[h(xg‘1) = h(ij)]])

with ny and n; the numbers of test examples having class label k and [, respectively.
In the binary case, the C-index corresponds to the Wilcoxon—-Mann—Whitney
statistic or, equivalently, the area under the receiver operating characteristics
(ROC) curve (AUC) (Cortes and Mohri, 2004).

10.5. Experiments

In order to show the effectiveness of using triplet constraints in ordinal settings,
we compare the performance of the proposed methods, LODML and KODML,
with other state-of-the-art distance metric learning methods, including the baseline
Euclidean distance metric, ITML (Davis et al., 2007), LMNN (Weinberger and
Saul, 2009), DML-eig (Ying and Li, 2012), LDMLR and its kernelized version
KDMLR (Li et al., 2015). The latter two methods have been especially designed
for ordinal classification tasks. All methods are implemented in Matlab'. The
source codes of LODML and KODML are available online at http://users.ugent.
be/~bacnguye/0DMLv1.0.zip. All results are reported in the context of 3-NN
classification. To obtain the best results for all methods, the hyper-parameters are
tuned via cross-validation based on the MZE, MAE, or C-index, depending on the
measure considered. For LMNN, we set the maximum number of iterations to 1,000
and tune the trade-off parameter p considering as set of values {0.125,0.25,0.5}
as in (Weinberger and Saul, 2009). For ITML, we set the maximum number
of iterations to 100,000 and tune the slack parameter 7 considering as set of
values {1073,...,103}. Following Li et al. (2015), we set p = 0.5 and 3 = 0.1
for LDMLR and KDMLR, and tune the hyper-parameter o considering as set of

The source codes are available from the corresponding authors’ websites (except LDMLR):
ITML: http://www.cs.utexas.edu/~pjain/itml/download/itml-1.2.tar.gz

LMNN: http://www.cse.wustl.edu/~kilian/code/

DML-eig: http://empslocal.ex.ac.uk/people/staff/yy267/software.html
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values {1073,...,10%}. For LODML and KODML, we use 15 nearest neighbors
to build the neighborhood and tune the hyper-parameter « considering as set of
values {1075,...,10%}. The maximum number of iterations for LDMLR, KDMLR,
LODML, and KODML is set to 1,000. The following RBF Gaussian kernel is
adopted for the kernelized methods, including KDMLR and KODML, K(x;,x;) =
exp(—||xi — x;]|?/o). We tune the kernel width o considering as set of values
{1073,...,10%}.

10.5.1. Benchmark data sets

For comparison purposes, we carry out experiments on fifteen real-world ordinal
classification data sets, which were also used in (Gutiérrez et al., 2016; Pérez-Ortiz
et al., 2016). All these benchmark data sets are extracted from public repositories,
including the UCI machine learning repository (Frank and Asuncion, 2010) and
the mldata.org repository (PASCAL, 2011). We should remark that ordinal data
sets are usually created by gathering information from human experts, therefore,
they are often of small to moderate size only (Agresti, 2010). Additionally, we use
some large data sets provided by Chu and Ghahramani (2005). These data sets
were generated from regression problems by discretizing target values into ordinal
classes using 10 equal-length bins. One major limitation is that they assume the
ordinal classes to be equidistant, which is not always the case in ordinal settings.
The characteristics of the data sets are summarized in Table 10.2. In each row,
we specify the number of features, classes, and examples. To avoid the influence
carried by the scale of features, all features are normalized (to have zero mean
and unit standard deviation) over the training data. A 5-fold cross-validation
scheme is employed to estimate the performance of the competing methods. All
partitions are performed using stratified sampling in order to maintain the original
distribution of classes. The results will be obtained by averaging over five runs.
According to Cruz-Ramirez et al. (2014), using a single performance measure for
ordinal classification might lead to partial or inexact conclusions, therefore, we will
report the results using several measures, including the MZE, MAE, and C-index,
to compare the performances of the competing methods.

Tables 10.3 to 10.5 show the experimental results based on the selected measures
for the linear distance metric learning methods (i.e., Euclidean, ITML, LMNN,
DMTL-eig, LDMLR, and LODML). The average ranks of the competing methods
are listed in the penultimate row of these tables. For each data set, we rank the
methods based on their performance, i.e., rank 1 is assigned to the best method,
rank 2 is assigned to the second best, and so on. We define the average rank of
one method as the mean rank over the 23 data sets considered, providing a fair
comparison between the competing methods (Demsar, 2006). From the results, it
is clear that using distance metric learning methods, the performance of the k-NN
classifier is improved. Interestingly, LDMLR yields only competitive results when
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Table 10.2: Description of the benchmark data sets used in our experiments.

Id Data set Features Classes Examples

Real ordinal classification data sets

ER ERA 4 9 1,000
ES ESL 4 9 488
LE LEV 4 5 1,000
SW  SWD 10 4 1,000
AU  automobile 71 6 205
BA  balance-scale 4 3 625
BO bondrate 37 5 57
CA  car 21 4 1,728
EU  eucalyptus 91 5 736
NE newthyroid 5 3 215
PA  pasture 25 3 36
SD  squash-stored 51 3 52
SE  squash-unstored 51 3 52
TA  tae 54 3 151
WI  winequality-red 11 6 1,599
Discretized regression data sets

AB abalone 11 10 4,177
Bl  bankl 8 10 8,192
B2  bank2 32 10 8,192
CH calhousing 8 10 20,640
S1  censusl 8 10 22,784
S2  census2 16 10 22,784
Cl1  computerl 12 10 8,192
C2  computer2 21 10 8,192

compared to the state-of-the-art LMNN, which is successfully used for nominal
classification. This behavior may be due to the fact that LDMLR tries to preserve
the ordinal relationships globally for each training example, which is very difficult
to achieve. In general, LODML consistently outperforms ITML, LMNN, DML-eig,
and LDMLR.

10.5.2. Statistical analysis of the results

In order to detect whether there are significant differences in performance among
the results reported in Tables 10.3 to 10.5, we follow the recommendations made
by Demsar (2006). We first perform the Friedman test (Friedman, 1940) at a
confidence level of @ = 0.05 with the null hypothesis that all the competing methods
obtain the same results on average. For each performance measure (i.e., MZE,
MAE, and C-index), the p-value of the Friedman test with 5 degrees of freedom
is shown in the last row of Tables 10.3 to 10.5. Since the p-values are less than
the confidence level «, we reject the null hypothesis. This means that there exist
statistically significant differences between at least two methods.
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Table 10.3: MZE of the linear distance metric learning methods on the benchmark data
sets. Best results are highlighted in boldface.

Id Euclidean ITML LMNN DML-eig LDMLR LODML
ER 0.8280 0.8280 0.8280 0.8280 0.8280 0.8280
ES 0.3298 0.3156  0.3196 0.3995 0.3463 0.3135
LE 0.4900 0.4900 0.4890  0.4890 0.4900 0.4900
SW 0.5300 0.5280  0.5330 0.5270 0.5260 0.5290
AU 0.4195 0.3366 0.2829  0.3268 0.3707 0.3073
BA 0.1744 0.0848  0.1472 0.1056 0.1824 0.0496
BO 0.4697 0.5076  0.4530 0.4727 0.4439 0.4015
CA 0.2627 0.0324  0.0405 0.0909 0.2282 0.0284
EU 0.5299 0.4199  0.4620 0.4960 0.4483 0.4185
NE 0.0465 0.0279 0.0326 0.0372 0.0279  0.0279
PA 0.3607 0.3393 0.3357  0.3857 0.3514 0.3357
SD 0.3818 0.4000  0.4364 0.4473 0.4964 0.3655
SE 0.3455 0.3473  0.4218 0.4273 0.4255 0.2873
TA 0.5295 0.4574  0.4699 0.5228 0.4501 0.4163
WI 0.4497 0.4534  0.4390 0.4534 0.4497 0.4321
AB 0.7826 0.7763  0.7754 0.7766 0.7745 0.7735
B1 0.7062 0.5697  0.6078 0.5540 0.6062 0.5055
B2 0.8629 0.8252  0.8431 0.8003 0.8529 0.8002
CH 0.6598 0.6592  0.6573 0.7092 0.6293 0.6302
S1 0.7508 0.7569  0.7563 0.7688 0.7508 0.7519
S2 0.7398 0.7409 0.7373  0.7882 0.7380 0.7373
C1 0.5836 0.5833  0.5815 0.5734 0.5730 0.5690
C2 0.5584 0.5341 0.5481 0.5400 0.5584 0.5354
Rank 4.7174 3.4130  3.3478 4.2826 3.5435 1.6957
p-value 1.2678 x 1076

Subsequently, we perform the Wilcoxon signed-rank test (Wilcoxon, 1945) and
several post-hoc tests, including Bonferroni-Dunn (Dunn, 1961), Holm (Holm,
1979), Hochberg (Hochberg, 1988), Hommel (Hommel, 1988), to detect whether a
competing method performs equivalently or significantly different from the control
method (i.e., LODML, which obtained the lowest rank). Using the post-hoc tests,
the p-values are adjusted in order to compensate for multiple comparisons (Demsar,
2006). If the adjusted p-value for a particular null hypothesis is less than a
confidence level of @ = 0.05, then that hypothesis is rejected. Tables 10.6 to 10.8
show the unadjusted p-value (pUnadj) computed by the Wilcoxon signed-rank
test, the adjusted p-values computed by the Bonferroni-Dunn (pBonf), Holm
(pHolm), Hochberg (pHoch), and Hommel (pHomm) tests. The test results
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Table 10.4: MAE of the linear distance metric learning methods on the benchmark data
sets. Best results are highlighted in boldface.

