
Department of Data Analysis and Mathematical Modelling

Faculty of Bioscience Engineering

Ghent University

Supervised Distance Metric Learning

for Pattern Recognition

M.Sc. Bac Nguyen Cong

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor (Ph.D.) of Applied Biological Sciences

Academic year 2018-2019

Supervisors: Prof. dr. Bernard De Baets

Department of Data Analysis

and Mathematical Modelling,

Ghent University,

Belgium

Prof. dr. Carlos Morell Pérez

Department of Computer Science,

Universidad Central “Marta Abreu” de Las Villas,

Cuba

Examination committee: Prof. dr. ir. Koen Dewettinck (Chairman)

Prof. dr. Stijn Luca

Prof. dr. Chris Cornelis

Prof. dr. Ann Nowé

Prof. dr. Francesc Josep Ferri Rabasa

Dr. ir. Michiel Stock

Dean: Prof. dr. ir. Marc Van Meirvenne

Rector: Prof. dr. ir. Rik Van de Walle

Bac Nguyen Cong

Supervised Distance Metric Learning

for Pattern Recognition

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor (Ph.D.) of Applied Biological Sciences

Academic year 2018-2019

Dutch translation of the title:

Gesuperviseerd Leren van Afstandsfuncties voor Patroonherkenning

Please refer to this work as follows:

B. Nguyen (2019). Supervised Distance Metric Learning for Pattern Recognition,

Ph.D. Thesis, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.

ISBN 9789463571968.

The author and the supervisors give the authorization to consult and to copy

parts of this work for personal use only. Every other use is subject to the copyright

laws. Permission to reproduce any material contained in this work should be

obtained from the author.

Acknowledgements

First of all, I would like to express my gratitude to Prof. Bernard De Baets and

Prof. Carlos Morell Pérez, my two promoters, for their guidance and supervision

throughout the present thesis. To Bernard, I really respect your tremendous ability

to think, write, and speak clearly. Thank you for many insightful comments and

continuous encouragement. Without any doubt, I have learned a lot from your

example. To Carlos, I am very grateful for introducing me to the world of machine

learning and data science. Thank you both for being always supportive to me

through my ups and downs over the last four years. It was a pleasure to work with

both of you. I would also like to thank all members of the doctoral committee for

their time and effort dedicated to read this thesis.

Thanks for financial support go to the Special Research Fund - Doctoral

Scholarships for Candidates from Developing Countries, Ghent University.

Many people contributed to this work in one way or the other. More than one

year was carried out at the Centro de Estudio de Informática, Universidad Central

de Las Villas. I sincerely thank all members of the group for providing a great

working environment. During my Ph.D., I also had an opportunity to enjoy a

research stay at the Pattern Recognition and Computer Vision group, Universitat

de València, hosted by Prof. Francesc J. Ferri. I would like to thank him and the

members of the lab for their hospitality and helpful discussions.

To all of my colleagues and friends, thank you so much for sharing your friendship

and good moments. To José, the Mexican “annoying” guy. I still can’t stand your

Mexican voice when you’re singing, but deeply appreciate your help at the beginning

of the doctorate. To Christina, thanks for listening to all of my complaints and

boring stories. To David, always surprised with a lot of “scientific discoveries”

(and also thanks for your massages). To Andreia and Niels, the organizers of

many international cool activities. To Aisling, the co-founder of Friday’s beer. To

Michael, cheerful and full of funny stories. To Lizet for your help and support

when I arrived in Belgium. To Petter for his kind help of Dutch translation of the

thesis summary. To Trang for the cover design. And to our colleagues within the

department, including Gang, Mengzi, Juan Pablo, Zengyuan, Alejandra, Gisele,

Shuyun, Wenwen, Dailé, Pamela, Tiago, Raúl, Guillermo, and many others, thanks

for the friendly atmosphere. I also want to thank the administrative and technical

staffs of the department, including Timpe, Ruth, and Jan.

To my second “family” in Belgium, Duc Anh, Trang, Hang, Phuong Anh, and

Chien. During my Ph.D., I also got to know many new friends, including Trinh,

Manh, Quan, Vu, Tri, Lan Anh, Nhi, Minh, and many others. I am grateful to

v

Acknowledgements

have shared so many great times with you. Thanks for all the Vietnamese foods

and funny jokes.

To Nghia, my love who always believes me. Thank you for coming into my

life.

Finally, my gratitude for my family. Thanks to my brother Hong. To my

parents who brought me into this world. I could not even be here without you.

Thanks for your sincere love and understanding.

Bac Nguyen Cong

April 2019

vi

Contents

Acknowledgements v

Summary xiii

Nederlandstalige samenvatting xv

List of acronyms xvii

I Introduction and preliminaries 1

1 Introduction 3

1.1 A general overview . 3

1.2 Research contributions and structure 4

1.2.1 Part II: Distance metric learning using pairwise constraints 4

1.2.2 Part III: Distance metric learning using triplet constraints . 7

1.2.3 Part IV: Distance metric learning for supervised clustering 9

1.3 Evaluation methodology . 10

1.4 Notational conventions . 11

2 Preliminaries 13

2.1 Supervised learning . 13

2.1.1 Problem statement . 14

2.1.2 Empirical risk minimization 14

2.1.3 Structural risk minimization 15

2.1.4 Regularized risk minimization 17

2.2 Distance metric learning . 17

2.2.1 Definitions . 17

2.2.2 Problem statement . 20

2.2.3 Distance-based learning algorithms 21

2.3 Why should we care about distance metric learning? 24

2.3.1 Information retrieval . 24

2.3.2 Computer vision . 24

2.3.3 Dimensionality reduction 25

2.3.4 Transfer learning and domain adaptation 25

2.3.5 Bioinformatics . 26

2.4 Optimization techniques for distance metric learning 26

2.4.1 Semidefinite programming 27

2.4.2 Gradient descent . 27

2.4.3 Projected gradient descent 28

vii

Contents

2.4.4 Stochastic gradient descent 30

2.4.5 Frank-Wolfe algorithms . 31

2.4.6 Bregman projection . 32

II Distance metric learning using pairwise constraints 35

3 Distance metric learning based on the Jeffrey divergence 37

3.1 Motivation . 37

3.2 Definitions . 40

3.3 Proposed method . 40

3.3.1 Problem formulation . 41

3.3.2 Nonlinear distance metric learning 44

3.3.3 Regularization . 47

3.3.4 Computational complexity 48

3.4 Related work . 48

3.5 Experiments . 50

3.5.1 Experimental settings . 50

3.5.2 Linear distance metric learning 51

3.5.3 Dimensionality reduction 53

3.5.4 Influence of the choice of the difference spaces 54

3.5.5 Nonlinear distance metric learning 55

3.6 Conclusion . 56

4 Kernel-based distance metric learning for person re-identification 59

4.1 Motivation . 59

4.2 Related work . 63

4.3 KISSME revisited . 64

4.4 Kernel distance metric learning . 65

4.4.1 Kernel KISSME . 66

4.4.2 Incremental settings . 68

4.5 Experiments . 74

4.5.1 Experimental settings . 74

4.5.2 Experiments with re-identification benchmark data sets . . 75

4.5.3 Running time . 81

4.5.4 Experiments with dimensionality 82

4.5.5 Experiments with incremental learning 82

4.6 Conclusion . 83

5 Case study: Learning single-cell distances from cytometry data 85

5.1 Motivation . 85

5.2 Synthetic microbial communities 86

5.2.1 Data description . 86

5.2.2 Experimental setup . 87

viii

Contents

5.2.3 Results . 88

5.3 Mass Cytometry . 89

5.3.1 Data description . 89

5.3.2 Experimental setup . 90

5.3.3 Results . 90

5.4 Discussion and conclusion . 92

III Distance metric learning using triplet constraints 95

6 Scalable metric learning using stochastic gradient descent 97

6.1 Motivation . 97

6.2 Related work . 99

6.3 Problem formulation . 101

6.4 Online distance metric learning . 104

6.4.1 Stochastic gradient descent for distance metric learning . . 104

6.4.2 Convergence analysis . 110

6.4.3 Computational complexity 111

6.5 Experiments . 112

6.5.1 Experiments on the KEEL data sets 113

6.5.2 Evaluation of the convergence 117

6.5.3 Experiments on large-scale data sets 117

6.6 Discussion and conclusion . 120

7 Distance metric learning based on DC programming 123

7.1 Motivation . 123

7.2 Preliminaries . 125

7.3 Related work . 126

7.4 Proposed method . 127

7.4.1 Problem formulation . 128

7.4.2 Algorithm . 130

7.4.3 Convergence and computational complexity 133

7.5 Theoretical analysis . 134

7.6 Experiments . 138

7.6.1 Experimental settings . 138

7.6.2 Benchmark data sets . 140

7.6.3 Experiments on image data sets 143

7.6.4 Sensitivity to noise . 145

7.6.5 Convergence rate . 147

7.7 Conclusion . 147

8 An efficient method for clustered multi-metric learning 149

8.1 Motivation . 149

8.2 Related work . 151

ix

Contents

8.3 Clustered multi-metric learning . 153

8.3.1 Problem formulation . 153

8.3.2 Optimization solver . 155

8.3.3 Convergence . 159

8.3.4 Computational complexity 161

8.3.5 Testing phase . 161

8.3.6 Strategy of selecting triplet constraints 162

8.4 Experiments . 162

8.4.1 Experimental settings . 163

8.4.2 A synthetic data set . 164

8.4.3 Benchmark KEEL data sets 165

8.4.4 Real data sets . 167

8.4.5 Convergence . 170

8.5 Conclusion . 171

9 Distance metric learning for k-nearest-neighbor regression 173

9.1 Motivation . 173

9.2 Distance metric learning for regression 175

9.2.1 Selection of triplet constraints 175

9.2.2 Problem formulation . 176

9.2.3 Learning a distance metric with coordinate descent 180

9.3 Related work . 185

9.4 Experiments . 186

9.4.1 Data description and configuration 186

9.4.2 Methodology . 187

9.4.3 Experimental results and discussion 188

9.5 Conclusion . 190

10 Distance metric learning for ordinal classification 193

10.1 Motivation . 193

10.2 Preliminaries . 196

10.2.1 Notations . 196

10.2.2 Problem definition . 196

10.2.3 Related work . 197

10.3 Distance metric learning in ordinal settings 199

10.3.1 Linear distance metric learning 199

10.3.2 Nonlinear distance metric learning 203

10.3.3 Computational complexity 206

10.4 Performance evaluation . 207

10.5 Experiments . 208

10.5.1 Benchmark data sets . 209

10.5.2 Statistical analysis of the results 210

10.5.3 Influence of using ordering information 212

x

Contents

10.5.4 Nonlinear distance metric learning 215

10.5.5 Convergence analysis . 215

10.5.6 Influence of neighborhood size 216

10.6 Conclusion . 217

IV Distance metric learning for clustering 219

11 Distance metric learning for supervised k-means clustering 221

11.1 Introduction . 221

11.2 Related work . 224

11.3 Spectral relaxation of k-means clustering 225

11.4 Proposed method . 227

11.4.1 Problem formulation . 227

11.4.2 A dual approach to distance metric learning 230

11.4.3 Learning a Mahalanobis distance metric for large-scale problems234

11.5 Experiments . 235

11.5.1 Experimental settings . 235

11.5.2 Experiments on a synthetic data set 238

11.5.3 Experiments on handwritten digits data 238

11.5.4 Experiments on WebKB data 241

11.5.5 Experiments on text categorization 243

11.5.6 Running time . 244

11.6 Conclusion . 245

V Epilogue 247

12 Conclusions and future work 249

12.1 Conclusions and open issues . 249

12.2 Potential research directions . 251

12.2.1 Distance metric learning for extreme classification 251

12.2.2 Deep metric learning . 252

12.2.3 Theoretical understanding 253

Appendices 255

A Appendix 257

A.1 Jeffrey divergence . 257

A.2 Conditions to guarantee the convergence of block-coordinate descent 258

A.3 Data sets . 259

Bibliography 260

Curriculum Vitae 291

xi

Summary

Much like in other modeling disciplines does the distance metric used (a measure

for dissimilarity) play an important role in the growing field of machine learning.

Often, predefined distance metrics (e.g. the Euclidean one) are used to perform

such measurement. Unfortunately, most of them ignore any statistical properties

that might be estimated from the data. The notion of a good distance metric

changes when one moves from one domain to another. For instance, in the problem

of computing the dissimilarity for human images, two images could be considered as

being similar due to one of the following reasons, the two images are taken from two

persons with the same gender, the same age, or the same race. Clearly, it is difficult

to use the same distance metric for gender, age, and race since two images might be

similar in one case, while being dissimilar in the other case. For this reason, most

research efforts have been devoted to automatically learn a good distance metric

from data. Depending on the availability of training data, distance metric learning

methods can be divided into three categories: supervised, semi-supervised, and

unsupervised. Supervised methods often use the heuristic that examples belonging

to the same class should be close to each other, while those from different classes

should be farther apart. Semi-supervised methods use the information in the

form of pairwise similarity or dissimilarity constraints. Unsupervised methods

learn a distance metric that preserves the geometric relationships (i.e., distance)

between most of the training data for the purpose of unsupervised dimensionality

reduction. In this thesis, we focus on supervised distance metric learning. The

main aim is to develop efficient and scalable algorithms for solving distance metric

learning problems under different types of supervision. The proposed algorithms

are supported by empirical as well as theoretical studies.

xiii

Nederlandstalige samenvatting

Net zoals in andere modelleerdisciplines speelt de gebruikte afstandsmetriek

(een maat voor dissimilariteit) een belangrijke rol in het groeiende domein van

machinaal leren. Vaak worden vooraf gedefinieerde afstandsmetrieken (bijvoorbeeld

de Euclidische metriek) gebruikt om zulke metingen uit te voeren. Jammer genoeg

negeren de meeste van deze metrieken statistische eigenschappen die afgeleid kunnen

worden uit de data. De notie van een goede afstandsmetriek varieert van probleem

tot probleem. Bijvoorbeeld, wanneer men de dissimilariteit van twee afbeeldingen

met mensen wil berekenen, kunnen deze gelijkaardig zijn om de volgende redenen:

de twee afbeeldingen zijn genomen van personen met hetzelfde geslacht, leeftijd

of afkomst. Het is duidelijk dat het moeilijk is om dezelfde afstandsmetriek te

gebruiken voor geslacht, leeftijd en afkomst, aangezien twee afbeeldingen voor

het ene geval gelijkaardig kunnen zijn, maar verschillend in een ander geval. Om

deze reden wordt veel onderzoek verricht naar het automatisch leren van een

goede afstandsmetriek op basis van data. Methoden om een afstandsmetriek te

leren kunnen onderverdeeld worden in drie categorieën: gesuperviseerd, semi-

gesuperviseerd en ongesuperviseerd. Gesuperviseerde methoden gebruiken vaak de

heuristiek dat voorbeelden die tot dezelfde klasse behoren dicht bij elkaar horen

te liggen, terwijl voorbeelden die tot een verschillende klasse behoren verder weg

van elkaar zouden moeten liggen. Semi-gesuperviseerde methoden gebruiken de

informatie in de vorm van paarsgewijze similariteits- of dissimilariteitsvoorwaarden.

Ongesuperviseerde methoden leren een afstandsmaat die geometrische relaties (i.e.,

de afstand) behouden tussen de meeste van de training data om ongesuperviseerde

dimensionaliteitsreductie te kunnen uitvoeren. Deze thesis behandelt het leren

van een afstandsmetriek op een gesuperviseerde manier. De doelstelling is om

efficiënte en schaalbare algoritmes te ontwikkelen voor het oplossen van problemen

eigen aan het leren van een afstandmetriek, en dit onder verschillende types van

supervisie. De voorgestelde algoritmes worden onderbouwd door zowel empirische

als theoretische resultaten.

xv

List of acronyms

k-NN k-Nearest-Neighbor

mmLMNN Multiple Metric Learning for Large Margin Nearest Neighbor

ADAMENN Adaptive Metric Nearest Neighbor

CCCP Concave-Convex Procedure

CMLP Constrained Large Margin Local Projection

CMML Clustered Multi-Metric Learning

DANN Discriminant Adaptive Nearest Neighbor

DC Difference of Convex function

DMLMJ Distance Metric Learning through Maximization

of the Jeffrey divergence

DML-dc Distance Metric Learning using Difference

of Convex functions programming

DML-eig Distance Metric Learning with Eigenvalue Optimization

ITML Information-Theoretic Metric Learning

LDA Linear Discriminant Analysis

LDML Logistic Discriminant Metric Learning

LDMLR Large-scale Distance Metric Learning for k-NN Regression

LMDML Large-Margin Distance Metric Learning

LMNN Large Margin Nearest Neighbor

LMSL Large Margin Subspace Learning

KEEL Knowledge Extraction based on Evolutionary Learning

KDMLSC Kernel-based Distance Metric Learning for Supervised

KISSME Keep It Simple and Straightforward Metric

NCA Neighborhood Component Analysis

OASIS Online Algorithm for Scalable Image Similarity

ODML Ordinal Distance Metric Learning

PCA Principal Component Analysis

PRDC Probabilistic Relative Distance Comparison

POLA Pseudo-metric Online Learning Algorithm

PSD Positive Semidefinite

RCA Relevant Component Analysis

SCML Sparse Compositional Metric Learning

SGD Stochastic Gradient Descent

SVM Support Vector Machine

XQDA Cross-view Quadratic Discriminant Analysis

xvii

List of Figures

1.1 A roadmap to the thesis (an arrow from one part to another indicates

that the former part is prerequisite material for understanding the

latter) . 5

2.1 An illustration of the Structured Risk Minimization (SRM) principle.

If the hypothesis space Hj has a small complexity, then the model

capacity is small, but the empirical error is large (underfitting).

Otherwise, if the complexity of Hj is large, then the model capacity

is large, while the empirical error is small (overfitting). The optimal

expected error at H∗ is achieved by making a good trade-off between

the empirical error and the model capacity. 16

2.2 An illustration of the Euclidean and the Mahalanobis distance met-

rics in the 2-dimensional space. The major axes of the ellipse are

defined by the eigenvectors ui of M and the corresponding eigenval-

ues λi. For the Euclidean case, both λ1 and λ2 are identical. . . . 20

3.1 A synthetic data set illustrating the poor performance of the k-NN

classifier using the Euclidean distance metric. The data set consists

of 200 examples drawn from two aligned strips, each defining a

different class. The red circles denote positive examples, whereas

the blue asterisks denote negative examples. (a) data set before

applying the linear transformation, (b) data set after applying the

linear transformation. 38

3.2 Visualization of the probability density functions of the difference

spaces before applying the linear transformation. 39

3.3 Visualization of the probability density functions of the difference

spaces after applying the linear transformation. 39

3.4 Comparison of the control method against the others with the

Bonferroni-Dumn test. All methods with ranks outside the marked

interval are significantly different from the control. 52

3.5 Experimental results on the Isolet data set. (a) Classification accu-

racy vs. dimensionality, (b) Training time vs. dimensionality 54

3.6 Experimental results on the balance data set. Classification accu-

racy of the 5-NN classifier versus the number of neighbors used for

constructing the difference spaces, where k1 denotes the number of

neighbors used in the positive difference space and k2 denotes the

number of neighbors used in the negative difference space. 55

xix

List of Figures

3.7 Illustration of a synthetic data set drawn from two concentric circles:

(a) original space, (b) transformed space learned by KDMLMJ using

an RBF kernel, and (c) transformed space learned by DMLMJ. . . 56

3.8 Illustration of a synthetic data set drawn from two banana-shaped

distributions: (a) original space, (b) transformed space learned by

KDMLMJ using an RBF kernel, and (c) transformed space learned

by DMLMJ. 56

4.1 An illustration of challenges in person re-identification (from left to

right): different backgrounds, resolution, pose, view angle, lighting,

partial occlusion, and similar clothings. 60

4.2 Illustration of rank 1 matching rate vs. number of dimensions on

the iLIDS data set. 83

4.3 Illustration of the incremental update procedure on the CAVIAR4REID

and 3DPeS data sets (left) training time (in seconds) vs. number of

constraints, (right) rank 1 matching rate vs. number of constraints. 84

5.1 Classification accuracy of k-NN classification for an increasing popu-

lation richness S with and without the use of DMLMJ. Each boxplot

contains the classification accuracy for ten communities. Each box

displays the 25% and 75% quartiles of the classification accuracy,

of which the whiskers extend the range to maximal 1,5 times the

interquartile range. Points that lie outside this range are visualized

as outliers. 89

5.2 F1-score with and without the use of DMLMJ using k-NN classi-

fication of single-cell labels for CyTOF data. Boxplots show the

distribution of F1-scores per data set and per cell population, in

which each cell population is represented by a black dot. Each

boxplot displays the 25% and 75% quartiles of the F1-score, of which

the whiskers extend the range to maximal 1,5 times the interquartile

range. Points that lie outside this range are visualized as outliers. . 91

5.3 Visualization of cell populations using t-SNE the 2-dimensional space

for the Levine 13dim data set, with and without the use of DMLMJ. 91

5.4 Visualization of cell populations using t-SNE the 2-dimensional space

for the Levine 32dim data set, with and without the use of DMLMJ. 92

5.5 Visualization of cell populations using t-SNE in the 2-dimensional

space for the Levine 32dim data set, with and without the use of

DMLMJ. 92

6.1 Illustration of the intuition behind LMDML. Examples belonging

to the same class are denoted in the same color and style. (a) A

separating ellipse with a small margin. (b) A separating ellipse with

a large margin. 102

xx

List of Figures

6.2 Performance illustration of LMDML-A and LMDML-S on the sonar

data set. Left figure: objective function value vs. number of epochs.

Right figure: training accuracy (%) vs. number of epochs. 117

7.1 An illustration of the ramp loss function with s = −0.5 and some

convex loss functions . 129

7.2 Examples of the images in (a) the Coil-100 and (b) the Extended

Yale B data sets. 144

7.3 Classification accuracy of DML-dc versus different values of s in the

ramp loss function. 146

7.4 An illustration of the convergence rate for DML-dc on the balance

data set: (a) objective function value versus number of iterations

and (b) classification accuracy versus number of iterations. 147

8.1 An illustration of CMML. Examples belonging to the same class

are denoted by the same shape. Left-hand side: all local distance

metrics are trained independently. Right-hand side: all local distance

metrics are jointly trained. 155

8.2 An illustration of CMML on a synthetic data set: (a) Original data

generated by normal distributions, (b)-(d) Projection of the data in

the space induced by each local distance metric. 164

8.3 Classification accuracy of CMML versus number of clusters on real

data sets. 170

8.4 Convergence of CMML versus number of iterations on real data sets.170

9.1 Illustration of the intuition behind our distance metric learning

method for k-NNR. examples x(j) and x(k) are nearest neighbors

of x(i). Before learning, the triplet constraint (x(i),x(j),x(k)) is

violated (y(i) is closer to y(j) than to y(k), but x(i) is closer to x(k)

than to x(j)). After learning, the new distance metric induces the

same ranking and example x(k) is pushed away from x(j) by a safe

margin. 177

9.2 Visualization of the post-hoc Bonferroni-Dunn test of RMSE. . . . 189

10.1 An illustration of distance metric learning for nominal (left) and

ordinal (right) classification. Examples from different classes are

represented as different shapes filled with different colors. The ellipse

represents all examples having the same distance to example xi. . 201

10.2 MZE and MAE vs. number of training examples on the balance-scale

data set for LMNN and LODML. 214

10.3 Objective function value vs. number of iterations on the balance-scale

data set for LODML and KODML. 216

10.4 Test results (MZE and MAE) vs. number of iterations on the

balance-scale data set for LODML and KODML. 216

xxi

List of Figures

10.5 MAE and training time vs. the neighborhood size on the ESL data

set for LODML compared to LMNN. 217

11.1 An illustration of clustering of a nonlinearly separable data set:

(a)-(b) training data sets, (c) k-means clustering using the Euclidean

distance metric and (d) k-means clustering using the distance metric

learned by our method on the test set. 239

11.2 Performances of the competing methods versus the number of clusters

on the 20news data set based on different clustering measures (a)-(d).243

xxii

List of Tables

3.1 Classification accuracies on the KEEL data sets. 52

3.2 Holm post-hoc test for the competing methods with α = 0.05. . . . 53

4.1 A brief description of the data sets used in our experiments. 76

4.2 The top matching rates (%) on the iLIDS data set. The best results

are highlighted in boldface. 77

4.3 The top matching rates (%) on the CAVIAR4REID data set. The

best results are highlighted in boldface. 78

4.4 The top matching rates (%) on the 3DPeS data set. The best results

are highlighted in boldface. 78

4.5 The top matching rates (%) on the PRID450S data set. The best

results are highlighted in boldface. 79

4.6 The top matching rates (%) on the CUHK01 data set. The best

results are highlighted in boldface. 80

4.7 Average training time (in seconds) of the competing distance metric

learning methods. The best results are highlighted in boldface. . . 82

6.1 Classification accuracy (standard deviation) and training time on

the KEEL data sets of the competing algorithms. The best result is

highlighted in boldface. 116

6.2 Description of large-scale data sets used in our experiment. 119

6.3 Classification accuracy (standard deviation) on large-scale data sets

of the competing algorithms. The best result is highlighted in boldface.119

6.4 Average rank of the Mahalanobis matrix learned from large-scale

data sets by the competing algorithms. 120

6.5 Training time (in seconds) of the competing algorithms on large-scale

data sets. The best result is highlighted in boldface. 120

7.1 Classification accuracies (standard deviations) of the competing

distance metric learning methods on the KEEL data sets. Best

results are highlighted in boldface. 141

7.2 Training time (in seconds) of the competing distance metric learning

methods on the KEEL data sets. Best results are highlighted in

boldface. 142

7.3 Classification accuracies (standard deviations) of the competing

distance metric learning methods on the Coil-100 and Y-Faces data

sets. Best results are highlighted in boldface. 144

xxiii

List of Tables

7.4 Classification accuracies (standard deviations) of the competing

distance metric learning methods on the USPS data set with noise.

Best results are highlighted in boldface. 146

8.1 Unadjusted p-value and adjusted p-values according to the Wilcoxon

test and different post-hoc tests over eighteen data sets based on

classification accuracy using CMML as the control method. 165

8.2 Classification accuracies (standard deviation) of the competing dis-

tance metric learning methods on the KEEL data sets. The best

results are highlighted in boldface. 166

8.3 Training time (in seconds) of the competing methods on the KEEL

data sets. Best results are highlighted in boldface. 168

8.4 Testing time (in seconds) of the competing methods on the KEEL

data sets. 168

8.5 Description of real data sets used in our experiments. 169

8.6 Classification accuracies of the competing distance metric learning

methods on real data sets. 169

9.1 Description of the data sets used in the experiment 188

9.2 Holm’s post-hoc test for the competing methods with α = 0.05

(control method: LDMLR). 189

9.3 Experimental results in terms of RMSE. 190

9.4 Experimental results in terms of training time (in seconds). 191

10.1 Constraints derived from nominal and ordinal distance metric learn-

ing approaches with respect to example xi in Fig. 10.1. 201

10.2 Description of the benchmark data sets used in our experiments. . 210

10.3 MZE of the linear distance metric learning methods on the bench-

mark data sets. Best results are highlighted in boldface. 211

10.4 MAE of the linear distance metric learning methods on the bench-

mark data sets. Best results are highlighted in boldface. 212

10.5 C-index of the linear distance metric learning methods on the bench-

mark data sets. Best results are highlighted in boldface. 213

10.6 Unadjusted p-value and adjusted p-values according to the Wilcoxon

test and different post-hoc tests over 23 data sets based on MZE

using LODML as the control method. 213

10.7 Unadjusted p-value and adjusted p-values according to the Wilcoxon

test and different post-hoc tests over 23 data sets based on MAE

using LODML as the control method. 214

10.8 Unadjusted p-value and adjusted p-values according to the Wilcoxon

test and different post-hoc tests over 23 data sets based on C-index

using LODML as the control method. 214

xxiv

List of Tables

10.9 MZE, MAE, and C-index of the nonlinear distance metric learn-

ing methods on the small benchmark data sets. Best results are

highlighted in boldface. 215

11.1 Performances of the competing methods on the USPS data set based

on different measures. The best results are highlighted in boldface. 240

11.2 Performances of the competing methods on the WebKB data set

based on different measures. The best results are highlighted in

boldface. 242

11.3 Training time of the competing methods on the data sets used in

our experiments (N/A: not available). 245

A.1 A brief description of the KEEL data sets 259

xxv

PART I

INTRODUCTION AND PRELIMINARIES

1

1 Introduction

1.1. A general overview

Learning a distance metric to measure the closeness of examples is an important

research topic in machine learning and pattern recognition. This is also referred

to as distance metric learning. Using a good distance metric can lead to great

improvements in performance of many fundamental distance-based algorithms

such as k-nearest-neighbor (k-NN) classification (Cover and Hart, 1967), k-means

clustering (Lloyd, 1982), and kernel regression (Benedetti, 1977). This is motivated

by the fact that standard distance metrics (such as the Euclidean one) are often not

appropriate as they fail to capture certain specific characteristics of the problem.

Recently, many efforts have been devoted to finding a good distance metric for a

given problem (Kulis, 2012; Bellet et al., 2015; Moutafis et al., 2017). The idea

consists in adjusting a distance metric using the information contained in the

training data to satisfy requirements of the application in question. For instance,

in a classification setting, a good distance metric should make examples of the

same class being close together, while keeping examples of different classes far

apart (Davis et al., 2007; Weinberger and Saul, 2009; Ying and Li, 2012; Nguyen

et al., 2017c). In information retrieval applications, it should bring the most

relevant objects close to the query object given by the users according to the

relevance of information of objects (McFee and Lanckriet, 2010).

Among different methods, learning a Mahalanobis distance metric is one of the

most successful and well-studied approaches due to its simplicity and flexibility.

One can see the Mahalanobis distance metric as a generalization of the Euclidean

distance metric, which allows for rotation and scaling of features. Mahalanobis

distance metric learning has been widely used in different contexts, such as classifi-

cation (Weinberger and Saul, 2009; Nguyen et al., 2017c), regression (Nguyen et al.,

2016), subspace learning (Peng et al., 2017, 2018), semi-supervised clustering (Yin

et al., 2010; Wang et al., 2013), unsupervised learning (Cinbis et al., 2011), learning

to rank (McFee and Lanckriet, 2010), etc.

A common guiding principle for learning a distance metric is that the distances

between similar examples should be small, while the distances between dissimilar

examples should be large. Additionally, there are also several requirements for

a good distance metric learning method: (1) it should reflect the true similarity

relationships between examples in order to generalize well to unseen examples; (2)

it should be easy to implement and to compute efficiently; (3) it should be flexible

enough to handle different learning settings and data types.

3

Chapter 1. Introduction

Unfortunately, most of the existing distance metric learning methods are lacking

in at least one of the above requirements. In this thesis, we explore various large-

scale optimization techniques for distance metric learning problems under different

types of supervision. Our primary focus is on learning the Mahalanobis distance

metric. In the next section, we provide a roadmap of the problems considered in

this thesis and our contributions.

1.2. Research contributions and structure

This thesis will be divided into five parts: one introductory part (I), three central

parts (II-IV), and one concluding part (V). Parts II-IV contain the main con-

tributions, which concern the development of novel supervised distance metric

learning algorithms for different learning settings. Each of these parts focuses

on a limited number of research objectives and can be read independently. As

a typical way of validating algorithms in machine learning, each of the proposed

algorithms will be tested on different types of applications. To make the thesis

more accessible to readers, Part I includes two chapters (1-2) that introduce basic

machine learning concepts, some mathematical tools and well-known results in

distance metric learning. Readers who are less familiar with machine learning

and mathematical optimization are strongly encouraged to read this part. Part II

consists of three chapters (3-5) that exploit the use of binary similarity information

(e.g., pairwise constraints) in order to learn a distance metric. Part III consists of

five chapters (6-10) that exploit the discriminative nature of relative information

(e.g., triplet constraints). Part IV consists of one chapter (11) that exploits the

use of kernel learning for clustering. Finally, Part V includes one chapter (12)

describing some concluding remarks and possible research directions. Most of the

results in this thesis have already been published or submitted for publication in

peer-reviewed international journals. Chapters 3, 4, 5, 6, 7, 8, 9, 10, and 11 have

been described in Nguyen et al. (2017c); Nguyen and De Baets (2019); Nguyen

et al. (2019b, 2018b); Nguyen and De Baets (2018a); Nguyen et al. (2019a, 2016,

2018a), respectively. An overview of the thesis structure is visualized in Fig. 1.1. In

this section, the three main parts are briefly introduced. Moreover, for each of the

main parts, the key research objectives and contributions are formulated.

1.2.1. Part II: Distance metric learning using pairwise con-

straints

Problem setting

Information in the form of similarity constraints is often used as natural supervisory

information in distance metric learning. Given a set of constraints, distance metric

4

§1.2. Research contributions and structure

Part I: Introduction and Preliminaries

Chapter 1: Introduction Chapter 2: Preliminaries

Part II: Distance metric

learning using pairwise

constraints

Chapter 3: Distance metric learning

through maximization of the Jeffrey

divergence

Chapter 4: Kernel-based distance

metric learning for person re-

identification

Chapter 5: A case study: Learning

single-cell distances from Cytometry

data

Part III: Distance metric

learning using triplet

constraints

Chapter 6: Large-margin distance

metric learning using stochastic

gradient descent

Chapter 7: Distance metric learning

based on difference of convex

functions programming

Chapter 8: An efficient method for

clustered multi-metric learning

Chapter 9: Distance metric learning

for k-nearest-neighbor regression.

Chapter 10: Distance metric learning

for ordinal classification

Part IV: Distance metric

learning for clustering

Chapter 11: Distance metric learning

for supervised k-means clustering

Part V: Epilogue

Chapter 12: Conclusions and future work

Figure 1.1: A roadmap to the thesis (an arrow from one part to another indicates that
the former part is prerequisite material for understanding the latter)

learning aims to find a solution that satisfies as many constraints as possible.

In Part II of this thesis, we will develop learning methods based on pairwise

constraints, which contain similar (must-link) and dissimilar (cannot-link) pairs of

examples. For many learning tasks, pairwise constraints may be extracted with

minimal effort or even automatically (Bar-Hillel et al., 2005). A good distance

metric should bring examples from similar pairs close to each other while keeping

examples from dissimilar pairs far apart. As the number of pairwise constraints

can be very large, e.g. O(N2) pairs can be constructed from N training examples,

selecting meaningful pairwise constraints becomes a key issue in order to improve

the performance. Besides, learning a distance metric on a large-scale data set raises

several issues related to the scalability of the time and space complexity.

Motivated by the above arguments, Part II of this thesis focuses on the following

objectives.

Objective II.1: The development of a distance metric learning framework based

on local pairwise constraints, which provides a closed-form solution rather

than using tedious optimization procedures.

Objective II.2: The exploitation of kernels that allows distance metric learning

to effectively handle more complex and high-dimensional data sets.

5

Chapter 1. Introduction

Objective II.3: The illustration of the proposed framework by means of a case

study.

Objectives II.1 and II.2 are the main topics of Chapter 3. Objective II.2 is the

main topic of Chapter 4. The last objective is considered in Chapter 5. In the

following, we will briefly describe these chapters.

A brief overview of Part II

In Chapter 3, we formulate the problem of learning a linear transformation through

maximization of the Jeffrey divergence between two multivariate Gaussian dis-

tributions derived from local pairwise constraints. Rather than using tedious

optimization procedures, we prove a closed-form solution, which is easy to imple-

ment and tractable for large-scale problems. We further derive a kernelized version

to tackle nonlinear problems.

In Chapter 4, we present an extension to the well-known KISSME algo-

rithm (Köstinger et al., 2012), an effective distance metric learning method using

pairwise constraints to improve the re-identification performance. KISSME is very

efficient in terms of training time since it only requires two inverse covariance

matrix estimations. However, a linear transformation induced by KISSME may

not be powerful enough for more complex problems. We show how to kernelize

the KISSME method, resulting in a nonlinear transformation, which is suitable

for many real-world applications. To further apply the proposed kernel method

efficiently when data are collected sequentially, we introduce a fast incremental

version that learns a dissimilarity function in the feature space without estimating

the inverse covariance matrices.

As a study case, we explore the use of distance metric learning for the analysis of

flow cytometry data in Chapter 5. We evaluate the potential of a learned distance

metric in quantifying single-cell distances in a data-driven way. In particular, two

different cytometry applications are considered, the first being flow cytometry in

the field of synthetic microbial ecology and the second being mass cytometry or

Cytometry by Time-Of-Flight (CyTOF) for the analysis of human cells. Results

indicate that a learned distance metric can significantly improve the cell population

identification.

6

§1.2. Research contributions and structure

1.2.2. Part III: Distance metric learning using triplet con-

straints

Problem setting

Despite the popularity of pairwise constraints, there are two major drawbacks.