Id Euclidean ITML LMNN DML-eig LDMLR LODML
ER 1.8360 1.8360 1.8360 1.8360 1.8360 1.8360
ES 0.3585 0.3381 0.3524 0.4240 0.3750 0.3381
LE 0.6220 0.6220 0.6210 0.6210 0.6220 0.6220

SW 0.6130 0.6110  0.6160 0.6120 0.6090 0.6160

AU 0.6585 0.4439 0.3951  0.5171 0.4780 0.3951
BA 0.2128 0.0928  0.1888 0.1328 0.2144 0.0640
BO 0.6091 0.5773  0.5394 0.5955 0.5700 0.4545
CA 0.3559 0.0353  0.0480 0.1042 0.0634 0.0336
EU 0.7772 0.4784 0.5571 0.6292 0.5530 0.5041

NE 0.0465 0.0279 0.0326 0.0372 0.0279  0.0279
PA 0.4179 0.3964 0.3357  0.4107 0.3500 0.3357
SD 0.4000 0.4182  0.4545 0.5055 0.5145 0.3836
SE 0.3636 0.3655  0.4600 0.4473 0.4636 0.3055
TA 0.7075 0.5957  0.6015 0.6617 0.5428 0.5215
WI 0.5297 0.5185  0.5185 0.5347 0.5297 0.5160
AB 1.8952 1.8559  1.9054 1.9241 1.9104 1.8793
B1 1.2919 0.7601  0.8709 0.7313 1.0919 0.5941
B2 2.8633 2.3713  2.6127 2.0912 2.0863 1.9965
CH 1.3044 1.1911  1.2873 1.6313 1.1900 1.1900
S1 1.8025 1.8343  1.8319 1.9548 1.8025 1.8085

S2 1.6074 1.6091 1.5943  2.0235 1.6070 1.5973

C1 0.9441 0.9349  0.9424 0.9366 0.9341 0.8953
C2 0.8370 0.8048  0.8163 0.8273 0.8370 0.7789
Rank 4.7174 2.9130  3.4348 4.5217 3.6087 1.8043
p-value 4.0196 x 10~ 7

confirm that our method significantly outperforms the other competing methods
based on all selected performance measures, except in one case, namely for the
C-index and ITML.

10.5.3. Influence of using ordering information

Additionally, we compare the performance of the nominal distance metric learning
method (i.e., LMNN) and that of our ordinal distance metric learning method (i.e.,
LODML) when the training size increases. Figure 10.2 illustrates the MZEs and
MAEs of LMNN and LODML with a varying number of training examples on the
balance-scale data set. All results are reported using the same test sets. When
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Table 10.5: C-index of the linear distance metric learning methods on the benchmark

data sets. Best results are highlighted in boldface.

Id Euclidean ITML LMNN DML-eig LDMLR LODML
ER 0.6356  0.6356 0.6356 0.6356 0.6356 0.6356
ES 0.9183 0.9199  0.9164  0.9066 0.9185  0.9224
LE 0.7416  0.7416 0.7413  0.7413  0.7416  0.7416
SW 0.7021 0.7022  0.7006  0.7007  0.7028  0.6978

AU 0.7591 0.8088  0.8533  0.8018 0.8306  0.8569
BA 0.8922 0.9521  0.8969  0.9191 0.8924  0.9689
BO 0.5446  0.7038 0.6401  0.5725 0.6445  0.6734

CA 0.6511 0.9790 0.9676  0.9379 0.7306  0.9840
EU 0.7706 0.8670  0.8447  0.8278 0.8426  0.8706
NE 0.9470 0.9623  0.9620  0.9606  0.9694  0.9567

PA 0.7729 0.7732  0.8512  0.8006 0.7889  0.8324

SD 0.7249 0.7166  0.6954  0.6710 0.7007  0.7344
SE 0.7050 0.6993  0.6026  0.6254 0.6189  0.7818
TA 0.6206 0.6628  0.6783  0.6265  0.6960  0.6907

WI 0.6891 0.7020 0.7026  0.6934 0.6891 0.6991

AB 0.7580  0.7620 0.7561  0.7538 0.7245  0.7572

Bl 0.8618 0.9204  0.9076  0.9183 0.8618  0.9373
B2 0.6135 0.6901  0.6561  0.7265 0.6135  0.7393
CH 0.8333 0.8423  0.8355  0.7864 0.8433  0.8492
S1 0.7633  0.7579  0.7589  0.7400  0.7633  0.7627

S2 0.7898 0.7878  0.7917  0.7237 0.7898  0.7911

C1 0.8842 0.8849  0.8840  0.8857 0.8852  0.8905
C2 0.8988 0.9015  0.9012  0.8991 0.8988  0.9061
Rank 4.5217 2.8261  3.6522  4.3913 3.6087  2.0000
p-value 1.4218 x 1075

Table 10.6: Unadjusted p-value and adjusted p-values according to the Wilcoxon test
and different post-hoc tests over 23 data sets based on MZE using LODML as the control

method.

Method

pUnadj

pBonf

pHolm

pHoch

pHomm Hypothesis

Euclidean 4.317E-8 2.158E-7 2.158E-7 2.158E-7 2.158E-7
DML-eig 2.741E-6 1.370E-5 1.096E-5 1.096E-5 1.096E-5

LDMLR
ITML
LMNN

8.096E-4
0.0018
0.0027

0.0040
0.0092
0.0137

0.0024
0.0037
0.0037

0.0024
0.0027
0.0027

0.0024
0.0027
0.0027

Rejected
Rejected
Rejected
Rejected
Rejected
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Table 10.7: Unadjusted p-value and adjusted p-values according to the Wilcoxon test
and different post-hoc tests over 23 data sets based on MAE using LODML as the control
method.

Method pUnadj pBonf pHolm  pHoch pHomm Hypothesis

Euclidean 1.289E-7 6.447E-7 6.447E-7 6.447E-7 6.447E-7 Rejected
DML-eig 8.406E-7 4.203E-6 3.362E-6 3.362E-6 3.362E-6 Rejected
LDMLR 0.0011 0.0054 0.0032 0.0032 0.0032 Rejected
LMNN 0.0031 0.0156 0.0062 0.0062 0.0062 Rejected
ITML 0.0445 0.2223 0.0445 0.0445 0.0445 Rejected

Table 10.8: Unadjusted p-value and adjusted p-values according to the Wilcoxon test
and different post-hoc tests over 23 data sets based on C-index using LODML as the
control method.

Method pUnadj pBonf pHolm  pHoch pHomm Hypothesis

Euclidean 4.853E-6 2.426E-5 2.426E-5 2.426E-5 2.426E-5 Rejected
DML-eig 1.460E-5 7.301E-5 5.840E-5 5.840E-5 5.840E-5 Rejected
LMNN 0.0027 0.0137 0.0082 0.0071 0.0055 Rejected
LDMLR 0.0035 0.0177 0.0082 0.0071 0.0071 Rejected
ITML 0.1343 0.6714 0.1343 0.1343 0.1343  Accepted

the training size is large, there is a significant difference between the performances
of LMNN and LODML. This is due to the fact that our method (LODML) takes
advantage of the ordering information, whereas LMNN simply ignores this mean-
ingful information. Beyond a training set of 200 examples, the difference becomes
more apparent. These results support the claim that ordinal classifiers taking the
ordering of the classes into account can result in more accurate predictions.
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Figure 10.2: MZE and MAE vs. number of training examples on the balance-scale data
set for LMNN and LODML.
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10.5.4. Nonlinear distance metric learning

We further compare the performance of our kernelized method KODML with that
of KDMLR on these benchmark data sets. Note that both kernelized methods
learn a Mahalanobis matrix that scales quadratically with the number of training
examples, making the experiments on large data sets computationally expensive.
Due to this reason, we restrict our experiments to small data sets (i.e., n < 1000).
From Table 10.9, we can observe that our kernelized method KODML outperforms
KDMLR in most cases. Interestingly, KODML consistently obtain better results
than KDMLR based on the C-index. Compared to the linear method LODML, the
nonlinear method KODML outperforms KDMLR for nine out of the thirteen data
sets considering the MZE.

Table 10.9: MZE, MAE, and C-index of the nonlinear distance metric learning methods
on the small benchmark data sets. Best results are highlighted in boldface.

MZE MAE C-index
KDMLR KODML KDMLR KODML KDMLR KODML

ER  0.8260 0.8250 1.8280 1.8100 0.6361 0.6376
ES 0.3646 0.3686 0.3912 0.3953 0.9139 0.9160
LE 0.4900 0.4810 0.6220 0.6050 0.7416 0.7508
SW  0.5270 0.5160 0.6120 0.5950 0.6991 0.7076
AU  0.4000 0.3512 0.5512 0.4732 0.8109 0.8345
BA  0.1280 0.0480 0.1664 0.0640 0.9139 0.9692
BO 0.3848 0.3985 0.4712 0.5030 0.6204 0.6251
EU  0.5501 0.4810 0.8511 0.6183 0.7506 0.8246
NE  0.0419 0.0233 0.0419 0.0233 0.9486 0.9762
PA  0.3107 0.2821 0.3393 0.2821 0.8295 0.8795
SD 0.4036 0.3573 0.4418 0.3855 0.6893 0.7624
SE 0.3073 0.2673 0.3073 0.2673 0.7383 0.7813
TA  0.4837 0.5301 0.6355 0.7019 0.6510 0.5892

Id

10.5.5. Convergence analysis

According to Boyd and Vandenberghe (2004), subgradient descent methods converge
to the optimal solution provided that the step size is small enough. In this section,
we empirically test the convergence of the proposed methods, LODML and KODML,
on the balance-scale data set. As shown in Fig. 10.3, the objective function value
always decreases in subsequent iterations and both methods converge after a certain
number of iterations. To further illustrate their classification performance, we
report the test results in terms of MZE and MAE versus the number of iterations
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for LODML and KODML in Fig. 10.4. Using the Euclidean distance metric, the
3-NN classifier obtains an MZE = 0.2087 and MAE = 0.2699. We can observe that
minimizing the objective functions in (10.6) and (10.8) results in improving the
classification performance. After 500 iterations, both LODML and KODML obtain
significantly better results than the baseline Euclidean distance metric.
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Figure 10.3: Objective function value vs. number of iterations on the balance-scale data
set for LODML and KODML.
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Figure 10.4: Test results (MZE and MAE) vs. number of iterations on the balance-scale
data set for LODML and KODML.

10.5.6. Influence of neighborhood size

Since our approach uses only the information from the local neighborhood of each
training example, it is interesting to analyze the influence of the neighborhood size
on the performance. For this purpose, we perform an experiment on the ESL data
set with a varying number of nearest neighbors used to build the neighborhood of
each training example. Figure 10.5 shows the performance of LODML in terms
of MAE versus the neighborhood size. From the left panel in this figure, we can
observe that an increasing number of neighbors implies an increasing performance,
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which becomes relatively stable once the number of neighbors is sufficiently large
(but still relatively small). The latter implies that adding more constraints increases
the training cost without such benefit. This means the number of neighbors can
be kept low, which is important, since the number of triplet constraints could
otherwise become very large, leading to a high computational complexity, which
is intractable for large-scale problems. From the right panel in Fig. 10.5, we can
observe that, when the neighborhood size is relatively small, LODML is much faster
than the conventional method LMNN while keeping a similar performance.
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Figure 10.5: MAE and training time vs. the neighborhood size on the ESL data set for
LODML compared to LMNN.