First, when examples in similar pairs lie in different clusters belonging to the same

class, these pairwise constraints may mislead the learning algorithm. Second, it

would be more natural for human labelers to compare objects like “A is more

similar to B than to C” rather than deciding whether two objects are similar or

not. In Part III of this thesis, we will develop distance metric learning methods

based on these relative comparisons or triplet constraints. Such constraints are

less restrictive than pairwise constraints in the sense that there is no assumption

regarding the membership of examples to any class. Instead, it assumes only the

proximity of the examples. In the simplest case, triplet constraints can be obtained

from any three examples if two of them belong to the same class, which is different

from that of the third example. Due to the large number of triplet constraints,

one may randomly select a subset of constraints and feed them into the learning

algorithm in order to reduce the computational burden. However, such random

selection has a few drawbacks. First, it does not consider the most discriminative

parts in the feature space (e.g., the boundaries between classes), which can be used

to improve the performance. Second, the selected constraints remain the same

during the training process, without taking into account the current distance metric.

While triplet constraints have been successfully applied to standard classification

problems, using such constraints for other learning settings has remained largely

unexplored in the literature.

To overcome the above shortcomings, Part III of this thesis considers the use

of triplet constraints in different learning settings. In particular, we focus on the

following objectives.

Objective III.1: The development of a scalable distance metric learning method

based on stochastic gradient descent for nearest-neighbor classification.

Objective III.2: The mathematical formulation of learning a distance metric as

a nonconvex optimization problem, as well as the theoretical analysis of the

algorithm.

Objective III.3: The development of an effective distance metric learning method

that learns multiple distance metrics instead of a single global one, making it

more robust to heterogeneously distributed data.

Objective III.4: The development of an efficient distance metric learning for

regression settings, where the output space is continuous.

Objective III.5: The development of a distance metric learning method for

7

Chapter 1. Introduction

ordinal classification settings, where there exists ordering information among

class labels.

The above objectives are the main topics of Chapters 6 to 10. In the following, we

will briefly describe these chapters.

A brief overview of part III

One of the fundamental challenges in distance metric learning is the positive

semidefiniteness constraint on the Mahalanobis matrix. Semidefinite programming

is commonly used to enforce this constraint, but it becomes computationally

intractable on large-scale data sets. In Chapter 6, we develop an efficient distance

metric learning algorithm based on stochastic gradient descent. It employs the

principle of margin maximization to learn the distance metric with the goal of

improving k-NN classification. Our algorithm can avoid the computation of the full

gradient and ensure that the learned matrix remains within the cone of positive

semidefinite (PSD) matrices after each iteration. Unlike the method developed in

Chapter 3, no assumption about the distribution of the data is required, making it

more practical on real-world problems.

Convex optimization has become very popular in distance metric learning over

the last few years, because of its empirical performance and because it facilitates a

deeper mathematical analysis. Unfortunately, in many practical settings, convexity

is not always guaranteed, and one has to resort to nonconvex optimization. In

Chapter 7, we exploit the use of nonconvex optimization to learn a distance metric.

Similarly to the method proposed in Chapter 6, our distance metric learning

framework aims to minimize the misclassification rate of the nearest-neighbor

classifier. Due to the use of the ramp loss function, our objective function for

margin maximization has a strong ability to avoid the influence of outliers. In

particular, the distance metric learning problem is formulated as an instance of

difference of convex functions (DC) programming. We show that the generalization

error analysis of the proposed approach has an important theoretical implication in

explaining that minimizing the objective function may improve the generalization

performance of nearest-neighbor classification.

Although there has been an increasing interest in distance metric learning,

learning a global distance metric is insufficient to obtain satisfactory results when

dealing with heterogeneously distributed data. In Chapter 8, we propose an efficient

method that learns multiple local distance metrics instead of a single global one.

More specifically, the training examples are divided into several disjoint clusters, in

each of which a distance metric is trained to separate the data locally. Moreover,

a global distance metric is introduced to capture the common structure among

all the clusters, which requires that the distance metric in each cluster should

be as close as possible to the global one. On the one hand, the global distance

8

§1.2. Research contributions and structure

metric serves as a regularization that controls overfitting; on the other hand, it can

lead to the propagation of side-information among clusters, resulting in a more

robust and stable model. By learning multiple distance metrics jointly within

a single unified optimization framework, our method consistently outperforms

single distance metric learning methods, while being more efficient than other

state-of-the-art multi-metric learning methods.

In Chapter 9, we present a distance metric learning method for k-nearest-

neighbor regression. We define the constraints based on triplets, which are built

from the neighborhood of each training example, to learn the distance metric. The

resulting optimization problem can be formulated as a convex quadratic program.

Our proposed method is simple to implement, and it ensures very fast training,

which can be computationally tractable for large-scale data sets.

We further consider distance metric learning for ordinal classification, a problem

setting in-between nominal classification and metric regression where the goal is

to predict labels from an ordinal scale. Usually, there is a clear ordering of the

classes, but the absolute distances between them are unknown. Disregarding

the ordering information, this kind of problems is commonly treated as a multi-

class classification problem, although this is not appropriate from a semantic

point of view. In Chapter 10, we propose a distance metric learning approach

for ordinal classification by incorporating local triplet constraints containing the

ordering information into a conventional large-margin distance metric learning

approach.

1.2.3. Part IV: Distance metric learning for supervised clus-

tering

Problem setting

Part IV of this thesis considers the supervised clustering setting, a problem of

training a clustering algorithm with some supervised information so that it can

produce a desirable clustering for unseen data (Finley and Joachims, 2005; Daumé

and Marcu, 2005). Unlike traditional clustering problems, which are usually referred

to as unsupervised clustering, here we have sets of examples and complete clusterings

over these sets. By training the distance metric to obtain correct clusterings on

supervised data, we expect the distance-based algorithm to cluster unseen data in a

similar fashion. Due to the fact that most of the existing semi-supervised methods

simply attempt to satisfy the constraints derived from a small amount of labeled

data for a single problem, it is usually not reasonable to transfer the knowledge

learned from a set of training labels to another set of testing labels (Finley and

Joachims, 2005). Supervised clustering can be viewed as a special case of multi-class

classification in the sense that both approaches try to classify related examples into

9

Chapter 1. Introduction

the same class and unrelated examples into different classes (Finley and Joachims,

2005, 2008). Nevertheless, supervised clustering can also be used for problems

containing new labels that have not been seen during the training, which seems

impossible with multi-class classification.

Therefore, it is important to develop new algorithmic solutions for supervised

clustering. In particular, the objectives of Part IV are twofold.

Objective IV.1: The mathematical formulation of learning a distance metric on

the kernel space for supervised clustering.

Objective IV.2: The development of a scalable optimization method to efficiently

solve this problem.

These objectives are the main topics of Chapter 11, which will be described

next.

A brief overview of part IV

In Chapter 11, a kernel-based distance metric learning method is developed to

improve the practical use of k-means clustering. In particular, given a set of related

data sets with known partitions, we aim to learn a distance metric that will lead to

these partitions when k-means clustering is performed. Learning the Mahalanobis

distance metric is considered as a structured learning problem. Unlike existing

kernel-based methods, we enforce the low-rank constraint on the solution by adding

the trace norm to improve the generalization ability. Given the corresponding

optimization problem, we derive a meaningful Lagrange dual formulation and

introduce an efficient algorithm in order to reduce the training complexity. Our

formulation is simple to implement, allowing a large-scale distance metric learning

problem to be solved in a computationally tractable way.

1.3. Evaluation methodology

Evaluation is an essential part of any machine learning development. As commonly

done in machine learning, the evaluation of a distance metric learning algorithm will

be performed on synthetic and benchmark data sets of different sizes and complexi-

ties. The benchmark data sets are taken from the machine learning repositories and

are available for download. All data sets contain numeric features without missing

values.1 Computational experiments will concern the predictive performance and

running times of the proposed methods. Source codes of all methods developed

1 There are occasionally a few data sets with nominal features, which are encoded as integers.
Since our experiments mainly concern the performance between different distance metric learning
methods, these nominal features have very little effects on the performance. All methods are
trained on the same set of features.

10

§1.4. Notational conventions

in this thesis can be found at https://github.com/bacnguyencong. These im-

plementations can be loaded in the scientific computing environment Matlab so

that any non-expert user can easily use or test the developed models on their own

data.

In addition to the performance comparison, the null hypothesis significance

testing is considered to analyze the behavior of the proposed methods. This is

typically carried out by the Friedman test on the null hypothesis that there is no

statistically significant difference among all the competing methods (Demšar, 2006).

When the Friedman test rejects the null hypothesis, multiple comparisons are

carried out to establish which are the significant differences among the competing

algorithms. These multiple comparisons are usually based on the mean-ranks

post-hoc tests. Despite its popularity, several issues have been found when applying

this hypothesis testing framework (Benavoli et al., 2017, 2016). For instance, the

outcome of the test depends on the set of competing algorithms. Algorithms A and

B might be declared significantly different in one pool of algorithms and not if the

pool contains other algorithms. Many machine learning researchers simply ignore

this null hypothesis significance testing in order to avoid such paradoxical situations.

Since the approach to perform the statistical comparison of multiple algorithms

in machine learning is not yet well developed, we keep using the traditional one

introduced by Demšar (2006) in several chapters. The reason is simply that we try

to follow a common practice of the scientific journals in which the corresponding

chapter was published.

1.4. Notational conventions

For the sake of convenience, the following notations are used throughout the

thesis.

• Scalars

Scalars are denoted by lowercase or uppercase letters, such as k, n, and D.

• Sets

Generic sets are denoted by calligraphic uppercase letters, such as X , Y , and

V. The cardinality of the set X is denoted by |X |. We use R to denote the

set of real numbers, R+ to denote the set of nonnegative real numbers. The

set of real D-dimensional vectors is denoted by RD, and the set of real m×n
matrices is denoted by Rm×n. We use Sm×m to denote the set of m ×m
symmetric matrices.

• Vectors

Vectors are assumed to be column vectors and denoted by boldface lowercase

letters, such as x, y and z. The transpose of a vector x is denoted by x> and

the i-th element is denoted as xi. The inner product between two vectors u

11

https://github.com/bacnguyencong

Chapter 1. Introduction

and v is denoted by 〈u,v〉 = u>v. Moreover, the `1-norm of a D-dimensional

vector x is defined by ‖x‖1 =
∑D
i=1 |xi| and the `2-norm of x is defined as

‖x‖2 =
√

x>x .

• Matrices

Matrices are denoted by boldface capital letters, such as A, B and C. The

trace of a matrix A is denoted by tr(A). The identity matrix is denoted by I.

The diagonal vector of a square matrix M is denoted by diag(M). We will

use Ki. to refer to the i-th row vector and K.j to refer to the j-th column

vector of a matrix K. The Hadamard product ◦ of two matrices of the same

dimension is defined as (A ◦B)ij = AijBij . The Frobenius norm ‖.‖F of a

matrix A is defined as ‖A‖F =
√∑m

i=1

∑n
j=1 |Aij |2.

• Functions

A generic function f with domain X and co-domain Y is denoted by f : X → Y .

The hinge function [.]+ : R→ R+ is defined as [x]+ = max(0, x). The gradient

of f is denoted as ∇f .

12

2 Preliminaries

In this chapter, we introduce some relevant backgrounds in machine learning,

which are sufficient to understand the contributions of this thesis. We first introduce

the supervised learning setting and the main results of statistical learning theory.

We then present the basics of distance metric learning as well as its role in machine

learning algorithms. Subsequently, a variety of applications using distance metric

learning is discussed. Lastly, we review a number of optimization algorithms and

see how they can be applied in the context of distance metric learning.

Most of the material that is presented in this chapter can be found in the text-

books Statistical Learning Theory (Vapnik, 1998) and Convex Optimization (Boyd

and Vandenberghe, 2004).

2.1. Supervised learning

Learning from data is a fundamental problem and has a long and successful history.

Inspired by humans’ capabilities in recognizing patterns, the goal of machine

learning is to make computers learn to solve intellectual tasks from experience

(data) in an automatic way (Duda et al., 2012). One of the first models realizing

this idea was the Perceptron introduced by Rosenblatt (1962). Given a set of

examples, it constructs a rule to separate data into two different categories. The

generalization ability of this model was successfully tested on the digit recognition

problem. During the 1990s, kernel-based learning algorithms (Cortes and Vapnik,

1995; Vapnik, 1998) have proven a great success in machine learning. The most

representative kernel-based classifier is the Support Vector Machine (SVM) (Cortes

and Vapnik, 1995) (also called Support Vector Network). More recently, deep

learning has achieved remarkable success in various domains (Goodfellow et al.,

2016). Since the time of the Perceptron, machine learning has gained an immense

importance in everyday applications. In addition, significant efforts have been made

to develop the mathematical foundations of machine learning (Vapnik, 1998; Mohri

et al., 2012; Anthony and Bartlett, 2009). Nowadays, results of a machine learning

model must be confirmed by theoretical and experimental studies on different tasks.

Depending on the structure of data, one can divide machine learning problems

into two main categories: supervised and unsupervised learning. In a supervised

setting, data contain examples (typically a vector) along with their desired outputs

(also called labels). In an unsupervised setting, the labels are not available and a

machine learning model must be constructed solely on the unlabeled data. This

thesis will focus on the first category, supervised learning. Interested readers can

refer to the well-written book on unsupervised learning by Bishop (2006).

13

Chapter 2. Preliminaries

2.1.1. Problem statement

Assume that data are generated from an unknown generator, the goal of supervised

learning is to infer a hypothesis (an approximation of the generator) using a limited

number of training examples. In the following, we review basic notions of statistical

learning theory, a well-known framework pioneered by Vapnik (1998).

Formally, the selection of a desired hypothesis is based on a set of n independent

and identically distributed (i.i.d.) pairs{
(x1, y1), . . . , (xn, yn)

}
drawn according to some unknown distribution p(x, y) = p(x)p(y|x). Here, x ∈ RD

is a vector in the input space X and y is the associated output in the output space Y .

A learning algorithm tries to construct an approximation, which provides for a

given generator, the best prediction to the outputs. In other words, the goal is

to find an appropriate hypothesis f : X → Y, where f ∈ H, a set of admissible

hypotheses, which achieves the best results in prediction. Therefore, estimating

the hypothesis f corresponds to minimizing the following expected error

R(f) = E(x,y)∼p(x,y)

[
L(y, f(x))

]
=

ˆ
L(y, f(x))d p(x, y) ,

with L a loss function which incurs a penalty if f(x) 6= y. For instance, the simplest

loss function in classification is the misclassification error, defined as

L(y, f(x)) =

{
0 , if f(x) = y ,

1 , if f(x) 6= y .

Directly optimizing the misclassification error is hard, even for a simple hypothesis

space (Ben-David et al., 2003). For this reason, surrogate loss functions are often

used, such as the hinge loss, the exponential loss, and the logistic loss.

The problem of learning, therefore, is to find a hypothesis that minimizes the

expected error when the probability distribution p(x, y) is unknown, given the

observed data.

2.1.2. Empirical risk minimization

One can easily show that good predictions of the training data are necessary

conditions to perform well on unseen data. This leads to the principle of Empirical

Risk Minimization (ERM). In general, the risk R(f) cannot be computed because

the distribution p(x, y) is unknown. However, it can be approximated by averaging

14

§2.1. Supervised learning

the loss function on the training examples, the so-called empirical risk,

Remp(f) =
1

n

n∑
i=1

L(yi, f(xi)) .

The ERM principle suggests that the learning algorithm should choose a hypothe-

sis f that minimizes the empirical risk

f∗ = minimize
f∈H

Remp(f) .

While the ERM principle may work well in practice, selecting the hypothesis

space H must be done carefully in order to make a good model. Without knowledge

of the task, it is often difficult to select an appropriate H.

2.1.3. Structural risk minimization

Minimizing the empirical risk is a necessary condition, but what are the sufficient

conditions? Why is the rule that is correct for training examples also correct for

unseen examples? Statistical learning theory provides an answer to these questions.

In particular, with a probability at least 1− σ, the expected error of any f ∈ H is

bounded by

R(f) ≤ Remp(f) +

√
h
(
log 2n

h + 1
)
− log σ

4

n
, (2.1)

where h is the Vapnik-Chervonenkis (VC)-dimension of the hypothesis space H,

which measures the capacity of H. Clearly, a small value of the empirical error does

not necessarily imply a small value of the expected error. The generalization-error

bound in (2.1) suggests that, disregarding the logarithmic factors, in order to

achieve a good generalization performance, we need to minimize both the empirical

error and the ratio between the VC-dimension and the number of training examples

at the same time. In other words, it is very important to make a good trade-off

between minimizing the empirical risk and choosing an appropriate value for the

VC-dimension of the function space H, known as the bias-variance trade-off. There

are two reasons that make the true risk of a hypothesis being much larger than its

empirical risk. The first one is due to a too simple model, which is referred to as

underfitting. The second one is due to a too complex model, which is referred to as

overfitting.

One solution to this problem is based on the Structural Risk Minimization

(SRM) principle (Vapnik, 1998). This principle tries to find an optimal relationship

between the empirical error estimated by the hypothesis chosen from a set of

hypotheses and the capacity of that set of hypotheses (see Fig. 2.1). Let Γ1, . . . ,Γl

15

Chapter 2. Preliminaries

underfitting

h

Er
ro

r

empirical error
confidence term

risk

overfittingoptimal

structure ℋ1 ℋ* ℋℓ

Figure 2.1: An illustration of the Structured Risk Minimization (SRM) principle. If the
hypothesis space Hj has a small complexity, then the model capacity is small, but the
empirical error is large (underfitting). Otherwise, if the complexity of Hj is large, then
the model capacity is large, while the empirical error is small (overfitting). The optimal
expected error at H∗ is achieved by making a good trade-off between the empirical error
and the model capacity.

be the equivalence classes of all admissible hypotheses in H, where two hypotheses

belong to the same equivalence class if they separate the training examples in the

same way. In doing this, we split our set containing an infinite number of admissible

hypotheses H into a set containing a finite number of equivalence classes Γi, where

i ∈ {1, . . . , l}. In order to perform the SRM principle, we first create a structure

on these equivalence classes, which is a set of nested subsets of hypotheses

H1 ⊂ H2 ⊂ · · · ⊂ H ,

such that h1 ≤ h2 ≤ · · · ≤ h, where hj is the VC-dimension of Hj . The minimiza-

tion of the right-hand side of (2.1) can be performed as follows: we first choose an

element of the structure to control the VC-dimension, then choose a hypothesis in

this element that minimizes the empirical error. In order to build this structure,

we need to associate with each equivalence class some value characterizing the

capacity of the class. For instance, in the case of SVM, each equivalence class is

associated with the largest margin of the hypothesis belonging to this class, since a

high value of the margin corresponds to a low value of the VC-dimension.

16

§2.2. Distance metric learning

2.1.4. Regularized risk minimization

An implicit way of working with nested hypothesis spaces is the principle of

regularized risk minimization (RRM). Instead of minimizing the empirical error

Remp(f) and then expressing the generalization ability of the resulting model f

using some capacity measure of the underlying hypothesis class H, we can directly

minimize the so-called regularized risk

Rreg(f) = minimize
f∈H

Remp(f) + λΩ(f)

where the hyperparameter λ ≥ 0 controls the trade-off between minimizing the

empirical error and punishing hypotheses with large fluctuation through the reg-

ularizer Ω. The regularization is used to penalize “complex” hypotheses and to

break the tie between hypotheses that have the same empirical error.

After having presented the supervised learning setting and the statistical learning

framework, we now turn to distance metric learning, which is the main focus of

this thesis.

2.2. Distance metric learning

The notion of similarity between objects or examples plays a key role in several

machine learning tasks. There is often no obvious way of defining a (dis)similarity

measure. Rather than using a default distance metric such as the Euclidean one, it

is desirable to learn a distance metric that satisfies certain conditions, depending on

the application domain. If some side-information is given, for instance, as provided

by human labelers, it can be used to optimize an appropriate criterion requiring

that the distances between similar examples (e.g. examples of the same class) are

smaller than those between dissimilar examples (e.g. examples of different classes).

In this section, we first give the definition of distance metrics. Next, we introduce

a brief overview of some of the applications of distance metric learning employed in

various domains. Finally, we formulate the problem of learning a distance metric as

a mathematical optimization problem and then discuss some common optimization

techniques used in the literature.

2.2.1. Definitions

Distance usually refers to some degree of closeness of two objects, e.g., length, gap,

time, or rank difference. Here, we consider the mathematical notion of this term.

We start by introducing the definition of what is a distance metric.

17

Chapter 2. Preliminaries

Definition 2.1. A distance metric is a function d : X × X → R+ that satisfies,

for any xi,xj ,xl ∈ X :

(i) Non-negativity: d(xi,xj) ≥ 0;

(ii) Symmetry: d(xi,xj) = d(xj ,xi);

(iii) Triangle inequality: d(xi,xj) + d(xj ,xl) ≥ d(xi,xl);

(iv) Distinguishability: d(xi,xj) = 0⇔ xi = xj.

The above definition was introduced by Fréchet (1906) to define a metric

space (X , d), which is a special case of a general topological space. If one of these

properties fails while others hold, the corresponding functions are given a different

name. For instance, if the second property fails, then d is called a quasi metric. If

the last property fails, we talk about pseudometrics. In distance metric learning,

we do not distinguish between pseudometrics and metrics. Two notions are used

interchangeably in the literature. It is worth noting that the triangle inequality

property becomes very important to speedup learning algorithms such as nearest

neighbor search (Wang, 2011b) and k-means clustering (Elkan, 2003a). Some

examples of distance metrics are listed below (see Deza and Deza, 2006, for more

concrete examples).

Example 2.1. The Minkowski distance metrics are a family of distance metrics

induced by the `p-norms, given by

dp(u,v) = ‖u− v‖p =

(
D∑
i=1

|ui − vi|p
)1/p

with p ≥ 1. Some widely used distance metrics are

(i) p = 1, the Manhattan distance metric d(u,v) =
∑D
i=1 |ui − vi|,

(ii) p = 2, the Euclidean distance metric d(u,v) =
√∑D

i=1 |ui − vi|2,

(iii) p→∞, the Chebyshev distance metric d(u,v) = max
i=1,...,D

|ui − vi|.

Example 2.2. The Hamming distance metric defines the distance between two

D-dimensional vectors as the number of positions at which their values differ,

d(u,v) =
∣∣∣{i ∈ {1, . . . , D} | ui 6= vi

}∣∣∣ .
As mentioned in the preceding chapter, distance metric learning will be mostly

formulated as a semidefinite program. We hence need to define positive semidefinite

matrices.

Definition 2.2. A symmetric matrix M ∈ RD×D is PSD, denoted by M < 0, if

18

§2.2. Distance metric learning

for any vector x ∈ RD, the following condition holds

x>Mx ≥ 0 .

Most of the studies in this field pay particular attention to the Mahalanobis

distance metric (Mahalanobis, 1936) because it can be conveniently optimized

by deriving a convex formulation with the guarantee of finding the global opti-

mum (Weinberger and Saul, 2009; Xing et al., 2002; Davis et al., 2007; Shen et al.,

2012). Besides, it provides good generalization performance (Shi et al., 2014; Guo

and Ying, 2014; Jin et al., 2009). The Mahalanobis distance metric originally refers

to a distance measure that incorporates the correlation between features

dΣ−1(xi,xj) =

√
(xi − xj)Σ

−1(xi − xj) ,

where xi and xj are random vectors of the same Gaussian distribution with mean

µ and covariance matrix

Σ =
1

n− 1

n∑
i=1

(xi − µ)(xi − µ)> .

In the distance metric learning literature, the Mahalanobis distance metric is

defined as follows.

Definition 2.3. The Mahalanobis distance between two vectors xi and xj in RD

with respect to a PSD matrix M is computed as

dM(xi,xj) =
√

(xi − xj)>M(xi − xj) .

One can decompose M as M = UΛU> using the eigenvalue decomposition,

where U is a matrix containing all eigenvectors of M and Λ is a diagonal matrix

containing all eigenvalues of M on its diagonal. Let L = UΛ1/2, then the Maha-

lanobis distance can be viewed as the Euclidean distance in the transformed space

after performing a linear transformation x′i = L>xi,

d2
M(xi,xj) = (xi − xj)

>LL>(xi − xj)

= (L>xi − L>xj)
>(L>xi − L>xj)

= ‖x′i − x′j‖2 .

We can interpret x′i as a projected point in a new coordinate system defined by

the orthogonal matrix U, which is shifted and rotated w.r.t. the original coordinates

(see Fig. 2.2). Thus, the Mahalanobis distance exactly captures the idea of learning

a global linear transformation. From another perspective, this is equivalent to first

applying a whitening transformation to the data, making a set of uncorrelated

19

Chapter 2. Preliminaries

examples having a unit variance, and then measuring the Euclidean distances in

the transformed space.

√
λ2

√
λ1

(a) Euclidean

√
λ1

√
λ2

(b) Mahalanobis

Figure 2.2: An illustration of the Euclidean and the Mahalanobis distance metrics in
the 2-dimensional space. The major axes of the ellipse are defined by the eigenvectors ui

of M and the corresponding eigenvalues λi. For the Euclidean case, both λ1 and λ2 are
identical.

2.2.2. Problem statement

The main objective of distance metric learning is to find a proper distance metric

using the information contained in the training data, in order to bring similar exam-

ples closer and to push dissimilar examples farther away. A distance metric learning

approach is usually formulated as a constrained optimization problem,

minimize
W

f(W) = λΩ(W) + L(W,R) , (2.2)

where Ω(W) is the regularizer, L(W,R) is the loss term penalizing the violation

of W over a set of constraints R, and λ ≥ 0 is the regularization parameter.

Depending on the parameterization of W (i.e., learning a Mahalanobis matrix M

or a linear transformation matrix L), we might have additional constraints. While

this formulation is different for each approach, the constraints are often of one of

the following types:

(i) Pairwise constraints:

S =
{

(xi,xj) | xi and xj should be similar
}

,

D =
{

(xi,xj) | xi and xj should be dissimilar
}

.

(ii) Relative constraints:

T =
{

(xi,xj ,xl) | xi should be more similar to xj than to xl
}

.

(iii) Quadruplewise constraints:

Q =
{

(xi,xj ,xl,xm) | d(xi,xj) should be smaller than d(xl,xm)
}

.

20

§2.2. Distance metric learning

The latter has been widely used in computer vision (Law et al., 2013). This

type of constraints is easy to find when the ordering information of classes such

as yl ≺ yi ≺ yj ≺ ym is given. Hence, the distance between xi and xj should

be smaller than the distance between xl and xm. In this thesis, we will pay

more attention to the first and second kinds of constraints. It is important to

note that one can obtain relative constraints whenever pairwise constraints are

available. This can easily be done by choosing (xi,xj ,xl) such that (xi,xj) ∈ S
and (xi,xl) ∈ D, but one cannot always obtain pairwise constraints when relative

constraints are available (Wang et al., 2013). In other words, relative constraints

are weaker than pairwise constraints. However, human labelers may respond

inconsistently in deciding whether two objects are similar or not, but they may

all agree on comparing objects like “xi is more similar to xj than to xl,” which is

more natural for human labelers. Clearly, this relative comparison provides more

general semantic relationships between examples than the preceding binary form.

Relative or triplet constraints have been empirically demonstrated to be effective

for distance metric learning (Li et al., 2017; Nguyen et al., 2016; Parameswaran and

Weinberger, 2010). However, selecting which triplets should be used for training

turns out to be very important in order to achieve a good performance.

2.2.3. Distance-based learning algorithms

Recent years have witnessed an increasing interest in the use of supervised learning

techniques for pattern recognition. Computers have demonstrated a recognition

rate better than or comparable to human performance in several tasks, such as

visual recognition and recommendation systems (Goodfellow et al., 2016). Despite

this success, many machine learning algorithms often require embedding of data

points into some space. Algorithms such as k-NN classification and neural networks

consider the embedding space to be RD, while kernel methods such as SVMs

consider the embedding space to be a Hilbert space. In any case, the notion of

distance metric has to be carefully considered. Without any additional knowledge,

the Euclidean distance metric is often used. However, learning a good distance

metric that fits the data well can provide a promising solution to increase the

performance of distance-based algorithms. Below we describe in detail the role of

distance metric in several classic machine learning algorithms.

k-nearest-neighbor classification

In pattern recognition, the k-nearest-neighbor (k-NN) algorithm (Cover and Hart,

1967) is among the simplest and most popular classifiers. It is a non-parametric

method and does not make any assumption about the data distribution. Essentially,

the k-NN classification rule assigns a test example to the majority class label of

its k nearest neighbors. In the simple case of k = 1, it just assigns the class label

21

Chapter 2. Preliminaries

of its nearest neighbor. According to Cover (1968), the k-NN classifier has an

asymptotic error rate that converges to the Bayes error rate as k →∞ and k/n→ 0,

where n is the number of training examples. We refer to Mclachlan (2004) for a

more detailed discussion of k-NN classification. Despite its simplicity, the k-NN

classifier is well suited for multi-class classification problems with a large number

of training examples, which are relatively common in many pattern recognition

applications.

Given a training set {(x1, y1), . . . , (xn, yn)}, we first define r(x, j) as a function

that returns the index of the j-th nearest neighbor of an example x in the training

set, which is defined by

r(x, j) =


argmin
i=1,...,n

d(x,xi) if j = 1;

argmin
i=1,...,n

d(x,xi) and i /∈ {r(x, 1), . . . , r(x, j − 1)} otherwise,

where d denotes the distance metric defined on X . Then, the posterior distribution

of a given example is defined as

p(y|x) =

∑
x′∈V(x)Jy

′ = yK
k

,

where V(x) is the set of k nearest examples of x and J.K is an indicator function

that takes value 1 if its argument is true, and value 0 otherwise. Following the

decision rule of maximum a posteriori (MAP), an example is classified into the

most common class among its k nearest neighbors.

k-means clustering

Clustering is an important task in pattern recognition for data analysis. Among

various clustering techniques, k-means clustering (Lloyd, 1982) is one of the most

popular and most efficient techniques for general clustering tasks. The goal

is to partition a set of examples into disjoint clusters based on some notion

of (dis)similarity, such that related examples belong to the same cluster, while

unrelated examples belong to different clusters (Huang et al., 2014).

Given a set of n examples {x1, . . . ,xn}, the goal of k-means clustering is to

find an assignment of these examples into k disjoint sets, which leads to a minimal

sum of squared distances between the examples and their corresponding cluster

center. Let Z = [z1, . . . , zk] ∈ RD×k be k center vectors and Y ∈ {0, 1}k×n denote

the assignment matrix where Yc,i = 1 if example xi belongs to the c-th cluster,

otherwise Yc,i = 0. Following Peng and Wei (2007), the objective of k-means

22

§2.2. Distance metric learning

clustering can be formulated as

minimize
Y,Z

∑n
i=1

∑k
c=1 Yc,i d

2(xi, zc)

subject to Y ∈ {0, 1}k×n ,
rank(Y) = k ,

Y>1 = 1 ,

Z ∈ RD×k .

(2.3)

This problem is a mixed integer program with a nonlinear objective function, which

is NP-hard (Aloise et al., 2009). This is due to the fact that the constraints are

discrete and the objective function is nonconvex and nonlinear, making the problem

very challenging.

Learning with kernels

Kernel learning algorithms typically attempt to learn a kernel matrix over the

data (Abbasnejad et al., 2012). A nonlinear kernel can address limitations of

linear methods by implicitly mapping the nonlinearly-distributed data to a high-

dimensional feature space (Schölkopf and Smola, 2001). By formulating kernel

learning as a distance metric learning problem, one can learn the kernel matrix

without any assumption on the form of the kernel that implicitly generated it (Jain

et al., 2012). Thus, the resulting kernel matrix can generalize well to unseen

examples.

Consider a mapping φ from the input space X into a high-dimensional space

(the so-called Reproducing Kernel Hilbert Space) F , i.e. φ : X → F . Note that the

dimensionality of F can be very high or even infinite. In such case, it becomes

hard to learn directly from the feature space due to the computational bottleneck.

To this end, kernel methods implicitly perform φ by replacing the inner product

with a positive semidefinite function K(xi,xj) = 〈φ(xi), φ(xj)〉. Therefore, they

do not necessarily compute the new representations. Several kernel functions, such

as polynomials, χ2, and exponential χ2 kernel functions, have been successfully

employed (see Schölkopf and Smola, 2001, for more examples of kernel functions).

In the context of distance metric learning, the Gaussian kernel is one of the most

often used kernel functions, given by

K(xi,xj) = exp

(
−d

2(xi,xj)

σ2

)
with σ the kernel width. In this case, one can learn a better representation in

order to improve the performance of kernel methods (Weinberger and Tesauro,

2007).

23

Chapter 2. Preliminaries

2.3. Why should we care about distance metric

learning?

Distance metric learning has become a field in itself in the machine learning

community. It has gained popularity in the last decades and has been the main topic

of several workshops at leading conferences such as NIPS, ICML, and ECML/PKDD.

Interested readers may refer to the surveys, such as Kulis (2012) and Bellet et al.

(2015), for further details on this topic. Below, we briefly highlight some of the

most important applications using distance metric learning.

2.3.1. Information retrieval

Ranking is a central problem in information retrieval. The goal is to provide the

user with a ranking containing the most relevant documents according to his/her

query. Given a good distance metric, a straightforward solution is achieved by

sorting the training set by increasing the distance from the query, in which relevant

documents are at the front of the list, while irrelevant documents are at the end.

Distance metric learning can be viewed as a special case of the query-by-example

paradigm in information retrieval. Many advances have been made in recent years

to improve the distance metric used for ranking (Lebanon, 2006; Lee et al., 2008;

McFee and Lanckriet, 2010; Lim et al., 2013; Paisitkriangkrai et al., 2015).

2.3.2. Computer vision

Computer vision is the most successful domain for distance metric learning. In

image classification, it involves learning an appropriate distance metric, and then

applying a simple nearest-neighbor classifier to tag new images (Frome et al.,

2007b; Hoi et al., 2006). The distance between images of the same category should

be less than the distance between images of different categories. In person re-

identification, given an image of a person, the main task is to identify the person

from images taken at a different location and/or from a different viewpoint across

non-overlapping cameras. It is important to remark that when a person disappears

from one camera, he/she can be recognized from other cameras. Distance metric

learning can implicitly suppress those cross-view variations between images (Hirzer

et al., 2012b; Köstinger et al., 2012). This is motivated by the fact that standard

distance metrics, such as the Euclidean and Manhattan distance metrics, are not

reliable and flexible enough because they usually assume that all features are

from the same domain with the same scale. Consequently, they become more

sensitive to irrelevant features and fail to preserve the geometric characteristics

of the data (Nguyen et al., 2017c). Moreover, distance metric learning has been

applied in face recognition (Guillaumin et al., 2009), visual tracking (Jiang et al.,

24

§2.3. Why should we care about distance metric learning?

2012), human activity recognition (Tran and Sorokin, 2008), and human body pose

estimation (Kulis et al., 2009b).

2.3.3. Dimensionality reduction

High-dimensional data arise in many important data mining applications, such

as mining texts, sounds, images, gene expression profiles, fMRI data, etc. These

application domains share the important property that examples are described by

thousands of features. It is well known that the performance of many machine

learning algorithms degrades as the number of features grows. This is often

referred to as the curse of dimensionality. Concretely, when working with high-

dimensional data sets, we might encounter some difficulties, such as the empty space

phenomenon, concentration of distances, or the peaking phenomenon (François,

2008). The empty space phenomenon leads to poor and non-smooth approximation

of the true probability density function because of the sparsity of the input space.

Concentration of distances is the phenomenon that the distances between all

different samples are roughly equal, so it is very difficult to draw conclusions from

the data. The peaking phenomenon relates to the number of parameters of a model.

The parameters cannot be correctly estimated when the number of parameters

becomes large compared to the data size.

To handle such real-world data adequately, one needs to transform the high-

dimensional data into a meaningful representation of reduced dimensionality (Van

Der Maaten et al., 2009). Dimensionality reduction can alleviate the curse of

dimensionality and other undesirable properties of high-dimensional spaces. The

main idea is to learn an underlying low-dimensional space where geometric rela-

tionships (e.g., distance) between most of the observed examples are preserved.

Principal Component Analysis (PCA) (Jolliffe, 2005) and Linear Discriminant

Analysis (LDA) (Fisher, 1936) are typical examples of distance metric learning for

dimensionality reduction. Other nonlinear dimensionality reduction methods in-

clude ISOMAP (Tenenbaum et al., 2000), Locally Linear Embedding (LLE) (Roweis

and Saul, 2000), and Laplacian Eigenmap (Belkin and Niyogi, 2003).

2.3.4. Transfer learning and domain adaptation

Recent results have shown that training on one domain and then testing on

another domain often results in poor performance (Saenko et al., 2010). Transfer

learning aims at improving the ability of exploiting commonalities between different

learning tasks in order to share statistical strength and to transfer knowledge across

tasks (Pan and Yang, 2010). Once the distance metric is learned, we can use it

for other tasks as well, for which the source and target tasks are related and share

some common structure. The idea of transfer distance metric learning is to learn a

25

Chapter 2. Preliminaries

distance metric from one task and then apply it for other related tasks due to the

lack of knowledge (Zhang and Yeung, 2010; Hu et al., 2015a), e.g. the unavailability

of labeled data. In this case, we assume that source and target tasks share the same

distance metric, which captures some common structure that allows to measure the

distance between examples (Luo et al., 2014). In the related domain adaptation

setup, the distributions of source and targets are different. The idea is to learn a

transformation that maps the data from one domain to the another (Kulis et al.,

2011).