10.6. Conclusion

We have proposed a novel distance metric learning approach (LODML) for ordinal
classification problems. We argued that the ordinal relationships can be preserved
by satisfying triplet constraints derived from the local neighborhood of each training
example. Compared to previous approaches, our approach does not make any
assumption about the absolute distances between the class labels, making it more
robust and suitable for ordinal classification tasks. To validate this claim, we have
carried out extensive experiments on a set of publicly available benchmark data sets.
The experimental results have been analyzed using several standard performance
measures, allowing to capture different aspects of the prediction capability of
ordinal classifiers. Moreover, we have proposed a kernelized version of LODML
to tackle the nonlinearities usually encountered in many complex problems. It is
important to point out that our strategy to preserve the ordinal relationships can
be also incorporated in other existing distance metric learning approaches. More
importantly, our framework can be used to guide further development of distance
metric learning in ordinal settings.
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11 Kernel-based distance metric learning
for supervised k-means clustering

Finding an appropriate distance metric that accurately reflects the (dis)similarity
between examples is a key to the success of k-means clustering. While it is not
always an easy task to specify a good distance metric, we can try to learn one
based on prior knowledge from some available clustered data sets, an approach
that is referred to as supervised clustering. In this chapter, a kernel-based distance
metric learning method is developed to improve the practical use of k-means
clustering. Given the corresponding optimization problem, we derive a meaningful
Lagrange dual formulation and introduce an efficient algorithm in order to reduce
the training complexity. Our formulation is simple to implement, allowing a large-
scale distance metric learning problem to be solved in a computationally tractable
way. Experimental results show that the proposed method yields more robust and
better performances on synthetic as well as real-world data sets compared to other
state-of-the-art distance metric learning methods.

The material of this chapter is based on the following publication:
Nguyen, B. and De Baets, B. (2018b). Kernel-based distance metric learning
for supervised k-means clustering. IEEE Transactions on Neural Networks and
Learning Systems, accepted

11.1. Introduction

Clustering is an important task in pattern recognition for data analysis. Among
various clustering techniques, k-means clustering (Lloyd, 1982) is one of the most
popular and most efficient techniques for general clustering tasks. The goal
is to partition a set of examples into disjoint clusters based on some notion
of (dis)similarity, such that related examples belong to the same cluster, while
unrelated examples belong to different clusters (Huang et al., 2014). Despite its
apparent simplicity, it is not always clear how to select “related” examples since
there are many possible ways of defining the similarity of examples for a given task,
e.g. by using different similarity measures or distance metrics. It is well known that
the Euclidean distance metric may not be a good choice for a given task because
it simply ignores the correlations between features, which usually contain useful
discriminative information (Nguyen et al., 2016; Shen et al., 2014; Weinberger and
Saul, 2009; Nguyen and De Baets, 2018a). Depending on the application domain,
one wishes to learn a distance metric that satisfies some specific requirements.
Typical applications include classification (Faraki et al., 2018; Weinberger and Saul,
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2009; Goldberger et al., 2005; Nguyen et al., 2018a), regression (Nguyen et al.,
2016), clustering (Jia et al., 2016; Wu et al., 2012; Bilenko et al., 2004; Yin et al.,
2010), ranking (Lim and Lanckriet, 2014), and kernel learning (Jain et al., 2012).
Due to its flexibility in parameterization, we focus on learning a Mahalanobis
distance metric for k-means clustering in a supervised setting.

Formally, supervised clustering is the problem of training a clustering algorithm
with some supervision information, so that it can produce a desirable clustering
for unseen data (Finley and Joachims, 2005; Daumé and Marcu, 2005). Unlike
traditional clustering problems, which are usually referred to as unsupervised
clustering, here we have sets of examples and complete clusterings over these sets.
By adjusting the distance metric to obtain appropriate clusterings on supervised
data, one hopes the distance-based algorithm to cluster unseen data in a similar
fashion. Supervised clustering is closely related to semi-supervised clustering. In
semi-supervised clustering, the supervision information is typically incomplete
and is often provided in the form of pairwise constraints (Xing et al., 2002), e.g.
“examples x; and x; belong to the same cluster” (must-link constraints) or “examples
x; and x; belong to different clusters” (cannot-link constraints). Other kinds of
supervision like triplet constraints, e.g. “example x; is more similar to example
x; than to example x;,” have also been considered in the literature (Schultz and
Joachims, 2004; Kumar and Kummamuru, 2008). However, most of the existing
semi-supervised methods simply attempt to satisfy the constraints derived from
a small amount of labeled data for a single problem. Therefore, it is usually not
reasonable to transfer the knowledge learned from a set of training labels to another
set of testing labels (Finley and Joachims, 2005). On the other hand, supervised
clustering can be seen as a special case of multi-class classification in the sense that
both approaches try to classify related examples into the same class and unrelated
examples into different classes (Finley and Joachims, 2005, 2008). Nevertheless,
supervised clustering can also be used for problems containing new labels that
have not been seen during the training, which seems impossible with multi-class
classification.

Over the last few years, there has been a growing interest in learning a distance
metric in order to improve the clustering performance (Finley and Joachims, 2005;
Xing et al., 2002; Lajugie et al., 2014; Law et al., 2016). A common assumption
is that the available training examples share the same distance metric as that
of test examples, which is then used by a distance-based clustering algorithm.
For instance, Lajugie et al. (2014) adopted the large-margin structured prediction
framework (Tsochantaridis et al., 2005) in a supervised way (LMMLCP) to optimize
the objective of clustering through the use of a Mahalanobis distance metric (or,
equivalently, a linear transformation). This framework was then applied in different
domains such as video segmentation, image segmentation, and detection of change
points in DNA sequences. Unfortunately, in many real-world problems, data
are often nonlinearly separable, which can be challenging for LMMLCP. Despite
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its simplicity and generalization abilities, LMMLCP may fail when dealing with
high-dimensional data sets since the number of parameters increases quadratically
with the dimensionality. A solution to address this problem is based on kernel
embedding methods. An additional benefit of using kernel methods lies in the fact
that they have been successfully employed for several types of structured data (even
without having a vectorial representation) (Schélkopf and Smola, 2001). Although
there exist several kernel-based distance metric learning methods (Jain et al., 2012;
Davis et al., 2007; Jain et al., 2010; Wang et al., 2015), they do not necessarily
improve the separability of the data for clustering (Yin et al., 2010; Baghshah and
Shouraki, 2010a).

To overcome the above shortcomings, we consider the same goal as in (Finley
and Joachims, 2005; Lajugie et al., 2014) to learn a Mahalanobis distance metric
in the feature space induced by a nonlinear kernel function, making it more flexible
and effective. In particular, given a set of related data sets with known partitions,
we aim to learn a distance metric that will lead to these partitions when k-means
clustering is performed. The main contributions of this work are summarized
below:

(i) A nonlinear distance metric learning method for k-means clustering is pre-
sented. Although our work is related to that of Lajugie et al. (2014), a novel
formulation is introduced such that partitions induced by k-means clustering
can be optimized more appropriately in the feature space. More specifically,
learning the Mahalanobis distance metric is considered as a structured learning
problem.

(ii) Unlike existing kernel-based methods, we enforce the low-rank constraint
on the solution by adding the trace norm to improve the generalization
ability. As a consequence, the resulting distance metric implicitly performs
feature selection (Recht et al., 2010). We refer to the proposed method as
Kernel-based Distance Metric Learning for Supervised k-means Clustering
(KDMLSC).

(iii) To accelerate the structured support vector machine (SVM) solver, a simple
and scalable algorithm is developed to solve the training problem efficiently.
Our algorithm is based on the Lagrange dual formulation and converges to
an optimal solution. In particular, we employ the block-coordinate descent
technique, which iteratively solves each subproblem in an efficient manner.

(iv) Experimental results on synthetic and real-world data sets show that the
proposed method is more effective than the one introduced in (Lajugie et al.,
2014) and other state-of-the-art distance metric learning methods for clustering
tasks.

The remainder of this chapter is organized as follows. We first motivate our
method by giving a brief discussion of related works in Section 11.2. Then, we
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review the spectral relaxation for k-means clustering in Section 11.3. Our kernel-
based distance metric learning method is described in Section 11.4. Results of an
extensive experimental evaluation and comparison are presented in Section 11.5,
followed by some concluding remarks in Section 11.6.

11.2. Related work

The performance of many clustering methods heavily depends on the choice of
the distance metric (Xing et al., 2002; Lajugie et al., 2014), but this choice is
generally not treated as a part of the training process. Without any supervision,
such distance-based clustering methods may not guarantee to achieve a good
partition of unlabeled data. In order to alleviate this problem, several approaches
have incorporated prior knowledge into either the distance metric for k-means
clustering (Xing et al., 2002; Bar-Hillel et al., 2005; Yin et al., 2010) or the
similarity matrix for spectral clustering (Wagstaff et al., 2001; Bach and Jordan,
2003). A common goal is to minimize the distances between related examples and
to maximize the distances between unrelated examples. Below, we will discuss
some relevant methods that are closely related to ours.

Most of the existing methods fall into the semi-supervised category, where some
partial constraints about the clustering are given. In an early work, Xing et al.
(2002) formulated the distance metric learning problem as a convex optimization
problem subject to a set of pairwise constraints. Despite its popularity, this method
obtains a relatively poor performance compared to more recent methods and
the resulting formulation is slow to optimize. Bar-Hillel et al. (2005) used must-
link constraints only to learn a whitening transformation of the within-chunklet
covariance matrix. Their method has the advantage of being simple to implement,
but it does not make use of cannot-link constraints, which carry much more
discriminative information. Also based on pairwise constraints, Yin et al. (2010)
introduced a nonlinear semi-supervised clustering method that makes examples in
the must-link constraints belong to the same cluster while those in the cannot-link
constraints belong to different clusters. Similarly, Kulis et al. (2009a) extended
a probabilistic framework for semi-supervised clustering (Basu et al., 2004) to
handle graph-based clustering using a kernel approach. As an alternative, Bilenko
et al. (2004) combined k-means clustering and distance metric learning in a unified
framework. A fundamental limitation of these semi-supervised methods is that
they cannot fully explore additional prior knowledge contained in the partitions
when several training sets are available.