2.3.5. Bioinformatics

Problems in bioinformatics usually involve comparing sequences such as DNA,

protein or time series. Learning a good distance metric can significantly increase

the performance. In this case, structured-distance metrics such as edit-distance

metrics are often used for strings or time series (Bellet et al., 2011, 2012). DNA

microarrays measure the expression levels of a huge number of genes simultaneously,

where the goal is to classify tissue samples according to their gene expression levels.

Based on these predictions, we can diagnose and predict various genetic disorders

including cancer. The k-NN classifier using distance metric learning has shown

superior results in some cases (Xiong and Chen, 2006; Takeuchi et al., 2009). In

addition, distance metric learning algorithms have recently been applied to enzyme

search (Kato and Nagano, 2010).

2.4. Optimization techniques for distance metric

learning

Mathematical optimization plays a central role in this thesis. This section serves as

a general introduction to the optimization techniques used for learning Mahalanobis

distance metrics. As mentioned before, the Mahalanobis distance metric can be

parametrized in terms of the matrix L or the matrix M. We should take into

account the fact that L uniquely defines M, while M defines L up to rotation (which

does not affect the calculation of distances). This equivalence suggests two general

approaches for distance metric learning: one can estimate a linear transformation

matrix L or estimate a PSD matrix M. Note that in the first approach, optimization

is unconstrained, whereas in the second approach, it is necessary to enforce the

positive semidefiniteness constraint on M. Although it is usually more difficult to

solve an optimization problem with many constraints, the second approach has

certain advantages. It can lead to convex optimization problems with positive

semidefiniteness constraints. It is beneficial to work with convex optimization

problems, as they can be solved in polynomial time (Boyd and Vandenberghe, 2004).

In general, there is no universally accepted optimization technique. Depending

26

§2.4. Optimization techniques for distance metric learning

on the purpose of learning, the authors of most existing methods design their

own optimization techniques tailored to the individual methods. Below we will

discuss some of the most relevant optimization techniques used in distance metric

learning.

2.4.1. Semidefinite programming

Problem (2.2) belongs to the family of semidefinite programming problems, which

aims to minimize a linear objective function over the intersection of the cone of

PSD matrices with an affine-linear space (also called a spectrahedron). A general

semidefinite program can be expressed as

minimize
W

〈W,C〉
subject to 〈W,At〉 ≤ bt , t = 1, . . . ,m

W < 0 ,

where matrices At and scalars bt define m linear constraints. Semidefinite program-

ming can be seen as an extension of linear programming where the componentwise

inequalities between vectors are replaced by matrix inequalities. Most of semidefi-

nite programming solvers are based on primal-dual interior-point methods (Wright,

1997). Popular solvers include the Python Software for Convex Optimization

(CVXOPT) developed by Dahl and Vandenberghe (2004) and the Matlab Soft-

ware for Disciplined Convex Programming (CVX) developed by Grant and Boyd

(2014). However, general-purpose solvers usually need to calculate the Hessian

matrix, which requires a memory complexity of O(D4) and a time complexity of

O(D6.5) in the worst case. For some real-world applications, they become almost

intractable.

2.4.2. Gradient descent

Gradient descent (Cauchy, 1847) is one of the simplest iterative first-order op-

timization algorithms for unconstrained optimization problems. To find a local

minimum, gradient descent operates as follows. At the t-th iteration, it takes the

gradient (or an approximation of the gradient) ∇f of the objective function f at a

current solution Wt. Then, it steps proportional to the negative of the gradient,

i.e.,

Wt+1 = Wt − ηt∇f(Wt) ,

where ηt > 0 denotes the step size. One can choose the step size in different ways.

A simple approach is to set ηt to a small fixed number. Another approach, referred

27

Chapter 2. Preliminaries

to as line search, is to evaluate f(W − ηt∇f(Wt)) for several values of ηt and

select the one that achieves the smallest objective function value.

Since the domain of a distance metric learning problem typically is the cone of

PSD matrices, standard gradient descent cannot be trivially applied. To this end,

one can factorize the Mahalanobis matrix M as LL>, then optimize the objective

function over the matrix L instead of M. By setting the number of columns of L

to be less than the dimensions (rectangular matrices), we simultaneously perform

distance metric learning and dimentionality reduction.

As an example, consider the Neighborhood Component Analysis (NCA) model

proposed by Goldberger et al. (2005). NCA aims to optimize the expected leave-one-

out error of a stochastic nearest-neighbor classifier in the projected space induced

by M. Let us define the probability of xi being the neighbor of xj as

pij =


exp(−‖L>xi − L>xj‖2)∑
l 6=i exp(−‖L>xi − L>xl‖2)

, if i 6= j ;

0 , if i = j .

Hence, the probability that xi is correctly classified can be computed as

pi =
∑

{j|yj=yi}
pij .

NCA learns a linear transformation L by maximizing the expected number of

examples correctly classified, i.e.,

maximize
L

f(L) =

N∑
i=1

pi . (2.4)

The gradient of f can be computed as

∇f(L) = −2

N∑
i=1

pi∑
l 6=i

pilxilx
>
il −

∑
{j|yj=yi}

pijxijx
>
ij

L ,

where xil = (xi − xl)(xi − xl)
>. Given the gradient, one can easily solve prob-

lem (2.4) by directly applying gradient descent optimization techniques, such as

L-BFGS (Bertsekas, 1999).

2.4.3. Projected gradient descent

To guarantee the convexity, one might apply the projected gradient descent

method (Goldstein, 1964). Instead of applying just a gradient step, we apply a

28

§2.4. Optimization techniques for distance metric learning

gradient descent followed by an orthogonal projection onto the PSD cone as

Mt+1/2 = Mt − ηt∇f(Mt) ,

Mt+1 = argmin
A<0

∥∥∥A−Mt+1/2

∥∥∥
F
.

The following lemma helps us to compute the projection in the second step.

Lemma 2.1. Let M be a symmetric matrix in RD×D, its projection onto the cone

of PSD matrices has the closed-form solution

ΠS+(M) =
∑
i:λi>0

λiuiu
>
i ,

where (λi,ui) is the i-th pair of eigenvalue and eigenvector of M.

Proof. The proof can be found in (Boyd and Vandenberghe, 2004).

Similarly to gradient descent, it turns out that one should carefully select the

step size in order to guarantee the convergence of projected gradient descent.

Due to its simplicity and effectiveness, projected gradient descent has been

widely used in the distance metric learning literature. As an example, consider

the large-margin nearest neighbor (LMNN) model introduced by (Weinberger and

Saul, 2009). The authors aim to learn a Mahalanobis distance metric for k-NN

classification by exploiting the local structure of the data. LMNN does not make

any assumption about the distribution of the data, making it one of the most widely-

used distance metric learning methods (Torresani and Lee, 2007; Parameswaran

and Weinberger, 2010; Nguyen et al., 2017b). The goal is to learn a distance metric

under which each training example has k nearest neighbors that share the same

class label (i.e., target neighbors), while pushing away those examples with different

class labels (i.e., impostors). Finally, the problem is formulated as an instance of

semidefinite programming

minimize
M<0

(1− µ)
∑

(xi,xj)∈S
d2

M(xi,xj) + µ
∑

(xi,xj ,xl)∈R

[
1 + d2

M(xi,xj)− d2
M(xi,xl)

]
+

where S denotes the set of pairwise constraints for minimizing the distance between

xi and its target neighbors, R denotes the set of triplet constraints for reducing

the number of impostors, and µ ∈ [0, 1] denotes the regularization hyperparameter.

The authors developed a special-purpose solver based on projected subgradient

descent to make LMNN more practical on large-scale problems. Although LMNN

performs well in practice, it is sensitive to the way of selecting the target neighbors

and cannot be applied to high-dimensional problems.

29

Chapter 2. Preliminaries

2.4.4. Stochastic gradient descent

One practical difficulty with gradient descent is that computing the gradient can be

costly, especially when the number of examples is large. To make the gradient-based

optimization technique tractable for large-scale problems, one should take into

account not only the number of iterations, but also the computational cost of

each iteration. Stochastic gradient descent (Bottou, 1991) provides a way to avoid

the full-gradient computation by considering only a single loss term at a time,

i.e., it minimizes the empirical loss based on one constraint or a small subset of

constraints (mini-batch). By randomly choosing an example at each iteration,

stochastic gradient descent can directly optimize the expected loss and remove the

time complexity dependency on the size of problem.

In particular, one can rewrite the objective function in (2.2) as

f(W) =
1

|R|

|R|∑
i=1

`(W, ri) ,

where `(W, ri) denotes the loss function penalizing the violation of one constraint

ri ∈ R. Instead of computing the gradient of f(W) exactly, stochastic gradient

descent estimates this gradient based on the gradient of `(W, ri). At the t-th

iteration, it operates as follows

Wt+1 = Wt − ηt∇`(Wt, ri) .

Although stochastic gradient descent has been successfully applied to speed up

training time, it can still be computationally expensive when learning a Mahalanobis

matrix because the solutions need to lie within the cone of PSD matrices.

There have been a few attempts to make stochastic gradient descent more

practical in the context of distance metric learning. As an example, Qian et al.

(2015a) introduced an approach to reduce the number of updates in stochastic

gradient descent in order to improve the computational efficiency. More specifically,

it computes the gradient ∇`(Wt, ri) and samples a binary random variable with a

probability

p(Zt = 1) = |`(Wt, ri)| .

The distance metric is only updated when Zt = 1. Note that constraints with a

large loss will have a high chance to be used for updating the distance metric.

30

§2.4. Optimization techniques for distance metric learning

2.4.5. Frank-Wolfe algorithms

The Frank-Wolfe algorithm was firstly developed by Frank and Wolfe (1956). In

literature, it is also known as the conditional gradient algorithm or the reduced

gradient algorithm. The Frank-Wolfe algorithm is an iterative procedure to mini-

mize a convex and continuously differentiable function over a compact and convex

set. At the current solution Wt, the algorithm considers the linearization of the

objective function f , and optimizes this linear function over the same domain,

i.e.,

A = argmin
W

f(Wt) + 〈∇f(Wt),W −Wt〉 ,

Wt+1 = (1− γt)Wt + γtA ,

where γt is the step size. It is important to note that the minimizer of this linear

function is at a vertex of the feasible domain. This helps to maintain the sparsity of

the solution. For instance, in applications of low-rank approximation, one typically

starts with a low-rank solution and increases the rank by at most one after each

step (Jaggi, 2013). The latter is in contrast with projected gradient descent, which

often starts with a high-rank solution and projects onto a low-rank space.

As an example, consider the Distance Metric Learning with Eigenvalue Op-

timization (DML-eig) model introduced by Ying and Li (2012). The authors

proposed to maximize the minimal squared distances between dissimilar examples

while keeping an upper bound for the sum of squared distances between similar

examples, i.e.,

maximize
M<0

min
(xi,xj)∈D

d2
M(xi,xj)

subject to
∑

(xi,xj)∈S d
2
M(xi,xj) ≤ 1 .

(2.5)

Adopting the authors’ notation, let Xt = (xi − xj)(xi − xj)
> and XS =

∑
t∈S Xt,

problem (2.5) can be rewritten as

maximize
M<0

min
(xi,xj)∈D

〈Xt,M〉

subject to 〈XS ,M〉 ≤ 1 .

It has been shown that the above problem is equivalent to

min
u∈∆

max
S∈P

〈∑
t∈D

utX̃t,S

〉
= min

u∈∆
λmax

(∑
t∈D

utX̃t

)
, (2.6)

where

∆ =
{

u ∈ R|D| | ut ≥ 0,
∑
t∈D

ut = 1
}
,

31

Chapter 2. Preliminaries

P =
{

S < 0 | tr(S) = 1
}
.

X̃t = X
−1/2
S XtX

−1/2
S and λmax is the maximal eigenvalue. Problem (2.6) is well

known as minimizing the maximal eigenvalue of a symmetric matrix (Overton, 1988).

To make problem (2.6) more tractable, its smoothed version was introduced

minimize
S∈P

f(S) = µ log

(∑
t∈D

exp(−〈X̃t,S〉/µ)

)
,

where µ > 0 denotes the smoothing parameter. To solve this positive semidefinite

program over the spectrahedron P, the authors use the Frank-Wolfe algorithm

extended by Hazan (2008). At each step, finding the minimizer for linear functions

is efficient because it corresponds to finding the largest singular vector of the

gradient ∇f(St), which can be approximated in O(D2) (Golub and Van Loan,

1996).

2.4.6. Bregman projection

Bregman projection refers to a family of iterative first-order algorithms developed

by Bregman (1967). The idea is to optimize an objective function by choosing

one constraint at each iteration, then performing a projection so that the chosen

constraint is satisfied. We first introduce the Bregman matrix divergence, a measure

of closeness between two matrices w.r.t. a strictly convex and differentiable function

φ,

Bφ(X,Y) = φ(X)− φ(Y)− tr
(
(X−Y)>∇φ(Y)

)
.

For instance, by setting φ(X) = ‖X‖2F , the Bregman divergence results in the

well-known squared Frobenius norm ‖X−Y‖2F . At each iteration, the Bregman

projection at a current solution Xt can be found by solving

minimize Bφ(X,Xt)

subject to tr(XAi) ≤ bi .

Note that only one constraint is involved in each iteration, making the optimization

simpler. Instead of an orthogonal projection as in projected gradient descent,

here the Bregman projection is being minimized. This optimization procedure is

repeated by cycling through all constraints. Censor and Zenios (1997) showed that

the method converges to a globally optimal solution under mild conditions.

As an example, consider the information-theoretic metric learning (ITML)

model (Davis et al., 2007). The authors have successfully integrated pairwise

constraints into a framework for learning a Mahalanobis distance metric. The idea

32

§2.4. Optimization techniques for distance metric learning

consists in minimizing the differential relative entropy between two multivariate

Gaussian distributions subject to the pairwise constraints. More specifically, it

regularizes the distance metric to be as close as possible to a given Mahalanobis

distance metric, parameterized by M0. The closeness between M and M0 is

measured using the LogDet divergence, which is defined as

LogDet(M,M0) = tr(MM−1
0)− log(det(MM−1

0))−D ,

where det denotes the determinant of the matrix. Note that the LogDet divergence

corresponds to the Bregman divergence over positive definite matrices by setting

φ(X) = log(det(X)) (see Kulis et al., 2009c). In practice, M0 is often set to be

the identity matrix, and thus, the regularization tries to keep the learned distance

metric close to the Euclidean distance metric. Finally, must-link constraints

(denoted by M) and cannot-link constraints (denoted by D) are introduced into

the optimization problem as follows

minimize
M<0

LogDet(M,M0) + λ
∑
i,j ξij

subject to ∀(xi,xj) ∈M : d2
M(xi,xj) ≤ u+ ξij ,

∀(xi,xj) ∈ D : d2
M(xi,xj) ≥ l − ξij ,

ξij ≥ 0 ,

(2.7)

where u, l ≥ 0 are threshold parameters, λ is the regularization hyper-parameter,

and ξij are slack variables. Since the LogDet divergence is finite if and only if

M is positive definite, it suggests a cheap way to satisfy the positive definiteness

constraint on M. Indeed, ITML does not need to explicitly constrain the learned

matrices to be positive definite. The Bregman projection converges to the global

minimum, and the resulting distance metric performs well in practice. However,

ITML is sensitive to the way of choosing M0, which is usually done by hand.

33

PART II

DISTANCE METRIC LEARNING

USING PAIRWISE CONSTRAINTS

35

3 Distance metric learning through

maximization of the Jeffrey divergence

In this chapter, we propose an optimization framework for distance metric

learning via linear transformations by maximizing the Jeffrey divergence between

two multivariate Gaussian distributions derived from local pairwise constraints.

In our method, the distance metric is trained on positive and negative difference

spaces, which are built from the neighborhood of each training example, so that the

local discriminative information is preserved. We show how to solve this problem

with a closed-form solution rather than using tedious optimization procedures. The

solution is easy to implement, and tractable for large-scale problems. Experimental

results are presented for both a linear and a kernelized version of the proposed

method for k-NN classification. We obtain classification accuracies superior to

the state-of-the-art distance metric learning methods in several cases while being

competitive in others.

The material of this chapter is based on the following publication:

Nguyen, B., Morell, C., and De Baets, B. (2017c). Supervised distance metric

learning through maximization of the Jeffrey divergence. Pattern Recognition,

64:215–225

3.1. Motivation

We begin by introducing a simple two-class classification problem that motivates

the key ideas in the proposed method. For this purpose, we construct a two-

dimensional data set, containing 100 positive examples and 100 negative examples

(see Fig. 3.1(a)). Both positive examples and negative examples follow a Gaussian

distribution with means µ1 = (−1.250; 0.205) and µ2 = (0.60; 0.07), respectively,

and the same covariance matrix Σ = (1.96,−0.55;−0.55, 0.16). The training

accuracy of 5-NN using the Euclidean distance metric on this data set is very

poor, only 64.0%. However, this performance can be dramatically improved by

applying a linear transformation to the original data. In particular, using our

method (as we will describe later) we obtain the linear transformation A =

(20.11,−3.02; 70.22, 0.63), and consequently, the training accuracy is increased to

97.5% (see the resulting transformed data in Fig. 3.1(b)).

The key question is how to find such a linear transformation A (or, equivalently,

the corresponding Mahalanobis matrix M). Some insights can be obtained when

carefully observing how the differences are distributed. Let us informally define

37

Chapter 3. Distance metric learning based on the Jeffrey divergence

−6 −4 −2 0 2 4
−1.5

−1

−0.5

0

0.5

1

1.5
positive
negative

(a) Before

−16 −14 −12 −10
−15

−10

−5

0

5

10

15

20
positive
negative

(b) After

Figure 3.1: A synthetic data set illustrating the poor performance of the k-NN classifier
using the Euclidean distance metric. The data set consists of 200 examples drawn from
two aligned strips, each defining a different class. The red circles denote positive examples,
whereas the blue asterisks denote negative examples. (a) data set before applying the
linear transformation, (b) data set after applying the linear transformation.

the positive (resp. negative) difference space as the set of all differences (xi − xj)

between an example xi and its nearest neighbors xj from the same (resp. different)

class (see Section 3.2 for the formal definitions). Here, we use five nearest neighbors

with the same class label and five nearest neighbors with different class labels for

each training example. Figure 3.2 shows the probability density function1 of data

belonging to the positive (Fig. 3.2(a)) and negative (Fig. 3.2(b)) difference spaces.

It allows us to see how the differences are distributed before applying the linear

transformation.

There is a slight difference between these two distributions. However, this

difference clearly reveals itself after applying the linear transformation specified by

A (see Fig. 3.3). Note that our illustration here is based on k = 5, but the same

phenomenon occurs for other values of k. This particular example suggests a way

to find such linear transformation, namely the one that maximizes the difference

between these two distributions. The intuition is based on a two-class classification

problem, however, it can be also used for multi-class classification problems since

the difference spaces are built independently for any number of classes. In the

rest of this chapter, we develop this idea. In short, our main contributions are the

following.

(i) We propose a novel distance metric learning method aimed at finding a

linear transformation that maximizes the Jeffrey divergence between two

multivariate Gaussian distributions derived from local pairwise constraints.

1 For illustrative purposes, we use maximum likelihood to estimate the probability density function
assuming that the data are normally distributed.

38

§3.1. Motivation

−1.5
−1

−0.5
0

0.5
1

1.5−0.4

−0.2

0

0.2

0.4

0

2

4

6

x1

x2

P

0

2

4

6

P (x1, x2)

(a) Positive difference space

−1.5
−1

−0.5
0

0.5
1

1.5−0.4

−0.2

0

0.2

0.4

0

2

4

6

8

x1

x2

P

0

2

4

P (x1, x2)

(b) Negative difference space

Figure 3.2: Visualization of the probability density functions of the difference spaces
before applying the linear transformation.

−6
−4

−2
0

2
4

6
−4

−2

0

2

4

0

5 · 10−2

0.1

0.15

0.2

x1

x2

P

0

0.1

0.2

P (x1, x2)

(a) Positive difference space

−6
−4

−2
0

2
4

6
−4

−2

0

2

4

0

5 · 10−2

0.1

0.15

0.2

x1

x2

P

0

1

2

3

·10−2
P (x1, x2)

(b) Negative difference space

Figure 3.3: Visualization of the probability density functions of the difference spaces
after applying the linear transformation.

We formulate this task as an unconstrained optimization problem and show

that it can be solved analytically (Subsection 3.3.1).

(ii) While the proposed method is limited to learn a global linear transformation,

we extend it into a kernelized version to tackle nonlinear problems. We show

that the kernelized version of the proposed method is more efficient and highly

flexible by using the “kernel trick” (Subsection 3.3.2).

(iii) The resulting distance metric, when used in conjunction with k-NN, leads

to significant improvements in the classification accuracy. We provide an

extensive experimental validation to support this claim (Section 3.5). Several

state-of-the-art distance metric learning methods (Section 3.4) have been

used for a fair comparison.

39

Chapter 3. Distance metric learning based on the Jeffrey divergence

3.2. Definitions

We first introduce some definitions in order to develop our proposal.

Definition 3.1 (k-positive neighborhood). Let k ∈ N such that k ≥ 1. The

k-positive neighborhood of xi ∈ X is the set V+
k (xi) consisting of the k nearest

neighbors of xi in the input space X \ {xi}, whose class label is equal to yi.

Definition 3.2 (k-negative neighborhood). Let k ∈ N such that k ≥ 1. The

k-negative neighborhood of xi ∈ X is the set V−k (xi) consisting of the k nearest

neighbors of xi in the input space X , whose class label is not equal to yi.

The set of all possible differences for any example xi and its k-positive neighbor-

hood is called the k-positive difference space. The set of all possible differences for

any example xi and its k-negative neighborhood is called the k-negative difference

space. They are formally defined hereafter.

Definition 3.3 (k-positive difference space). The k-positive difference space is the

following set:

S =
{

xi − xj | xi ∈ X and xj ∈ V+
k (xi)

}
.

Definition 3.4 (k-negative difference space). The k-negative difference space is

the following set:

D =
{

xi − xj | xi ∈ X and xj ∈ V−k (xi)
}
.

3.3. Proposed method

Motivated by the toy example above, the proposed method is based on learning

a linear transformation that maximizes the difference between the probability

distribution on the positive difference space and that on the negative difference

space. Such difference is often measured by the well-known Kullback-Leibler diver-

gence (Kullback and Leibler, 1951), which is widely used in many machine learning

applications, such as information retrieval (Bigi et al., 2000), text categoriza-

tion (Bigi, 2003), particularly in the classification of multimedia data with support

vector machines (Moreno et al., 2004). In the distance metric learning context, the

Kullback-Leibler divergence was introduced by Davis et al. (2007) in ITML and

later it was motivated in several other distance metric learning methods (Qi et al.,

2009; Jain et al., 2009; Mei et al., 2014; Globerson and Roweis, 2006). Since the

Kullback-Leibler divergence can yield substantially different values by changing

the order of its arguments, in this work we use the symmetric Kullback-Leibler

divergence (also called Jeffrey divergence).

40

§3.3. Proposed method

3.3.1. Problem formulation

Let P denote the distribution of the differences in the positive difference space and

let Q denote the distribution of the differences in the negative difference space. We

assume that P and Q are multivariate Gaussian distributions with zero mean2 and

covariance matrices ΣS and ΣD, respectively. As described by Duda et al. (2012),

linear combinations of jointly normally distributed random variables are normally

distributed, even if the variables are not independent. Suppose we perform a linear

transformation x′ = A>x, then the transformed distributions PA and QA have

zero mean and covariance matrices A>ΣSA and A>ΣDA, respectively. Our goal

is to find the linear transformation that maximizes the Jeffrey divergence between

PA and QA:

argmax
A∈RD×m

f(A) = KL(PA, QA) + KL(QA, PA) . (3.1)

As shown in A.1, the Jeffrey divergence between PA and QA can be calculated

as:

f(A) =
1

2
tr
(

(A>ΣSA)−1(A>ΣDA) + (A>ΣDA)−1(A>ΣSA)
)
−m.

Since the parameter m in f(A) is constant, we can simplify problem (3.1) to:

argmax
A∈RD×m

J(A) = tr
(

(A>ΣSA)−1(A>ΣDA) + (A>ΣDA)−1(A>ΣSA)
)
. (3.2)

Taking the derivative of J(A) with respect to A, by using (Petersen and Pedersen,

2012, Eq. (2.4.4)), we obtain

∂

∂A
J(A)

= −2ΣSA(A>ΣSA)−1A>ΣDA(A>ΣSA)−1 + 2ΣDA(A>ΣSA)−1

− 2ΣDA(A>ΣDA)−1A>ΣSA(A>ΣDA)−1 + 2ΣSA(A>ΣDA)−1

=
(
2ΣDAΣ−1

2S − 2ΣSAΣ−1
2SΣ2DΣ−1

2S
)︸ ︷︷ ︸

first term

+
(
2ΣSAΣ−1

2D − 2ΣDAΣ−1
2DΣ2SΣ

−1
2D
)︸ ︷︷ ︸

second term

,

where Σ2S = A>ΣSA and Σ2D = A>ΣDA. The optimal matrix A should satisfy

∂J(A)/∂A = 0. Although it seems very complex to solve ∂J(A)/∂A = 0 for A,

the first and second terms can be made zero separately as follows. For the first

2 In machine learning, Gaussian distributions are widely used to model continuous random variables
as they incorporate the least amount of prior knowledge into a model (Goodfellow et al., 2016).
In practice, if an example xi belongs to the neighborhood of an example xj , then xj usually
belongs to the neighborhood of xi as well. As a consequence, in practice, the distributions will be
symmetric with zero mean.

41

Chapter 3. Distance metric learning based on the Jeffrey divergence

term, it should hold

Σ−1
S ΣDA = AΣ−1

2SΣ2D . (3.3)

For the second term, it should hold

Σ−1
D ΣSA = AΣ−1

2DΣ2S . (3.4)

Before solving these problems, we would like to introduce a theorem, which will

help us to find the solution to these problems.

Theorem 3.1. Let A ∈ RD×m be a matrix of m linearly independent eigenvectors

of Σ−1
1 Σ2. Then it holds that

Σ−1
1 Σ2A = A(A>Σ1A)−1(A>Σ2A) .

Proof. Let D ∈ Rm×m be the diagonal matrix containing the corresponding m

eigenvalues of Σ−1
1 Σ2, then it holds by definition

Σ−1
1 Σ2A = AD . (3.5)

Multiplying both sides of Eq. (3.5) by the matrix A>Σ1 yields

A>Σ2A = A>Σ1AD ,

or, equivalently,

(A>Σ1A)−1(A>Σ2A) = D . (3.6)

Multiplying both sides of Eq. (3.6) by A yields

A(A>Σ1A)−1(A>Σ2A) = AD . (3.7)

Substituting (3.5) into (3.7) leads to

Σ−1
1 Σ2A = A(A>Σ1A)−1(A>Σ2A) .

This concludes the proof.

Consequently, we have the following corollary.

Corollary 3.1. Let A ∈ RD×m be a matrix of m linearly independent eigenvectors

of Σ−1
1 Σ2 and D ∈ Rm×m be the diagonal matrix containing the corresponding m

eigenvalues. Then it holds that

tr
(

(A>Σ1A)−1(A>Σ2A)
)

= tr(D) .

42

§3.3. Proposed method

Proof. By definition, it holds that

Σ−1
1 Σ2A = AD . (3.8)

Substituting Σ−1
1 Σ2A = A(A>Σ1A)−1(A>Σ2A) into Eq. (3.8) leads to

A(A>Σ1A)−1(A>Σ2A) = AD . (3.9)

Multiplying both sides of Eq. (3.9) by A> yields

(A>Σ1A)−1(A>Σ2A) = D ,

and hence

tr
(

(A>Σ1A)−1(A>Σ2A)
)

= tr(D) .

We conclude the proof.

Note that Theorem 3.1 and Corollary 3.1 hold even when some eigenvalues

are zero. In order to satisfy Eqs. (3.3) and (3.4) simultaneously, according to

Theorem 3.1, A can be a matrix of eigenvectors of both Σ−1
S ΣD and Σ−1

D ΣS ,

because the latter two share the same eigenvectors and their diagonal matrices of

corresponding eigenvalues are Λ and Λ−1 as they are related by (Σ−1
S ΣD)−1 =

Σ−1
D ΣS . Therefore, by selecting m linearly independent eigenvectors of Σ−1

S ΣD, we

satisfy both equations simultaneously and consequently it holds that ∂J(A)/∂A =

0. According to Corollary 3.1, the value of J(A) is:

J(A) = tr
(

(A>ΣSA)−1(A>ΣDA) + (A>ΣDA)−1(A>ΣSA)
)

= tr
(

(A>ΣSA)−1(A>ΣDA)
)

+ tr
(

(A>ΣDA)−1(A>ΣSA)
)

= tr(Λ) + tr(Λ−1)

=

m∑
i=1

(
λi +

1

λi

)
.

In order to maximize J(A), we must select the m linearly independent eigenvectors

of Σ−1
S ΣD corresponding to the m largest values of (λi + 1/λi). The eigenvalue λi

of Σ−1
S ΣD can be found by solving the equation

ΣDwi = λiΣSwi ,

where wi is the corresponding eigenvector. It is also known as a generalized

eigenvalue problem. Note that we might select the target dimensionality m using a

validation set (subset of the training set) to find the dimensionality that realizes

the best performance.

43

Chapter 3. Distance metric learning based on the Jeffrey divergence

As shown in (Fukunaga, 1990), each eigenvalue λi of Σ−1
S ΣD represents the

ratio between the variances of Q and P along its corresponding eigenvector wi.

Let ωSi be the variance of P and let ωDi be the variance of Q along wi. When

these variances are the same, λi becomes 1 and (λi + 1/λi) becomes 2, which is the

minimum value. Otherwise, when ωSi is larger or smaller than ωDi , then λi becomes

smaller or larger than 1. Consequently, (λi + 1/λi) becomes larger than 2 in any

case. This intuition yields a straightforward explanation of why our formulation

is effective in extracting features that realize significant differences between two

distributions P and Q.

Using maximum likelihood estimation, the covariance matrices ΣS and ΣD are

computed as follows:

ΣS =
1

|S|
n∑
i=1

∑
xj∈V+

k (xi)

(xi − xj)(xi − xj)
> , (3.10)

ΣD =
1

|D|
n∑
i=1

∑
xj∈V−k (xi)

(xi − xj)(xi − xj)
> . (3.11)

We refer to the proposed method as Distance Metric Learning through Maximization

of the Jeffrey divergence (DMLMJ). A simplified pseudo-code implementation of

DMLMJ is given in Algorithm 1.

Algorithm 1 DMLMJ

Input: Training set X , Y; number of neighbors k; desired dimensionality m
Output: A

1: Build the difference spaces
2: S ←

{
xi − xj | xi ∈ X and xj ∈ V+

k (xi)
}

,

3: D ←
{
xi − xj | xi ∈ X and xj ∈ V−k (xi)

}
.

4: Estimate the covariance matrices
5: ΣS ← 1

|S|
∑

ui∈S uiu
>
i ,

6: ΣD ← 1
|D|
∑

ui∈D uiu
>
i .

7: Find W and λ of Σ−1
S ΣD using the generalized eigenvalue decomposition.

8: Construct A, whose columns are the m column vectors wi ∈W corresponding
to the m largest values of (λi + 1/λi).

3.3.2. Nonlinear distance metric learning

Many real-world data sets contain nonlinearities that linear transformations are

unable to capture (He et al., 2004; Torresani and Lee, 2007). In this section, we will

derive the kernelized version of DMLMJ to tackle nonlinear problems. The idea

of kernelization is to learn a linear transformation in the nonlinear feature space

induced by a kernel function. This idea has been successfully applied in many other

44

§3.3. Proposed method

contexts, including nonlinear kernel principal component analysis (Schölkopf et al.,

1998), kernel Fisher discriminant analysis (Mika et al., 1999), and particularly in

SVMs (Schölkopf and Smola, 2001).

Let φ be a nonlinear function that maps the input space from RD into the

feature space F ,

φ : RD → F
x 7→ φ(x) .

As a result, each training example is mapped into a potentially nonlinear feature

space, in which we can perform linear transformations. Let Φ = (φ(x1), . . . , φ(xn))

be the matrix whose columns are the images of the n training examples under

φ. Given two points u and v in RD, the function that returns the inner product

between their images in F is known as the kernel function, ker(u,v) = 〈φ(u), φ(v)〉.
To find the linear transformation A in the feature space F , we aim to solve the

following problem

argmax
A∈RN×m

J(A) = tr
(

(A>ΣΦ
SA)−1(A>ΣΦ

DA) + (A>ΣΦ
DA)−1(A>ΣΦ

SA)
)
, (3.12)

where the covariance matrices ΣΦ
S and ΣΦ

D are defined as:

ΣΦ
S =

1

|S|
n∑
i=1

∑
φ(xj)∈V+

k (φ(xi))

[
φ(xi)− φ(xj)

][
φ(xi)− φ(xj)

]>
,

ΣΦ
D =

1

|D|
n∑
i=1

∑
φ(xj)∈V−k (φ(xi))

[
φ(xi)− φ(xj)

][
φ(xi)− φ(xj)

]>
.

Note that the dimensionality of F can be very high or even infinite. In such case, it

becomes hard to estimate A, ΣΦ
S and ΣΦ

D directly in the feature space due to the

increased computational complexity. Moreover, the mapping φ is usually unknown.

To overcome these problems, we use the same trick as in (Schölkopf et al., 1998)

for kernel principal component analysis. Instead of explicitly expressing the linear

transformation, we find a solution that lies in the span of all training examples.

That is, each column vector wi of A is represented as a linear combination of

training examples in F :

wi =

n∑
j=1

Bjiφ(xj) ,

where the matrix B ∈ Rn×m contains the expansion coefficients. Now, we need

to find the matrix B. Let U = Φ>ΣΦ
SΦ and V = Φ>ΣΦ

DΦ, then the objective

45

Chapter 3. Distance metric learning based on the Jeffrey divergence

function in (3.12) becomes:

J(A) = tr
(

(A>ΣΦ
SA)−1(A>ΣΦ

DA) + (A>ΣΦ
DA)−1(A>ΣΦ

SA)
)

= tr
(

(B>Φ>ΣΦ
SΦB)−1(B>Φ>ΣΦ

DΦB) + (B>Φ>ΣΦ
DΦB)−1(B>Φ>ΣΦ

SΦB)
)

= tr
(

(B>UB)−1(B>VB) + (B>VB)−1(B>UB)
)
.

Hence, problem (3.12) can be rewritten as:

argmax
B∈Rn×m

J(B) = tr
(

(B>UB)−1(B>VB) + (B>VB)−1(B>UB)
)
.

Analogously to (3.2), this problem can be solved by finding the eigenvectors of

U−1V. The maximizing solution is a matrix containing the m eigenvectors of

U−1V corresponding to the m largest values of (λi+1/λi), where λi are eigenvalues

of U−1V. We refer to this method as Kernel Distance Metric Learning through

Maximization of the Jeffrey divergence (KDMLMJ). A simplified pseudo-code

implementation of KDMLMJ is given in Algorithm 2.

Moreover, the matrices U and V can be expressed as:

U = Φ>ΣΦ
SΦ

=
1

|S|
n∑
i=1

∑
φ(xj)∈V+

k (φ(xi))

[
Φ>φ(xi)−Φ>φ(xj)

] [
Φ>φ(xi)−Φ>φ(xj)

]>

=
1

|S|
n∑
i=1

∑
φ(xj)∈V+

k (φ(xi))

[
K(xi)−K(xj)

][
K(xi)−K(xj)

]>
, (3.13)

and

V = Φ>ΣΦ
DΦ

=
1

|D|
n∑
i=1

∑
φ(xj)∈V−k (φ(xi))

[
Φ>φ(xi)−Φ>φ(xj)

] [
Φ>φ(xi)−Φ>φ(xj)

]>

=
1

|D|
n∑
i=1

∑
φ(xj)∈V−k (φ(xi))

[
K(xi)−K(xj)

][
K(xi)−K(xj)

]>
, (3.14)

where

K(u) = Φ>φ(u) =
[
〈φ(x1), φ(u)〉, . . . , 〈φ(xn), φ(u)〉

]>
=
[
ker(x1,u), . . . , ker(xn,u)

]>
.

Since U and V are expressed in terms of inner products, we can use a kernel

46

§3.3. Proposed method

function for mapping all examples and apply a kernel trick as in support vec-

tor machines (Schölkopf and Smola, 2001), or kernel principal component anal-

ysis (Schölkopf et al., 1998). Possible kernel functions are Gaussian radial basis

function kernels (RBF), ker(u,v) = exp(−‖u − v‖2/σ), or polynomial kernels,

ker(u,v) = 〈u,v〉b, for some positive constants σ ∈ R and b ∈ N, respectively (see

Schölkopf and Smola, 2001) and the references therein for other kernel func-

tions).

Finally, the Mahalanobis distance in the feature space F is computed as:

d2
M

(
φ(u), φ(v)

)
=
∥∥∥A>(φ(u)− φ(v)

)∥∥∥2

=
[
A>
(
φ(u)− φ(v)

)]> [
A>
(
φ(u)− φ(v)

)]
=
[
B>
(
Φ>φ(u)− Φ>φ(v)

)]> [
B>
(
Φ>φ(u)− Φ>φ(v)

)]
=
[
K(u)−K(v)

]>
BB>

[
K(u)−K(v)

]
.

Algorithm 2 KDMLMJ

Input: Training set X , Y ; number of neighbors k; desired dimensionality m; kernel
function ker

Output: B
1: Compute the matrix U as in (3.13) and the matrix V as in (3.14) using the

kernel function ker.
2: Find the eigenvector matrix W and the eigenvalue vector λ of U−1V using

the generalized eigenvalue decomposition.
3: Construct the matrix B, whose columns are the m column vectors wi ∈W

corresponding to the m largest values of (λi + 1/λi).

3.3.3. Regularization

To get a stable solution (λi + 1/λi), where λi are eigenvalues of Σ−1
S ΣD, the

covariance matrices ΣS and ΣD are required to be non-singular, which is clearly

not always the case. Similarly as Mika et al. (1999), we propose a regularization

technique to avoid this problem by adding some constant value α ∈]0, 1[to the

diagonal of the covariance matrix. That is, instead of using the covariance matrix

directly, we use

Σ̂ = (1− α)Σ + αI .

Essentially, it renders the covariance matrix positive definite. Therefore, we make

sure that all eigenvalues are sufficiently far from zero, and as a consequence, avoid

numerical instability in computing the inverse.

47

Chapter 3. Distance metric learning based on the Jeffrey divergence

3.3.4. Computational complexity

We analyze the computational complexity of DMLMJ. The difference spaces S
and D can be built with a time complexity of O(kn2D). Next, we compute the

covariance matrices ΣS and ΣD in Eqs. (3.10) and (3.11) with a time complexity of

O(knD2). The generalized eigenvalue decomposition for Σ−1
S ΣD can be performed

in O(D3). Summarizing, the overall time complexity for DMLMJ is O(kn2D +

knD2 +D3).

Analogously, we analyze the computational complexity of KDMLMJ. We first

compute the kernel matrix K ∈ Rn×n, where Kij = 〈φ(xi), φ(xj)〉, with a time

complexity of O(n2D). Then the Euclidean distance between xi and xj in the

feature space F can be computed in O(1) as:

d(φ(xi), φ(xj)) = ‖φ(xi)− φ(xj)‖

=
√
〈φ(xi), φ(xi)〉 − 2〈φ(xi), φ(xj)〉+ 〈φ(xj), φ(xj)〉

=
√
Kii − 2Kij +Kjj .

Therefore, we can find the positive and negative neighborhoods for each training

example with a time complexity of O(kn). The computation of the matrices U

and V in Eqs. (3.13) and (3.14) can be performed in O(kn3). The time complexity

of the generalized eigenvalue decomposition for U−1V is O(n3). Summarizing, the

overall time complexity for KDMLMJ is O(n2D + kn3).

3.4. Related work

In order to take into account the positive semidefiniteness constraint, distance metric

learning methods are mostly formulated as convex semidefinite programs. However,

standard semidefinite programming solvers (Boyd and Vandenberghe, 2004) do not

scale well when the number of examples or the dimensionality is high, due to the

expensive computational cost in each iteration. A number of methods have been

proposed to reduce this heavy computational burden. Weinberger and Saul (2009)

suggested an efficient solver based on the projected subgradient descent method,

but it requires an eigen-decomposition to preserve the positive semidefiniteness

of the solution after each iteration. To avoid this eigen-decomposition, Ying

and Li (2012) used the Frank-Wolfe method, which only requires the largest

eigenvalue and corresponding eigenvector, to learn the distance metric. A similar

solution requiring only the computation of the largest eigenvalue and corresponding

eigenvector, based on a boosting-like method, was presented by Shen et al. (2012)

to learn a linear positive combination of rank-one matrices. An alternative method

proposed by Davis et al. (2007) was based on the iterative Bregman projection,

48

§3.4. Related work

where no eigen-decomposition is required. Shi et al. (2014) formulated distance

metric learning as learning a sparse combination of positive semidefinite rank-one

matrices.

Another paradigm aims to learn a distance metric through learning a linear

transformation. Since the positive semidefiniteness constraint in this case is not

required, the optimization problem can be efficiently solved by a first-order method,

such as gradient descent. However, the problem may be no longer convex, thus

suffering from spurious local minima. Consequently, the solution will depend on

the initialization point. Some popular methods include neighborhood component

analysis (Goldberger et al., 2005), large margin component analysis (Torresani and

Lee, 2007), and multi-task low-rank metric learning (Yang et al., 2011).

Unfortunately, the above methods typically require a very large number of

iterations for large-scale problems. In practice, it is impossible to satisfy all

constraints through online learning or stochastic optimization techniques. That

is why learning a Mahalanobis distance metric for large data sets becomes a

tremendous challenge as learning is limited by computational resources.

On the other hand, eigenvalue methods have been widely used to learn linear

transformations since they only need to compute an eigen-decomposition. The

most popular methods include principal component analysis (Jolliffe, 2005) and

Fisher’s linear discriminant analysis (Fisher, 1936). These methods can also be

used in a nonlinear input space by applying the kernel trick (Schölkopf et al., 1998;

Mika et al., 1999). Bar-Hillel et al. (2005) proposed a simple and efficient method,

called relevant component analysis (RCA), for semi-supervised applications. RCA

computes the Mahalanobis distance metric as a whitening transformation of the

within chunklet covariance matrix, which is built from the pairwise similarity

constraints. Yeung and Chang (2006) extended RCA by incorporating both

similarity and dissimilarity constraints. Hoi et al. (2006) proposed discriminative

component analysis (DCA), where the objective function is based on the ratio

of determinants between the within and the discriminative chunklet covariance

matrices. A method similar to DCA was introduced in (Xiang et al., 2008) by using

the ratio of traces between the covariance matrices as objective function, requiring

an iterative method to find the linear transformation. Despite our method being

also an eigenvalue method, it differs significantly from previous methods in the

way of finding the covariance matrices as well as in the objective function. By

considering the local constraints derived from the neighborhood of each training

example, our method can significantly improve the performance of k-NN, as will

be shown next.

49

Chapter 3. Distance metric learning based on the Jeffrey divergence

3.5. Experiments

In this section, we describe some experiments to evaluate the effectiveness of

distance metric learning methods. We compare the proposed methods to the

baseline Euclidean distance metric and four state-of-the-art distance metric learning

methods, including ITML (Davis et al., 2007), LMNN (Weinberger and Saul, 2009),

DML-eig (Ying and Li, 2012) and SCML (Shi et al., 2014). First, we use 27

data sets of different sizes to evaluate the linear distance metric learning methods.

Second, we conduct an experiment to evaluate the capability of our method to

perform dimensionality reduction. Finally, we use two synthetic highly nonlinear

data sets to evaluate the kernelized version of DMLMJ.

3.5.1. Experimental settings

In order to make fair comparisons, we use the following configurations throughout

this section. All experiments are empirically tested in the context of 5-NN and they

are carried out on a PC with 4 Intel Core i5-3570 CPUs (3.40 GHz) and 8GB RAM.

We use the source codes implemented in Matlab of ITML3, LMNN4, DML-eig5

and SCML6 supplied by the authors, and tune their parameters to get the best

results. The source codes of DMLMJ and KDMLMJ are available online7. For

DMLMJ and KDMLMJ, the k-positive neighborhood and k-negative neighborhood

are all based on k = 5 (see 3.5.4 for a more detailed analysis of the influence of

the number of neighbors). The regularization parameter is set to α = 0.001. The

target dimensionality m for DMLMJ is tuned using cross-validation.

The first general trend is that the classification accuracy of k-NN using the

Euclidean distance metric is significantly improved when using the Mahalanobis

distance metric learned by DMLMJ. In general, DMLMJ performs competitively

compared with other state-of-the-art methods (Subsection 3.5.2).

The second general trend is that DMLMJ can perform distance metric learning

and dimensionality reduction simultaneously. It outperforms other distance metric

learning methods using principal component analysis (PCA) (Jolliffe, 2005) to

reduce the dimensionality. Moreover, it is an order of magnitude faster than the

competing methods (Subsection 3.5.3).

The third general trend is that KDMLMJ can perform well on highly nonlinear

data sets, whereas a simple linear transformation cannot improve the performance

of k-NN (Subsection 3.5.5).

3 http://www.cs.utexas.edu/~pjain/itml/download/itml-1.2.tar.gz
4 http://www.cse.wustl.edu/~kilian/code/files/mLMNN2.3.zip
5 http://secamlocal.ex.ac.uk/people/staff/yy267/dml-eig-copy.zip
6 http://mloss.org/media/code_archive/SCMLv1.11.zip
7 http://users.ugent.be/~bacnguye/DMLMJ.zip

50

http://www.cs.utexas.edu/~pjain/itml/download/itml-1.2.tar.gz
http://www.cse.wustl.edu/~kilian/code/files/mLMNN2.3.zip
http://secamlocal.ex.ac.uk/people/staff/yy267/dml-eig-copy.zip
http://mloss.org/media/code_archive/SCMLv1.11.zip
http://users.ugent.be/~bacnguye/DMLMJ.zip

§3.5. Experiments

3.5.2. Linear distance metric learning

We compare the linear distance metric learning methods on 27 data sets from

the Knowledge Extraction based on Evolutionary Learning (KEEL) (Triguero

et al., 2017) machine learning repository8. The information of these data sets is

summarized in Table A.1. The classification accuracies are obtained by averaging

over five runs of 10-fold cross-validation. All divisions of the data sets are randomly

split by the KEEL evaluation package. The features of these data sets are normalized

into the interval [0, 1].

Table 3.1 shows the average classification accuracies obtained by the competing

methods. On each data set, we rank the methods based on their classification

accuracy. We assign rank 1 to the method obtaining the highest accuracy, and rank

2 to the method obtaining the second higher accuracy, and so on. The average ranks

of the competing methods are listed in the last row of Table 3.1. To detect whether

there are significant differences among the results, we follow the recommendations

by Demšar (Demšar, 2006) for statistical comparisons of classifiers over multiple

data sets.

Firstly, we employ the Friedman test (Friedman, 1940) at a confidence level of

α = 0.05 to test the null hypothesis that all the distance metric learning methods

obtain the same results on average. The p-value for the Friedman test is 0.01274.

Since the p-value is less than the confidence level α, we reject the null hypothesis.

Therefore, we apply the Bonferroni-Dunn test (Dunn, 1961) to detect which

distance metric learning method performs equivalently or significantly different

from the best-ranked method (i.e., DMLMJ, which obtained the lowest rank).

The Bonferroni-Dunn test can identify significant differences between the control

method (in our case, the best-ranked method) and other methods by computing a

critical difference. Two distance metric learning methods are significantly different

in performance if their corresponding average ranks differ by at least the critical

difference:

CD = qα ×
√
nc(nc + 1)

6nt
= 2.576×

√
6× (6 + 1)

6× 27
= 1.3116 ,

where nc and nt are the number of competing methods and the number of data

sets, respectively, and qα is the critical value (Sheskin, 2007). Figure 3.4 graphically

represents the significant differences among the performances of the different

distance metric learning methods. Any distance metric learning method with rank

outside this marked area is significantly different from the control method (i.e.,

DMLMJ).

Additionally, we also apply Holm’s step-down procedure (Holm, 1979) to com-

pare the best-ranked method with the remaining methods. Table 3.2 presents

8 http://sci2s.ugr.es/keel/datasets.php

51

 http://sci2s.ugr.es/keel/data sets.php

Chapter 3. Distance metric learning based on the Jeffrey divergence

Table 3.1: Classification accuracies on the KEEL data sets.

Data set Euclidean ITML LMNN DML-eig SCML DMLMJ

APP 85.00 86.00 88.82 87.00 86.91 87.91

BAL 86.24 91.84 84.64 87.52 94.25 92.63

BAN 89.28 89.34 89.34 89.17 89.36 89.26

BUP 64.28 62.05 61.90 62.47 65.05 65.69

ION 85.17 87.17 89.75 84.90 86.33 89.75

IRI 95.33 94.67 96.00 96.67 97.33 95.33

LED 70.40 69.80 69.80 69.40 65.00 67.80

LET 95.55 95.37 96.72 84.42 96.54 97.50

MAG 83.60 83.73 83.74 83.15 84.79 84.30

MON 94.75 89.43 97.04 100.00 99.55 99.55

MOV 75.28 74.72 82.50 67.22 63.33 81.94

OPT 98.75 98.70 99.04 97.44 97.21 99.00

PAG 95.78 96.03 96.24 95.29 96.56 95.78

PHO 87.75 87.75 87.43 87.84 87.49 87.79

PIM 73.32 72.93 73.19 73.06 72.92 73.84

RIN 69.12 81.54 69.22 84.31 80.12 87.28

SAT 90.78 90.71 91.28 89.54 89.08 91.79

SEG 95.41 96.36 96.23 96.84 95.97 95.84

SON 84.52 81.69 84.05 85.05 80.19 85.05

SPA 87.77 87.91 90.08 89.82 88.04 89.39

TEX 98.49 99.29 99.89 98.98 99.58 99.51

TWO 96.99 97.08 96.97 97.54 97.09 97.28

VEH 71.75 73.77 77.89 72.81 75.89 80.97

VOW 94.85 91.82 95.35 94.65 94.04 95.45

WDB 97.01 96.83 96.30 97.36 96.48 95.95

WIN 95.49 96.67 97.78 96.63 98.86 98.33

WIS 97.09 96.80 97.10 96.96 96.67 96.51

Rank 4.167 4.056 2.944 3.648 3.574 2.611

1 2 3 4 5

CD = 1.3116

DMLMJ

LMNN

SCML DML-eig

ITML

Euclidean

Figure 3.4: Comparison of the control method against the others with the Bonferroni-
Dumn test. All methods with ranks outside the marked interval are significantly different
from the control.

52

§3.5. Experiments

the z-value, p-value, and adjusted α for the Holm test at a confidence level of

α = 0.5. According to Table 3.2, the Holm test rejects hypotheses 4 and 5 since the

corresponding p-value is less than the adjusted α. But hypotheses 1 to 3 cannot

be rejected.

The statistical results allow us to draw the following conclusions. First, DMLMJ

significantly outperforms ITML, but it only shows a slightly better behavior

compared to LMNN, DML-eig and SCML in the context of k-NN. Second, the

Mahalanobis distance metric learned by DMLMJ consistently outperforms the

Euclidean distance metric.

Table 3.2: Holm post-hoc test for the competing methods with α = 0.05.

i Method z-value p-value Holm’s adjusted α Hypothesis

5 Euclidean 3.0551 0.0023 0.0100 Rejected

4 ITML 2.8368 0.0046 0.0125 Rejected

3 DML-eig 2.0367 0.0417 0.0167 Accepted

2 SCML 1.8912 0.0586 0.0250 Accepted

1 LMNN 0.6547 0.5127 0.0500 Accepted

3.5.3. Dimensionality reduction

We compare the performance of k-NN using DMLMJ against other distance metric

learning methods using PCA as a preprocessing step to reduce the dimensionality.

The main purpose is to highlight the fact that our distance learning method with

supervised information obtains better results when the dimensionality is reduced.

Our experiment is based on the Isolet (Isolated Letter Speech Recognition) data

set (Cole and Fanty, 1990), which consists of 6238 training examples, 1559 test

examples with 617 features and 26 classes corresponding to 26 spoken letters.

The Isolet data set has been used in various distance metric learning studies such

as (McFee and Lanckriet, 2010; Parameswaran and Weinberger, 2010). More details

about the features can be found in (Cole and Fanty, 1990). Training and test sets

were predefined9. All features are continuous, real values, and scaled into the range

[−1, 1].

Figure 3.5(a) illustrates the classification accuracy of k-NN based on different

distance metric learning methods with a varying number of features. We observe

that DMLMJ performs better than other methods on this data set. When the

dimensionality is small, all methods perform poorly as a consequence of the loss

of information from the original feature space, however, DMLMJ is still much

more effective. PCA discards the valuable class label information contained in the

9 Available at https://archive.ics.uci.edu/ml/datasets/ISOLET

53

https://archive.ics.uci.edu/ml/datasets/ISOLET

Chapter 3. Distance metric learning based on the Jeffrey divergence

training set, and the projection made by PCA may intertwine the useful features

and noisy features, thus leading to the poor performance of methods based on

PCA.

20 30 40 50

70

80

90

Dimensionality

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
 (

%
)

PCA+ITML

PCA+LMNN

PCA+DML−eig

PCA+SCML

DMLMJ

(a) Accuracy

20 30 40 50

100

200

300

400

Dimensionality

T
ra

in
in

g
 t

im
e

(s
)

PCA+ITML

PCA+LMNN

PCA+DML−eig

PCA+SCML

DMLMJ

(b) Training time

Figure 3.5: Experimental results on the Isolet data set. (a) Classification accuracy vs.
dimensionality, (b) Training time vs. dimensionality

Figure 3.5(b) illustrates the training time (in seconds) of these five methods.

Clearly, our method is an order of magnitude faster than the other methods.

3.5.4. Influence of the choice of the difference spaces

In this subsection, we study the influence of the choice of the difference spaces on

the performance of DMLMJ. Since the difference spaces are built from the nearest

neighbors of each training example, it is interesting to compare the performance in

experiments using different neighborhood sizes. Let k1, k2 denote the number of

neighbors for constructing the positive and negative difference spaces, respectively.

Figure 3.6 shows the accuracy of 5-NN classification on the balance data set with

different numbers of neighbors k1 and k2. From the figure, we can see that when

k1 � k2 the classification accuracy is very low. This can be explained by the

fact that the positive neighborhoods are more likely to undergo divergence than

the negative neighborhoods, which implies that DMLMJ will extract the features

that maximize the variance between examples of the same class and minimize the

variance between examples of different classes. Consequently, the performance of

k-NN cannot be improved. On the other hand, if more examples of different classes

are considered to build the negative difference space, the classification accuracy is

significantly increased. When k1 and k2 approach 100, the difference spaces tend

54

§3.5. Experiments

to use the information from the whole data set instead of using only information

contained in the neighborhoods. In this case, DMLMJ performs similarly to other

global distance metric learning methods, such as distance metric learning for

clustering (Xing et al., 2002) and ITML (Davis et al., 2007). The performance is

relatively stable when k1 and k2 are small enough to find the local discriminative

information from the neighborhoods.

20
40

60
80

100

20
40

60
80

100
80

85

90

95

100

k1
k2

A
cc
u
ra
cy

(%
)

86
88
90
92
94

Figure 3.6: Experimental results on the balance data set. Classification accuracy of the
5-NN classifier versus the number of neighbors used for constructing the difference spaces,
where k1 denotes the number of neighbors used in the positive difference space and k2
denotes the number of neighbors used in the negative difference space.

3.5.5. Nonlinear distance metric learning

To illustrate the potential of KDMLMJ, we conduct experiments on two synthetic

two-dimensional data sets shown in Figs. 3.7(a) and 3.8(a). The first one consists

of 200 examples drawn from two concentric circles. The second one consists of 500

examples drawn from two banana-shaped distributions. All examples belonging

to the same class are shown in the same style and color. Similar experiments on

these data sets were discussed by Weinberger and Saul (2009), and by Baghshah

and Shouraki (2010b). According to the nonlinear structure in these data sets,

a linear transformation may not suffice to improve the classification accuracy of

k-NN.

In this experiment, the RBF kernel, ker(u,v) = exp(−‖u−v‖2/σ), where σ > 0

is the kernel width, is adopted for the KDMLMJ method. The parameter σ is tuned

by cross-validation on the training set considering as set of values {2−15, . . . , 23}.
For a visual representation, the data sets are plotted in the transformed space using

the nonlinear transformation learned by KDMLMJ (see Figs. 3.7(b) and 3.8(b))

55

Chapter 3. Distance metric learning based on the Jeffrey divergence

and the linear transformation learned by DMLMJ (see Figs. 3.7(c) and 3.8(c)).

Our illustration here is based on DMLMJ, but the same phenomenon occurs for

the other linear distance metric learning methods. According to Figs. 3.7 and 3.8,

KDMLMJ outperforms DMLMJ on both data sets since it is able to produce a

highly nonlinear decision boundary through the use of the kernel function.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a) Original space

414 414.5 415 415.5 416 416.5
−20

−15

−10

−5

0

5

(b) Transformed space

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(c) Transformed space

Figure 3.7: Illustration of a synthetic data set drawn from two concentric circles: (a)
original space, (b) transformed space learned by KDMLMJ using an RBF kernel, and (c)
transformed space learned by DMLMJ.

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

(a) Original space

−10 0 10 20 30
−15

−10

−5

0

5

10

15

20

25

30

(b) Transformed space

−40 −30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

(c) Transformed space

Figure 3.8: Illustration of a synthetic data set drawn from two banana-shaped distri-
butions: (a) original space, (b) transformed space learned by KDMLMJ using an RBF
kernel, and (c) transformed space learned by DMLMJ.

3.6. Conclusion

In this chapter, we have developed a novel linear transformation method for distance

metric learning. We have shown that learning a linear transformation can be

formulated as maximizing the Jeffrey divergence between two distributions derived

56

§3.6. Conclusion

from local pairwise constraints. Then we have demonstrated that this problem

is equivalent to solving a generalized eigenvalue decomposition problem with a

closed-form solution. We have also developed the kernelized version of the proposed

method to handle nonlinear data sets. The experimental results on the synthetic and

real-world data sets demonstrate that the proposed method performs competitively

compared with other state-of-the-art distance metric learning methods, while being

an order of magnitude faster in training.

57

4 Kernel-based distance metric learning

for person re-identification

Person re-identification is a fundamental task in many computer vision and

image understanding systems. Due to appearance variations from different camera

views, person re-identification still poses an important challenge. In the literature,

KISSME has already been introduced as an effective distance metric learning

method using pairwise constraints to improve the re-identification performance.

Computationally, it only requires two inverse covariance matrix estimations. How-

ever, the linear transformation induced by KISSME is not powerful enough for

more complex problems. We show that KISSME can be kernelized, resulting in

a nonlinear transformation, which is suitable for many real-world applications.

Moreover, the proposed kernel method can be used for learning distance metrics

from structured objects without having a vectorial representation. The effectiveness

of our method is validated on five publicly available data sets. To further apply

the proposed kernel method efficiently when data are collected sequentially, we

introduce a fast incremental version that learns a dissimilarity function in the

feature space without estimating the inverse covariance matrices. The experiments

show that the latter variant can obtain competitive results in a computationally

efficient manner.

The material of this chapter is based on the following publication:

Nguyen, B. and De Baets, B. (2019). Kernel distance metric learning using pairwise

constraints for person re-identification. IEEE Transactions on Image Processing,

28(2):589–600

4.1. Motivation

In recent years, the deployment of camera networks has grown exponentially in

wide-area public spaces, such as railway stations, airports, and office buildings. As

a result, many applications in person re-identification demand fast and effective

techniques that are capable of accurately searching images from video surveil-

lance (see e.g. Bedagkar-Gala and Shah, 2014, and the references therein). Given

an image of a person, the main task in person re-identification is to identify the

person from images taken at a different location and/or from a different viewpoint

across non-overlapping cameras. It is important to remark that when a person

disappears from one camera, he/she can be recognized from other cameras. A

good system should be able to keep track of a person throughout the network, i.e.

the appearances of the same person from different cameras have to be matched.

59

Chapter 4. Kernel-based distance metric learning for person re-identification

Person re-identification is a highly challenging problem, even for humans, due to the

difficulty in characterizing the appearance and computing the similarity between

images (Bedagkar-Gala and Shah, 2014; Paisitkriangkrai et al., 2015; Liao et al.,

2015). These difficulties are mainly caused by changing view angles, resolution,

lighting, occlusions, and so on. See Fig. 4.1 for an illustration of challenges in

person re-identification.

Figure 4.1: An illustration of challenges in person re-identification (from left to right):
different backgrounds, resolution, pose, view angle, lighting, partial occlusion, and similar
clothings.

In order to find the correct match for a probe image from a set of gallery images

captured by different cameras, two steps are employed. We first extract features

from both probe and gallery images using a suitable feature extraction method.

The identification results are then obtained by ranking the similarities between

the probe and gallery images. Accordingly, the re-identification performance is

measured by the top rank k matching rate, which is the percentage of probe

images with correct matches found in the top-k ranked gallery images. That is why

person re-identification can be formulated as a ranking problem (Prosser et al.,

2010). Consequently, having an effective feature representation and a good distance

metric can improve significantly the performance of re-identification (Liao et al.,

2015).

Most of the existing studies focus on extracting more relevant or informative

features that are able to discriminate different appearance patterns. A number of

effective methods have been proposed to perform feature extraction for an image,

including the scale invariant feature transform (SIFT) (Lowe, 2004), the ensemble

of local features (ELF) (Gray and Tao, 2008), local binary patterns (LBP) (Ojala

et al., 2002), Fisher vectors (LDFV) (Ma et al., 2012), and weighted histograms of

60

§4.1. Motivation

overlapping stripes (WHOS) (Lisanti et al., 2015). These handcrafted descriptors

allow to significantly improve the performance of person re-identification. However,

computing a set of representative and robust features is not always an easy task

due to cross-view variations in appearance of images. Another interesting approach

is to use a tensor representation rather than a vectorial representation for the input

data (Tao et al., 2018, 2016a). Under several realistic viewing changes, most visual

features and their combinations are neither stable nor reliable. In contrast to using

complex handcrafted features computed from the raw images, deep convolutional

neural networks (DCNNs) have been exploited to learn a set of representative

features that captures the variability of person appearance across views (Ahmed

et al., 2015; Xiao et al., 2016; Ding et al., 2015). One of the major problems with

DCNNs is that they often require the availability of a huge number of images to

obtain a model that is generalizable to data beyond the training set.

A recent trend tries to learn a good distance metric by implicitly suppressing

those cross-view variations between images (Hirzer et al., 2012b; Köstinger et al.,

2012). This is motivated by the fact that standard distance metrics, e.g. the

Euclidean or Manhattan distance metric, are not reliable and flexible enough

because they usually assume that all features are from the same domain with the

same scale. Consequently, they become more sensitive to irrelevant features and

fail to preserve the geometric characteristics of the data (Nguyen et al., 2017c). An

ideal distance metric should accurately reflect the true underlying relationships

between images, i.e. small distances for similar images and large distances for

dissimilar or unrelated images. Previous studies (Yang et al., 2016; Paisitkriangkrai

et al., 2015; Hirzer et al., 2012b; Köstinger et al., 2012; Zhao et al., 2017; Sun et al.,

2017) have shown that optimizing a distance metric can significantly improve the

performance of person re-identification.

The distance metric used may not fully reflect human judgments of dissimilarity

without additional information from the users or from the training examples, such

as class labels. One way to provide this information is through a set of constraints.

As is common in person re-identification, we describe the information in the form of

must-link and cannot-link pairwise constraints. Must-link constraints, e.g. images

of the same person, are used to specify that the two examples should be in the same

class. Cannot-link constraints, e.g. images of different persons, are used to specify

that the two examples should be in different classes. These pairwise constraints

have the following advantages that enable them to be applied in a wide range of

application domains. First, collecting fully labeled training examples is a difficult

task and also time-consuming. Particularly, annotating images with identity from

every camera is prohibitively expensive in a large camera network. Second, it is

often easier to collect pairwise relations, which are usually expressed in the form of

pairwise constraints. The pairwise relations can be obtained, for instance, through

interacting with the users by asking feedback whether two images are from the

same person or not. Unlike the general procedure of asking feedback in the form of

61

Chapter 4. Kernel-based distance metric learning for person re-identification

annotating images with exact labels, the users are not required to have experience

or prior knowledge with the data set.

Given a set of constraints, distance metric learning is mostly cast as solving

a convex optimization problem over the cone of positive semidefinite matrices.

While many efforts (Shen et al., 2012; Weinberger and Saul, 2009) have been

devoted to reduce the computational complexity of semidefinite programming, they

still require an expensive iterative optimization procedure. Based on a statistical

inference perspective, Köstinger et al. (2012) introduced a pairwise distance metric

learning approach named KISSME to avoid this computational burden. KISSME

has the advantage of being simple and obtains a good recognition rate in person

re-identification (Yang et al., 2014). One of the main problems is that KISSME may

yield rather poor estimates of covariance matrices when the number of constraints

is small, thus leading to a poor generalization ability. Several extensions (Tao

et al., 2016b, 2015) have been proposed to address this problem, however, they

are still limited to the use of a linear transformation and cannot capture the

nonlinear structure of the input space. It is also important to note that KISSME

can suffer from the curse of dimensionality in high-dimensional settings, just like

other conventional distance metric learning methods that parameterize the distance

metric by a matrix that scales quadratically with the dimensionality.

A common guiding principle for learning a distance metric from pairwise

constraints is that the distances between examples in must-link constraints should

be small, while the distances between those in cannot-link constraints should be

large. Additionally, there are also several requirements for a good distance metric

learning method: (1) it should reflect the true similarity relationships between

examples in order to generalize well to unseen examples; (2) it should be easy to

implement and to compute efficiently; (3) it should be flexible enough to handle

different learning settings and data types. Based on these considerations, this

chapter presents the following two main contributions:

(i) We propose the use of kernels for KISSME, named k-KISSME, which allows

to capture the nonlinear structure in a data set. Our method operates in the

kernel spaces, yielding a highly flexible distance metric. Compared to the

original KISSME method, k-KISSME is not only more robust, but can also

be used for naturally structured objects that have no vectorial representation.

(ii) Most of the kernel methods employ a “batch” setting, i.e. all examples need

to be available during training. Unfortunately, in applications like video

surveillance where images are collected sequentially, processing the whole

data set upon the arrival of a new pairwise constraint can be computationally

expensive. To alleviate this computational burden, we present an incremental

update strategy for k-KISSME.

In the next section, we briefly review some of the most relevant works on person

re-identification. In Section 4.3, we will revisit KISSME. Its kernel version, i.e.

62

§4.2. Related work

k-KISSME, is presented in Section 4.4. Subsequently, we show that k-KISSME

can be incrementally updated by relaxing the positive semidefiniteness constraint.

Experiments on person re-identification benchmarks are conducted in Section 4.5,

followed by some concluding remarks in Section 4.6.

4.2. Related work

In this section, we briefly review various relevant methods for learning an optimal

distance metric in supervised settings that have been successfully applied to person

re-identification tasks.

Typically, the supervision is induced in the form of pairwise constraints, i.e. must-

link and cannot-link constraints. In the context of face identification, Guillaumin

et al. (2009) introduced logistic discriminant metric learning (LDML), which aims

to make the distances between examples of similar pairs smaller than the distances

between those of dissimilar pairs. Based on pairwise constraints, Davis et al. (2007)

formulated distance metric learning as a LogDet optimization problem, which can

enforce the positive semidefiniteness constraint automatically to avoid the projection

onto the positive semidefinite cone. Interestingly, Hirzer et al. (2012b) showed

that relaxing the positive semidefiniteness constraint can dramatically simplify

the problem of learning a Mahalanobis distance metric while still guaranteeing

promising results. Recently, Sun et al. (2017) presented a person re-identification

framework based on distance metric learning with latent variables. Yang et al.

(2016) used only must-link constraints to learn an effective similarity function. The

method most closely related to ours is the KISSME method proposed by Köstinger

et al. (2012), which will be discussed in Section 4.3. To perform KISSME in

high-dimensional settings, Liao et al. (2015) employed the generalized Rayleigh

quotient to find a discriminant low-dimensional subspace in which to perform

the KISSME method. Tao et al. (2017) showed that the performance of the

latter can be further improved when using deep learning features in conjunction

with handcrafted features. Another extension of KISSME was proposed by Tao

et al. (2016b), including a smoothing technique to improve the estimation of the

covariance matrices. Zhao et al. (2018) considered a QR decomposition that maps

the data into a low-dimensional space and subsequently perform KISSME to learn

a robust Mahalanobis matrix in the projected space.

Triplet constraints are another common form of supervision, i.e. object xi
is more similar to object xj than to object xl. Weinberger and Saul (2009)

introduced the large-margin nearest neighbor (LMNN) method that aims to pull

target neighbors (of the same class) close together while pushing impostor neighbors

(of different classes) far apart. LMNN performs well for k-nearest-neighbor (k-

NN) classification. In order to handle the rejection case for k-NN, which is quite

common in person re-identification tasks, Dikmen et al. (2011) proposed LMNN

63

Chapter 4. Kernel-based distance metric learning for person re-identification

with rejection (LMNN-R). Similarly, Zheng et al. (2013) proposed a probabilistic

relative distance comparison (PRDC) method that maximizes the probability of

a correct-match pair having a smaller distance than that of an incorrect-match

pair.

Due to large variations in pose and illumination changes, it is unlikely that a

linear transformation induced by the Mahalanobis distance metric can discriminate

individuals satisfactorily. Instead of operating directly in the original input space,

Xiong et al. (2014) introduced the use of kernels in order to learn a distance metric

in the feature space. In doing so, we obtain a more flexible linear transformation

in the feature space, which can be applied inductively to new examples. Although

kernelized versions of various distance metric learning methods exist (Nguyen

et al., 2017c; Davis et al., 2007; Jain et al., 2012), kernelizing a distance metric

learning method is not always a trivial and straightforward task. In this chapter,

we show how to kernelize KISSME, making it more efficient and robust to person

re-identification tasks.

4.3. KISSME revisited

To motivate our approach, we briefly review KISSME as introduced in (Köstinger

et al., 2012). Let us consider the difference xi − xj between two examples xi and

xj . Consequently, two disjoint probability spaces of differences are defined, Ω0 for

differences of examples from different classes and Ω1 for those from the same class.

Let p0 and p1 denote the probability density functions of differences in Ω0 and Ω1,

respectively. A possible way to verify whether or not xi and xj belong to the same

class is through the use of a log-likelihood ratio statistic:

σ(xi,xj) = log

(
p0(xi − xj)

p1(xi − xj)

)
. (4.1)

A high value of σ(xi,xj) indicates that xi and xj likely belong to different classes.

In contrast, a low value of σ(xi,xj) indicates that xi and xj likely belong to the

same class. Assuming that the differences in Ω0 and Ω1 are normally distributed

with zero mean, Eq. (4.1) can be rewritten as

σ(xi,xj) = log

(
1

(2π)D/2|Σ0|1/2 exp
(
− 1

2 (xi − xj)
>Σ−1

0 (xi − xj)
)

1
(2π)D/2|Σ1|1/2 exp

(
− 1

2 (xi − xj)>Σ−1
1 (xi − xj)

))

=
1

2
(xi − xj)

>(Σ−1
1 −Σ−1

0)(xi − xj) + log

(|Σ1|
|Σ0|

)
,

where Σ0 and Σ1 denote the covariance matrices of p0 and p1, respectively. Note

that the zero mean assumption was also argued by Moghaddam et al. (2000) in a

similar formulation as for each sample xi−xj there always exists a sample xj −xi.

64

§4.4. Kernel distance metric learning

Since the constant terms do not affect the log-likelihood ratio statistic for use in

statistical hypothesis testing, we can simplify it to

σ(xi,xj) = (xi − xj)
>(Σ−1

1 −Σ−1
0)(xi − xj) .

Finally, learning a Mahalanobis distance metric amounts to estimating two inverse

covariance matrices, i.e. M = Σ−1
0 −Σ−1

1 , as σ and dM share very similar properties.

To guarantee that dM is a distance metric, we use instead the projection of

(Σ−1
0 −Σ−1

1) onto the cone of PSD matrices. Using maximum likelihood estimation,

the covariance matrices Σ0 and Σ1 are computed as follows

Σ0 =
1

n0

∑
(xi,xj)∈D

(xi − xj)(xi − xj)
> , (4.2)

Σ1 =
1

n1

∑
(xi,xj)∈S

(xi − xj)(xi − xj)
> , (4.3)

where n0 = |D| and n1 = |S|.
As another alternative to the use of σ(xi,xj), one may argue that a high value

of p1(xi − xj) can indicate that xi and xj likely belong to the same class and

a low value of p1(xi − xj) can indicate that xi and xj likely belong to different

classes. Accordingly, the distance metric is only parameterized by the inverse of

the covariance matrix Σ1, which is defined as the Mahalanobis distance between

an example and a normal distribution. From this point of view, KISSME can

be regarded as an extension of relevant component analysis (RCA) (Bar-Hillel

et al., 2005), a simple method for learning distance metrics using only must-link

constraints.

Although KISSME is very effective on low-dimensional data sets, it quickly

becomes intractable when increasing the number of features. This is due to the fact

that KISSME has a high memory complexity O(D2), which is prohibitive for many

applications that involve thousands of features. Besides, computing the inverse

covariance matrices is expensive and tends to be an ill-posed inverse problem as

the covariance matrices are likely to be singular in higher dimensions. Next, we

consider the idea of using kernels to overcome these limitations.

4.4. Kernel distance metric learning

In this section, we propose a nonlinear variant of KISSME. By introducing a

regularizer into the covariance matrices, our method k-KISSME becomes more

robust and stable. Moreover, to avoid recomputation of k-KISSME on the arrival

of a new constraint, which is computationally expensive, an incremental version of

k-KISSME is developed.

65

Chapter 4. Kernel-based distance metric learning for person re-identification

4.4.1. Kernel KISSME

The idea of kernel methods is to implicitly perform a nonlinear map φ from the input

space X into a high-dimensional feature space F , i.e. φ : X → F , by replacing the

inner product with an appropriate positive semidefinite function. Formally, for any

PSD kernel matrix K, there exists a nonlinear map φ such that Kij = φ(xi)
>φ(xj).