In order to overcome the above shortcomings, various supervised clustering
methods have been proposed (Finley and Joachims, 2005, 2008; Lajugie et al.,
2014; Law et al., 2016; Bach and Jordan, 2003). Unlike semi-supervised clustering,
these methods consider all the possible must-link as well as cannot-link constraints
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and take into account the global clustering structure of the training data sets. For
instance, Bach and Jordan (2003) provided a general framework for learning a
similarity matrix for spectral clustering. Given a partition, the objective is to
minimize the error between the target partition and the solution derived from
the spectral relaxation. Due to the nonconvexity of the objective function, this
method may suffer from poor local minima. Based on the structured SVM frame-
work (Tsochantaridis et al., 2005), Finley and Joachims (2005) learned a similarity
function to improve the performance of correlation clustering. Analogously, La-
jugie et al. (2014) proposed a large-margin distance metric learning method for
constrained partitioning problems. However, they provide no kernel extension and
neither solve the training problem efficiently. In an extension of the latter, Law
et al. (2016) derived a closed-form solution when there exists only a single data set
for training. As mentioned earlier, these methods rely on a linear transformation,
limiting their applicability for complex or nonlinearly separable data. To overcome
this limitation, some kernel-based methods have been introduced (Finley and
Joachims, 2008; Baghshah and Shouraki, 2010a; Chatpatanasiri et al., 2010; Yeung
and Chang, 2007). For instance, Finley and Joachims (2008) formulated k-means
clustering in the feature space by learning a weighting function, but it cannot yield
a sufficiently flexible model. In contrast, our method intrinsically provides both
desirable properties: (1) learning a distance metric in a nonlinear feature space
and (2) optimizing the desired clusterings in a unified framework. Moreover, we
try to enforce the low-rank solution in the feature space, making it less sensitive to
overfitting.

11.3. Spectral relaxation of k-means clustering

In this section, we recall the spectral relaxation for k-means clustering, which
was previously presented in (Zha et al., 2002; Ng et al., 2002). Given a set of
examples X = [x1,...,%,] € RP*" the goal of k-means clustering is to find
an assignment of these examples into &k disjoint sets, which leads to a minimal
sum of squared distances between the examples and their corresponding cluster
center. Let Z = [z1,...,2z;] € RP** be k center vectors and Y € {0,1}¥*" denote
the assignment matrix where Y, ; = 1 if example x; belongs to the c-th cluster,
otherwise Y. ; = 0. Following Peng and Wei (2007), the objective of k-means
clustering can be formulated as

minjmize Y7, Yo Yo ki — zel[3
subject to Y € {0,1}**" rank(Y) =k,Y 1=1, (11.1)
Z € RPxk,
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This problem is a mixed integer program with a nonlinear objective function,
which is NP-hard (Aloise et al., 2009). This is due to the fact that the constraints
are discrete and the objective function is nonconvex and nonlinear, making the
problem very challenging. To deal with these difficulties, the k-means clustering
algorithm minimizes the objective function in (11.1) using the block-coordinate
descent technique. Despite its popularity, the k-means clustering algorithm can be
easily prone to local minima. More importantly, it is very sensitive to noise as well
as initialization. Although one can find an optimal solution to problem (11.1) by
employing the notion of Voronoi partition (Inaba et al., 1994), the computational
complexity scales as O(n*P*+1), which is not practical for medium- and large-sized
problems.

Adopting matrix notation, the objective function in (11.1) can be rewritten
as | X — ZY|%. Given Y, according to Yu and Schuurmans (2011), the optimal
value of Z for problem (11.1) is Z = XY" = XY " (YY ")~!. Thus, problem (11.1)

l)eC()IlleS
ini i € X - XC
minimiz H || F (11.2)

where Cp = {Y'(YY")"'Y | Y € {0,1}**" rank(Y) = k,Y'1 = 1}. Tt is
important to remark that each matrix C € Cy, (rescaled equivalence matriz) has
a special structure. That is, Cy; = 1/n. if x; and x; belong to the c-th cluster,
otherwise C;; = 0. It is easy to see that C = 0; C? = C, i.e. C has eigenvalues
in {0,1}; and tr(C) = k, i.e. the number of eigenvalues being equal to one is
the number of clusters. To make problem (11.2) more tractable, we relax the
constraints in Cj to

Cr={C|tx(C)=k C*=C,C=C"}.

Note that the positive semidefiniteness constraint on C is automatically satisfied.
By simplifying the independent terms, we rewrite problem (11.2) as

maximize (C,X'X), (11.3)
CeCr

since || X —XC||2 = tr(X "X(I-C)(I-C)T) = tr(X "X(I-C)). As proved by Zha
et al. (2002), problem (11.3) has a closed-form solution, which is the orthogonal
projector onto the k leading eigenvectors of X "X. Once the relaxed solution is

obtained, a possible way to estimate Y is to run the k-means clustering algorithm
over the k leading eigenvectors of X' X as suggested in (Ng et al., 2002).
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11.4. Proposed method

In this section, we formulate the problem of learning a Mahalanobis distance
metric for k-means clustering in the structured SVM framework (Tsochantaridis
et al., 2005). Our method operates in the feature space induced by a nonlinear
kernel function. Subsequently, we present the optimization algorithm to solve the
subproblems derived from each iteration of the structured SVM solver. Finally, a
heuristic simplification is introduced in order to make our algorithm scalable when
increasing the number of training examples.

11.4.1. Problem formulation

Let X denote an input space containing all possible sets of examples and let )
denote an output space containing all possible partitions of those sets. The set
of training sets is denoted by D = {(X;,Y;)}"; C X x ), which consists of m
sets of training examples X; = [X; 1,...,X;n,] € RP*" and their corresponding
clustering Y; = [y, 1,...,¥in,] € {0,1}¥™. Following the structured output
prediction scheme, the goal is to learn a clustering function h: X — ) such that,
given a set of examples Q € X, its corresponding clustering is computed as

h(Q) = argmax  Fm(Q,0),
ocy

where Fp: X X Y — R denotes a linear function parameterized by M, which
characterizes the relationship between Q and a clustering output O. Here, we
adopt the k-means objective function in (11.3) to define Fig, which should give the
highest value for the correct clustering output. In other words, given a training set
D; = (X;,Y;), we aim at learning a Mahalanobis matrix M 3= 0 that satisfies

VC e G, \ {Ci}: (M, X,C;X]) > (M, X;CX] ), (11.4)

where C; = Y, (Y, Y )~1Y; is the rescaled equivalence matrix (Lajugie et al.,
2014). By appropriately adjusting M, we can force the correct clustering Y; (or,
equivalently, the matrix C;) of X; to have the highest score under the parameterized
k-means objective in (11.3). However, if the data are nonlinearly separable, the
resulting matrix M may not be powerful enough to employ the desired clusterings.
As a result, we are interested in learning a distance metric in a nonlinear feature
space to alleviate this problem.

Formally, let X = [Xi,...,X,,] € RP*" with n = >7" n; be the input
matrix containing all training examples and ® = [®q,...,®,,], where ®; =
[0(Xi1),- -+, P(Xin,;)], be the transformed matrix containing all training examples
in the feature space F induced by a nonlinear function ¢: R” — F. The goal is to
learn M in the feature space F. Following the Representer Theorem (Scholkopf
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et al., 2001), the optimal linear transformation induced by M lies within the span
of all training examples. Accordingly, the optimal matrix M has the following
form

M=®Wo '

where W € R"*"™ and W = 0. The latter condition is to guarantee that M is PSD.
By doing so, learning M amounts to learning W. Alternatively, the problem can be
viewed as learning a parameterized kernel function Kw (u,v) = ¢(u) " We(v) given
some input kernel function K(u,v) = ¢(u) " ¢(v) (for a more detailed discussion
see Jain et al., 2012). Consequently, we rewrite the constraints in (11.4) as

VC e C, \ {Ci}: (W,K,CK])> (W, K,CK]),

where K=& ' & =[®'®,,...,®' &,,] = [Ki,...,K,,] denotes the kernel matrix.
The kernel trick allows us to implicitly compute the dot products in F without
mapping the input examples into F. Following the large-margin framework of
structured SVM (Tsochantaridis et al., 2005), we formulate our nonlinear distance
metric learning problem for supervised clustering as

min\i{fnize r(W)+~v>", B
subject to VC € CAki \{Ci}:

(W,K;(C; — O)K,) > ¢(C,C;) — 5;, (11.5)
B; >0, for i=1,...,m;
W =0,

where ¢: CA;c X CAk — RT is a loss function that penalizes the violation of clustering;
r: St — RT is a regularization function; 8; > 0 are slack variables; and v > 0 is a
hyperparameter.

Regularization function: In order to reduce the risk of overfitting, the
regularization function in (11.5) is defined as

1
r(W) = SIWI[E + Ate(W),

where A > 0 is a hyperparameter. This is also known as Elastic-Net regulariza-
tion (Li et al., 2012b). The main reasons for selecting such regularization are
the following. First, the Frobenius norm can lead to fast, simple and scalable
optimization. Second, minimizing the trace norm can yield a sparse solution in
eigenspectrum (Recht et al., 2010). The trace norm has been extensively studied
in (Jain et al., 2010) for learning a kernel matrix. Since both the Frobenius and
trace norm are convex functions, problem (11.5) results in a convex semidefinite
program. Combining these two norms can be considered as a trade-off between
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sparsity and efficiency, leading to stability of an optimization framework.

Loss function: Let P and Q denote two rescaled equivalence matrices in (?ki7
then the following loss function is considered

(P, Q) = [P - Qff = tx(P) + t2(Q) — 2tr(PQ). (11.6)

As explained in (Lajugie et al., 2014), unlike the loss function associated with
the Rand index (Finley and Joachims, 2005), the Frobenius norm loss function
takes into account the size of the clusters, avoiding the domination of the problem
by the largest clusters. This loss function has already been used to measure the
dissimilarity between two partitions (Bach and Jordan, 2003).

Since the cardinality of ) is exponential in the number of training examples, the
structured SVM optimization is used to solve problem (11.5). More specifically, our
algorithm is an adaptation of the 1-slack margin-rescaling cutting-plane algorithm
proposed by Joachims et al. (2009). A pseudocode is given in Algorithm 12.