The matrix K can be computed efficiently using a kernel function K that computes

the inner product between two examples in the feature space without carrying out

the explicit map, i.e. K(xi,xj) = φ(xi)
>φ(xj). Several kernel functions, such as

polynomials, radial basis functions, and exponential χ2 kernel functions, have been

successfully used in the context of distance metric learning (Nguyen et al., 2017c;

Davis et al., 2007; Xiong et al., 2014). Motivated by the fact that kernel methods

can overcome many limitations of their linear counterpart, in this subsection, we

describe how to kernelize KISSME. Clearly, a direct computation of the inverse

covariance matrices Σ−1
0 and Σ−1

1 is not feasible since the dimensionality of F is

too high, or even infinite.

Assuming that the pairwise constraints in S and D are given, we start by

introducing some notations. Let 1i be a column vector that has the value 1 at

the i-th entry and 0 at the other entries. Let B0 (resp. B1) be an n× n diagonal

matrix whose diagonal vector contains at the i-th entry the number of constraints

in D (resp. S) of which the first element is xi, i.e.

diag(B0)i = |{j | j ∈ {1, . . . , n} and (xi,xj) ∈ D}| ,
diag(B1)i = |{j | j ∈ {1, . . . , n} and (xi,xj) ∈ S}| .

Let E0 (resp. E1) be an n × n diagonal matrix whose diagonal vector contains

at the j-th entry the number of constraints in D (resp. S) of which the second

element is xj , i.e.

diag(E0)j = |{i | i ∈ {1, . . . , n} and (xi,xj) ∈ D}| ,
diag(E1)j = |{i | i ∈ {1, . . . , n} and (xi,xj) ∈ S}| .

Let W0 (resp. W1) be an n × n matrix whose entry at the i-th row and j-th

column is 1 if (xi,xj) ∈ D (resp. (xi,xj) ∈ S), otherwise it takes value 0. Using

the preceding notations, we can rewrite the matrix Σ0 in Eq. (4.2) as

Σ0 =
1

n0

∑
(xi,xj)∈D

(
xix
>
i − xjx

>
i − xix

>
j + xjx

>
j

)
=

1

n0

∑
(xi,xj)∈D

(
X1i1

>
i X> −X1j1

>
i X> −X1i1

>
j X> + X1j1

>
j X>

)
=

1

n0
X
(
B0 −W>

0 −W0 + E0

)
X>

66

§4.4. Kernel distance metric learning

=
1

n0
XH0X

>,

where H0 = B0−W>
0 −W0 + E0. Similarly, we can rewrite the covariance matrix

Σ1 in Eq. (4.3) as

Σ1 =
1

n1
XH1X

> ,

where H1 = B1 −W>
1 −W1 + E1. Note that Σ0 and Σ1 can be singular due

to the lack of sufficient pairwise constraints. Therefore, to avoid the problem of

inverting a singular matrix, we propose the use of a regularizing term by adding

some small positive constant value ε to the diagonals of Σ0 and Σ1, i.e.

Σ̂0 = εI +
1

n0
XH0X

>, Σ̂1 = εI +
1

n1
XH1X

> . (4.4)

According to Friedman (1989), this method can obtain a more robust and stable

estimation than using maximum likelihood estimation. To evaluate the inverses

of these matrices, we consider the Kailath formula (Petersen and Pedersen, 2012)

given by

(A + BD)−1 = A−1 −A−1B(I + DA−1B)−1DA−1 . (4.5)

Applying Eq. (4.5) to the covariance matrices in (4.4), results in

Σ̂
−1

0 =
1

ε
I− 1

n0ε2
XH0

(
I +

1

n0ε
X>XH0

)−1

X> ,

Σ̂
−1

1 =
1

ε
I− 1

n1ε2
XH1

(
I +

1

n1ε
X>XH1

)−1

X> .

Finally, the difference between these two inverse covariance matrices can be com-

puted as

Σ̂
−1

1 − Σ̂
−1

0

= X

[
1

n0ε2
H0

(
I +

1

n0ε
X>XH0

)−1

− 1

n1ε2
H1

(
I +

1

n1ε
X>XH1

)−1
]

X>

= X

[
1

n0ε2
H0

(
I +

1

n0ε
KH0

)−1

− 1

n1ε2
H1

(
I +

1

n1ε
KH1

)−1
]

X>

= XCX> ,

where K = X>X denotes the n× n kernel matrix and

C =
1

n0ε2
H0

(
I +

1

n0ε
KH0

)−1

− 1

n1ε2
H1

(
I +

1

n1ε
KH1

)−1

.

67

Chapter 4. Kernel-based distance metric learning for person re-identification

It is easy to see that if Σ̂
−1

1 − Σ̂
−1

0 is a PSD matrix, then the matrix C needs to be

PSD as well. Hence, we use the projection of C onto the cone of PSD matrices, i.e.

Ĉ = ΠS+(C), to compute the squared distance between two examples xi and xj as

follows

d2
M(xi,xj) = (xi − xj)

>XĈX>(xi − xj)

= (kxi − kxj)
>Ĉ(kxi − kxj) ,

where kx = X>x. Clearly, the computations above only involve the inner products

between examples. Therefore, we can easily replace the inner product by a kernel

function to perform distance metric learning in the feature space F . The great

advantage is that the linear KISSME method is extended to nonlinear scenarios in

a straightforward way through the use of kernel tricks.

Another advantage of this kernelization is that it allows to apply KISSME

on data sets containing structured objects on which kernel functions are defined.

Since only a kernel function is required, many real-world data without an explicit

vectorial representation (e.g., sequences, trees, and general graph-structured data)

can be effectively dealt within our kernel-based framework. Several attempts have

been made to design efficient kernel functions for such data. For instance, Leslie

et al. (2002) adopted the spectrum kernel on sequences for protein sequences.

Collins and Duffy (2002) showed how a kernel function can be applied to natural

language structures. Gärtner et al. (2003), proposed kernels on labeled graphs with

arbitrary structure. As the main focus of this chapter is on person re-identification,

interested readers may refer to the survey by Gärtner (2003) for further details on

defining kernel functions for structured data.

The overall computational complexity of k-KISSME mainly depends on the

computation of the matrix C. Due to the matrix multiplications and matrix inver-

sions, this computation scales as O(n3). It is worth pointing out that k-KISSME

has an advantage for problems where the number of features is significantly larger

than the number of examples, i.e. D � n.

4.4.2. Incremental settings

In person re-identification, a learning method should be less sensitive to appearance

changes, such as varying lighting conditions, clothing, poses, and so on. It is

desirable to formulate a computationally tractable distance metric learning frame-

work in an incremental setting to address such dynamic behavior. However, to

keep the Mahalanobis matrix being PSD, we always need to employ an eigenvalue

decomposition, which is computationally expensive if this procedure has to be

carried out upon the arrival of every new pairwise constraint. Therefore, instead

of learning a Mahalanobis distance metric, we relax the positive semidefiniteness

68

§4.4. Kernel distance metric learning

constraint and focus on learning a dissimilarity function. This relaxation strategy

has already been adopted in various distance metric learning studies (Hirzer et al.,

2012b; Chechik et al., 2010). We first define the dissimilarity function and then

propose an efficient method for incrementally updating this dissimilarity function.

As the new pairwise constraint can contain new examples, which are not observed

in the training set, we also describe how to add these examples efficiently to the

training set.

A dissimilarity function

In order to compute the dissimilarity of two examples in the feature space, it is

necessary to redefine the covariance matrices. Since ε is a regularization constant,

by redefining its value we can rewrite Σ̂0 and Σ̂1 in (4.4) as follows

Σ̂0 =
1

n0
(XH0X

> + ε0I) , Σ̂1 =
1

n1
(XH1X

> + ε1I) ,

where ε0 and ε1 are small positive constants. Applying Eq. (4.5) to compute the

inverses of these covariance matrices, it yields

Σ̂
−1

0 =
n0

ε0
I− n0

ε20
XH0

(
I +

1

ε0
KH0

)−1

X> ,

Σ̂
−1

1 =
n1

ε1
I− n1

ε21
XH1

(
I +

1

ε1
KH1

)−1

X> .

Subsequently, the dissimilarity disM(xi,xj) of two examples xi and xj is defined

as

disM(xi,xj)

= (xi − xj)
>
(
Σ̂
−1

1 − Σ̂
−1

0

)
(xi − xj)

= (xi − xj)
>
[
n1

ε1
I− n1

ε21
XH1

(
I +

1

ε1
KH1

)−1

X>

−n0

ε0
I +

n0

ε20
XH0

(
I +

1

ε0
KH0

)−1

X>
]

(xi − xj)

=

(
n1

ε1
− n0

ε0

)
(x>i xi − 2x>i xj + x>j xj)

+ (kxi − kxj)
>
[
n0

ε20
H0

(
I +

1

ε0
KH0

)−1

−n1

ε21
H1

(
I +

1

ε1
KH1

)−1
]

(kxi − kxj) .

69

Chapter 4. Kernel-based distance metric learning for person re-identification

Note that disM only depends on the inner products and, therefore, it can be

learned in the feature space by applying the kernel trick. It is clear that the matrix

Σ̂
−1

1 − Σ̂
−1

0 obtained is not always PSD, consequently, the dissimilarity function

disM is not a pseudometric. However, our empirical experiments show that disM

obtains competitive results compared to dM, while being significantly faster to

compute. Next, we show how to perform an efficient update for disM upon the

arrival of a new pairwise constraint.

Updating the dissimilarity function

Incremental learning usually arises in the case that images (examples) are se-

quentially collected, which is very common in a video surveillance system. An

incremental learning system can be constructed, for instance, by adding additional

cameras, or in a more general framework, by adding more knowledge from user

interactions. It then follows that constraints are incrementally added using pairwise

combinations of the new image and the images already in the training set. The

following procedure only shows how the dissimilarity function is updated upon the

arrival of a single constraint, but it is still possible to update efficiently given a set

of constraints in a sequential manner. We consider the arrival of a new pairwise

constraint (xi,xj), which can be a must-link or a cannot-link constraint. Since

disM mainly depends on the inverses of the two covariance matrices Σ̂0 and Σ̂1,

we need to perform an update for these inverses. We will assume that (xi,xj) is a

cannot-link constraint and discuss how to update the inverse of Σ̂0. The case of a

must-link constraint (xi,xj) can be treated in a similar way.

Let us assume that xi and xj are examples in the training set, hence, the

input matrix X and the kernel matrix K remain the same, while the inverse of Σ̂0

becomes

Σ̂
−1

new =
n0 + 1

ε0
I− n0 + 1

ε20
XHnew

(
I +

1

ε0
KHnew

)−1

X>, (4.6)

where

Hnew = H0 + 1i1
>
i − 1i1

>
j − 1j1

>
i + 1j1

>
j . (4.7)

One immediately observes that the inversion of Σ̂new in Eq. (4.6) involves the

computation of

Tnew = Hnew

(
I +

1

ε0
KHnew

)−1

.

In order to compute Tnew efficiently, we will perform the update for H0 in four

steps instead of one as in Eq. (4.7). In each step, we add only a rank-one matrix

70

§4.4. Kernel distance metric learning

to H0, while keeping track of the matrix Tnew. From Eq. (4.7), it is easy to see

that H0 involves only four types of rank-one matrix update that are 1i1
>
i , −1i1

>
j ,

−1j1
>
i , and 1j1

>
j . By abuse of notation, we continue to write Hnew to denote the

matrix H0 after adding one of those rank-one matrices, i.e.

Hnew = H0 + α1a1
>
b , (4.8)

where α ∈ {−1, 1} and a, b ∈ {i, j}. At each step, we also keep track of the

matrices

Z0 = I +
1

ε0
KH0 ,

T0 = H0

(
I +

1

ε0
KH0

)−1

= H0Z
−1
0 ,

and Z−1
0 . The reason for doing so is to avoid extra computations by storing the

previous computation results in each update. Next, we will show that

Znew = I +
1

ε0
KHnew , Tnew = HnewZ−1

new, and Z−1
new

can be computed with a complexity of O(n2) instead of O(n3) as the naive method.

After each step, we set Z0 = Znew, T0 = Tnew, H0 = Hnew, and Z−1
0 = Z−1

new to

perform the next step.

We now explain how to perform the update in one step. Substituting Eq. (4.8)

into Znew gives

Znew = I +
1

ε0
KHnew = I +

1

ε0
K(H0 + α1a1

>
b)

= I +
1

ε0
KH0 +

α

ε0
K.a1

>
b = Z0 +

α

ε0
K.a1

>
b .

The modification on Znew involves only the computation of K.a1
>
b , which scales as

O(n2). In order to compute Z−1
new, we consider the Sherman-Morrison formula (Pe-

tersen and Pedersen, 2012) given by

(A + cd>)−1 = A−1 − A−1cd>A−1

1 + d>A−1c
.

Accordingly, it follows that

Z−1
new = Z−1

0 −
αZ−1

0 K.a1
>
b Z−1

0

ε0 + 1>b Z−1
0 αK.a

= Z−1
0 − uv> ,

where u = αZ−1
0 K.a/(ε0 + 1>b Z−1

0 αK.a) and v> = 1>b Z−1
0 . Note that both vectors

u and v are computed in O(n2), therefore, the computation of Z−1
new also scales as

71

Chapter 4. Kernel-based distance metric learning for person re-identification

O(n2). Consequently, Tnew can be computed in O(n2) as

Tnew = HnewZ−1
new = (H0 + α1a1

>
b)(Z−1

0 − uv>)

= T0 − (H0u)v> + α(1− 1>b u)1av
> .

So far, we have assumed that xi and xj are examples in the training set. Of

course, upon the arrival of a new pairwise constraint that is formed by new examples,

we should also add these new examples to the training set before performing the

above updates. The task now is to keep track of the matrices Z0, T0 and Z−1
0

efficiently. Next, we will explain how to perform this task after adding a new

example to the training set in O(n2).

Adding a new example

In the following, we will denote by x the newly arrived example. Without loss of

generality, assuming that x will be added at the end of the training set, the input

matrix X becomes Xnew =
(
X x

)
. It follows that the kernel matrix K and the

matrix H0 are changed to

Knew =

(
X>

x>

)(
X x

)
=

(
K X>x

x>X x>x

)
,

Hnew =

(
H0 0

0 0

)
,

where 0 is a zero matrix with the appropriate dimensions. Note that Knew and

Hnew are computed in O(n2). Consequently, we should update the matrices Z0, T0,

and Z−1
0 to make the update procedure in the previous subsection feasible.

We start by computing Znew as follows

Znew = I +
1

ε0
KnewHnew = I +

1

ε0

(
K X>x

x>X x>x

)(
H0 0

0 0

)

= I +
1

ε0

(
KH0 0

x>XH0 0

)
=

(
Z0 0

1
ε0

x>XH0 1

)
.

The modification of Znew depends only on the computation of x>XH0, which

scales as O(n2). Applying block matrix inversion (Petersen and Pedersen, 2012)

given by (
A B

D E

)−1

=

(
F−1 −A−1BG−1

−G−1DA−1 G−1

)
,

72

§4.4. Kernel distance metric learning

where F = A − BE−1D and G = E − DA−1B, we can compute Z−1
new as fol-

lows

Z−1
new =

(
Z0 0

1
ε0

x>XH0 1

)−1

=

(
Z−1

0 0

− 1
ε0

x>XH0Z
−1
0 1

)
.

This computation also scales as O(n2). Finally, Tnew can be decomposed as

Tnew = HnewZ−1
new =

(
H0 0

0 0

)(
Z−1

0 0

− 1
ε0

x>XH0Z
−1
0 1

)

=

(
H0Z

−1
0 0

0 0

)
=

(
T0 0

0 0

)
.

Finally, we set Z0 = Znew, T0 = Tnew, H0 = Hnew, Z−1
0 = Z−1

new, X = Xnew, and

K = Knew to perform the next step.

Pseudocode

To summarize the whole procedure of incorporating a new pairwise constraint

(xi,xj), a pseudocode is given in Algorithm 3. We use t ∈ {0, 1} to denote the

type of the constraint (xi,xj), i.e. t = 0 for a cannot-link constraint and t = 1 for

a must-link constraint.

Algorithm 3 Incremental update for k-KISSME

Input: A pairwise constraint (xi,xj) of type t ∈ {0, 1};
Output: The updated matrices Zt, Tt, Z−1

t , Ht, X and K;
1: for x← {xi,xj} do
2: if x /∈ X then . adding a new example
3: Insert x into X, then update K and H ;
4: Update Z0, T0, and Z−1

0 as in Subsection 4.4.2 ;
5: Update Z1, T1, and Z−1

1 as in Subsection 4.4.2 ;
6: end if
7: end for
8: for (α, a, b)← {(1, i, i), (1, j, j), (−1, i, j), (−1, j, i)} do
9: Update Zt, Tt, and Z−1

t as in Subsection 4.4.2 ;
10: Update H← H + α1a1

>
b ;

11: end for

73

Chapter 4. Kernel-based distance metric learning for person re-identification

4.5. Experiments

In this section, we evaluate the performance of our method on the task of identifying

people for five publicly available data sets from real-world surveillance video. First,

we describe the experimental settings. Then, we provide experimental results along

with discussions.

4.5.1. Experimental settings

Competing distance metric learning methods

We have implemented k-KISSME1 in Matlab in order to compare its performance

with other distance metric learning methods, including the information-theoretic

metric learning (ITML) (Davis et al., 2007), the large-margin nearest neighbor

(LMNN) (Weinberger and Saul, 2009), the original KISSME (Köstinger et al.,

2012), and the cross-view quadratic discriminant analysis (XQDA) (Liao et al.,

2015). For k-KISSME, we apply the χ2 kernel (Vedaldi and Zisserman, 2012),

given by

K(u,v) =

D∑
i=1

2uivi
ui + vi

.

Following Liao et al. (2015), the regularization parameter ε = 0.001 is chosen.

The constraints are extracted by forming all pairwise combinations of the training

examples. As the number of cannot-link constraints can be significantly larger than

that of must-link constraints, we use random subsampling to set the number of

cannot-link constraints to ten times the number of must-link constraints to prevent

very unbalanced problems.

Evaluation protocol

We adopt a single-shot experimental setting as evaluation protocol. More specifi-

cally, we randomly select all images of p persons to form the test set and the rest

to form the training set. Following the same experimental settings as used in (Liao

et al., 2015; Köstinger et al., 2012; Xiong et al., 2014), we split each data set into

two equal parts, one half for training and the other half for testing. Each test

set contains a gallery set and a probe set. We randomly select an image for each

person to form the gallery set and use the rest to form the probe set. In order to

facilitate the comparison with previously published results, the average cumulative

1 Source codes are available at
http://users.ugent.be/~bacnguye/k-KISSME.v1.0.zip

74

http://users.ugent.be/~bacnguye/k-KISSME.v1.0.zip

§4.5. Experiments

matching accuracies at rank 1, 5, 10 and 20 are reported over ten runs to evaluate

the performance of a distance metric learning method.

Feature representation

We use the local maximal occurrence representation (LOMO) recently proposed

by Liao et al. (2015) to employ feature extraction for all the distance metric learning

methods. First, a multiscale Retinex transformation (Jobson et al., 1997) is applied

for image processing, resulting in a good representation of color and lightness. Then,

LOMO applies the scale-invariant local ternary pattern method (SILTP) (Liao

et al., 2010) to avoid intensity scale changes. Specifically, it locally constructs two

scales of SILTP histograms and one HSV histogram of pixel features in a sliding

window of size 10 × 10 to address viewpoint variations while maintaining local

characteristics of a person. Finally, LOMO applies a log transform to normalize

both HSV and SILTP features to unit length and obtains a 26,960-dimensional

descriptor for each image. Due to the very high dimensionality, we project the

extracted features into a 100-dimensional subspace using principal component

analysis (PCA). In addition, we also report the performance of k-KISSME and

XQDA based on the raw LOMO features because both of them can operate in a

high-dimensional input space without reducing the dimensionality. Empirically,

we have found that the results based on the raw LOMO features and its PCA

subspace can be significantly different.

4.5.2. Experiments with re-identification benchmark data

sets

We conduct extensive experiments on five data sets, including iLIDS (Zheng et al.,

2009), CAVIAR4REID (Cheng et al., 2011), 3DPeS (Baltieri et al., 2011),

PRID450S (Roth et al., 2014), and CUHK01 (Li et al., 2013a), to validate

the effectiveness of the proposed k-KISSME method. A brief description of these

data sets is given in Table 4.1. These data sets are widely used and provide

many challenges in person re-identification, such as pose, viewpoint, background,

resolution, and so on. We report the experimental results in two groups: (1) the

performance comparison between k-KISSME and other distance metric learning

methods using the low-dimensional features, (2) the performance of k-KISSME

compared to other state-of-the-art methods. For the first group, we report the

cumulative matching rates of all the competing distance metric learning methods

based on the same 100-dimensional features using PCA. Additionally, the explicit

feature map φ(u) = û, where ûi = sign(ui)
√
|ui|, which resembles the Hellinger

kernel embedding (Vedaldi and Zisserman, 2012), is employed to turn KISSME into

a baseline nonlinear method (PCA+Helli.+KISSME) in the feature space mapped

by φ. For the second group, we report the performance of k-KISSME using the raw

75

Chapter 4. Kernel-based distance metric learning for person re-identification

Table 4.1: A brief description of the data sets used in our experiments.

Data set # individuals # images p

iLIDS 119 476 60

CAVIAR4REID 72 1,220 36

3DPeS 192 1,011 95

PRID450S 450 900 225

CUHK01 971 3,884 486

LOMO features against previously published results. A more detailed description

and evaluation for each data set are described next.

The iLIDS data set2 contains 476 images of 119 pedestrians taken from two non-

overlapping cameras at an airport. For each individual, the number of images varies

from 2 to 8. All images are normalized to the same size of 128× 48 pixels. Most

of them contain several occlusions caused by luggage and people. We randomly

choose images of 60 persons to form the test set, i.e. p = 60. The performances of

k-KISSME and XQDA using the raw LOMO features against several state-of-the-

art methods, including LATENT-re-id (Sun et al., 2017), PCCA (Mignon and Jurie,

2012), LFDA (Pedagadi et al., 2013), SVMML (Li et al., 2013b), rPCCA (Xiong

et al., 2014), kLFDA (Xiong et al., 2014), MFA (Yan et al., 2007), and DCNNs (Ding

et al., 2015), are reported in Table 4.2. As can be seen from the table, k-KISSME

consistently outperforms the recent XQDA and other state-of-the-art methods.

Even compared to the deep net proposed in (Ding et al., 2015), k-KISSME obtains

a higher matching rate for rank 5, 10, and 20. Interestingly, k-KISSME achieves a

significantly higher performance at rank 1 on PCA features.

The CAVIAR4REID data set3 contains 1,220 images of 72 persons taken from

two cameras at a shopping center in Lisbon. This data set is particularly designed

with the aim of maximizing appearance variations in resolution changes, lighting

conditions, and pose changes. There are 50 persons with both camera views and

the remaining 22 persons with one camera view. The number of images for each

individual varies from 10 to 20. Since the image sizes vary from 39× 17 to 144× 72

pixels, we normalize all images to the same size of 128 × 48 pixels in order to

extract the same set of features as is done in (Xiong et al., 2014). Table 4.3

shows the cumulative matching accuracy with p = 36 for k-KISSME and XQDA

using the raw LOMO features against several state-of-the-art methods, including

PCCA (Mignon and Jurie, 2012), LFDA (Pedagadi et al., 2013), SVMML (Li et al.,

2013b), rPCCA (Xiong et al., 2014), kLFDA (Xiong et al., 2014), MFA (Yan et al.,

2007), and RMLLC (Chen et al., 2015). We can observe that k-KISSME obtains

a competitive result compared to XQDA and outperforms other state-of-the-art

2 https://www.gov.uk/guidance/imagery-library-for-intelligent-detection-systems
3 http://www.lorisbazzani.info/caviar4reid.html

76

§4.5. Experiments

Table 4.2: The top matching rates (%) on the iLIDS data set. The best results are
highlighted in boldface.

Method Rank 1 Rank 5 Rank 10 Rank 20 Ref.

PCA+ITML 45.2 69.2 80.5 90.4 –

PCA+LMNN 43.5 66.6 77.8 88.1 –

PCA+KISSME 40.7 64.6 75.1 86.0 –

PCA+XQDA 42.2 65.7 77.2 89.2 –

PCA+Helli.+KISSME 40.8 64.7 75.5 86.2 –

PCA+k-KISSME 48.3 70.3 80.9 90.7 –

PCCA 23.0 51.1 67.0 83.3 (Xiong et al., 2014)

LFDA 32.2 56.0 68.7 81.6 (Xiong et al., 2014)

SVMML 20.8 49.1 65.4 81.7 (Xiong et al., 2014)

rPCCA 26.6 54.3 69.7 84.5 (Xiong et al., 2014)

kLFDA 36.5 64.1 76.5 88.5 (Xiong et al., 2014)

MFA 32.6 58.5 71.5 84.4 (Xiong et al., 2014)

DCNNs 52.1 68.2 78.0 88.8 (Ding et al., 2015)

LATENT-re-id 46.2 70.2 80.7 91.3 (Sun et al., 2017)

XQDA 43.5 69.9 81.8 93.3 –

k-KISSME 44.0 70.0 82.6 93.4 –

methods.

The 3DPeS data set4 contains 1,011 images of 192 individuals captured from

8 different surveillance cameras. This data set is particularly designed for people

tracking and person re-identification. The number of images for each individual

varies from 2 to 26. Since the image sizes vary from 100× 31 to 267× 176 pixels,

we normalize all images to the same size of 128× 48 pixels. Table 4.4 reports the

cumulative matching accuracy with p = 95 for k-KISSME and XQDA using the raw

LOMO features against other state-of-the-art methods, including PCCA (Mignon

and Jurie, 2012), LFDA (Pedagadi et al., 2013), SVMML (Li et al., 2013b),

rPCCA (Xiong et al., 2014), kLFDA (Xiong et al., 2014), and MFA (Yan et al.,

2007). The results show that k-KISSME achieves the best overall performance. In

particular, it achieves a recognition rate of 48.7% at rank 1.

The PRID450S data set5 contains 900 images from 450 single-shot image pairs

captured by two different surveillance cameras. It is a very challenging data set due

to different viewpoint changes, background interference, and partial occlusion. In

our experiment, each image is normalized to 128×48 pixels. Since the PRID450S is

a newly constructed data set, there are only a few results reported in the literature.

We show the cumulative matching rate with p = 225 of k-KISSME and XQDA using

4 http://imagelab.ing.unimore.it/visor/3dpes.asp
5 https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid450s/

77

Chapter 4. Kernel-based distance metric learning for person re-identification

Table 4.3: The top matching rates (%) on the CAVIAR4REID data set. The best results
are highlighted in boldface.

Method Rank 1 Rank 5 Rank 10 Rank 20 Ref.

PCA+ITML 25.3 53.6 71.7 89.6 –

PCA+LMNN 38.2 59.4 71.7 86.4 –

PCA+KISSME 44.3 72.6 85.7 96.6 –

PCA+XQDA 41.8 71.0 84.8 96.2 –

PCA+Helli.+KISSME 44.9 72.8 85.9 96.6 –

PCA+k-KISSME 46.0 74.6 86.8 96.9 –

PCCA 29.1 62.5 79.7 94.2 (Xiong et al., 2014)

LFDA 31.7 56.1 70.4 86.9 (Xiong et al., 2014)

SVMML 25.8 61.4 78.6 93.6 (Xiong et al., 2014)

rPCCA 30.4 63.6 80.4 94.5 (Xiong et al., 2014)

kLFDA 36.2 64.0 78.7 92.2 (Xiong et al., 2014)

MFA 37.7 67.2 82.1 94.6 (Xiong et al., 2014)

RMLLC 41.2 73.5 85.0 94.4 (Chen et al., 2015)

XQDA 42.3 71.8 86.0 96.0 –

k-KISSME 41.9 71.5 85.5 96.1 –

Table 4.4: The top matching rates (%) on the 3DPeS data set. The best results are
highlighted in boldface.

Method Rank 1 Rank 5 Rank 10 Rank 20 Ref.

PCA+ITML 26.8 51.3 64.9 79.7 –

PCA+LMNN 39.5 62.3 74.6 85.4 –

PCA+KISSME 45.7 69.7 79.1 88.2 –

PCA+XQDA 44.4 69.7 80.0 89.4 –

PCA+Helli.+KISSME 45.3 68.9 78.1 87.9 –

PCA+k-KISSME 45.7 69.8 79.3 88.2 –

PCCA 36.4 66.3 78.1 88.6 (Xiong et al., 2014)

LFDA 39.1 61.7 71.8 82.6 (Xiong et al., 2014)

SVMML 27.7 58.5 72.1 84.1 (Xiong et al., 2014)

rPCCA 40.4 69.5 80.5 90.0 (Xiong et al., 2014)

kLFDA 48.4 72.5 82.1 89.9 (Xiong et al., 2014)

MFA 42.3 65.3 75.2 84.8 (Xiong et al., 2014)

XQDA 46.7 70.7 81.2 91.0 –

k-KISSME 48.7 72.6 83.9 92.1 –

the raw LOMO features compared to some state-of-the-art methods, including

EIML (Hirzer et al., 2012a), SCNCN (Yang et al., 2014), ECM (Liu et al., 2015b),

78

§4.5. Experiments

Table 4.5: The top matching rates (%) on the PRID450S data set. The best results are
highlighted in boldface.

Method Rank 1 Rank 5 Rank 10 Rank 20 Ref.

PCA+ITML 30.6 60.4 73.2 85.3 –

PCA+LMNN 45.7 74.9 84.7 91.2 –

PCA+KISSME 41.6 71.3 81.1 89.4 –

PCA+XQDA 48.7 77.7 86.1 93.2 –

PCA+Helli.+KISSME 41.7 71.9 80.2 89.8 –

PCA+k-KISSME 47.4 76.4 85.0 91.9 –

EIML 35.0 – 68.0 77.0 (Yang et al., 2014)

SCNCD 41.6 68.9 79.4 87.8 (Yang et al., 2014)

ECM 41.9 66.3 76.9 84.2 (Liu et al., 2015b)

QRKISS 57.1 80.7 88.0 – (Zhao et al., 2018)

XQDA 49.6 77.6 86.3 92.4 –

k-KISSME 53.9 81.0 88.8 94.5 –

and QRKISS (Zhao et al., 2018), in Table 4.5. Clearly, k-KISSME obtains the best

performance on most of the reported ranks.

The CUHK01 data set6 contains 3,884 images of 971 pedestrians captured from

two disjoint cameras on a college campus. Each camera has taken two images of

every individual. In our experiment, all images are downsized to a resolution of

128×48 pixels to reduce the computation time. We set p = 486 in order to facilitate

the comparison with other methods. Table 4.6 shows the cumulative matching

accuracy of k-KISSME using the raw LOMO features against some state-of-the-

art methods, including kLFDA (Xiong et al., 2014), Ensembles (Paisitkriangkrai

et al., 2015), IDLA (Ahmed et al., 2015), ImpTrpLoss (Cheng et al., 2016), and

DeepRanking (Chen et al., 2016). Clearly, k-KISSME achieves the best matching

performance among the competing distance metric learning methods on the PCA

features. Despite its simplicity, k-KISSME obtains a better performance than deep

learning methods at rank 1, while being less accurate at rank 5, 10, and 20. This

result is not surprising since deep learning methods use advanced techniques such

as data augmentation (Cheng et al., 2016) and additional training data (Chen

et al., 2016) to improve the matching rate as well as to avoid overfitting.

6 http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html

79

http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html

C
h
a
p
t
e
r
4
.
K
e
r
n
e
l
-b
a
se

d
d
ist

a
n
c
e
m
e
t
r
ic

l
e
a
r
n
in
g
f
o
r
p
e
r
so

n
r
e
-id

e
n
t
if
ic
a
t
io
n

Table 4.6: The top matching rates (%) on the CUHK01 data set. The best results are highlighted in boldface.

Method Rank 1 Rank 5 Rank 10 Rank 20 Ref.

PCA+ITML 22.6 40.6 50.4 61.5 –

PCA+LMNN 42.3 61.5 70.5 79.2 –

PCA+KISSME 52.8 73.6 81.2 87.1 –

PCA+XQDA 50.6 72.4 80.5 87.3 –

PCA+Helli.+KISSME 51.9 73.8 80.9 87.6

PCA+k-KISSME 54.6 75.4 82.5 88.6 –

kLFDA 32.8 59.0 69.6 79.2 (Chen et al., 2016)

IDLA 47.5 71.5 80.0 – (Ahmed et al., 2015)

Ensembles 53.4 76.3 84.4 90.5 (Paisitkriangkrai et al., 2015)

DeepRanking 50.4 75.9 84.1 91.3 (Chen et al., 2016)

ImpTrpLoss 53.7 84.3 91.0 96.3 (Cheng et al., 2016)

XQDA 53.5 75.8 83.9 89.9 –

k-KISSME 54.3 74.2 80.5 87.0 –

8
0

§4.5. Experiments

According to the overall results, we can see that the kernelized version of

KISSME leads to significant improvements over the original KISSME. Our method

k-KISSME yields the best performance on most data sets, demonstrating a great

flexibility and accuracy for matching compared to other competing methods. It is

also interesting to note that k-KISSME consistently obtains high rank r matching

rates with small values of r. This provides important information for a person

re-identification system because the top matched images are usually verified by a

human operator (Gray et al., 2007). We also note that k-KISSME outperforms

most of the linear methods on the PCA features. The reason for this may lie in the

fact that the projection made by PCA may intertwine the useful features and the

noisy features. Consequently, the data set may be transformed into a nonlinearly

separable problem, thus making it difficult for linear methods. As commonly used

in computer vision, an explicit feature map, such as the signed square root, can

approximate nonlinear distance metric learning methods in the feature space by

linear ones. Although this approach is scalable for large data sets, the improvement

is still very limited (see the results of PCA+KISSME and PCA+Helli.+KISSME).

In contrast, k-KISSME employs the kernel trick to find a good solution in the

implicit feature space, making it more robust for complex tasks.

4.5.3. Running time

The average training times of the competing distance metric learning methods on

the low-dimensional as well as the raw LOMO features are shown in Table 4.7. The

running time is computed on a laptop with 4 Intel Core i5-5200U CPUs (2.20GHz)

and 8GB RAM. Note that the results include the time for computing the kernel

matrix. As can be seen from the table, XQDA is the least time consuming on

all these data sets, followed by KISSME. It should be noticed that k-KISSME

is significantly faster than other iterative methods such as ITML and LMNN on

small-sized data sets. The slower speed on large-sized data sets of k-KISSME is a

result of computing the kernel matrix. Further running time improvements can

be anticipated by using advanced techniques to speed up the calculation of the

kernel matrix. Although our method has mainly been implemented in MATLAB, a

careful implementation can significantly improve the real computation time. More

importantly, k-KISSME can perform efficiently on very high-dimensional data sets,

which could be computationally challenging for those methods that directly learn

a distance metric from the input space. It requires significantly less memory and a

lower training time compared to the deep neural networks. Moreover, k-KISSME

is very simple to implement, computationally efficient, and serves our main goal,

which is to develop an efficient system for person re-identification.

81

Chapter 4. Kernel-based distance metric learning for person re-identification

Table 4.7: Average training time (in seconds) of the competing distance metric learning
methods. The best results are highlighted in boldface.

Method iLIDS CAVIAR4REID 3DPeS PRID450S CUHK01

ITML 78.96 76.03 57.63 63.33 38.68

LMNN 61.23 209.54 231.41 267.51 2,908.68

KISSME 0.09 0.54 0.24 0.06 1.03

XQDA 0.03 0.02 0.08 0.05 0.33

k-KISSME 1.49 22.65 7.23 1.82 51.17

4.5.4. Experiments with dimensionality

In this subsection, we investigate how the performance of distance metric learning

methods varies with different subspace dimensions. For this purpose, we report

the matching rate at rank 1 for ITML, LMNN, KISSME, XQDA, and k-KISSME

on the iLIDS data set with different dimensions extracted by PCA (see Fig. 4.2).

We keep the same experimental settings for all the competing methods. As can be

seen from this figure, k-KISSME consistently outperforms other methods over all

the reported dimensions. We found that KISSME is very sensitive to the choice of

the number of PCA dimensions, yielding a relatively high variance over different

dimensions. This behavior was also noted by Xiong et al. (2014). Nevertheless,

we observe that XQDA and k-KISSME tend to have a more stable performance

over the different dimensions. The latter can be easily explained by the fact that

both XQDA and k-KISSME add a small regularizer to the diagonal elements of

the covariance matrices, making the estimation more smooth and robust, especially

when the dimensionality is increased.

4.5.5. Experiments with incremental learning

We further verify the efficiency and effectiveness of using the incremental update

procedure described in Subsection 4.4.2 for k-KISSME. As an illustration, we

compare k-KISSME and the method that learns a dissimilarity function (denoted

by k-KISSME (inc)) in terms of training time and rank 1 matching rate on

the CAVIAR4REID and 3DPeS data sets (see Fig. 4.3). The same experimental

settings are used. We keep on randomly adding a pairwise constraint on each

update. As we pointed out in Subsection 4.4.2, ε0 and ε1 act as hyperparameters

that can be used to adjust the regularizing terms of the covariance matrices. For

the CAVIAR4REID and 3DPeS data sets, we set the values of ε0 and ε1 to 1 and

0.05, respectively, which yield the best results in most of our experiments. Clearly,

these hyperparameters should be determined by the characteristics of the data sets

as well as the pairwise constraints.

82

§4.6. Conclusion

10 45 80 115 150
10

20

30

40

50

R
a
n
k
 1

 m
a
tc

h
in

g
 r

a
te

 (
%

)

Dimension

 ITML

 LMNN

 KISSME

 XQDA

k−KISSME

Figure 4.2: Illustration of rank 1 matching rate vs. number of dimensions on the iLIDS
data set.

As expected, using the incremental update procedure yields a significant speedup,

while obtaining a competitive performance. Like many online learning algorithms,

fluctuations in performance are mainly due to the randomness of adding constraints.

However, this incremental technique ensures that the similarity function is im-

mediately trained and will become more accurate over time as more new points

and pairwise constraints are added. The advantage of incremental k-KISSME is

particularly apparent when there is an unbounded stream of possible constraints

to learn from.

4.6. Conclusion

Person re-identification is a challenging problem in video surveillance due to the

large variations in appearance by using different cameras. To deal with this chal-

lenge, we have proposed a distance metric learning method, named k-KISSME, by

incorporating kernels into the KISSME method. This allows k-KISSME to operate

in a nonlinear feature space induced by a kernel function. As a result, k-KISSME

improves the recognition rate and could be applied in learning a distance metric

from structural objects without having a vectorial representation. Moreover, we

have also introduced a fast version for k-KISSME avoiding expensive recompu-

tations in an incremental setting. Experiments on five real-world data sets have

demonstrated the effectiveness of k-KISSME compared to other distance metric

83

_, .

· · · ~ · · · · · · · · · ·:· ·--· I

Chapter 4. Kernel-based distance metric learning for person re-identification

20 2000 4000 6000 8000 10000
0

0.4

0.8

1.2

1.6

2
x 10

4

of constraints

C
P

U
 t
im

e
 (

in
 s

e
c
)

k−KISSME (inc)

k−KISSME

20 2000 4000 6000 8000 10000
0

10

20

30

40

50

R
a

n
k
−

1
 m

a
tc

h
in

g
 r

a
te

 (
%

)

of constraints

k−KISSME (inc)

k−KISSME

(a) CAVIAR4REID

20 2000 4000 6000 8000 10000
0

0.4

0.8

1.2

1.6

2
x 10

4

of constraints

C
P

U
 t
im

e
 (

in
 s

e
c
)

k−KISSME (inc)

k−KISSME

20 2000 4000 6000 8000 10000
0

10

20

30

40

50

R
a

n
k
−

1
 m

a
tc

h
in

g
 r

a
te

 (
%

)

of constraints

k−KISSME (inc)

k−KISSME

(b) 3DPeS

Figure 4.3: Illustration of the incremental update procedure on the CAVIAR4REID
and 3DPeS data sets (left) training time (in seconds) vs. number of constraints, (right)
rank 1 matching rate vs. number of constraints.

learning methods for person re-identification tasks.

84

]::::::

........ · I± I

..... 1± ··· I

5 Case study: Learning single-cell

distances from cytometry data

Recent years have seen an increased interest in employing data analysis tech-

niques for the automated identification of cell populations in the field of cytometry.

These techniques highly depend on the use of a distance metric to measure the

similarities between single cells. Without any additional knowledge, the Euclidean

distance metric is commonly used, yielding a suboptimal solution. In this chapter,

we exploit the availability of single-cell labels to find an optimal distance metric

from the data. The usefulness of such a distance metric is discussed in various

applications. We show that current distance-based methods can be improved by

using an appropriate Mahalanobis distance metric. In particular, our approach

is illustrated for cytometry data from two different origins, i.e. flow cytometry

applied to microbial cells and mass cytometry for the analysis of human blood cells.

Experiments indicate that the resulting distance metric can significantly improve

the cell-population identification.

The material of this chapter is based on the following publication:

Nguyen, B., Rubbens, P., Kerckhof, F.-M., Boon, N., De Baets, B., and Waegeman,

W. (2019b). Learning single-cell distances from cytometry data. Cytometry Part

A, submitted

5.1. Motivation

Due to the fact that the amount of data and the number of dimensions (e.g. the size

of multicolor panel designs or the introduction of mass cytometry) are increasing in

the field of cytometry, automated data analysis techniques are becoming increasingly

popular (O’Neill et al., 2013; Brinkman et al., 2016; Saeys et al., 2016; Rahim

et al., 2018). These techniques include a number of preprocessing steps, such as

specific transformations and quality controls of the data (Finak et al., 2010; Monaco

et al., 2016). They are often followed by dimensionality reduction and clustering

techniques to visualize the data or to determine cell populations (Ge and Sealfon,

2012; Amir et al., 2013; Van Gassen et al., 2015; Levine et al., 2015). The latter

techniques usually depend on a predefined distance metric in order to measure

the distance between single cells. In most cases, a simple choice is the Euclidean

distance metric. Other distance metrics, such as the Mahalanobis distance metric,

have been considered (Pyne et al., 2009; Aghaeepour et al., 2011; Pouyan et al.,

2016), but are less popular.

85

Chapter 5. Case study: Learning single-cell distances from cytometry data

In addition, the availability of single-cell annotation has opened the door

to exploring the use of supervised or semi-supervised machine learning tech-

niques (Rubbens et al., 2017a; Lux et al., 2018). In particular, distance met-

ric learning exploits such available knowledge by learning a distance metric that

preserves similarity relationships in the data. The goal is to learn a distance

metric that results in small distances between examples of the same class and large

distances between examples of different classes. Recent developments in distance

metric learning have shown that using an appropriate distance metric can lead

to great performance for distance-based techniques (Weinberger and Saul, 2009;

Bellet et al., 2015). In addition, once the distance metric is learned, it can be

incorporated into downstream multivariate analysis techniques. Therefore, distance

metric learning is particularly appealing for experiments in which prior knowledge

such as single-cell labeling is available.

In this chapter, we perform an analysis of cytometry data using distance metric

learning. More specifically, we determine a Mahalanobis distance metric using the

Distance Metric Learning through Maximization of the Jeffrey divergence (DMLMJ)

method, which is described in Chapter 3. DMLMJ enables the quantification of

single-cell distances in a data-driven way. In order to characterize and validate the

functionality of distance metric learning for single-cell data, several experiments are

conducted for two different cytometry data sets, one generated by flow cytometry

of a synthetic microbial ecosystem and one generated by mass cytometry (CyTOF)

for human blood cells. Data are retrieved from experiments that are publicly

available. Experiments and evaluation metrics are reported per data set. Readers

are referred to the original publications for a full overview of data collection and

preprocessing. The performance of DMLMJ is compared to the baseline Euclidean

distance metric. Experiments and evaluation metrics are reported per data set. All

processed data sets, MATLAB code for DMLMJ and Python scripts can be found

at https://github.com/bacnguyencong/CytoDMLMJ.

5.2. Synthetic microbial communities

5.2.1. Data description

Data set 1: In silico bacterial communities

Data from 20 individual bacterial cultures measured through flow cytometry (FCM)

are retrieved from FlowRepository ID: FR-FCM-ZY6M (Rubbens et al., 2017b).

In brief, samples are stained with SYBR Green I and measured subsequently. Most

bacterial cultures (n = 17) are in early-to-mid stationary phase, the rest (n = 3)

still are in exponential or linear growth phase. The samples are analyzed on a 3-laser

FACSVerse flow cytometer (BD Biosciences), which contains two scatter detectors

86

https://github.com/bacnguyencong/CytoDMLMJ

§5.2. Synthetic microbial communities

(forward and side) and eight fluorescence detectors, in which the FITC-detector

(527/32 nm) is the targeted detector. Because peak area, height and width signals

are captured, the experiment results in 30 measured variables in total. All variables

are considered in DMLMJ, although only a subset of them contain biologically

relevant information (Rubbens et al., 2017b). In this way, the functionality of

DMLMJ can be evaluated, as we know that a linear transformation should discover

this information automatically. A full description of experimental details and

preprocessing can be found in Rubbens et al. (2017b). After measurement, samples

are denoised in the asinh-transformed bivariate FITC-H – PerCP-Cy5.5-H space,

using a robust digital gating strategy (Props et al., 2016). To ensure the quality of

the data, the data are additionally filtered using the automated package flowAI

(v1.4.4., default settings, target channel = FITC, changepoint detection penalty =

200) (Monaco et al., 2016). A full list of bacterial species and experimental details

can be found in Rubbens et al. (2017a,b).

Data set 2: In silico autofluorescent microbial communi-

ties

Data are collected from FlowRepository ID: FR-FCM-ZYLB (Sgier et al., 2016), in

which cyanobacterial and algal cultures are cultured and measured by FCM, using

a Beckman-Coulter Gallios flow cytometer. As these microbial populations exhibit

autofluorescence, no fluorescence staining is needed. Ten fluorescence and two

scatter detectors measure area, height and width signals from the pulse, resulting

in 36 variables in total describing the experiment. Only samples that contain more

than 500 cells per replicate are considered, resulting in 31 individual strains, which

are used for further analysis.

5.2.2. Experimental setup

Microbial communities are created in different compositions using a data-aggregation

step. In other words, cells are sampled from bacterial populations that are measured

individually and combined into artificial communities, so-called in silico communi-

ties (Rubbens et al., 2017a). The same number of cells (n = 10, 000 for the first

data set, n = 1, 000 for the second data set) are sampled for every population,

distributed over the number of technical replicates that are available. Half of the

cells are added to a training set and the other half to the test set for every in

silico community. The complexity of a community can be expressed in terms of the

observed species richness S, denoting the number of distinct microbial populations

that are combined in a community. The total number of cells in both training and

test set amounts to S × n. The following experiments are conducted for both data

sets. In silico communities are assembled for every increment of S ranging from

two to ten. Performance is evaluated in terms of classification accuracy of cells

87

Chapter 5. Case study: Learning single-cell distances from cytometry data

that are part of a held-out test set. In all cases, cells are classified according to

their phylogeny using k-NN classification based on the Euclidean distance metric or

the Mahalanobis distance metric learned by DMLMJ. Experiments are carried out

using two different settings, on the raw data and on data for which each variable is

asinh-transformed.

5.2.3. Results

A total of 90 different microbial communities were assembled by using a data-

aggregation step, creating in silico communities. Ten communities were sampled for

every increment of S = 2, ..., 10, in which S denotes the total number of microbial

populations that were present in a community. Note that these populations were

determined beforehand, and upon creation of an in silico community, a number of

these populations will overlap. The impact of the use of a learned Mahalanobis

distance metric on k-NN classification was evaluated in terms of the classification

accuracy, which denotes the fraction of correctly labeled cells according to the

phylogeny of a single cell. We compared the Mahalanobis distance metric learned by

DMLMJ to the Euclidean distance metric in the context of k-NN classification with

and without transforming with the use of asinh. The accuracy was evaluated using

a held-out test set. This was done for two different data sets, the first containing

20 bacterial populations stained with SYBR Green I, the second containing 31

microbial populations (cyanobacteria and algae) with autofluorescent properties

(see Fig. 5.1).

Using the arcsine hyperbolic function as a preprocessing step for microbial

flow cytometry data improved classification accuracy for both data sets (average

increase in accuracy was 4.1% for data set 1 and 7.9% for data set 2). Performance

increased subsequently when DMLMJ was applied on asinh-transformed data (on

average 5.4% for data set 1, 2.7% for data set 2). An increase in the number of

populations resulted in a drop in accuracy for all methods. DMLMJ was able

to boost the performance to a larger extent when applied to data that was not

transformed (average increase in accuracy now becomes 11.8% for data set 1 and

5.5% for data set 2). Note that optimizing the distance metric without transforming

the data resulted in the best performance for data set 1 (average accuracy over all

communities was 77.7%), while for data set 2 a combination of asinh and DMLMJ

resulted in the best predictions (which resulted in an average accuracy over all

communities of 88.6%). However, when using the Euclidean distance metric, the

use of asinh improved identification considerably for both data sets. A number of

variables for data set 1 did not contain biologically relevant information, which

DMLMJ was able to successfully filter out by means of a linear transformation.

We conclude that DMLMJ captured the similarity between examples of the same

phylogeny and gave rise to a linear transformation of the data resulting in an

improved classification of single cells.

88

§5.3. Mass Cytometry

2 3 4 5 6 7 8 9 10

S

40

50

60

70

80

90

100
A

c
c
u

ra
c
y

 (
%

)
raw

2 3 4 5 6 7 8 9 10

S

asinh

Method

Euclidean

DMLMJ

(a) Data set 1: In silico bacterial communities

2 3 4 5 6 7 8 9 10

S

50

60

70

80

90

100

A
c
c
u

ra
c
y

 (
%

)

raw

2 3 4 5 6 7 8 9 10

S

asinh

Method

Euclidean

DMLMJ

(b) Data set 2: In silico autofluorescent microbial communities

Figure 5.1: Classification accuracy of k-NN classification for an increasing population
richness S with and without the use of DMLMJ. Each boxplot contains the classification
accuracy for ten communities. Each box displays the 25% and 75% quartiles of the
classification accuracy, of which the whiskers extend the range to maximal 1,5 times the
interquartile range. Points that lie outside this range are visualized as outliers.

5.3. Mass Cytometry

5.3.1. Data description

Data set 1: 13-dimensional CyTOF Data

Data originate from one healthy individual, in which bone marrow mast cells

(BMMCs) were analyzed using a 13-color panel. Cell populations were labeled

after manual gating using all markers; all markers were used for data analysis.

89

Chapter 5. Case study: Learning single-cell distances from cytometry data

This data set, as processed by Weber and Robinson (2016), is publicly available on

FlowRepository (ID: FR-FCM-ZZPH).

Data set 2: 32-dimensional CyTOF Data

The second CyTOF data set originates from two healthy individuals, in which

BMMCs were analyzed using a 32-color panel. Cell populations were labeled after

manual gating, which was done using 19 out of the 32 surface markers. All markers

were used for data analysis. This data set, as presented by Weber and Robinson

(2016), is publicly available on FlowRepository (ID: FR-FCM-ZZPH).

5.3.2. Experimental setup

Following Weber and Robinson (2016), data were preprocessed using an asinh

transformation with a standard cofactor of 5, f(x) = asinh(x/5). Training and test

sets were created in a stratified manner. For the first data set, 20,000 labeled cells

were added to the training set and test set, respectively. For the second data set,

data were divided according to the individual (ID 1 or 2), before the creation of a

training and test set, which each contained 15,000 cells. The following experiments

were conducted:

1. Single-cell classification was compared using the Euclidean distance metric

and the Mahalanobis distance metric learned by DMLMJ in the context

of k-NN classification. The hyperparameters were tuned to maximize the

average F1-score per cell class, which accounts for imbalanced data sets.

The F1-score is calculated as the harmonic average of the precision (which

quantifies the number of false positives) and recall (which quantifies the

number of false negatives), and lies between zero and one. An F1-score of

one resembles perfect cell label classification.

2. The visualization performance was assessed using t-SNE (van der Maaten

and Hinton, 2008) on test sets using the Euclidean distance metric and the

Mahalanobis distance metric learned by DMLMJ.

5.3.3. Results

DMLMJ was evaluated for two mass cytometry (CyTOF) data sets. Data were

first split in a training and test set, after which the Mahalanobis distance metric

was determined based on the training sets in function of the average F1-score over

all cell populations. Performances of k-NN classification are reported for the test

sets (Fig. 5.2). Although identification performance using the Euclidean distance

metric is high, DMLMJ improved the performance to some extent.

90

§5.3. Mass Cytometry

Figure 5.2: F1-score with and without the use of DMLMJ using k-NN classification of
single-cell labels for CyTOF data. Boxplots show the distribution of F1-scores per data
set and per cell population, in which each cell population is represented by a black dot.
Each boxplot displays the 25% and 75% quartiles of the F1-score, of which the whiskers
extend the range to maximal 1,5 times the interquartile range. Points that lie outside
this range are visualized as outliers.

Next, we employed t-SNE on the test sets for visualization purposes, with and

without the use of DMLMJ to visualize the data (Figs. 5.3, 5.4, and 5.5). Although

t-SNE already returned an acceptable visualization of the data, DMLMJ improved

the visualization to some extent. Most notably, megakaryocyte and erythroblast

cells were more separated for the Levine 13dim data set as opposed to a fully

unsupervised analysis of the data. In the Levine 32dim data set, CD16+ natural

killer (NK) cells were clearly separated from CD16- NK cells for individual 1. For

individuals 1 and 2, basophils were separated from plasmacytoid dendritic cells

(pDCs) and the CD34+/CD38+/CD13+ hematopoietic stem and progenitor cells

(HSPCs). In general, separation between large cell populations that were already

separated improved slightly because of DMLMJ.

Figure 5.3: Visualization of cell populations using t-SNE the 2-dimensional space for
the Levine 13dim data set, with and without the use of DMLMJ.

91

Chapter 5. Case study: Learning single-cell distances from cytometry data

Figure 5.4: Visualization of cell populations using t-SNE the 2-dimensional space for
the Levine 32dim data set, with and without the use of DMLMJ.

Figure 5.5: Visualization of cell populations using t-SNE in the 2-dimensional space for
the Levine 32dim data set, with and without the use of DMLMJ.

5.4. Discussion and conclusion

In this chapter, we have explored the use of Distance Metric Learning through

Maximization of the Jeffrey divergence (DMLMJ) for single-cell data analysis. A

thorough survey was performed considering the functionality of distance metric

learning for different cytometry data sets. While the Euclidean distance metric is

often used for identification of cell populations, we have showed that the performance

of distance-based multivariate analysis techniques can be improved by employing an

appropriate distance metric. A few studies have discussed the impact of alternative

distance measures for automated cell population identification. For instance,

Van Gassen et al. (2015) reported that the Euclidean distance metric gave the

best results compared to the Manhattan and Chebyshev distance metrics for the

FlowSOM algorithm. Boddy et al. (2000) noted that a Mahalanobis distance metric

consistently resulted in a 4% increase in classification accuracy compared to scaled

Euclidean distances for the classification of phytoplankton single cells using neural

networks.

92

§5.4. Discussion and conclusion

Distance metric learning can provide an alternative way to incorporate domain

knowledge. When cell population annotation is available for at least one sample,

this information can be included in automated cell annotation techniques to analyze

samples that have been studied with the same experimental setup. Naturally, the

performance of distance metric learning depends on the quality of the manually

annotated dataset. We hypothesize that the quality of the data affected the

results for the Levine 32dim dataset, in which the distance metric determined for

individual 1 resulted in a comparable performance when used for the analysis of

individual 2, but this did not hold in the opposite way.

The performance of distance-based data analysis techniques depends on the

used distance metric. Distance metric learning provides a solution to improve their

performance when some supervised information, e.g. single-cell labels, is available.

Since distance metric learning is a robust property of the data setup at hand, it

offers a way to incorporate domain knowledge into additional multivariate analyses,

which can help to address sources of variability, such as microbial heterogeneity or

batch effects in mass cytometry.

93

PART III

DISTANCE METRIC LEARNING

USING TRIPLET CONSTRAINTS

95

6 Scalable large-margin

distance metric learning using

stochastic gradient descent

In this chapter, we propose a large-margin-based approach, named Large-Margin

Distance Metric Learning (LMDML), for learning a Mahalanobis distance metric.

LMDML employs the principle of margin maximization to learn the distance metric

with the goal of improving k-NN classification. The main challenge of distance

metric learning is the positive semidefiniteness constraint on the Mahalanobis

matrix. Semidefinite programming is commonly used to enforce this constraint, but

it becomes computationally intractable on large-scale data sets. To overcome this

limitation, we develop an efficient algorithm based on stochastic gradient descent

(SGD). Our algorithm can avoid the computations of the full gradient and ensure

that the learned matrix remains within the positive semidefinite (PSD) cone after

each iteration.

The material of this chapter is based on the following publication:

Nguyen, B., Morell, C., and De Baets, B. (2018b). Scalable large-margin dis-

tance metric learning using stochastic gradient descent. IEEE Transactions on

Cybernetics, accepted

6.1. Motivation

Most studies focus on learning a Mahalanobis distance metric due to its wide use

in many real-world applications (Bellet et al., 2015). The Mahalanobis distance

metric is parametrized by a symmetric positive semidefinite (PSD) matrix M ∈
RD×D, where the distance between two examples u and v in RD is computed as

dM(u,v) =
√

(u− v)>M(u− v). Alternatively, several authors propose to learn

a similarity function instead of a distance metric (Chechik et al., 2010; Liu et al.,

2014, 2015a). They focus on learning a bilinear similarity function, parametrized

by an arbitrary matrix M ∈ RD×D, where the similarity between two examples u

and v in RD is computed as sM(u,v) = u>Mv. The bilinear similarity function

is very close to the cosine function when M is set to be the identity matrix and u,

v are normalized to unit length. In general, the matrix M is not required to be

PSD, or not even to be symmetric.

Nevertheless, in both cases, the positive semidefiniteness and the symmetry

constraints on the matrix M may provide a useful regularization tool to prevent over-

97

Chapter 6. Scalable metric learning using stochastic gradient descent

fitting on high-dimensional data sets (Chechik et al., 2010). Furthermore, we can

project the data into a new space by factorizing M = LL>, such that the distance

or similarity is computed in the transformed space û = L>u, where the Euclidean

distance corresponds to dM and the dot product corresponds to sM.

In recent years, the computational efficiency of distance metric learning ap-

proaches has been substantially improved by using the projected gradient de-

scent (Weinberger and Saul, 2009), coordinate descent (Nguyen et al., 2016),

Frank-Wolfe (Ying and Li, 2012), and Bregman projection (Davis et al., 2007)

algorithms. However, there still remain some scalability issues in the current

literature on learning a distance metric.

The first scalability issue is related to the number of features. Learning a

Mahalanobis distance metric requires to estimate a D ×D matrix. This quadratic

dependency poses a huge challenge for real-world problems that involve thousands

of features, since the performance of a learning algorithm degrades as the number

of features grows (Duda et al., 2012). This is often referred to as the “curse

of dimensionality.” Another limitation arises from the positive semidefiniteness

constraint on the Mahalanobis matrix which requires projections onto the PSD

cone, which scales as O(D3). In high-dimensional settings, most of the existing ap-

proaches become quickly intractable. Although there exist dimensionality reduction

techniques such as principal component analysis (PCA) (Jolliffe, 2005), it may be

still impossible to satisfactorily reduce the number of features without a significant

loss of information contained in the training data. For these reasons, many distance

metric learning algorithms are successful in low-dimensional settings (Bar-Hillel

et al., 2005; Wang, 2011a; Weinberger and Saul, 2009; Ying and Li, 2012; Xing

et al., 2002; Shen et al., 2012), however, they fail when applied in high-dimensional

settings.

The second scalability issue is related to the number of training examples.

Considering the increasing amount of data, the computational complexity of a

learning algorithm becomes a critical limitation. One solution is to use online

learning algorithms, particularly stochastic gradient descent (SGD) (Robbins and

Monro, 1951), which considers only a single example at each iteration. The

SGD algorithm is significantly more scalable than the batch gradient descent

algorithm (Bottou, 1991). However, in the distance metric learning context, both

algorithms share a common limitation: they need to make a projection of the

Mahalanobis matrix onto the PSD cone after each iteration.

Our distance metric learning algorithm is motivated by these issues. In par-

ticular, we propose an efficient strategy based on SGD in which each iteration

requires a cheaper computation than performing the eigen-decomposition to keep

the solution within the PSD cone. By using a hinge loss function for learning

the Mahalanobis distance metric, our algorithm can further reduce the number of

updates and projections. In short, our main contributions are the following:

98

§6.2. Related work

(i) We propose a distance metric learning approach for k-NN classification based

on the principle of margin maximization inspired by the margin definition

in (Weinberger and Saul, 2009). By considering the trace-norm minimization,

our approach can lead to a low-rank solution, thus reducing the risk of

overfitting. We refer to the proposed approach as Large-Margin Distance

Metric Learning (LMDML).

(ii) To apply LMDML in large-scale settings, we develop an efficient online

algorithm based on SGD. Our algorithm, named LMDML-A, keeps the

solution always within the PSD cone by computing an appropriate step size

in each iteration. We use the Schur complement to find an upper bound of

the step size that guarantees that the solution remains within the PSD cone.

The remainder of this chapter is organized as follows. Section 6.2 briefly reviews

some related work, focusing on the main problems of large-scale distance metric

learning with existing algorithms that are addressed by our algorithm. Section 6.3

introduces our distance metric learning approach (LMDML). Section 6.4 presents

an online learning algorithm based on SGD to apply LMDML in large-scale

settings. We also analyze the computational complexity of the proposed algorithm

and provide some useful recommendations for the implementation to reduce the

training time. We conduct extensive experiments to evaluate our algorithm in

Section 6.5. Finally, we give a discussion of future work and some conclusions in

Section 6.6.

6.2. Related work

Distance metric learning has been successfully used in many different disciplines and

applications, such as classification (Weinberger and Saul, 2009), regression (Wein-

berger and Tesauro, 2007; Nguyen et al., 2016), computer vision (Köstinger et al.,

2012; Yang et al., 2014), and so on. Many previous approaches have been pro-

posed, including neighborhood component analysis (NCA) (Goldberger et al.,

2005), maximally collapsing metric learning (MCML) (Globerson and Roweis,

2006), information-theoretic metric learning (ITML) (Davis et al., 2007), large

margin nearest neighbor classification (LMNN) (Weinberger and Saul, 2009), and

metric learning through maximization of the Jeffrey divergence (DMLMJ) (see

Chapter 3). However, it becomes a very challenging problem for machines when

the number of training examples is large or the dimensionality is high. Below we

briefly review some recent work that has attempted to tackle this challenge. To be

more specific, we will discuss three keys issues that are addressed by our approach:

high-dimensional data, large data sets, and low-rank distance metrics.

The main computational challenge is the positive semidefiniteness constraint,

especially when dealing with high-dimensional data. A number of approaches (Davis

99

Chapter 6. Scalable metric learning using stochastic gradient descent

et al., 2007; Ying and Li, 2012; Shen et al., 2012; Jin et al., 2009) have been proposed

to reduce the expensive cost of projections onto the PSD cone. Hazan and Kale

(2012) replaced the projection step by solving a constrained linear program, which

is simpler than the projection onto the PSD cone. Mahdavi et al. (2012) addressed

this problem by avoiding intermediate projections. Ying and Li (2012) reduced

this computational burden by using the Frank-Wolfe algorithm, which requires

only the minimum eigenvalue and corresponding eigenvector at each iteration.

Unfortunately, the computational efficiency of these approaches is limited for large

data sets because the computational cost of each iteration is still expensive.

Recent approaches (Davis et al., 2007; Chechik et al., 2010; Shalev-Shwartz et al.,

2004; Gao et al., 2014; Qian et al., 2015a) addressed this challenge using online

learning algorithms. In the context of similarity learning, Chechik et al. (2010)

introduced an online learning approach, named OASIS, focusing on large-scale

data sets with millions of training examples. However, OASIS may increase the

risk of overfitting since it does not take into account the possibility that examples

lie in a low-dimensional subspace. In contrast to OASIS, our approach enforces

the low-rank constraint as well as the positive semidefiniteness constraint on the

Mahalanobis matrix. Consequently, our approach would intuitively reduce the risk

of overfitting. In more closely related work, Qian et al. (2015a) addressed this

challenge by exploiting the SGD algorithm. To reduce the number of projections

onto the PSD cone, they proposed a stochastic updating procedure, which consists

in giving difficult constraints more chance to be used for updating. Compared

to the approach proposed in (Qian et al., 2015a), our approach is simpler and

more efficient because it uses a simple hinge loss function to reduce the number of

projections (Shalev-Shwartz et al., 2004; Chechik et al., 2010).

Many other approaches (Nguyen et al., 2016; Gao et al., 2014; Schultz and

Joachims, 2004; Shi et al., 2014) aim to speed up the training on large-scale data

sets by enforcing the learned matrix to be diagonal. These approaches have a

significant advantage in computational complexity as well as in memory complexity,

making them tractable in large-scale settings. However, the resulting distance

metric or similarity function is very restrictive because it neglects the possible

correlation between features.

Another research direction focuses on learning a low-rank distance metric via

learning a linear transformation. By imposing the low-rank constraint explicitly on

the linear transformation matrix, one can limit the number of parameters of the

learned distance metric, thus reducing the risk of overfitting. Unfortunately, most

of the approaches that focus on learning a linear transformation lead to nonconvex

optimization problems (Goldberger et al., 2005; Liu et al., 2013; Lim and Lanckriet,

2014). Hence, they can suffer from spurious local minima and require careful tuning

of the matrix rank. In (Zhang and Zhang, 2017), the authors exploit the low-rank

structure of intermediate solutions in order to reduce the computation and space

100

§6.3. Problem formulation

complexity. The projection onto the PSD cone can be addressed efficiently using

incremental SVD, but it is not clear how the low-rank constraint is guaranteed at

each iteration, and consequently, it may not always result in the desired performance.

Another solution is to learn a linear combination of rank-one matrices (Qian et al.,

2015b), which enjoys the convexity property. However, it also requires specifying the

number of basis matrices. In contrast to these approaches, our approach can find a

low-rank Mahalanobis matrix, which induces a low-rank linear transformation, and

it ensures to achieve a global convergence since it is formulated as solving a convex

optimization problem. Unlike in (Zhang and Zhang, 2017), we do not make any

low-rank assumption on the intermediate solutions during training.

6.3. Problem formulation

We will consider the standard supervised classification problem. The set of training

examples is denoted by D = {(xi, yi) | i ∈ {1, . . . , n}} ⊂ X × Y, where X ⊆ RD

denotes the set of feature vectors and Y denotes the set of class labels. Let us

introduce the definitions of hit examples and miss examples.

Definition 6.1 (Hit examples). Let xi be an example in X . The hit examples of xi
are the elements of the set H(xi) consisting of the examples in X \ {xi} that share

the same class label with xi, i.e. H(xi) =
{

xj | j ∈ {1, . . . , n}, j 6= i, yj = yi
}

.

Definition 6.2 (Miss examples). Let xi be an example in X . The miss examples

of xi are the elements of the set M(xi) consisting of the examples in X that do not

share the same class label with xi, i.e. M(xi) =
{

xj | j ∈ {1, . . . , n}, yj 6= yi
}

.

Recently, margins have been extensively studied in the distance metric learn-

ing context. We can formulate the margin as a function depending on the PSD

matrix M. Empirical evidence (Moutafis et al., 2017; Weinberger and Saul, 2009;

Parameswaran and Weinberger, 2010; Torresani and Lee, 2007) has demonstrated

that distance metric learning approaches employing the principle of margin maxi-

mization are more robust than other distance metric learning approaches such as

NCA (Goldberger et al., 2005) and RCA (Bar-Hillel et al., 2005).

Due to the nature of the decision rule of the k-NN classifier, each example should

share the same class label with the majority of its k nearest neighbors. If we ensure

that the neighbors of the same class are closer than the neighbors of the other

classes, then the k-NN classifier will be successful. Adopting the same terminology

as in (Weinberger and Saul, 2009), we define T (xi), called target neighbors of xi,

as a set of k examples in H(xi) that should be close to xi and that share the same

class label with xi in the training set. The goal is to learn a distance metric that

makes the target neighbors of xi become its k nearest neighbors. Target neighbors

can be selected based on prior knowledge (if available) or simply by searching the

101

Chapter 6. Scalable metric learning using stochastic gradient descent

k nearest neighbors with the same class label using the Euclidean distance metric.

Note that the target neighbors do not change during the training stage.

We define the margin of a labeled example xi for the purpose of measuring the

confidence of the k-NN classifier as follows.

Definition 6.3. Let xi be a labeled example in X . The margin of xi corresponding

to the Mahalanobis distance metric parameterized by M is defined as:

φM(xi) = d2
M(xi,x

−
i)− d2

M(xi,x
+
i) ,

where
x+
i = arg max

xj∈T (xi)

d2
M(xi,xj) ,

x−i = arg min
xj∈M(xi)

d2
M(xi,xj) .

(6.1)

As is common in distance metric learning, we use the squared Mahalanobis

distances to express the margin, leading to a convex function in terms of M.

Roughly speaking, the margin is the difference between the squared distance from

xi to the nearest example with a different class label and the squared distance

from xi to the farthest example in its target neighbor set. A similar definition

of a margin was also introduced in (Nguyen and Guo, 2008). Using this margin

definition, we now turn to develop our distance metric learning approach, which is

the result of two fundamental aims.

xixi
+

-xi

(a)

xi
xi
+

-xi

(b)

Figure 6.1: Illustration of the intuition behind LMDML. Examples belonging to the
same class are denoted in the same color and style. (a) A separating ellipse with a small
margin. (b) A separating ellipse with a large margin.

Our first aim is that the learned distance metric should guarantee that many

examples have large margins. We follow the large-margin principle that has been

successfully used in SVMs (Cortes and Vapnik, 1995), AdaBoost (Schapire et al.,

1997), and LMNN (Weinberger and Saul, 2009) algorithms. The aim of our distance

metric learning approach is to maximize the sum of all local margins. Using a

102

§6.3. Problem formulation

hinge loss function with margin one, the latter is equivalent to minimize

ε(M) =

n∑
i=1

[
1 + d2

M(xi,x
+
i)− d2

M(xi,x
−
i)
]

+
,

where the function [.]+ denotes the positive part of its argument.

Our second aim is that the learned distance metric should be able to detect

irrelevant or noisy features in the input space. Assume that the input examples

lie in a low-dimensional subspace Rm, where m < D, then the Mahalanobis

matrix with low rank m can satisfactorily distinguish any two distinguishable

examples (Cong et al., 2014). Thus, a high-rank Mahalanobis matrix may be

suffering from overfitting effects as the training data always contain noisy features

in practice. To this end, we force the low-rank constraint on the Mahalanobis

matrix M. That means, among the Mahalanobis matrices that maximize the

margins, we prefer the low-rank ones. As is commonly done, we use the nuclear

norm to approximate the rank function. The nuclear norm of the matrix M is

defined as ‖M‖∗ =
∑
i σi, where σi are the singular values of M. Since M is

PSD, it holds that ‖M‖∗ = tr(M). Note that the trace norm of a PSD matrix is

equal to the `1-norm of its diagonal elements, which is used by the popular Lasso

algorithm (Tibshirani, 1996). The theoretical justification of the `1-norm can be

found in (Donoho and Elad, 2003) and the references therein.

Finally, we combine the two aims, the loss function ε(M) based on margins

and the low-rank constraint on M, into a single objective function for learning the

distance metric. It leads to the following optimization problem

minimize
M<0

C tr(M) +
1

n

n∑
i=1

[
1 + d2

M(xi,x
+
i)− d2

M(xi,x
−
i)
]

+
, (6.2)

where C > 0 is a hyper-parameter. We refer to the proposed approach as Large-

Margin Distance Metric Learning, abbreviated as LMDML. Figure 6.1 illustrates

the idea behind LMDML. Although the distance metrics in both cases are able to

classify well the example xi, a better generalization is expected from the distance

metric with a larger margin.

Problem (6.2) is a convex semidefinite program, therefore, it can be solved by

standard semidefinite optimization algorithms, such as interior-point methods (Boyd

and Vandenberghe, 2004). However, these algorithms usually need to calculate

the Hessian matrix, which requires a memory complexity of O(D4) and a time

complexity of O(D6.5) in the worst case. For some real-world applications, they

become almost intractable. Another alternative for minimizing the objective

function in (6.2) is to use a simple first-order algorithm such us batch gradient

descent as in (Weinberger and Saul, 2009; Xing et al., 2002; Globerson and Roweis,

2006). The use of first-order algorithms can reduce the time complexity per iteration

103

Chapter 6. Scalable metric learning using stochastic gradient descent

since they only require the information from the first derivative of the objective

function. Unfortunately, these algorithms do not scale well to large data sets

because they need the full-gradient computation in each iteration. In the next

section, we will introduce our algorithm to overcome these limitations.

6.4. Online distance metric learning

To make the optimization technique tractable for large-scale problems, we should

take into account both the number of iterations and the computational cost of

each iteration. SGD provides a way to avoid the full-gradient computation by

considering only a single loss term at a time. SGD has been successfully exploited

in many machine learning algorithms such as SVMs (Shalev-Shwartz et al., 2007),

neural networks (Bottou, 1991), and Lasso (Shalev-Shwartz and Tewari, 2011). By

randomly choosing an example at each iteration, SGD can directly optimize the

expected loss (Bottou, 1991) and remove the time complexity dependency on the

size of problem. Besides, SGD is extremely simple to implement and highly scalable,

which make it particularly suitable for large-scale learning problems. However,

like other gradient descent techniques, it requires a projection step to get the

solution back to the PSD cone after each iteration. In this section, we develop an

online algorithm based on SGD that needs no projection steps in order to keep the

solution within the PSD cone.

6.4.1. Stochastic gradient descent for distance metric learn-

ing

For any fixed C > 0 in problem (6.2), there is always some choice of B > 0 such

that the optimal solution of problem (6.2) results in the same objective function

value as the optimal solution of

minimize f(M) = 1
n

∑n
i=1

[
1 + d2

M(xi,x
+
i)− d2

M(xi,x
−
i)
]

+

subject to tr(M) ≤ B ,
M < 0 .