Algorithm 12 Cutting plane algorithm for 1-slack formulation
Input: Training set {(X;, YY)}, A, €
Output: A matrix W =0

1: Compute K; and C; using X; and Y}

2: S0
3: repeat
(W,€) « argmin  |[W[|% + A tr(W) +~¢&
Wi=0,620
subject to Y(Cq,...,Cp) €S:
(11.7)
<W Y Ki(C — C)K, >
Z m z 1 C“CZ
4: for i=1,...,m do
5: Ci <—argmax 0(C;,C) + (C — C;, K] WK,)
CECk
6: end for N R
7: S+ SU{(Cy,...,Cp)}
8:
g 1= . 1 i PO
: — i Ci) — — ; (G —CG)K; ) <
9 untllmZE(C C) m<w Y Ki(C C)KZ> E+e

i=1 i=1

Essentially, the proposed algorithm iteratively constructs a working set of
constraints S. In each iteration, it finds the most violated constraint and if the
violation is larger than a desired precision € > 0, then the constraint is added
to the working set. Subsequently, it optimizes the problem based on the current
working set of constraints. The algorithm terminates when no constraint is added
to S. In other words, the solution found by our algorithm is correct up to a certain
approximation that depends on e. In most machine learning applications, tolerating
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the optimal solution by a small value can be acceptable. The theoretical analysis
for the correctness, convergence rate, and scaling behavior of the structured SVM
algorithm can be found in (Joachims et al., 2009). This algorithm is efficient
whenever the most violated constraint (which is called the separation oracle) can
be found efficiently from the working set of constraints.

Finding the separation oracle can be expressed as

maximize ((C;,C) + (C — C;, K, WK;),
CeCy,

which is equivalent to

maximize <6, I+ K/ WK, —2C,).
CeCy,
Similarly to problem (11.3), the solution to this problem is the orthogonal projector
onto the k; leading eigenvectors of I + KLT WK, — 2C;.

11.4.2. A dual approach to distance metric learning

Algorithm 12 requires the solution of a semidefinite program at each iteration.
In this subsection, we will show how to solve problem (11.7) efficiently. For

simplicity in notation, let ¢ denote the number of constraints and let the i-th
combination of rescaled equivalence matrices in S be (EY), e ,67(7?). We will
denote S; = - >, KJ»(Cj—é;-z))K;r and l; = - >0 K(Cj,éy)) fori=1,...,t

Using these notations, problem (11.7) can be rewritten as
min\i{]nize LIW(1% + A tr(W) + 7€
subject to (W,S;) > 1, — ¢, fori=1,...,¢t;

§>0;
W =0.

(11.8)

Note that this formulation contains only one slack variable £. In order to solve the
above problem, we introduce the Lagrange multipliers V > 0, a > 0, and p; > 0
fori=1,...,t, and obtain its Lagrangian as

LIW,&,V, pu, )
i 1 dual
prima ua.

1
= SIWI + A tx(W) + 5

im[(VV,SQZiJrg} —af—(V,W).
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Setting the derivatives of £ w.r.t. the primal variables (i.e. W and &) equal to zero
yields the following equations

oL
W(W7£7V7N?a> - 07
resulting in
t
W=V +> S -, (11.9)
i=1
and
oL
—(W,¢,Z =
ag ( 76’ alJ’v a) O’

resulting in

t
S =y -a. (11.10)
i=1

which implies

S <o 111y
From (11.9), it follows that

(VW) = W[5 =) ui(W,S;) + Ar(W). (11.12)

i=1

Substituting Eqgs. (11.9)—(11.12) back into the Lagrangian, we get the following
dual problem

2
C e t
minimize - Zi=1 Milz'

Vo F (11.13)
subject to Zﬁzl,ui§W7u¢20,fori:17...,t; '

Vi=0.

LIV + 300 S — AT

Note that the strong duality holds since the primal problem in (11.8) is a convex
program and satisfies Slater’s condition (Boyd and Vandenberghe, 2004). This
implies that we can solve the primal problem by solving the dual. Although
problem (11.13) still has a positive semidefiniteness constraint, we can address
it efficiently using the block-coordinate descent algorithm (Tseng, 2001). More
specifically, we first fix V and solve the dual problem in p; for ¢ = 1,...,¢t. Then,
we fix pu and solve the dual problem in V. By updating V and p alternatingly, we
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can find the optimal solution of the dual problem. Next, we will explain in detail
how to perform these updates.

The optimization procedure starts from an initial point (V(O), 1) and gen-
erates a sequence of solutions {(V®), u®))}e = By fixing V| problem (11.13)
becomes the following convex quadratic program:

minimize  f() = 5 iy Xjoy pirtg (86, S) + Xiy pici

t (11.14)
subject to > . p <y, pu; >0, fori=1,...,t

with a; = (V(k) —ALS;) — I;, for i = 1,...,t. Now, we need to update each
component of u*) by minimizing (11.14) over each of py, ..., s, while fixing the
remaining components at their last updated values. We start by introducing some
notations in order to simplify the description. Let

i k1 k41 k k
H(k7):[ﬂg+)7"'wuz('—1)nuz(' )7"'7/J’§ )]7

thus, updating g to u*#+1) can be carried out by solving the following one-
variable subproblem

minimize F(p®D 4 de®)

(11.15)
subject to — ( J<d<y- Z k“) Zg:z 'u;'k)

with e(® = [0,...,0,1,0,...,0] " a vector with all entries equal to 0, except for the
i-th entry being equal to 1. It is important to note that the objective function
of (11.15) is a quadratic function in d, i.e.

) ) 1 )
F(u*D 4 de®) = [2<Si7 SZ)] d? + V, f(u*V)d + constant ,

where V; f is the i-th component of the gradient of f, which is given by

Vif(u) —az+ZUj Szas =a; + < zaz,ug > (11.16)

Jj=1

It is easy to see that problem (11.15) has as optimal solution d = 0 (i.e. no need to
update ,u(k)) if and only if the projected gradient (Lin and Moré, 1999) of f at the

(3

i-component V¥ f(u*9) equals 0, which is defined as

min(V; f(p),0) ,if p; =0;
Vi ()= max(V;f(p),0) ,if v =30, py
Vif(p) L0 < py <y — Z;:l,j;ﬁi Mg -

When V7 f(u®9) #£ 0, we need to find the optimal solution d of problem (11.15).
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If (S;,S;) > 0, then the optimal solution is given by

P kz)
. w Vi flp (k+1) (k)
d—mlnénax (—,ui ! ) ),’y Jz:,uj ZM ) (11.17)
If (S;,S;) = 0, then it follows that S; = 0. From (11.16), if S, = 0, then
Vif(uF") = —1; < 0. Since d is bounded in an interval, the optimal solution is
given by

d=n— Zu(kﬂ) Z”(k)

By setting 1/0 = +o00, we can also include this case into (11.17). From (11.16), the
computation of V; f(u) scales as O(tn?), which is very expensive when ¢ is large.
To reduce this computational burden, we define

t
T = Z,uij s
j=1

hence, V,;f(p) = a; + (S;, T), which scales as O(n?). After updating p( )| we can
efficiently keep track of T by

Note that this computation takes only O(n?). Consequently, the complexity of
computing V; f(u) is reduced to O(n?) instead of O(tn?).
After having computed p*+1) problem (11.13) can be simplified as

2
LS, a1

minimize
v

F
subject to V =0

This is known as the nearest PSD matrix approximation problem under the
Frobenius norm (Higham, 1988). Consequently, it has a closed-form solution

t
v+ — pt <>\I -> u§k+1)Si> =PT(AI-T),

=1

where P+ denotes the projection onto the cone of PSD matrices. From Eq. (11.9),
we can easily compute W, which is also guaranteed to be PSD.

Summarizing, the computational complexity of this algorithm to perform the
update from (V® | p®) to (VEFD | 1 (E+1)) scales as O(tn? 4+ n3). A pseudocode
is given in Algorithm 13. In our implementation, we initialize the values of V and p
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to be zero. Indeed, V could be initialized by any PSD matrix. It is straightforward
to see that g = 0 implies that T = 0. Therefore, we can avoid the expensive cost
of initializing T, which scales as O(tn?).

Algorithm 13 A block-coordinate descent algorithm for distance metric learning
Input: {(S;,l;)}_1, A\, v
Output: W =0

1: Initialize the values of V<0, p < 0, T+ 0

2: while V and p are not optimal do

3: fori«+ 1,...,tdo > solving for

4: GF<V—/\I,SZ'>—ZZ'+<S¢,T>

min(G,0) ,if u; =0;

5: P+ { max(G,0) ,ify= Z;Zl s
G , otherwise .
6 if P 0 then
7: d + min(max (— 14, —TI)DSH),’Y _22:1 ,u])
8 Hi < i +d
9: T+ T+dS;
10: end if
11: end for
122 V«PFAI-T) > solving for V

13: end while
14: W« V+T-A

11.4.3. Learning a Mahalanobis distance metric for large-
scale problems

The above formulation learns a full matrix W of size n x n, which poses a huge
challenge in terms of computational as well as space complexity. When the number
of examples is high, it quickly becomes intractable. In order to deal with this
issue, one can simplify the distance metric learning problem by considering W
as a diagonal matrix (Nguyen et al., 2016; Schultz and Joachims, 2004; Lajugie
et al., 2014). The space complexity is then reduced to O(n). Another advantage is
computational simplicity as the positive semidefiniteness constraint is no longer
required. Instead, all the elements of W are required to be nonnegative. Without
too much additional effort, we can slightly modify the above algorithm to solve this
problem. It turns out that the projection onto the PSD cone amounts to enforcing
negative diagonal elements of W to be zero. The computational complexity of
updating all coordinates scales as O(tn). As a consequence of its simplicity, the
resulting distance metric of this approach is very restrictive because it neglects the
possible correlations between features.

In this subsection, we employ a simple heuristic method to reduce the dimen-
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sionality for the kernel implementation. Let the singular value decomposition of the
kernel matrix K be K = USH . Kulis (2012) showed that if W* is an optimal
solution of (11.8), then it admits the following form

W =UW'U',
where W' 3= 0. Since U is orthogonal, we can rewrite problem (11.8) in terms of
W' as

minimize LIW/[|Z + A tr(W') 4+ ¢
subject to (W', UTS;U) >1; —¢, fori=1,...,t;

£>0;
W =0.

(11.18)

This result leads to a simple method to learn W. That is, we first apply a
transformation to the input UTS;U and then run Algorithm 13 to find W’. A
more detailed discussion of this result can be found in (Jain et al., 2012; Kulis,
2012; Chatpatanasiri et al., 2010). Instead of projecting using all eigenvectors
and eigenvalues of the kernel matrix K to estimate U, here we only use the P
leading eigenvectors and eigenvalues. As a consequence, W’ has a size of P x P.
In other words, the number of parameters to optimize changes from O(n?) to
O(P?), making our algorithm more tractable when n is large (up to ten thousand
of training examples) and P < n.