(6.3)

The formulation of problem (6.2) is also known as the Lagrangian version

of problem (6.3). We now focus on solving problem (6.3) due to its interesting

expression: the objective function in (6.3) has the form of a sum of loss functions

associated with each example used for training, which allows us to use a stochastic

optimization algorithm. We refer to the proposed algorithm as LMDML-A.

At the t-th iteration, LMDML-A operates as follows. First, it chooses a random

training example xi by picking an index i ∈ {1, . . . , n} uniformly at random. Then,

104

§6.4. Online distance metric learning

it replaces the objective function of problem (6.3) with an approximation based on

the single randomly picked example,

fi(Mt) =
[
1 + d2

Mt
(xi,x

+
i)− d2

Mt
(xi,x

−
i)
]

+
.

If 1 + d2
Mt

(xi,x
+
i) ≤ d2

Mt
(xi,x

−
i), then the subgradient of the above approxi-

mate objective function ∇fi(Mt) becomes zero (i.e., there is no need to update

the Mahalanobis distance metric). Otherwise, the subgradient ∇fi(Mt) is given

by

∇fi(Mt) = (xi − x+
i)(xi − x+

i)> − (xi − x−i)(xi − x−i)> .

Next, we update the matrix Mt in the direction of the subgradient with a step size

ηt = c/
√
t, where c > 0 is a constant,

Mt+1/3 = Mt − ηt∇fi(Mt) ,

Mt+2/3 = ΠSD+ (Mt+1/3) ,

Mt+1 = min(B/tr(Mt+2/3), 1)Mt+2/3 .

The last two steps are used to keep the solution within the PSD cone and to

satisfy the trace-bound constraint, respectively. According to the Interlacing

Theorem (Golub and Van Loan, 1996), the matrix Mt+1/3 contains at most one

negative eigenvalue. Similarly to the method proposed by Shalev-Shwartz et al.

(2004), we can compute Mt+2/3 using the following formulation,

Mt+2/3 = Mt+1/3 −min(λmin, 0)uminu>min ,

where λmin is the smallest eigenvalue of Mt+1/3 with corresponding eigenvector

umin. Finding the smallest eigenvalue of the symmetric matrix Mt+1/3 is equivalent

to finding the largest eigenvalue of −Mt+1/3. In (Kuczyński and Woźniakowski,

1992), it was shown that the largest eigenvalue of a positive definite matrix can

be approximated in O(D2) time using the Lanczos method or the power method

with a random start vector. However, the matrix −Mt+1/3 is not always positive

definite. To circumvent this, we can add a large enough constant r > 0, so that

A = rI −Mt+1/3 becomes positive definite. Finally, the smallest eigenvalue of

Mt+1/3 becomes r − λmax(A), where λmax(A) is the largest eigenvalue of A with

the corresponding eigenvector umin.

Although the cost of the projection onto the PSD cone has been reduced, its

computational efficiency is limited because it requires a numerical approximation to

compute, at each iteration, the smallest eigenvalue and corresponding eigenvector

of the updated Mahalanobis matrix. For instance, the Lanczos method requires

O(log(n)/
√
γ) iterations (Kuczyński and Woźniakowski, 1992) to approximate a

unit vector u such that u>Au/λmax(A) ≥ 1 − γ. This iterative procedure may

105

Chapter 6. Scalable metric learning using stochastic gradient descent

be expensive when the number of features is relatively large. We address this

challenge by finding an appropriate step size to keep the solution within the PSD

cone. Therefore, we can avoid the projection step of the Mahalanobis matrix onto

the PSD cone. This idea of approximating the solution through finding a step size

was also introduced in (Jin et al., 2009) for learning a distance metric based on

pairwise constraints. In order to compute the step size, Jin et al. (2009) used the

conjugate gradient method, which is still slow in high-dimensional settings. We

employ the Schur complement to compute an upper bound of the step size.

We begin by introducing two important theorems that help us to develop

our proposal. The first theorem is a modification of the generalized inverse

theorem (Campbell and Meyer, 1979), which will allow us to compute the pseudo-

inverse of a symmetric matrix plus a rank-one symmetric matrix. Thus, the six

cases in (Campbell and Meyer, 1979) reduce to only three cases, and the update

formulas can be significantly simplified.

Theorem 6.1. For A ∈ SD×D, x ∈ RD, and α ∈ R, let k = A†x, h = x>A†,
u = (I−AA†)x, v = x>(I−A†A), and β = 1+x>A†x. Then the Moore-Penrose

inverse of A + αxx> is computed as follows.

(i) If u 6= 0, then

(A + αxx>)† = A† − ku† − v†h + (1/α− 1 + β)v†u† .

(ii) If u = 0 and 1 + (β − 1)α 6= 0, then

(A + αxx>)† = A† − 1/(1/α− 1 + β)kh .

(iii) If u = 0 and 1 + (β − 1)α = 0, then

(A + αxx>)† = A† − kk†A† −A†h†h + (k†A†h†)kh .

Proof. The result follows directly from (Campbell and Meyer, 1979, Theorem 3.1.3)

and a careful inspection of its proof.

The second theorem will allow us to find necessary and sufficient conditions

that guarantee that a symmetric PSD matrix A plus two rank-one symmetric

matrices of the form A− α(aa> − bb>), where α is a positive scalar and a, b are

real vectors, remains within the PSD cone.

Theorem 6.2. For A ∈ SD×D, a ∈ RD, b ∈ RD, and α ∈ R, where A < 0

and α > 0, let k = A†b, h = b>A†, u = (I −AA†)b, v = b>(I −A†A), and

β = 1 + b>A†b. Then the following constraint

A− α(aa> − bb>) < 0 (6.4)

is satisfied if and only if any of the following sets of conditions holds (assuming

that 1/0 = +∞):

106

§6.4. Online distance metric learning

(i) u 6= 0, (I−AA† − uu†)a = 0, 1− a>v†u†a > 0, and

α ≤ (1− a>v†u†a)/(a>Ta) ,

where T = A† − ku† − v†h + (β − 1)v†u†.

(ii) u = 0, (I−AA†)a = 0, and

α ≤ 2/(−B +
√
B2 − 4C) ,

where B = β + a>A†a− 1, and C = −a>(A†(β − 1)− kh)a.

Proof. Since α > 0, according to the Schur complement theorem (Gallier, 2010,

Theorem 4.3), constraint (6.4) is equivalent to(
A + αbb> a

a> 1/α

)
< 0 .

Note that (A + αbb>) < 0, and as a consequence, it is possible to use again the

Schur complement theorem. Hence, the following two conditions must hold:

1/α− a>(A + αbb>)†a ≥ 0 (6.5)

and

(I− (A + αbb>)(A + αbb>)†)a = 0 . (6.6)

In other words, the inequality constraint (6.4) is replaced by conditions (6.5) and

(6.6). First, we find an upper bound on α satisfying the inequality constraint (6.5).

Since α > 0 and A < 0, implying 1 + (β − 1)α > 0, according to Theorem 6.1, we

only have to consider two disjoint cases for the proof.

In the first case, the conditions u 6= 0, (6.5) and (6.6) should be satisfied. Using

Theorem 6.1, we have

(A + αbb>)† = A† − ku† − v†h + (1/α− 1 + β)v†u†

= T + (1/α)v†u† , (6.7)

hence, condition (6.5) is equivalent to (1/α)(1 − a>v†u†a) ≥ a>Ta. Since T is

PSD1, it holds that a>Ta is nonnegative. Clearly, if 1− a>v†u†a ≤ 0, then there

does not exist α > 0 that satisfies (6.4). If a>Ta 6= 0, inequality (6.5) becomes

α ≤ (1− a>v†u†a)/(a>Ta) . (6.8)

1 When α becomes infinite, the PSD matrix
(
A + αbb>

)†
= T + (1/α)v†u† becomes T. Thus,

the matrix T must also be PSD.

107

Chapter 6. Scalable metric learning using stochastic gradient descent

Otherwise, if a>Ta = 0, the variable α can take any positive value in order

to satisfy (6.4). We can easily include this case in (6.8) by setting 1/0 = +∞.

Moreover, substituting (6.7) into (6.6) yields

α(bb>Ta) + (Av†u†a)/α+ (a−ATa− bb>v†u†a) = 0 . (6.9)

By definition of the pseudo-inverse (Golub and Van Loan, 1996), it holds that

(A†A)> = A†A, and b>v† = 1. Using b>k = β − 1, it is easy to see that

bb>Ta = b(b>A†a− (β − 1)u†a− b>A†a + (β − 1)u†a) = 0 .

Using Av† = 0, we obtain Av†u†a = 0. Hence, Eq. (6.9) is equivalent to

a− (AA† −Aku† −Av†h + (β − 1)Av†u†)a− bu†a = 0 . (6.10)

Using Av† = 0, b>v† = 1, and Ak = b−u, Eq. (6.10) becomes a−AA†a + (b−
u)u†a− bu†a = 0, and results in (I−AA† − uu†)a = 0. Therefore, we conclude

the first part of Theorem 6.2.

In the second case, the conditions u = 0, (6.5) and (6.6) should be satisfied.

Using Theorem 6.1, we have

(A + αbb>)† = A† − 1/(1/α− 1 + β)kh . (6.11)

Substituting (6.11) into (6.5) leads to 1/α − a>(A† − 1/(1/α − 1 + β)kh)a ≥ 0.

This results in

(1/α)2 − (1− β + a>A†a)/α− a>(A†(β − 1)− kh)a ≥ 0 ,

or, equivalently,

(1/α)2 + (1/α)B + C ≥ 0 . (6.12)

Note that C is nonpositive because A†(β−1)−kh is PSD2. Therefore, (6.12) always

has a nonnegative root, 1/α ≥ (−B +
√
B2 − 4C)/2. If (−B +

√
B2 − 4C) 6= 0,

then we have the following upper bound on α:

α ≤ 2/(−B +
√
B2 − 4C) . (6.13)

Otherwise, if (−B +
√
B2 − 4C) = 0, then α can take any positive value in order

to satisfy (6.4). We can easily include this case in (6.13) by setting 1/0 = +∞.

Next, we prove that (A + αbb>)(A + αbb>)† = AA†. Since u = 0, it holds that

2 When α becomes infinite, the PSD matrix
(
A + αbb>

)†
= A† − 1/(1/α − 1 + β)kh becomes

A† − (1/(β − 1))kh. Thus, the matrix A†(β − 1)− kh must also be PSD.

108

§6.4. Online distance metric learning

AA†b = b. Using (6.11), one obtains

(A + αbb>)(A + αbb>)†

= (A + αbb>)(A† − 1/(1/α− 1 + β)kh)

= AA† − 1/(1/α− 1 + β)Akh + αbb>A† − 1/(1/α− 1 + β)αbb>kh

= AA† + 1/(1/α− 1 + β)(−AA†bb>A†

+ bb>A† + αbb>A†bb>A† − αbb>A†bb>A†)

= AA† . (6.14)

Substituting (6.14) into (6.6) leads to (I−AA†)a = 0, and we conclude the second

part of Theorem 6.2.

Given the matrix Mt and its pseudo-inverse M†
t , using Theorem 6.2 we can

analytically find an upper bound αt such that for any step size η∗t ∈ [0, αt], the

matrix

Mt − η∗t∇fi(Mt) = Mt − η∗t
(
(xi − x+

i)(xi − x+
i)> − (xi − x−i)(xi − x−i)>

)
remains within the PSD cone. Evaluating efficiently the upper bound of η∗t
requires that we maintain the updated pseudo-inverse matrix M†. Due to the

simplicity of updating M (since the update makes use of only two rank-one

matrices in each iteration), we can derive the update of the pseudo-matrix M†

from Theorem 6.1 in the following way. First, we update Mt and M†
t by adding

the matrix (xi − x−i)(xi − x−i)> as follows:

Mt+1/3 = (Mt + η∗t (xi − x−i)(xi − x−i)>) ,

M†
t+1/3 = (Mt + η∗t (xi − x−i)(xi − x−i)>)† .

(6.15)

Second, we use Mt+1/3 and M†
t+1/3 to update Mt and M†

t by adding the matrix

(xi − x+
i)(xi − x+

i)> as follows:

Mt+2/3 = (Mt+1/3 − η∗t (xi − x+
i)(xi − x+

i)>) ,

M†
t+2/3 = (Mt+1/3 − η∗t (xi − x+

i)(xi − x+
i)>)† .

(6.16)

Using Theorem 6.1, both matrices M†
t+1/3 and M†

t+2/3 are efficiently computed

with a time complexity of O(D2). Finally, we truncate the solution to satisfy the

trace-bound constraint:

Mt+1 = min(B/tr(Mt+2/3), 1)Mt+2/3 ,

M†
t+1 = max(tr(Mt+2/3)/B, 1)M†

t+2/3 .

Note that all of these operations can be analytically computed with a time complex-

109

Chapter 6. Scalable metric learning using stochastic gradient descent

ity of O(D2), which is faster than those methods that use a numerical approximation

procedure to find the smallest eigenvalue and corresponding eigenvector, such as

POLA (Shalev-Shwartz et al., 2004), DML-eig (Ying and Li, 2012), SDPMet-

ric (Shen et al., 2010), and BoostMetric (Shen et al., 2012). The pseudo-code of

LMDML-A is given in Algorithm 4.

Algorithm 4 LMDML-A

Input: {(x1, y1), (x2, y2), . . . , (xn, yn)}, B, c, T for SGD
Output: MT

1: Set M1 ← I and M†
1 ← I

2: for t← 1, . . . , T − 1 do
3: Choose i ∈ {1, . . . , n} uniformly at random
4: Find x+

i and x−i as in (6.1)
5: if d2

Mt
(xi,x

+
i) + 1 > d2

Mt
(xi,x

−
i) then

6: Find upper bound αt to make Mt− αt∇fi(Mt)< 0
7: Select 0 ≤ η∗t ≤ min(αt, c/

√
t)

8: Compute Mt+1/3 and M†
t+1/3 as in (6.15)

9: Compute Mt+2/3 and M†
t+2/3 as in (6.16)

10: Set Mt+1 ← min(B/tr(Mt+2/3), 1)Mt+2/3

11: Set M†
t+1 ← max(tr(Mt+2/3)/B, 1)M†

t+2/3

12: end if
13: end for

6.4.2. Convergence analysis

The convergence of SGD has been theoretically studied for decades (see for instance

J. Kushner and Yin, 2003, and the references therein). However, these classical

convergence bounds require some non-trivial assumptions on the objective function,

such as strong convexity or smoothness. Unfortunately, this is not the case for our

objective function in problem (6.3). To address this issue, we use a more general

convergence result of SGD for non-smooth optimization developed by Shamir and

Zhang (2013).

It is well known that the convergence of SGD is dependent on the value of

the step size. However, the step size in our method is only upper-bounded using

the Schur complement, which involves many constants that cannot be evaluated

exactly. As a consequence, the result presented in this section may only provide

a conservative estimate of what can be achieved by our method. In practice, we

observe that LMDML-A converges faster for a larger step size (but still relatively

small to keep the Mahalanobis matrix within the PSD cone, i.e. η∗t ≤ min(αt, c/
√
t)).

The following theorem shows that the last iteration of SGD converges to an optimal

solution of problem (6.3) with a rate of O(log(T)/
√
T).

110

§6.4. Online distance metric learning

Theorem 6.3. Let M∗ ∈ SD+ be the optimal solution for the objective function

f in (6.3). Let M1, . . . ,MT be a sequence of matrices such that M1 ∈ SD+ and

for t > 0, Mt+1 = ΠSD+ (Mt − ηt∇fi(Mt)), where ηt = c/
√
t and c > 0 is a

constant. Suppose that for all t > 0 and xi ∈ X , it holds that ‖∇fi(Mt)‖F ≤ G

and tr(Mt) ≤ B for some constants G and B. Then, for any T > 1, we have

E
[
f(MT)− f(M∗)

]
≤
(

4B2

c
+ cG2

)
2 + log(T)√

T
.

Proof. The result follows directly from (Shamir and Zhang, 2013, Theorem 2) and

the corresponding proof. Since Mt ∈ SD+ and tr(Mt) ≤ B for all t > 0, it holds for

any t, t′ > 0 that

‖Mt −Mt′‖F ≤ ‖Mt‖F + ‖Mt′‖F

=

√
tr(M>

t Mt) +

√
tr(M>

t′Mt′)

≤ tr(Mt) + tr(Mt′)

≤ 2B ,

where the second inequality holds because tr(AB) ≤ tr(A)tr(B) for all A,B ∈ SD+ .

This concludes the proof.

Empirically, we have found that the convergence of LMDML-A is slightly slower

than that of the standard SGD method (see Section 6.5).

6.4.3. Computational complexity

In this subsection, we analyze the time complexity of LMDML-A. Let n denote

the number of training examples, let D denote the dimensionality, and let k denote

the number of target neighbors for each training example. We first consider the

search for the target neighbors. Using linear search we can easily perform this

computation in O(kn2D). In order to reduce the complexity of searching for the

nearest neighbors for large-scale data sets, we can use sophisticated data structures,

such as Cover Tree (Beygelzimer et al., 2006), Ball Tree (Omohundro, 1989), and

k-d-Tree (Moore, 1991). Next, we analyze the time complexity in each iteration.

Recomputation of x+
i and x−i as in (6.1) scales as O(kD2 + nD2) due to the

quadratic time complexity in the dimensionality of computing the Mahalanobis

distance. Unfortunately, this computation can make the algorithm impractical

on high-dimensional data sets. To reduce this computational burden, we observe

that

d2
M(xi,xj) = (x>i Mxi + x>j Mxj)− (2u>i xj) ,

111

Chapter 6. Scalable metric learning using stochastic gradient descent

where ui = Mxi. For each training example xi, if we keep track of the value of

x>i Mxi, then we can reduce the cost of searching for x+
i and x−i to O(kD+nD+D2),

since the first term (x>i Mxi + x>j Mxj) can be computed in constant time, the

second term (2u>i xj) can be computed in O(D), and the computation of ui scales

as O(D2). On the other hand, M is always updated by adding a rank-one matrix

in the following form M←M + αuu>, where α ∈ R. Consequently, the value of

x>i Mxi can be efficiently updated in O(D) as

x>i (M + αuu>)xi = x>i Mxi + α(x>i u)(x>i u)

= x>i Mxi + α(x>i u)2 .

As mentioned in Subsection 6.4.1, LMDML-A requires to update the pseudo-inverse

of the Mahalanobis matrix and to find an upper bound on the step size, which

scales as O(D2). Summarizing, the overall time complexity of each iteration for

LMDML-A is O(D2 + nD). The time complexity of one pass over all training

examples is O(nD2 + n2D).

Although one can notice some improvement, the preceding complexity is still

impractical for very large data sets. The bottleneck of LMDML-A is mainly due

to the search for x−i , which, in theory, is of linear time complexity O(nD2) in

the number of training examples. To overcome this limitation, we observe that

x−i usually lies nearby the local neighborhood of xi, which means that it is not

always necessary to search for the whole set containing examples of different classes.

Consequently, we can approximate M(xi) with a set of m nearest neighbors of xi
with different class labels, which can be precomputed using the Euclidean distance

metric. Note that this set does not change during the execution of the algorithm.

By doing so, the time complexity of searching for x−i is reduced to O(mD2) and the

time complexity of one pass over all training examples is O(nmD2 + nkD2).

6.5. Experiments

In this section, we evaluate the effectiveness and efficiency of the proposed al-

gorithm by conducting an extensive set of experiments on standard benchmark

data sets. The performance of LMDML-A is compared with other state-of-the-art

distance metric learning algorithms in the context of k-NN classification. We

will demonstrate that our algorithm is fast and scalable, making it more suitable

for large-scale applications. First, we evaluate the effectiveness of the proposed

algorithm on fourteen data sets of varying size and difficulty in Subsection 6.5.1.

Second, we empirically verify the convergence rate of the proposed algorithm in

Subsection 6.5.2. Finally, we compare the performance of LMDML-A with different

learning algorithms on large-scale data sets in Subsection 6.5.3. All features are

normalized (to have zero mean and unit standard deviation) over the training data

112

§6.5. Experiments

to avoid the influence carried by the scale of each feature for the distance metric or

similarity function.

6.5.1. Experiments on the KEEL data sets

In this subsection, we aim to demonstrate the effectiveness of the principle of margin

maximization, which inspired our approach. For this purpose, several experiments

are carried out using publicly available data sets to compare our approach with

five other distance metric learning approaches.

Competing approaches

We will compare the proposed LMDML-A algorithm with different distance

metric learning algorithms, including the baseline Euclidean distance metric,

POLA (Shalev-Shwartz et al., 2004), ITML (Davis et al., 2007), LMNN (Wein-

berger and Saul, 2009), DML-eig (Ying and Li, 2012), and DMLMJ (Nguyen

et al., 2017c). These are the most prominent methods in distance metric learn-

ing. LMDML-A is closely related to LMNN in the sense that both methods are

particularly designed to maximize the margin of k-NN classification. Other meth-

ods, including POLA, ITML, DML-eig, and DMLMJ, use a margin criterion over

pairwise constraints, i.e. distances between examples of the same class are smaller

than distances between those of different classes.

To get the best results for all algorithms, the hyper-parameters are tuned

via cross-validation. For ITML, we set the maximum number of iterations to

105 and tune the slack parameter γ considering as set of values {10−3, . . . , 103}.
Based on the authors’ recommendation (Davis et al., 2007), the lower bound l

and upper bound u are set to be the 5-th and 95-th percentiles, respectively, of

the distribution of all distances between training examples. For DML-eig, we

set the maximum number of iterations to 1,000. Since POLA, ITML, DML-eig,

and DMLMJ are based on pairwise constraints, for a fair comparison, we use

the same pairwise constraints for POLA, ITML, DML-eig, and DMLMJ. These

constraints are generated by pairing each training example with its k nearest

neighbors of the same class and its k nearest neighbors of different classes. For

LMNN, we set the maximum number of iterations to 1,000 and tune the trade-off

parameter µ considering as set of values {0.125, 0.25, 0.5}. For LMDML-A, we

tune the trace-bound parameter B considering as set of values {0.1, 1, 10, 100}.
We set the maximum number of epochs to 10 for both POLA and LMDML-A.

Empirically, we find that a value of 1 as the initial constant of the step size

c for LMDML-A can be applied to obtain good results. The source codes in

Matlab and C-mex of these approaches are available online from the corresponding

113

Chapter 6. Scalable metric learning using stochastic gradient descent

authors’ websites3. The source codes of LMDML-A can also be downloaded from

http://users.ugent.be/~bacnguye/LMDML-A.v1.0.zip.

Data sets and experimental setup

We use fourteen data sets from KEEL (see Table A.1 for a brief description). In

particular, a 10-fold cross-validation is employed to estimate the classification

accuracy. All partitions of the training and test sets are collected by stratified

sampling from all classes. The classification accuracy and the training time are

obtained by computing the average over ten runs. Following (Weinberger and

Saul, 2009; Ying and Li, 2012), for all data sets, we set k = 3 to perform k-NN

classification.

Results and discussion

Table 6.1 summarizes the classification accuracy and training time of the competing

distance metric learning algorithms on each data set. Note that the training time

takes into account the time for tuning the hyper-parameters. On each data set, we

rank the competing algorithms based on their classification accuracy, i.e., we assign

rank 1 to the algorithm with the highest accuracy, rank 2 to the algorithm with

the second highest accuracy, and so on. The average rank based on classification

accuracy is shown in the penultimate row of Table 6.1. Based on the experimental

results, we can draw some conclusions as follows:

(i) LMDML-A consistently improves the performance of k-NN classification using

the Euclidean distance metric on most data sets. In general, our margin-based

approach (i.e. LMDML) performs better than other distance metric learning

approaches (i.e., POLA, ITML, DML-eig, and LMNN). Both approaches

LMNN and ITML perform equally well.

(ii) LMDML-A performs slightly better than POLA and the recent method

DMLMJ. Since DMLMJ only involves the computation of solving a generalized

eigenvalue decomposition problem, it is very efficient on low-dimensional data

sets. In particular, LMDML-A is considerably faster than DMLMJ on large-

scale data sets (e.g., letter and magic).

(iii) LMDML-A is the fastest algorithm on most data sets. In general, POLA,

ITML and DML-eig run faster than LMNN because they do not have to per-

form the full eigen-decomposition at each iteration. Additionally, LMDML-A

is significantly more efficient than LMNN on large data sets (e.g., letter,

3 ITML: http://www.cs.utexas.edu/~pjain/itml/
LMNN: http://www.cse.wustl.edu/~kilian/code/code.html
DML-eig: http://empslocal.ex.ac.uk/people/staff/yy267/software.html

DMLMJ: http://users.ugent.be/~bacnguye/DMLMJ.zip

114

http://users.ugent.be/~bacnguye/LMDML-A.v1.0.zip
http://www.cs.utexas.edu/~pjain/itml/
http://www.cse.wustl.edu/~kilian/code/code.html
http://empslocal.ex.ac.uk/people/staff/yy267/software.html
http://users.ugent.be/~bacnguye/DMLMJ.zip

§6.5. Experiments

magic, and ring), which highlights the advantages of using SGD methods

compared to batch gradient descent methods on large data sets.

115

C
h
a
p
t
e
r
6
.

S
c
a
l
a
b
l
e
m
e
t
r
ic

l
e
a
r
n
in
g

u
sin

g
st

o
c
h
a
st

ic
g
r
a
d
ie
n
t
d
e
sc

e
n
t

Table 6.1: Classification accuracy (standard deviation) and training time on the KEEL data sets of the competing algorithms. The best
result is highlighted in boldface.

Id
Accuracy Training time (in seconds)

Euclidean POLA ITML LMNN DML-eig DMLMJ LMDML POLA ITML LMNN DML-eig DMLMJ LMDML

APP 83.18 (9.2) 85.00 (6.2) 84.09 (8.5) 84.00 (4.4) 85.00 (8.7) 84.09 (8.5) 86.91 (6.4) 1.22 28.06 13.00 0.28 0.02 0.02

BAL 83.68 (2.2) 90.47 (3.8) 90.51 (3.7) 87.04 (3.1) 85.42 (5.7) 90.24 (3.9) 90.70 (4.5) 5.39 37.44 18.01 0.49 0.17 0.21

BUP 65.49 (3.4) 65.1 (10.3) 65.47 (6.7) 67.20 (6.1) 64.58 (6.0) 64.8 (11.0) 67.49 (5.7) 4.11 32.37 20.43 0.19 0.08 0.10

IRI 94.67 (5.3) 96.00 (4.7) 98.00 (3.2) 96.00 (4.7) 94.67 (5.3) 96.67 (4.7) 95.33 (4.5) 1.11 30.93 12.52 0.18 0.03 0.03

LET 94.98 (0.5) 97.55 (0.4) 97.23 (0.3) 96.48 (0.5) 87.70 (0.6) 97.51 (0.4) 96.83 (0.5) 223.2 138.8 364.2 872.9 396.4 58.42

MAG 83.66 (0.5) 84.15 (0.9) 83.71 (0.8) 83.72 (0.6) 82.91 (1.2) 84.06 (0.7) 84.93 (0.5) 267.5 132.6 1007 792.5 238.3 46.58

MON 95.85 (3.6) 100.0 (0.0) 99.53 (1.0) 97.91 (3.0) 100.0 (0.0) 99.07 (2.2) 98.37 (3.6) 3.67 35.75 12.49 0.38 0.12 0.14

MOV 80.00 (7.0) 84.17 (5.2) 81.94 (7.1) 83.61 (5.8) 72.50 (9.5) 81.39 (5.4) 84.72 (5.7) 58.83 180.9 37.52 2.39 1.03 1.26

OPT 97.94 (0.6) 99.02 (0.4) 98.35 (0.5) 98.90 (0.3) 97.83 (0.7) 98.83 (0.6) 98.74 (0.6) 166.5 199.4 171.1 58.61 118.8 26.36

RIN 71.81 (1.7) 76.22 (1.6) 80.89 (1.0) 71.61 (1.8) 86.38 (1.2) 87.36 (1.0) 74.07 (1.6) 145.9 89.16 324.1 101.7 63.14 15.41

SEG 95.45 (1.0) 96.36 (1.2) 97.45 (1.7) 96.67 (1.1) 95.06 (1.4) 96.80 (1.2) 96.75 (1.2) 24.96 57.37 61.15 6.05 5.97 2.40

WDB 97.01 (1.7) 97.52 (1.4) 97.01 (2.6) 96.66 (2.1) 95.61 (2.1) 96.48 (1.4) 97.54 (2.5) 12.50 54.10 17.95 1.36 0.64 0.44

WIN 96.01 (3.9) 97.71 (4.1) 98.30 (2.7) 96.60 (4.8) 97.19 (4.0) 98.89 (2.3) 97.75 (2.9) 1.39 33.80 12.05 0.38 0.05 0.07

WIS 96.78 (1.7) 96.34 (1.2) 96.34 (2.0) 96.63 (2.1) 95.90 (1.7) 95.90 (0.9) 96.63 (1.8) 5.01 40.40 17.16 0.57 0.33 0.32

5.57 2.93 3.25 4.36 5.64 3.57 2.68 921.43 1,091.2 2,089.6 1,838.15 825.1 151.76

Average rank Total training time

1
1
6

§6.5. Experiments

6.5.2. Evaluation of the convergence

In this subsection, we empirically compare the convergence rate of LMDML-A

to that of the standard SGD method (LMDML-S) that solves problem (6.3).

Note that LMDML-S only involves the computation of the smallest eigenvalue and

corresponding eigenvector at each iteration (see Subsection 6.4.1). As an illustration,

we only perform experiments on the sonar data set used in Subsection 6.5.1.

LMDML-A is configured with the same settings as in the previous experiments.

Figure 6.2 shows the convergence rate versus the number of epochs (a full pass

through the training set). On the left side of Fig. 6.2, we show the objective

function value versus the number of epochs. On the right side of Fig. 6.2, we show

the training accuracy based on the 3-NN classifier versus the number of epochs.

We observe that our algorithm converges after a few number of epochs. Since the

objective function in problem (6.3) is convex, LMDML-A should indeed converge to

the optimal objective function value. Once a certain number of epochs is reached,

the training accuracy remains more or less the same. As expected, both algorithms

LMDML-A and LMDML-S obtain similar results. The convergence of LMDML-A

is only slightly slower than that of LMDML-S.

0 3 6 9
45

75

105

135

of epochs

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

LMDML−A

LMDML−S

0 3 6 9
80

85

90

95

of epochs

T
ra

in
in

g
 a

cc
u

ra
cy

 (
%

)

LMDML−A

LMDML−S

Figure 6.2: Performance illustration of LMDML-A and LMDML-S on the sonar data
set. Left figure: objective function value vs. number of epochs. Right figure: training
accuracy (%) vs. number of epochs.

6.5.3. Experiments on large-scale data sets

In this subsection, we study the behavior of the proposed algorithm in large-scale

settings. We compare LMDML-A with the baseline Euclidean distance met-

ric, POLA, LMDML-S and OASIS (Chechik et al., 2010), a bilinear similarity

learning algorithm. OASIS aims to learn a bilinear similarity function over sparse

representations for improving image retrieval performance. OASIS is a current

117

Chapter 6. Scalable metric learning using stochastic gradient descent

state-of-the-art similarity learning algorithm in large-scale settings. The source

codes in Matlab and C-mex of this approach are available online from the corre-

sponding authors’ website4. For OASIS, only one projection onto the PSD cone is

applied. Cross-validation is used for setting the following hyper-parameters: the

aggressiveness parameter C ∈ {10−9, . . . , 102} for OASIS; and the trace-bound

parameter B ∈ {0.1, 1, 10, 100} for LMDML-A and LMDML-S. To get the best

performance, we set the maximum number of iterations to 106 for OASIS and 105

for POLA, LMDML-S, and LMDML-A. OASIS often requires a large number of

iterations in order to achieve a good performance. This is due to the fact that

the matrix learned by OASIS is not guaranteed to be PSD or even symmetric

after each iteration. In our experiments, only one projection onto the PSD cone is

applied at the end of OASIS, and as a result, it may lead to a suboptimal solution

which is far away from the optimal one.

We carry out an experiment on several publicly available large-scale data sets,

including the Isolet (Cole and Fanty, 1990), Connect-4, Poker, Sensit, and

Protein (Chang and Lin, 2011) data sets. Table 6.2 summarizes the information

of these data sets. The Isolet5 data set contains 7,797 examples with 617 features

collected from 150 different speakers. They pronounced the name of each letter

in the English alphabet twice. The task is to recognize what letter was been

uttered. The speakers are formed into sets of 30 speakers each, referred as Isolet1,

Isolet2, Isolet3, Isolet4, and Isolet5. The first four subsets are used for training

and validation to tune the hyper-parameters. The last subset is used for testing.

This data set was used in several distance metric learning studies (Parameswaran

and Weinberger, 2010; Qian et al., 2015a; Nguyen et al., 2016). The remaining

data sets, including Protein, Connect-4, Poker, and Sensit, were downloaded from

LIBSVM6. These data sets are challenging because they contain a very large

number of training examples with the number of features varying from 10 to 357.

For instance, the Poker data set contains up to one million examples, while the

Protein data set contains 24,387 examples with 357 features. All training and test

sets are predefined, except for the Connect-4 data set where 70% of the data is

randomly selected for training and the remaining 30% is used for testing. To make

the comparison of the competing algorithms as fair as possible, for each training

example, we use 3 nearest neighbors of the same class and 5 nearest neighbors of

different classes to generate 15 triplet constraints and 8 pairwise constraints. Due

to the very large number of training examples, we also limit the number of miss

examples to 5 for both LMDML-S and LMDML-A in order to reduce the time

complexity (see discussion in Subsection 6.4.3). All the experiments are repeated

five times.

Table 6.3 shows the classification accuracy of the competing algorithms in the

4 OASIS: http://ai.stanford.edu/~gal/Research/OASIS/
5 Available at: https://archive.ics.uci.edu/ml/datasets/ISOLET
6 Available at: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

118

http://ai.stanford.edu/~gal/Research/OASIS/
https://archive.ics.uci.edu/ml/datasets/ISOLET
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

§6.5. Experiments

Table 6.2: Description of large-scale data sets used in our experiment.

Data set Features Classes Training examples Test examples

1. Connect-4 126 3 54,045 13,512

2. Isolet 617 26 6,238 1,559

3. Poker 10 10 1,000,000 25,010

4. Protein 357 3 17,766 6,621

5. Sensit 100 3 78,823 19,705

Table 6.3: Classification accuracy (standard deviation) on large-scale data sets of the
competing algorithms. The best result is highlighted in boldface.

Euclidean POLA OASIS LMDML-S LMDML-A

1. 69.17 (0.00) 78.81 (0.30) 74.06 (0.01) 78.20 (0.54) 78.21 (0.34)

2. 90.38 (0.00) 92.62 (0.01) 94.42 (0.26) 94.46 (0.38) 94.47 (0.25)

3. 61.40 (0.00) 63.07 (1.26) 39.07 (0.09) 62.90 (0.99) 62.80 (0.80)

4. 51.87 (0.00) 65.00 (0.03) 65.97 (0.16) 64.84 (0.53) 64.74 (0.43)

5. 81.12 (0.00) 81.51 (0.12) 69.11 (0.29) 81.60 (0.01) 81.53 (0.02)

context of 3-NN classification. As can be seen, LMDML-A consistently outperforms

the baseline Euclidean distance metric, and it maintains a superior or equal

performance compared to other algorithms on all data sets. OASIS yields very

poor results on the Poker and Sensit data sets. We also observe that LMDML-A

and LMDML-S obtain similar results since both algorithms are developed on the

basis of the same problem formulation.

Table 6.4 reports the final rank of the Mahalanobis matrix learned by the

competing algorithms. The results show that LMDML-A can capture the underlying

low-dimensional structure of data, thus reducing the risk of overfitting. These

results also confirm the validity of using the trace norm to impose the low-rank

constraint on the Mahalanobis matrix.

We further compare the average training time of the competing algorithms in

Table 6.5. The training time takes into account the time for tuning the hyper-

parameters. Our algorithm is significantly faster than the competing algorithms,

especially on the Isolet and the Sensit data sets. When the dimensionality is low

(e.g. the Poker data set), there is no significant difference in training time between

LMDML-A, LMDML-S, and POLA. Note that the training time of OASIS highly

depends on the sparseness of the data sets. This may explain why LMDML-A

runs significantly faster than OASIS. Although LMDML-S and LMDML-A have

the same time complexity, LMDML-A is still faster than LMDML-S due to the

efficient way of keeping the solution within the PSD cone.

119

Chapter 6. Scalable metric learning using stochastic gradient descent

Table 6.4: Average rank of the Mahalanobis matrix learned from large-scale data sets
by the competing algorithms.

Euclidean POLA OASIS LMDML-S LMDML-A

1. 126.00 82.00 120.00 90.80 87.00

2. 617.00 462.00 607.00 607.80 608.20

3. 10.00 10.00 6.00 10.00 9.00

4. 357.00 356.00 250.00 348.00 333.00

5. 100.00 98.00 100.00 91.00 89.00

Table 6.5: Training time (in seconds) of the competing algorithms on large-scale data
sets. The best result is highlighted in boldface.