11.5. Experiments

In this section, we present experimental results on both synthetic and real-world data
sets, showing the effectiveness of our method against other supervised clustering
methods as well as state-of-the-art distance metric learning methods. All the
results here are reported in the context of k-means clustering. To account for the
sensitivity of k-means clustering, we measure the performance over ten different
initial cluster centroid positions and report the result with the lowest squared sum.
Next, we describe the experimental settings and give a more detailed overview of
our experiments on each data set.

11.5.1. Experimental settings

The following distance metric learning methods are considered:

(1) Euclidean: The baseline Euclidean distance metric, which corresponds to the
case when the Mahalanobis matrix is the identity matrix.
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(2) MMC! (Xing et al., 2002): This method aims to minimize the sum of squared
distances between examples in must-link constraints while keeping the distances
between those in cannot-link constraints at least one unit. A simple projected
gradient descent was proposed to solve the corresponding optimization problem.
Unfortunately, MMC is still limited to small-sized and low-dimensional problems
due to the expensive projection onto the cone of PSD matrices.

(3) ITML? (Davis et al., 2007): This method introduces the use of the LogDet
divergence regularization, providing a cheap way to preserve the positive
semidefiniteness constraint. For ITML, the slack parameter « is tuned consid-
ering as set of values {1073,...,10%}.

(4) LMINN? (Weinberger and Saul, 2009): The main aim of this method is to
improve the performance of k-nearest-neighbor classification by minimizing
distances of one example to its target neighbors and maximizing distances to
its impostor neighbors. For LMNN, the hyperparameter p is tuned considering
as set of values {0.125,0.25,0.5}. In our experiment, we set the number of
target neighbors to 3.

(5) LMMLCP* (Lajugie et al., 2014): This supervised clustering method is
the most closely related to our work. To get the best results, we tune the
hyperparameter C' considering as set of values {1072,...,10%}.

(6) MLCA® (Law et al., 2016): This method provides a closed-form solution
for the supervised clustering problem. Although the method is efficient, it is
limited to the case where there is only a single set of training data.

(7) KDMLSC: In our experiments, we set the parameter P (see Subsection 11.4.3)
to be the number of features D. As a result, KDMLSC will learn D x D
parameters as other linear methods, making a fair comparison. The RBF
kernel is adopted, K(u,v) = exp(—|ju — v||?/o). For KDMLSC, we tune the
hyperparamters \ considering as set of values {1072, ...,10°}, v as set of values
{102,...,10%}, and o as set of values {1073,...,10°}. Following Joachims
et al. (2009), we set e = 0.1 as a stopping criterion.

In our experiment, we consider all possible pairwise combinations of the training
examples for those distance metric learning methods that are based on pairwise
constraints (i.e. MMC and ITML). For hyperparameter optimization, a grid search
is performed for all possible combinations of values. The same validation strategy
is used for all the competing methods. For each set of training data containing m
sets of training examples, a validation data set containing m subsets is created. In
particular, we randomly subsample 10% from each subset of training data to form

http://www.cs.cmu.edu/~epxing/papers/
http://www.cs.utexas.edu/users/pjain/itml/
https://www.cs.cornell.edu/~kilian/code/code.html
http://www.di.ens.fr/~lajugie/
https://github.com/MarcTLaw/MLCA
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the validation set. The best validation score corresponds to the lowest Frobenius
loss (Eq. (11.6)) on average. Note that other criteria can also be used to select the
best parameters.

As noted by Daumé and Marcu (2005), using a single measure to validate the
clustering performance might lead to partial or inexact conclusions. In order to make
a fair comparison, results for several clustering measures are reported, including
(1) Purity (PUR) (Zhou et al., 2013), which computes the average accuracy of
the dominating class correctly assigned in each cluster, (2) Normalized Mutual
Information (NMI) (Vinh et al., 2009), which computes the dependence between
the predicted and ground-truth clusterings under the independence assumption,
and (3) Rand Index (RI) (Rand, 1971), which computes the agreement of the
predicted with ground-truth clusterings. For ease of notation, let C= {C~1, . ,é%}
be a clustering result and C = {C,...,C;} be the original partition of a set X
containing N examples. The purity is computed as

PUR(C, Z max Ny
—17=1

with N;; the number of common examples of (Z and Ej, which is defined as
N;j = \C~l O@L where 1 <1 < k and 1 < j < k. If the number of clusters is large,
it is easy to achieve a high purity value. In particular, when each example gets
its own cluster, purity becomes 1. Therefore, purity is not a suitable measure to
trade off the quality of the clustering against the number of clusters. To make this
trade-off, we can instead use NMI. Let J\NZZ be the number of examples in (Z and
Nj be the number of examples in fj, then NMI is computed as

k % Ni; N
Zi:l Z_j:l Nijlog N;N,
PRy N, k37 N .
\/(Zizl N;log NW) (ijl Njlog W)

NMI(C,C) =

Let A denote the number of pairs of examples belonging to the same cluster in C
and C, and let B denote the number of pairs of examples belonging to different
clusters in C and C, then RI is computed as

. 2(A+B)
GO N

All measures lie in the range of [0, 1], with 1 representing a perfect clustering. Note
that there may exist some inconsistency between different measures due to their
discrepancy (Vinh et al., 2010). Additionally, we report the Frobenius loss (FRO)
in Eq. (11.6), which is minimized by LMMLCP, MLCA, and our method.
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11.5.2. Experiments on a synthetic data set

We conduct an experiment to show the clustering performance of our method on a
synthetic data set containing nonlinearly separable clusters. More specifically, the
training data consist of two data sets (Figs. 11.1(a) and 11.1(b)), each of which
contains 300 examples. Examples in one cluster are generated from a bivariate
normal distribution with the same covariance but different mean. All examples of
the same class are denoted by the same color and style. The clusters in the test set
are generated with the same properties as those of the training set. This data set
is challenging for linear distance metric learning methods because clusters of the
same class are not linearly separable.

Figure 11.1 shows the clustering results of k-means clustering with £k = 2 on
the test set using the Euclidean distance metric (Fig. 11.1(c)) and our method
(Fig. 11.1(d)), where examples of the same color and style are predicted as the
same cluster. One can observe that KDMLSC clearly obtains a better clustering
performance than the Euclidean baseline. Our resulting distance metric allows to
obtain a clustering close to the desired one for the test data. We do not report
the results of other linear methods (i.e., MCC, ITML, LMNN, LMMLCP, and
MLCA) as they are similar to those of the Euclidean baseline on this synthetic
data set.

11.5.3. Experiments on handwritten digits data

The USPS digits data set® is adopted to create a supervised clustering problem. It
contains 9,298 handwritten digit images of size 16 x 16 pixels. We use the raw pixel
representation, i.e., each image is represented by a 256-dimensional feature vector.
All examples are normalized to have zero mean and unit variance. Experiments here
are performed with a subset of classes (digits 0, 1, 2, 3, 5, 6, and 8). USPS is often
used in multiclass classification tasks. To turn it into a supervised clustering task,
we use images of digits 2, 5, 6, 8 for training and those of 0, 1, 3 for testing. This
data set has also been used as a benchmark for supervised clustering in (Daumé
and Marcu, 2005).

By seeing only images of a few digits in the training set, a supervised clustering
method should be able to predict the structure of digits in the test set, even though
they have not been seen during training. The results on training as well as test
sets are reported in Table 11.1.

We observe that KDMLSC consistently obtains a better performance than other
competing methods, only with a slight drop in terms of NMI on the test set. The
accuracy (or purity) of the Euclidean baseline on the test set is only 0.87364, while
our method achieves 0.94960. The magnitude of the difference shows a substantial

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/

238


https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/

§11.5. Experiments

(¢) Euclidean (d) KDMLSC

Figure 11.1: An illustration of clustering of a nonlinearly separable data set: (a)-(b)
training data sets, (c) k-means clustering using the Euclidean distance metric and (d)
k-means clustering using the distance metric learned by our method on the test set.

gain. Surprisingly, both LMMLCP and MLCA obtain relatively poor results, even
worse than the Fuclidean baseline. This can be explained by the fact that the
optimization techniques used are not very robust. LMNN obtains similar results as
ITML on the test set, but the latter performs significantly better on the training
set.
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Table 11.1: Performances of the competing methods on the USPS data set based on different measures. The best results are highlighted in

boldface.

Measure FEuclidean = MMC ITML LMNN LMMLCP MLCA KDMLSC
RI 0.85629  0.85629 0.96661  0.93437 0.70501 0.71036  0.98157
Train PUR 0.83434  0.83434 0.96590 0.93341 0.56679 0.55556  0.98115
NMI 0.57997  0.57997 0.87108  0.78167 0.22627  0.31582  0.92550
FRO 233078  2.33078 0.53777  0.99219 4.62389 4.37081  0.30393
RI 0.86738  0.86738 0.90914  0.91300 0.66596 0.79689  0.93534
Test PUR 0.87364  0.87364 0.93035 0.92440 0.59643 0.76864  0.94960
NMI 0.75873  0.75873 0.74048 0.80296 0.31676 0.63783  0.80097
FRO 1.11806  1.11806 0.79366  0.80269 2.94509 1.76364 0.61711

1T 4ELAVH))
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11.5.4. Experiments on WebKB data

We perform an evaluation on the WebKB data set (Craven et al., 1998), which
contains 1,091 web pages retrieved from the computer science departments of the
following universities: Cornell, Texas, Washington, and Wisconsin. All web pages
are organized according to one of the following topics: faculty page, student page,
staff page, department page, research project page, course page, and other. This
task has previously been used as a benchmark by Finley and Joachims (2008).
Following the setup in (Finley and Joachims, 2008), each web page is represented
as a tf-idf vector of dimension 41,131. Due to the high dimensionality, PCA is
employed to reduce the dimensionality to 100.

We conduct four leave-one-out experiments in order to evaluate the clustering
performance. In each experiment, web pages from one university are considered as
a test set and the rest are used for training. The results of all methods are reported
in Table 11.2.

Our method yields a good clustering performance and generalization ability.
Even though the number of training examples is low, KDMLSC consistently
outperforms the Euclidean baseline on all measures, which seems to be inconsistent
with MMC, LMMLCP, and MLCA. KDMLSC obtains the lowest values in terms
of FRO, except for the case of Cornell University. This is important as the
objective of our algorithm is to minimize the Frobenius norm loss during the
training phase. Without any metric learning, the clustering performance is only
0.6241 in terms of RI on the case of Wisconsin University, while our method using
distance metric learning reaches a rate of 0.7136, thus improving significantly the
performance.

241



Table 11.2: Performances of the competing methods on the WebKB data set based on different measures. The best results are highlighted in

boldface.

Method RI PUR

Cornell  Texas  Washington Wisconsin Cornell ~ Texas  Washington Wisconsin
Euclidean  0.6978  0.5930 0.6355 0.6241 0.6976  0.5938 0.6917 0.6667
MMC 0.6677  0.6432 0.6297 0.6430 0.6613  0.7148 0.6767 0.7072
ITML 0.7047  0.6619 0.6785 0.6794 0.6976  0.6875 0.6429 0.7259
LMNN 0.7031  0.6683 0.7336 0.6892 0.7016  0.7266 0.7293 0.6947
LMMLCP  0.6684  0.5873 0.6655 0.6518 0.6129  0.6250 0.6541 0.5981
MLCA 0.6431  0.6131 0.6230 0.6866 0.6129  0.6211 0.5790 0.6355
KDMLSC 0.7116 0.7037 0.6885 0.7136 0.7137 0.7500 0.6993 0.7383
Method NMI FRO

Cornell Texas  Washington Wisconsin Cornell Texas  Washington Wisconsin
Euclidean  0.3039  0.1826 0.3000 0.2857 78777 9.2414 8.5047 8.4936
MMC 0.2861  0.3271 0.2655 0.3611 8.2601  7.9442 8.6367 7.9592
ITML 0.4195 0.3025 0.2659 0.3521 7.3427  8.4864 8.7012 7.9462
LMNN 0.3169  0.3255 0.3802 0.3257 7.5877  8.1313 8.0761 8.3339
LMMLCP 0.2285  0.1426 0.2210 0.1664 8.4845  9.1424 8.6441 8.9728
MLCA 0.1622  0.1572 0.1094 0.2428 9.0574  9.1053 9.3684 8.5222
KDMLSC  0.3247 0.3764 0.3170 0.3956 7.8335 7.8247 8.0556 7.5479

1T 4ELAVH))
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11.5.5. Experiments on text categorization
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Figure 11.2: Performances of the competing methods versus the number of clusters on
the 20news data set based on different clustering measures (a)-(d).

The third benchmark is the 20 newsgroups data set (20news), which consists of
different UseNet discussion groups collected by Lang (1995) representing diverse
areas, including computing, politics, sports, sciences, and so on. This data set has
been widely used as a benchmark in machine learning (Weinberger and Saul, 2009;
Kumar and Kummamuru, 2008; Zha et al., 2002). We use the bydate version”,
which contains 18,774 documents of 20 groups, with approximately 1,000 documents
per group. The 20news data set is divided into two sets, 60% for training and 40%
for testing. As noted by Slonim and Tishby (2000), the true clusters are fuzzy
due to the fact that some documents are present in more than one group and
many of those groups describe similar topics. In our experiments, each document

7 http://qwone.com/~jason/20Newsgroups/

243


http://qwone.com/~jason/20Newsgroups/

CHAPTER 11. DISTANCE METRIC LEARNING FOR SUPERVISED k-MEANS CLUSTERING

is represented by a tf-idf vector using the 26,214 most common words in the
vocabulary. We then employ PCA to reduce the dimensionality to 100 in order
to alleviate the effect of noise and to make other linear methods computationally
tractable.

As the class labels of the test data are known, they can be used to analyze the
effect of varying the number of clusters. For this purpose, we show the performance
of KDMLSC and the competing methods when increasing the number of clusters in
Fig. 11.2. Each learning curve represents the performance of the k-means clustering
algorithm with different numbers of clusters. Using the code provided by the
authors, LMMLCP did not converge within seven days on this large data set,
therefore, we did not report its results.

From Fig. 11.2, it is clear that our method achieves a superior performance
on different clustering measures. It is important to note that ITML optimizes all
possible pairwise constraints derived from the training data, and as a consequence,
it obtains a good performance on the RI measure. However, it shows an inconsistent
result on the other clustering measures. This can be explained by the fact that ITML
treats all pairwise constraints as independent, which is a strong assumption and is
not so easily satisfied. Unlike methods based on pairwise constraints, KDMLSC can
take advantage of dependencies between pairwise constraints in order to optimize
the clustering measures. There is a significant difference in performance between
our method and other linear distance metric learning methods. This result confirms
the ability of KDMLSC to exploit the cluster structure.

11.5.6. Running time

All the competing methods are implemented in Matlab, running on the same PC.
The result of each method is computed with the best hyperparameters. Note that
KDMLSC can operate in a high-dimensional input space without reducing the
dimensionality, but to allow a fair comparison and faster experimentation, it is
trained with the same number of parameters like other methods, which scales
quadratically with the number of features. The training times of KDMLSC and the
competing methods (MMC, ITML, LMNN, LMMLCP, and MLCA) are reported
in Table 11.3.

From Table 11.3, MLCA is the fastest method because it provides a direct
analytical solution. However, MLCA cannot achieve a good performance compared
to other competing methods. KDMLSC is always the second fastest method and
the third fastest one is LMNN. These methods are relatively fast compared to MMC
and I'TML. This is because the computation time of the latter two methods heavily
depends on the number of pairwise constraints, which increases quadratically with
the size of the data set. As shown in the table, there is a significant difference in
running time between KDMLSC and LMMLCP although both methods are based
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Table 11.3: Training time of the competing methods on the data sets used in our
experiments (N/A: not available).

Data set MMC ITML LMNN LMMLCP MLCA KDMLSC

USPS 1hb5lm 1h54m 5milbs 14h24m 0.1s 2m8s
WebKB 30m23s 3m4s 7Tm35s 4m22s 0.1s 1.9s
20News 6h12m 6hblm 22m20s N/A 18s 4m13s

on the same framework. Clearly, our method is several orders of magnitude faster.
This result demonstrates the efficiency of our dual algorithm in order to learn the
distance metric in large-scale settings.

11.6. Conclusion

In this chapter, we have proposed a kernel-based distance metric learning method,
namely KDMLSC, for supervised k-means clustering. Our method offers three
main advantages over previous methods. First, it learns a distance metric that best
fits the nonlinear structure of the data by employing kernel learning. Second, it
implicitly reduces the risk of overfitting by incorporating a low-rank constraint on
the learned Mahalanobis matrix. Third, our dual algorithm is simple to implement
and more scalable to large data sets than most of the semidefinite programming
solvers. Although we have only applied this dual algorithm in the context of
supervised clustering, it can be used as a general solver for developing new distance
metric learning methods that involve semidefinite programming. Experiments
across different domains have shown that KDMLSC outperforms the state-of-the-
art distance metric learning methods on supervised clustering tasks.
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12 Conclusions and future work

A good distance metric mostly depends on the application domain and should
yield small distances between similar examples and large distances between dissim-
ilar examples. Recent advances in distance metric learning have demonstrated a
promising approach to compute more effective distance metrics for a given problem.
However, they either lack scalability, robustness, ability to handle different learning
settings and data types, or have no theoretical guarantee on convergence. The
methods proposed in this thesis are motivated by an attempt to overcome these
shortcomings. Below, we will summarize the main conclusions that can be drawn
from this thesis and highlight some pending issues that might be interesting for
future research.

12.1. Conclusions and open issues

In this thesis, we addressed some important limitations of existing distance metric
learning methods by introducing novel methods for different supervised settings.
The applicability of the proposed methods was demonstrated on many synthetic as
well as real-world data sets. These methods were implemented in Matlab and the
resulting toolboxes were made publicly available!, so that any non-expert user can
easily use or test the developed methods on their own data.

In Chapter 3, we introduced the DMLMJ method that aims at learning a
linear transformation through maximization of the Jeffrey divergence between
two multivariate Gaussian distributions derived from local pairwise constraints.
Learning the linear transformation was formulated as an unconstrained optimization
problem, which can be solved analytically. In addition, a kernelized version of
DMLMJ was derived to tackle nonlinear problems.

In Chapter 4, we proposed the use of kernels for the KISSME method, allowing
to capture the nonlinear structure in the data set. This method operates in the
kernel spaces, yielding a highly flexible distance metric. We also presented an
incremental update strategy for k-KISSME upon the arrival of a new pairwise
constraint, which could be computationally expensive. Despite the promising
results, there are still some aspects of k-KISSME and its incremental version that
require further efforts. For instance, the computational bottleneck of k-KISSME
becomes impractical on large-scale data sets. The latter is endemic to most kernel-
based methods and reducing the training set size may be useful in this case. While
our incremental update strategy for k-KISSME may be initially sufficient, it would

1 https://github.com/bacnguyencong
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be more interesting to be able to keep the Mahalanobis matrix within the cone of
PSD matrices and to perform an update upon arrival of multiple constraints at
the same time.

In Chapter 6, we employed the principle of margin maximization to learn the
distance metric with the goal of improving the performance of k-NN classification.
To make our method scalable on large-data sets, an efficient online algorithm
based on SGD, namely LMDML-A, was developed. Our algorithm keeps the
solution always within the PSD cone by computing an appropriate step size in each
iteration. We use the Schur complement to find an upper bound of the step size that
guarantees that the solution remains within the PSD cone. It would be interesting
to extend LMDML-A to make it applicable for very high-dimensional data sets,
which would be computationally attractive. One may improve the training speed
of LMDML-A by considering the possibility of implementing it in parallel and
averaging the resulting solutions.

In Chapter 7, we proposed the DML-dc method to minimize the misclassification
rate of the nearest-neighbor classifier. Due to the use of the ramp loss function,
our objective function for margin maximization has a strong ability to avoid the
influence of outliers. Since the objective function can be decomposed into a DC
program, we iteratively solved a sequence of convex subproblems using DCA. To
further reduce the computational cost of DCA, it would be interesting to explore
more advanced optimization techniques (e.g. stochastic gradient) to reduce the
computational complexity of solving the convex subproblems.

In Chapter 8, we proposed the CMML method that learned multiple local
distance metrics instead of a single global one in order to tackle heterogeneously
distributed data. First, data were divided into several clusters using k-means
clustering, then a single distance metric was estimated for each cluster based on
triplet constraints. Moreover, a global distance metric was introduced to capture
the common structure among all the clusters, which required that the distance
metric in each cluster should be as close as possible to the global one. To make
CMML scalable for large data sets, the block-coordinate descent algorithm was
adopted, which enabled us to solve the optimization problem efficiently. We used
k-means clustering to partition the input data due to its simplicity and efficiency,
but future studies employing other clustering algorithms could be interesting. One
may extend CMML by incorporating the clustering procedure into the training
process, which could optimally partition the input data.

In Chapter 9, we presented the LDMLR method for £-NN regression. Instead
of randomly selecting triplet constraints to satisfy an application-specific criterion,
we extracted the constraints from the local neighborhood of each training example,
which allowed us to preserve discriminative information from this neighborhood. In
order to solve this problem, a special solver based on coordinate gradient descent
method was developed.
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In Chapter 10, we developed the ODML method for ordinal classification by
incorporating local triplet constraints containing the ordering information into a
conventional large-margin distance metric learning method. Compared to previous
methods, our method did not make any assumption about the absolute distances
between the class labels, making it more robust and suitable for ordinal classification
tasks.

In Chapter 11, we introduced the KDMLSC method to improve the practical use
of k-means clustering. A common assumption of this method is that the available
training examples share the same distance metric as that of test examples, which
was then used by a distance-based clustering algorithm. In order to reduce the
training time, we derived a meaningful Lagrange dual formulation and introduced an
efficient algorithm based on block-coordinate descent. Our current implementation
using internal cross-validation to select an appropriate kernel function may limit
the expressiveness of the resulting KDMLSC method. While kernel-based methods
use a single kernel function, in practice it is often more effective to use multiple
kernel functions as they can naturally handle multiple data sources. It will be
interesting to explore the use of multiple predefined kernel functions to overcome
this limitation. Another extension would be to generalize our model to the case
where the number of clusters is unknown. In this situation, one may estimate the
number of clusters directly from the data by penalizing the objective function of
k-means (Lajugie et al., 2014).

12.2. Potential research directions

Several directions have been discussed in the preceding section to improve our meth-
ods as well as to establish a more general framework for distance metric learning.
In addition, we will explore some potential research directions as follows.

12.2.1. Distance metric learning for extreme classification

The complexity of a machine learning problem is often characterized in terms of
the number of examples and the number of features. Recent studies (Deng et al.,
2011; Gupta et al., 2014) have shown that increasing the number of labels (classes)
also poses a huge challenge. Such challenge appears in many applications, e.g.,
text classification, ranking, tagging locations, photo and video annotation, where
the goal is to learn a predictor that automatically tags a data point with the most
relevant labels from an extremely large label set (up to several millions). Problems
of this kind are referred to as extreme classification problems. They are mainly of
two kinds: single-label classification where each example is assigned only one label
and multi-label classification where each example can be associated with many
labels. The latter case usually contains a very few labels per example. Consider,
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for instance, a problem of tagging Wikipedia articles, where one might wish to
tag a document with a couple of relevant labels, which are chosen from a set of
more than a million possible tags. Extreme classification has also opened the door
to ranking and recommendation systems by reformulating them as multi-label
classification problems, where each item to be ranked /recommended is treated as a
separate label (Agrawal et al., 2013).

A naive one-versus-all approach is to independently learn a single model for
each label. Since the space and time complexities are linear in the number of labels,
this approach quickly becomes intractable both for training and prediction. An
important characteristic of extreme classification problems is that a large fraction
of labels have very few training examples assigned to them, referred to as long-tail
label distributions. Unlike conventional classification approaches, distance metric
learning becomes a very appealing technique in extreme classification because of its
ability to learn the general concept of distance metric (differently from label-specific
concepts) and its compatibility with an efficient nearest neighbor search on the
learned metric space.

12.2.2. Deep metric learning

With the remarkable success in learning useful semantic representations of data, so-
called deep metric learning aims at learning an embedding function through a deep
neural network (e.g., a convolutional neural network), which directly optimizes a
loss function related to the similarity of examples (Hu et al., 2014; Song et al., 2016,
2017; Sohn, 2016; Wang et al., 2017; Duan et al., 2017). Specifically, embeddings are
optimized to pull similar examples close to each other and push dissimilar examples
far apart from each other. For instance, Hu et al. (2014) proposed a two-layer
discriminative network, which learns a set of nonlinear transformations that make
the distances between examples of must-link pairs smaller than a threshold and the
distances between those of cannot-link pairs larger than a threshold. Sohn (2016)
introduced the multi-class N-pairs loss, which extends the triplet loss by allowing
the joint comparison between an example and multiple examples of different classes.
By learning from the general concept of similarity instead of category-specific
concepts, deep metric learning can naturally deal with problems involving millions
of labels, which could be impossible for conventional deep neural networks due to
the computational bottleneck (unless advanced techniques, such as hierarchical
softmax and negative sampling are employed).

A central issue for deep metric learning consists in collecting and creating
meaningful training constraints (e.g., pairwise, triplet, or quadruplet constraints).
In this thesis, we have shown that an efficient strategy of building constraints
is very critical to the success of the algorithms. This is also indicated in recent
literature (Ge, 2018). The usual solution to minimize the loss in an online fashion
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with stochastic gradient descent is to randomly sample constraints. Unfortunately,
the number of violated constraints decreases if there are more labels (Gupta et al.,
2014), leading to slow convergence and low performance. To make learning more
effective and efficient, only difficult (or hard) constraints should be considered.
However, selecting hard constraints could be a very expensive operation. Design-
ing a more effective sampling strategy to avoid this issue would be a promising
direction.

Several loss functions have been developed for deep metric learning, such as
contrastive loss, triplet loss, quadruplet loss, and N-pair loss. Compared to softmax
loss, these loss functions are more difficult to optimize. Existing loss functions often
employ only one negative example while not interacting with the other negative
labels. Therefore, a potential research direction is to develop new loss functions
with multiple negative examples. In particular, the loss function should take into
account the global structure of the embedding space.

12.2.3. Theoretical understanding

Similarly to conventional supervised learning, one may prove generalization bounds
by considering each pairwise or triplet constraint as an independent and identically
distributed (i.i.d.) sample. However, the i.i.d. assumption is violated in distance
metric learning because the constraints are built from the training set. That is
why obtaining generalization bounds in distance metric learning is very challenging.
Although several recent works have attempted to prove a generalization bound,
analyzing the link between the consistency of the learned distance metric and its
performance in a given algorithm (classifier, ranking, regression, etc) remains an
important open problem. So far, only a few results for linear classification have
been obtained using the notion of uniform stability (Jin et al., 2009), algorithmic
robustness (Bellet and Habrard, 2015), and Rademacher complexity (Guo and
Ying, 2014). As mentioned in Bellet et al. (2015), there is still no theoretical result
for k-NN classification using the learned distance metric.
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A Appendix

A.1. Jeffrey divergence

Let P; and P, be two D-dimensional multivariate Gaussian distributions with
means p; and py, covariance matrices 3; and X9, and corresponding probability
density functions p; and ps, respectively. The Kullback-Leibler divergence between
Py and Ps is defined as:

KL(Py, P5) = /m (pl(x)) p1(x) dx

p2(x)
Lo (22N _p szt >
=5 |08 m - —|—tr( 2 1)"‘(#2_#1) 2 (Mg — )

The proof of the latter expression can be found in (Davis and Dhillon, 2007).
We now consider the symmetric Kullback-Leibler divergence or Jeffrey divergence
between P; and Ps:

JF(Py, P5) = KL(Py, Py) + KL(P, Py)

1 3 _ _
=3 [log (IETD — D +tr (23'%0) + (po — ) S5t (g — N1)]
1 %] —1 T w1
+5 |log =) D+tr (B778) + (1 — #2) B (g — #12)

= %tr (BB + 3515 + %tr ((Nz — ) 25" (py - Nl))
+ %tr ((N1 - NQ)T 21_1 (1 — /"’2)) -D

= %tr (B2 +3'%) - D+ %tr (ET 42 (o — ) (o — ) 7)) -

If py = py = 0, then the Jeffrey divergence between P; and P, reduces to:

1
JF(P, Py) = 5tr(z:;1232 +3;'%) - D.
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A.2. Conditions to guarantee the convergence of
block-coordinate descent

Assume that the objective function to be optimized has the following form

n

FEM L xMy = fox®, x4 ka(x(k))

k=1

for some fo: RN +-+N"" 5 R U {oo} and some fi: R¥Y = RU {0}, k =
1,...,n. We refer to each x*), k = 1,...,n, as a coordinate block of x =
(z1,...,ZNm ). In order to guarantee the convergence of block-coordinate descent,
the following conditions are proposed by Tseng (2001):

(B1) fy is continuous on dom fjy.

(B2) Foreach k € {1,...,n} and xU), j # k, the function x®) — f(x() ... x(™)
is quasiconvex and hemivariate.

(B3) fo, f1,.-., fn are lower semicontinuous.
(C1) domfy is open and f; tends to oo at every boundary point of dom fy.
(C2) domfy = YM x ... x Y™ for some Y*) C RN

Proposition A.1 ((Tseng, 2001)). Suppose that f, fo, ..., fn satisfy assumptions
(B1)-(B3) and that fy satisfies either assumption (C1) or (C2). Using the essentially
cyclic rule, the block-coordinate descent method converges to an optimal point of f.

Jk=1,...,n.
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A.3. Data sets

Data sets from the Knowledge Extraction based on Evolutionary Learning (KEEL) machine learning repository!. These data sets
cover a range from 4 to 90 features with the number of examples varying from 106 to 20,000. A brief description of these data sets is
given in Table A.1.

Table A.1: A brief description of the KEEL data sets

1d Data sets Features Examples Classes Id Data sets Features Examples Classes
APP  appendicitis 7 106 2 PIM pima 8 768 2
BAN  balance 4 625 3 RIN ring 20 7400 2
BUP  banana 2 5300 2 SAT satimage 36 6435 7
BUP  bupa 6 345 2 SEG  segment 19 2310 7
ION ionosphere 33 351 2 SON  sonar 60 208 2
IRI iris 4 150 3 SPA spambase 57 4597 2
LED  led7digit 7 500 10 TEX  texture 40 5500 11
LET  letter 16 20000 26 TWO twonorm 20 7400 2
MAG magic 10 19020 2 VEH  wehicle 18 846 4
MON  monk-2 6 432 2 VOW  wowel 13 990 11
MOV  movement_libras 90 360 15 WDB  wdbc 30 569 2
OPT  optdigits 64 5620 10 WIN  wine 13 178 3
PAG  page-blocks 10 5472 5 WIS wisconsin 9 683 2
PHO  phoneme 5 5404 2

1 KEEL: http://sci2s.ugr.es/keel/datasets.php

s19s eleq ‘€'v§
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