POLA OASIS LMDML-S LMDML-A

1. 1,012.36 1,989.16 1,844.40 200.66

2. 11,597.17 8,979.97 13,622.83 1,816.97

3. 462.21 1,809.79 430.92 421.50

4. 10,755.13 6,842.63 11,641.36 1,363.93

5. 953.56 1,863.74 1,332.32 152.91

6.6. Discussion and conclusion

We conclude this work by summarizing our main contributions in this chapter and

discussing some related work that motivated our approach. The main contribution

of this chapter is the proposal of a novel distance metric learning approach for k-NN

classification. The intuition behind our approach is based on the principle of margin

maximization. In order to make the proposed approach practical on large-scale

data sets, we have developed an efficient algorithm to reduce the expensive cost

of projections onto the PSD cone. The experimental results have demonstrated

that our algorithm is capable of handling large-scale data sets, when the number

of examples is large or the dimensionality is high.

Our approach shares the same goals of local learning as LMNN (Weinberger

and Saul, 2009) and NCA (Goldberger et al., 2005). Local learning can preserve

the discriminative information contained in the neighborhood and allows to capture

the local structure of the data. Our approach is based on local learning and

follows a similar idea as the margin-maximization principle of SVMs (Cortes and

Vapnik, 1995), AdaBoost (Schapire et al., 1997), and LMNN (Weinberger and Saul,

2009).

On the other hand, many distance metric learning approaches based on feature

extraction, such as PCA (Jolliffe, 2005), LDA (Fisher, 1936), RCA (Bar-Hillel et al.,

120

§6.6. Discussion and conclusion

2005), and DMLMJ, require implicit assumptions about the distribution of the

data. When these assumptions do not hold, these approaches may extract irrelevant

features that are not useful for k-NN classification. In contrast to these approaches,

our approach requires only information about the neighborhood of each training

example, while no assumption about the distribution of the data is made. For

this reason, our approach can preserve the strengths of k-NN classification, which

is a nonparametric method, and makes no assumptions about the distribution

of the data. Not surprisingly, our approach can boost the performance of k-NN

classification.

Our proposed approach is closely related to LMNN (Weinberger and Saul, 2009)

in the sense that both approaches solve a convex optimization problem, with the

goal of making the k nearest neighbors of each training examples share the same

class label, while pushing away examples with different class labels. Unlike LMNN,

our approach enforces the low-rank constraint on the Mahalanobis matrix to reduce

the risk of overfitting in high-dimensional settings. Due to the simplicity of our

margin definition, we can significantly reduce the number of constraints in the

problem formulation, and as a consequence, our algorithm is orders of magnitude

faster than LMNN.

121

7 Distance metric learning

based on difference of

convex functions programming

In this chapter, we develop a supervised distance metric learning method that

aims to improve the performance of nearest-neighbor classification. Our method

is inspired by the large-margin principle, resulting in an objective function based

on a sum of margin violations to be minimized. Due to the use of the ramp

loss function, the corresponding objective function is nonconvex, making it more

challenging. To overcome this limitation, we formulate our distance metric learning

problem as an instance of difference of convex functions (DC) programming. This

allows us to design a more robust method than when using standard optimization

techniques.

The material of this chapter is based on the following publication:

Nguyen, B. and De Baets, B. (2018a). An approach to supervised distance metric

learning based on difference of convex functions programming. Pattern Recognition,

81:562–574

7.1. Motivation

Mahalanobis distance metric learning can be formulated within a convex opti-

mization framework, which enjoys significant advantages in that the convexity

guarantees to reach the global optimum and is not sensitive to initial conditions.

A large number of optimization methods have been proposed to deal with convex

optimization problems (Boyd and Vandenberghe, 2004). In particular, convex

distance metric learning methods are often cast as solving semidefinite programs,

therefore, standard semidefinite programming solvers can be used. In order to

make the problem more tractable in large-scale settings, Weinberger and Saul

(2009) developed an efficient subgradient descent method based on the active set

techniques. Davis et al. (2007) introduced an iterative Bregman projection method

to avoid the projection of the Mahalanobis matrix onto the cone of symmetric

positive semidefinite (PSD) matrices. Shen et al. (2012) proposed a boosting-based

method that learns a linear combination of trace-one rank-one matrices. Recently,

Atzmon et al. (2015) suggested an efficient solver based on the block-coordinate

descent method to avoid the projection and computation of full gradients. Other

methods such as the Frank-Wolfe (Ying and Li, 2012) and the projected gradient

descent (Xing et al., 2002) methods have also been employed in the context of

123

Chapter 7. Distance metric learning based on DC programming

distance metric learning.

Convex optimization has become very popular in the pattern recognition com-

munity over the last few decades, because of its empirical performance and because

it facilitates a deeper mathematical analysis. Unfortunately, in many practical

settings, convexity is not always guaranteed, and one has to resort to nonconvex

optimization methods (Collobert et al., 2006b). Various researchers (Mason et al.,

2000; Liu et al., 2005; Fujiwara et al., 2017) have argued that using nonconvex loss

functions to approximate the misclassification rate can yield a better performance

than using convex loss alternatives such as the hinge loss and the exponential loss.

Recent research in this direction has provided a number of nonconvex functions

in order to alleviate the limitation of convex functions. Shen et al. (2003) and

Liu and Shen (2006) proposed a Ψ-learning framework that replaces the hinge

loss function in Support Vector Machines (SVMs) by a nonconvex Ψ-loss function.

In a similar variant of the Ψ-loss function, Collobert et al. (2006b) and Ertekin

et al. (2011) introduced the ramp loss function, which gives a constant penalty

for large losses. Both the Ψ-loss and ramp loss functions have been shown to be

effective in practice. Therefore, it is important to investigate the use of nonconvex

loss functions in the context of distance metric learning. In particular, we pay

attention to the ramp loss function, since it can be easily written as a difference of

convex functions (DC). Consequently, an effective method for DC programming

can be applied to solve the problem. To the best of our knowledge, the method

presented in this chapter is the first distance metric learning method that exploits

the benefits of DC programming.

Due to the simplicity and effectiveness, this chapter focuses on improving

the performance of nearest-neighbor classification. It is well known that the

misclassification error rate of the nearest-neighbor classifier converges asymptotically

to at most twice the Bayes error rate (Cover and Hart, 1967), however, it is extremely

sensitive to noise. In order to overcome the latter drawback, we develop a distance

metric learning method making the nearest-neighbor classifier more robust to

outliers. In short, our main contributions are summarized as follows:

(i) A distance metric learning framework is proposed to minimize the misclassifica-

tion rate of the nearest-neighbor classifier. Particularly, our method is inspired

by the success of the large-margin principle (Vapnik, 1998). Due to the use

of the ramp loss function, our objective function for margin maximization

has a strong ability to avoid the influence of outliers.

(ii) Since the objective function can be decomposed into a DC program, a DC

algorithm (DCA) (Pham Dinh and Le Thi, 1997) is adopted to solve this

problem. Our method iteratively solves a sequence of convex subproblems.

We refer to the proposed method as Distance Metric Learning using DC

programming (DML-dc).

(iii) We show that the generalization error analysis of the proposed approach has an

124

§7.2. Preliminaries

important theoretical implication in explaining that minimizing the objective

function may improve the generalization performance of nearest-neighbor

classification. In particular, the generalization performance is guaranteed via

the fat-shattering dimension of Lipschitz classifiers through the combination

of a large margin and a low-rank Mahalanobis matrix.

The remainder of this chapter is organized as follows. Section 7.2 gives some

preliminaries that will be used throughout this chapter. Section 7.3 briefly reviews

some existing approaches that are closely related to our work. Section 7.4 presents

our distance metric learning formulation and the corresponding DCA algorithm.

Subsequently, Section 7.5 provides the generalization error of the proposed approach

using the large-margin criterion. Experimental results are discussed in Section 7.6,

followed by some concluding remarks in Section 7.7.

7.2. Preliminaries

To evaluate the performance of a classifier, it does not suffice to consider the

training error, but it is also necessary to consider the confidence of the predictions

made by the classifier. The margin is one of the geometric measures for evaluating

this confidence (Crammer et al., 2003). It provides theoretical generalization

bounds on the effectiveness of a classifier, i.e. the higher the confidence is, the

lower generalization error the classifier obtains. Many machine learning algorithms

have been analyzed using margin concepts, such as SVMs (Vapnik, 1998) and

AdaBoost (Schapire et al., 1997).

Given a distance metric d, Crammer et al. (2003) define the margin by which a

labeled example xi is classified correctly as

φ(xi) = d
(
xi,NM(xi)

)
− d
(
xi,NH(xi)

)
, (7.1)

where NM(xi) and NH(xi) are the elements ofM(xi) and H(xi) (see the definitions

ofM(xi) and H(xi) in Section 6.3) that are closest to xi, called nearest miss (NM)

and nearest hit (NH), respectively. This margin was originally defined using the

Euclidean distance metric for feature selection purposes. The intuition behind

this formulation is that it measures how much xi can travel in the input space

before being misclassified. This margin definition is also adopted implicitly in the

well-known RELIEF algorithm (Kira and Rendell, 1992). RELIEF predefines the

NH and the NM in the original input space using the Euclidean distance metric,

and it leads to a convex optimization problem. The major issue with RELIEF is

that the NH and the NM in the original input space are not always the same in

the transformed space.

125

Chapter 7. Distance metric learning based on DC programming

7.3. Related work

Our method is closely related to feature selection methods such as RELIEF (Kira

and Rendell, 1992), I-RELIEF (Sun et al., 2010), and SIMBA (Gilad-Bachrach

et al., 2004). The reader is referred to (Robnik-Šikonja and Kononenko, 2003) for

a more detailed discussion about this family of algorithms in a unified framework.

These methods are developed for selecting a set of features that capture the relevant

properties of the data by maximizing the margin of nearest-neighbor classification.

We use a similar idea of defining the margin as those methods, i.e. the difference

between distances of a given example to its NM and NH. However, instead of

learning a simple weight vector over the feature set, we learn a full Mahalanobis

distance metric. Therefore, the correlations among features are also taken into

account, yielding a more powerful model. It is important to note that the NHs

and NMs vary when the distance metric is updated, making the optimization

problem hard to solve (Sun, 2007). Several approaches have been proposed to avoid

this problem. For instance, instead of calculating the NHs and NMs explicitly,

Chang (2010) proposed a method using kernel density estimation to estimate the

distances to NHs and NMs. By doing so, the problem becomes easier and can

be solved by standard optimization techniques such as gradient descent or the

EM algorithm. The idea of using kernel density estimation for NHs and NMs is

also employed in Neighborhood Components Analysis (NCA) (Goldberger et al.,

2005) and Large Margin Subspace Learning (LMSL) (Liu et al., 2013). Based

on pairwise constraints, Zhang et al. (2012b) proposed Constrained large Margin

Local Projection (CMLP) for multimodal dimensionality reduction. Differently

from these methods, we directly minimize the losses based on margin violations

defined by NHs and NMs, which may provide a more reliable solution.

Research on distance metric learning has been very active in the past decade (Bel-

let et al., 2015). Here, we limit ourselves to the discussion of several distance metric

learning methods for classification problems. Empirical evidence has demonstrated

that distance metric learning methods that employ the large-margin concept usually

perform better than other alternatives (Weinberger and Saul, 2009; Shen et al.,

2012; Hu et al., 2015b; Zou et al., 2016). One of the most successful methods,

namely LMNN (Weinberger and Saul, 2009), aims to learn the distance metric

under which each training example has nearest neighbors that share the same class

label (i.e. target neighbors), while pushing away those examples with different class

labels (i.e. impostor neighbors). The main drawback of LMNN is that the target

neighbors are specified a priori and remain unchanged during the training process.

Consequently, the performance of LMNN heavily depends on the choice of the target

neighbors, since these might be quite different under the optimal distance metric

for k-NN classification. In contrast to LMNN, our method adaptively updates the

target and impostor neighbors during the training process.

126

§7.4. Proposed method

Viewed from an alternative perspective, our method shares the same goals of

local learning as LMNN (Weinberger and Saul, 2009), NCA (Goldberger et al.,

2005), LDDM (Mu et al., 2013), and DMLMJ (see Chapter 3). Unlike global

distance metric learning methods, which usually try to satisfy all the constraints,

these local methods only use the neighborhood information, resulting in a suitable

model for local classifiers like the nearest-neighbor classifier. This is due to the fact

that nearest-neighbor classifiers are mostly influenced by the examples that are

close to the test examples. A common guiding principle for local distance metric

learning methods is to satisfy the local constraints derived from the neighborhood of

each training example (Ying and Li, 2012). While the previous methods are based

on local learning, they completely differ in their problem formulation. Therefore,

it is unclear whether they have the same theoretical properties as ours.

Recently, there have been several attempts to make the distance metric robust

to outliers, which become particularly problematic in noisy data classification.

For instance, Wang et al. (2014a) introduced an objective function based on the

`1-norm instead of the usual squared `2-norm which could be highly influenced by

outliers. Similarly to Xiang et al. (2008), they aim to find a linear transformation

that minimizes the ratio between the distances of the examples in the must-link

constraints and those in the cannot-link constraints. Alternatively, to reduce the

influence of noisy examples, Mu et al. (2013) proposed an ensemble framework

that combines locally learned distance metrics for the final prediction. Unlike these

methods, we use the ramp loss function, which has the strong ability of suppressing

the influence of outliers (Collobert et al., 2006b; Ertekin et al., 2011).

7.4. Proposed method

The previous section recalled the importance of margins in order to develop a

consistent classifier, i.e. a classifier with a misclassification rate that converges to

the best possible. In this section, we present a distance metric learning method that

intends to maximize the margin of the nearest-neighbor classifier. We first define

the margin in Eq. (7.1) based on the Mahalanobis distance metric. Our distance

metric learning method then aims to maximize the margin of each training example.

Although the formulation is nonconvex, we show that it belongs to the class of DC

programming problems. Subsequently, an efficient algorithm is introduced to solve

this problem. Finally, we discuss the convergence and computational complexity of

the proposed algorithm.

127

Chapter 7. Distance metric learning based on DC programming

7.4.1. Problem formulation

Formally, the Mahalanobis distance between two feature vectors xi and xj takes

the following form:

dM(xi,xj) =
√

(xi − xj)>M(xi − xj) ,

where M < 0 is a PSD matrix. Due to the linearity in M, the squared Mahalanobis

distance metric d2
M is usually used to minimize the distances between similar

examples (xi,xj) and to maximize the distances between dissimilar examples

(xi,xl) simultaneously (Weinberger and Saul, 2009; Davis et al., 2007; Shen et al.,

2012; Ying and Li, 2012). This goal is often formulated as maximizing:

d2
M(xi,xl)− d2

M(xi,xj)

=
[
dM(xi,xl)− dM(xi,xj)

][
dM(xi,xl) + dM(xi,xj)

]
. (7.2)

Even though the squared distance and the distance are monotonically related, it is

not the case that maximizing the difference of squared distances necessarily amounts

to maximizing the difference of distances, because the summation in (7.2) will

break the monotonicity property. For this reason, we will consider the Mahalanobis

distance metric dM, which is a concave function of M on SD+ . Accordingly, we can

rewrite the margin in Eq. (7.1) based on the distance metric dM as

φM(xi) = dM

(
xi,NMM(xi)

)
− dM

(
xi,NHM(xi)

)
=
[
−dM

(
xi,NHM(xi)

)]
−
[
−dM

(
xi,NMM(xi)

)]
= gi(M)− hi(M) ,

where

gi(M) = −min
{
dM(xi,xj) | xj ∈ Hi

}
,

hi(M) = −min
{
dM(xi,xj) | xj ∈Mi

}
,

are convex functions of M on SD+ .

After having defined the margin, distance metric learning can be performed

within the large-margin framework. As is commonly done, the large-margin method

maximizes the margin of the example with the smallest margin for a separable

classification problem (Schölkopf and Smola, 2001), i.e. the goal is to maximize

min
{
φM(xi) | xi ∈ X

}
. To deal with the nonseparable case, we introduce a soft

margin to relax this condition, i.e. some examples are allowed to violate their

margins by adding additional penalty terms to the objective function. For this

128

§7.4. Proposed method

purpose, we formulate our distance metric learning problem as follows:

minimize
M<0

λ tr(M) +
1

n

n∑
i=1

`
(
φM(xi)

)
, (7.3)

where ` is a loss function penalizing the margin violations and λ > 0 is a hyper-

parameter controlling the trade-off between the margin violations and the regular-

ization. The reason for using the trace norm is that the trace of M is equal to its

nuclear norm, therefore, minimizing the trace norm can lead to a low-rank solu-

tion (Kulis, 2012). As a result, it helps to reduce the risk of overfitting. Moreover,

the trace norm has been shown to be effective in several distance metric learning

studies (Jain et al., 2010; Liu et al., 2015a).

−2 −1 0 1 2
−1

0

1

2

3

Ramp loss s = −0.5
Hinge loss
Exponential loss
Squared loss

Figure 7.1: An illustration of the ramp loss function with s = −0.5 and some convex
loss functions

Minimizing the objective function in (7.3) with respect to M implicitly increases

the margins φM(xi). However, with the soft margin, misclassified examples like

outliers also tend to have a large margin loss because the misclassification penalty

is unbounded. As a consequence, they will have a dominant effect on the decision

rule of the classifier. In order to alleviate this problem, we consider the ramp loss

or truncated hinge loss function (Collobert et al., 2006b), given by

Rs(z) = max
{

0, 1− z
}
−max

{
0, s− z

}
,

where s < 1 is a parameter; we refer to Fig. 7.1 for an illustration of the ramp loss

function compared to the hinge loss function. The idea behind the ramp loss is

to truncate large losses with the constant s, making the classifier more robust to

outliers (Collobert et al., 2006b; Ertekin et al., 2011). Moreover, the ramp loss

function has been shown to give better results than the hinge loss function (Chapelle

129

Chapter 7. Distance metric learning based on DC programming

et al., 2009; Collobert et al., 2006a). Applying the ramp loss function to φM(xi)

yields

`(φM(xi))

= max
{

0, 1− gi(M) + hi(M)
}
−max

{
0, s− gi(M) + hi(M)

}
= max

{
1 + hi(M), gi(M)

}
− gi(M)−max

{
s+ hi(M), gi(M)

}
+ gi(M)

= max
{

1 + hi(M), gi(M)
}
−max

{
s+ hi(M), gi(M)

}
.

In order to simplify the mathematical notation, let us define

G(M) = λ tr(M) +
1

n

n∑
i=1

max
{

1 + hi(M), gi(M)
}
,

H(M) =
1

n

n∑
i=1

max
{
s+ hi(M), gi(M)

}
,

then the objective function in (7.3) can be decomposed into a convex part G(M)

and a concave part −H(M). Finally, problem (7.3) can be cast as an instance of

DC programming, given by

minimize
M<0

G(M)−H(M) . (7.4)

Problem (7.4) is a nonsmooth nonconvex optimization problem, which is difficult

to solve in general. Fortunately, a DC program can be solved globally using

optimization methods such as branch and bound (Horst and Thoai, 1999), but this

can be slow in practice. Next, we will explain how to find a local minimizer for

this problem using DCA (Pham Dinh and Le Thi, 1997), which allows to solve

large-scale DC programs.

7.4.2. Algorithm

As a starting point for explaining the proposed algorithm, we give a brief intro-

duction to DCA, one of the most effective algorithms for solving DC programs.

Essentially, the idea is to linearize the concave part and subsequently solve the

convex subproblem. When the objective function is differentiable, DCA can be

seen as the Concave-Convex Procedure (CCCP) (Yuille and Rangarajan, 2002).

Such algorithms have already been used in SVMs (Collobert et al., 2006b; Ertekin

et al., 2011), clustering (Bagirov et al., 2016), regression (Pham Dinh et al., 2014),

and so on. We refer the reader to (Pham Dinh and Le Thi, 1997) and the references

therein for further details on DCA. Although DCA converges to local optima,

Pham Dinh and Le Thi (1997) showed that, in practice, it often converges to the

global one. The theoretical results on DCA, such as its convergence properties, can

be applied directly to our algorithm. A pseudocode of our algorithm DML-dc is

130

§7.4. Proposed method

given in Algorithm 5. Next, we will explain the two basic steps in each iteration of

DML-dc.

Algorithm 5 DML-dc: Distance Metric Learning using DC programming

Input: Parameter ε
Output: Mt+1 < 0

1: Let M0 < 0 be an initial solution
2: Set the iteration counter t← 0
3: repeat
4: Linearize the concave part by computing Ut ∈ ∂H(Mt)
5: Compute Mt+1 by solving the following convex semidefinite program

Mt+1 ← minimize
M<0

G(M)− 〈M,Ut〉

6: Increase the iteration counter t← t+ 1
7: until ‖Mt −Mt+1‖F ≤ ε

Linearizing the concave part

Assume that Mt is the solution at the t-th iteration in Algorithm 5. The main

idea of DCA is to replace in the original DC program (7.4), at the current solution

Mt, the second component H(M) with its affine minorization, given by

Hl(M) = H(Mt) + 〈M−Mt,Ut〉 , Ut ∈ ∂H(Mt) .

By doing so, problem (7.4) can be approximated by solving a convex program

since Hl(M) is a linear function of M. In order to approximate the concave part,

we need to compute the subgradient Ut. Note that H(M) is a sum of pointwise

maxima of convex functions, which is nondifferentiable. To find the subgradient

of a maximum of functions at a point, we can choose one of the subgradients

of any function that achieves the maximum at that point. Particularly, in our

implementation, Ut is chosen as

Ut ∈
1

n

[∑
i∈At

∂hi(Mt) +
∑
i∈At

∂gi(Mt)

]
,

where At is the set consisting of indices i satisfying the condition s + hi(Mt) >

gi(Mt) and At is the set consisting of indices i that do not satisfy this condition, i.e.

s+ hi(Mt) ≤ gi(Mt). Similarly, we can compute a subgradient pi(Mt) ∈ ∂gi(Mt)

131

Chapter 7. Distance metric learning based on DC programming

and a subgradient qi(Mt) ∈ ∂hi(Mt) as follows1:

pi(Mt) =

−
[
xi −NHMt(xi)

][
xi −NHMt(xi)

]>
2dMt

(
xi,NHMt

(xi)
) , if dMt

(
xi,NHMt(xi)

)
6= 0 ;

0 , otherwise ;

qi(Mt) =

−
[
xi −NMMt

(xi)
][

xi −NMMt
(xi)

]>
2dMt

(
xi,NMMt(xi)

) , if dMt

(
xi,NMMt

(xi)
)
6= 0 ;

0 , otherwise ;

where 0 denotes a matrix of zeros. Finally, the subgradient of H(M) at Mt is

computed as

Ut =
1

n

[∑
i∈At

pi(Mt) +
∑
i∈At

qi(Mt)

]
.

Solving the convex subproblem

After obtaining a subgradient Ut of H(M) at Mt, we can replace H(M) by its

linearizion. Therefore, problem (7.4) is approximated by the following convex

semidefinite program:

Mt+1 = argmin
M<0

G(M)−H(Mt)− 〈M−Mt,Ut〉 ,

or, equivalently,

Mt+1 = argmin
M<0

G(M)− 〈M,Ut〉 . (7.5)

Semidefinite programming can be used to solve problem (7.5), however, it does not

scale well on large data sets. To overcome this limitation, we will consider first-order

algorithms. The reason for choosing such algorithms is that they only require

the first derivative of the objective function and, therefore, they can reduce the

time complexity per iteration. In particular, we perform the projected subgradient

descent due to its simplicity and effectiveness. This algorithm has already been

applied to distance metric learning by Weinberger and Saul (2009),Globerson and

Roweis (2006), and Xing et al. (2002).

At the k-th iteration, let Mk be the current solution of (7.5). Our algorithm

operates as follows. First, we compute a subgradient Gk of the objective function

1 A matrix S is a subgradient of a function f at X if for all Z in the domain of f , the following
condition is satisfied: f(Z) ≥ f(X) + 〈Z−X,S〉.

132

§7.4. Proposed method

in (7.5). In our implementation, Gk is chosen as follows:

Gk = λ I +
∑
i∈Bk

pi(Mk) +
∑
i∈Bk

qi(Mk)−Ut , (7.6)

where Bk is the set consisting of indices i satisfying the condition 1 + hi(Mk) >

gi(Mk) and Bk is the set consisting of indices i that do not satisfy this condition, i.e.

1 + hi(Mk) ≤ gi(Mk). Note that pi(Mk) and qi(Mk) are subgradients of hi(Mk)

and gi(Mk), respectively, as defined in the previous subsection. Subsequently,

we can update the Mahalanobis matrix in the direction of the subgradient Gk

as

Mk+1/2 = Mk − ηGk ,

where η is the step size. Finally, to keep the solution within the cone of PSD

matrices, we perform the following projection:

Mk+1 = ΠSD+ (Mk+1/2) = Vk+1/2 max{Λk+1/2,0}V>k+1/2 ,

where Λk+1/2 is a diagonal matrix whose diagonal vector contains the eigenvalues

of Mk+1/2 and Vk+1/2 is the corresponding eigenvector matrix. One can easily see

that the complexity of this algorithm at each iteration scales as O(N2D+D3). This

is mainly due to the computation of NHs and NMs, which scales as O(N2D). To

reduce this computational burden, we observe that for each training example, its NH

and NM lie very nearby. Consequently, we only need to check a subset of examples

that likely contains the NH and NM in order to simplify the computation. More

specifically, for each training example xi, we restrict Hi to be the set containing

the m nearest examples of the same class and Mi to be the set containing the

m nearest examples of different classes. These subsets are dynamically updated

after a certain number of iterations. By doing so, we reduce the complexity of

our algorithm to O(NmD +D3) per iteration. See Algorithm 6 for a pseudocode

summary of these steps.

7.4.3. Convergence and computational complexity

Our algorithm DML-dc has a linear convergence, which is derived from the general

convergence properties of DCA (Pham Dinh and Le Thi, 1997). It is also worth

pointing out that the objective function value in (7.4) is decreasing, even without

considering any line search at each iteration. Due to the computation of NH

and NM for each training example, the complexity of computing a subgradient of

H(M) scales as O(N2D + ND2). However, we observe that DML-dc converges

after very few iterations (less than 15 iterations). In each iteration of DML-dc, we

also have to find the solution of a convex semidefinite program, which scales as

133

Chapter 7. Distance metric learning based on DC programming

Algorithm 6 Projected Subgradient Descent for solving (7.5)

Input: Parameters T , η, Ut, m
Output: MT < 0

1: Let M0 < 0 be an initial solution
2: Initialize all sets Hi and Mi containing only the m nearest examples
3: for k ← 0 to T − 1 do
4: if (k + 1 mod some constant) = 0 then
5: Recompute all sets Hi and Mi

6: end if
7: Compute the subgradient Gk as in Eq. (7.6)
8: Set Mk+1/2 ←Mk − ηGk

9: Project onto the PSD cone as Mk+1 ← ΠSD+ (Mk+1/2)

10: end for

O(T (NmD +D3)). Therefore, the total complexity of DML-dc at each iteration

scales as O(N2D +ND2 + TNmD + TD3).

7.5. Theoretical analysis

In this section, we use the large-margin principle to analyze the effectiveness of

the method introduced in Section 7.4. The main purpose of the analysis is to

explain the link between the margin and the generalization error of the metric-based

method when no assumptions are made about the underlying data distribution.

We provide the generalization error for the case of the nearest-neighbor classifier

for binary classification problems. The latter restriction is due to the fact that

we will rely on results from statistical learning theory that are available for such

problems.

We recall some basic concepts of statistical learning theory. Let Z be an input

space in RD. We assume that the training data are generated independently

according to a probability distribution P on Z × {−1, 1}. Let F be a class of real-

valued functions (hypotheses) defined on Z. For the hypothesis f ∈ F , let erP (f)

denote the probability that a random couple (x, y) ∈ Z × {−1, 1} is misclassified,

i.e.

erP (f) = P
(
sgn
(
f(x)

)
6= y
)
,

where sgn(.) is a threshold function that takes value −1 if its argument is negative,

and value 1 otherwise. We define the empirical error of f on the training set

D = {(xi, yi) | i ∈ {1, . . . , n}} with respect to γ > 0 as

êrγD(f) =
1

n

∣∣∣{i ∈ {1, . . . , n} | yif(xi) < γ
}∣∣∣ .

134

§7.5. Theoretical analysis

We formally define the hypothesis of the nearest-neighbor classifier as follows.

Let NNM be a real-valued function such that the sign of NNM(x) is the class label

of x assigned by the nearest-neighbor classifier using the Mahalanobis distance

metric dM on D. The magnitude of NNM(x) is given by

|NNM(x)| = dM

(
x,NMM(x)

)
− dM

(
x,NHM(x)

)
, (7.7)

where NHM(x) is the nearest example of x that shares the same class label with

x, and NMM(x) is the nearest example of x whose class label is different from

the class label of NHM(x). The main result of this section is summarized in the

following theorem.

Theorem 7.1. Let D be the training set containing n examples that are generated

independently according to a probability distribution P on Z × {−1, 1}. Assume

that the data space Z lies inside a ball of radius R induced by the Euclidean norm

on RD. Then, with probability at least 1− σ, for any Mahalanobis distance metric

dM with tr(M) ≤ B and for any γ > 0 such that êrγD (NNM) = 0, the true error

of NNM can be bounded by

erP (NNM) ≤ 2

n

(
c log2

(
34en

c

)
log2(578n) + log2

(
4

σ

))
.

Furthermore, if êrγD (NNM) 6= 0, with probability at least 1− σ, we have that

erP (NNM) ≤ êrγD (NNM) +

√
2

n

(
c ln

(
34en

c

)
log2(578n) + ln

(
4

σ

))
.

In both cases, the constant c satisfies c ≤
(

128R
√
B

γ

)rank(M)

.

Remark 7.1. Theorem 7.1 shows that maximizing the lower bound γ of the margin

defined by the hypothesis NNM will make the nearest-neighbor classifier able to

generalize well to unseen data. Therefore, by maximizing φM on the training

examples, we attempt to maximize the margin of the nearest-neighbor classifier.

Additionally, Theorem 7.1 also provides a theoretical justification to enforce the

low-rank constraint in our distance metric learning method as the rank of M

appears in the exponent of the bound as well.

Before giving the proof of Theorem 7.1, let us introduce some useful lem-

mas.

Lemma 7.1. The hypothesis of the nearest-neighbor classifier using the Maha-

lanobis distance metric dM on the training set D can be rewritten as

NNM(x) = dM(x,Xy=−1)− dM(x,Xy=1) ,

135

Chapter 7. Distance metric learning based on DC programming

where Xy=−1 and Xy=1 denote the subsets containing the training examples whose

class labels are −1 and 1, respectively.

Proof. Let z1 and z2 be the nearest points of x using the Mahalanobis distance

metric dM on Xy=−1 and Xy=1, respectively. We have to consider two different

cases in order to prove this lemma.

In the first case, if dM(x, z1) ≥ dM(x, z2), then NNM(x) ≥ 0 and

|NNM(x)| = dM(x, z1)− dM(x, z2)

= dM

(
x,NMM(x)

)
− dM

(
x,NHM(x)

)
.

In the second case, if dM(x, z1) < dM(x, z2), then NNM(x) < 0 and

|NNM(x)| = dM(x, z2)− dM(x, z1)

= dM(x,NMM(x))− dM(x,NHM(x)) .

Lemma 7.2. Let x be a point inside a ball of radius R induced by the Euclidean

norm on RD and let M ∈ RD×D be a PSD matrix such that tr(M) ≤ B. Then it

holds that ‖L>x‖ ≤ R
√
B, where M = LL>.

Proof. Since L>x is a vector, it holds that ‖L>x‖ = ‖L>x‖F . Using the submulti-

plicative property of the Frobenius norm (Golub and Van Loan, 1996), we obtain

‖L>x‖F ≤ ‖L>‖F ‖x‖F =
√

tr(LL>)‖x‖ ≤ R
√
B.

Lemma 7.3. Let X be a set of points in RD and let M ∈ RD×D be a PSD matrix.

Then for any x1,x2 ∈ RD, it holds that

|dM(x1,X)− dM(x2,X)| ≤ dM(x1,x2) .

Proof. Let z1 and z2 be the nearest points of x1 and x2 using the Mahalanobis

distance metric dM on X , respectively. By definition of dM(x1,X), it holds that

dM(x1,X) = dM(x1, z1) ≤ dM(x1, z2) .

Using the triangle inequality of the distance metric dM, we have that

dM(x1, z2) ≤ dM(x1,x2) + dM(x2, z2)

= dM(x1,x2) + dM(x2,X) .

The last expression implies

dM(x1,X)− dM(x2,X) ≤ dM(x1,x2) . (7.8)

136

§7.5. Theoretical analysis

Exchanging the roles of x1 and x2, we obtain in a similar way

dM(x2,X)− dM(x1,X) ≤ dM(x1,x2) . (7.9)

From (7.8) and (7.9), we conclude the proof.

Lemma 7.4. Let D be a training set containing labeled examples in Z × {−1, 1}
and let M ∈ RD×D be a PSD matrix. Then, for any x1,x2 ∈ RD, it holds that

|NNM(x1)−NNM(x2)| ≤ 2dM(x1,x2) .

Proof. Using Lemma 7.1, we can write

|NNM(x1)−NNM(x2)| = |dM(x1,Xy=−1)− dM(x1,Xy=1)

−dM(x2,Xy=−1) + dM(x2,Xy=1)|
≤ |dM(x1,Xy=−1)− dM(x2,Xy=−1)|

+ |dM(x1,Xy=1)− dM(x2,Xy=1)| .

Using Lemma 7.3, we obtain

|dM(x1,Xy=−1)− dM(x2,Xy=−1)| ≤ dM(x1,x2) ,

|dM(x1,Xy=1)− dM(x2,Xy=1)| ≤ dM(x1,x2) ,

and hence |NNM(x1)−NNM(x2)| ≤ 2dM(x1,x2) .

The result in Theorem 7.1 can be proved using the theorem presented by Bartlett

(1998), which provides a way to relate the generalization error to the empirical

error at a margin γ.

Theorem 7.2. (Bartlett, 1998) Let D be the training set containing n examples

that are generated independently according to a probability distribution P on Z ×
{−1, 1}. Let F be a set of real-valued functions mapping X to R and define

c = fat(F ,X , γ/16). Then, with probability at least 1− σ, for any f ∈ F that has

margin at least γ on all examples of D, it holds that

erP (f) ≤ 2

n

(
c log2

(
34en

c

)
log2(578n) + log2

(
4

σ

))
.

Furthermore, if êrγD(f) 6= 0, with probability at least 1− σ, we have that

erP (f) ≤ êrγD(f) +

√
2

n

(
c ln

(
34en

c

)
log2(578n) + ln

(
4

σ

))
.

We now present the proof of Theorem 7.1.

137

Chapter 7. Distance metric learning based on DC programming

Proof. In order to use Theorem 7.2, we need to compute the fat-shattering dimen-

sion of the nearest-neighbor classifier using the Mahalanobis distance metric dM.

According to Lemma 7.4, the function NNM is Lipschitz continuous with Lipschitz

constant L = 2 on the metric space (X , dM). Therefore, the fat-shattering dimen-

sion of the nearest neighbor classifier can be bounded by the covering number

N (X , γ/32, dM) (see Bartlett, 1998, Theorem 13).

In general, it is difficult to estimate the covering number for an arbitrary metric

space. There are only a few results on covering numbers, e.g., the fact that the

covering number of a closed ball of radius R induced by the Euclidean norm on

RD can be bounded by (4R/ε)D (see Cucker and Smale, 2002, for instance), where

ε is the radius of the disks covering the ball.

Since the Mahalanobis distance metric dM can be seen as the Euclidean distance

metric in the transformed space X ′ by performing the linear transformation x′ =

L>x, where M = LL> and rank(M) = rank(L), the covering number in the metric

space (X , dM) can be seen as the covering number in the transformed metric space

(X ′, dI). In particular, if X is a closed ball of radius R induced by the Euclidean

norm in RD, then due to Lemma 7.2, the transformed metric space X ′ is a closed

ball of radius R
√
B in Rrank(M). Hence, according to Cucker and Smale (2002),

the covering number N (X , γ/32, dM) is bounded by (128R
√
B/γ)rank(M), proving

Theorem 7.1.

7.6. Experiments

In this section, several experiments are conducted to evaluate the effectiveness of

our method in the context of nearest-neighbor classification. First, we carry out

experiments on various classification benchmark data sets. Second, we conduct

additional experiments on real images to validate the robustness of our method.

Third, we report results on a synthetic data set containing noise to demonstrate

the benefit of using the ramp loss function. Finally, we empirically verify the

convergence rate of the proposed algorithm. The experimental settings are detailed

in the next subsection.

7.6.1. Experimental settings

We compare the following distance metric learning methods:

1. Euclidean: The baseline Euclidean distance metric, which corresponds to the

case when the Mahalanobis matrix is the identity matrix.

138

§7.6. Experiments

2. ITML: Information-theoretic metric learning (Davis et al., 2007). This method

learns a Mahalanobis distance metric in a global sense, i.e., it satisfies all pair-

wise constraints, while minimizing the differential relative entropy between two

multivariate Gaussian distributions to keep the solution as close as possible

to a given Mahalanobis distance metric. The formulation results in a convex

optimization problem, which can be solved using the Bregman projection algo-

rithm. For ITML, the slack parameter γ is chosen considering as set of values

{10−3, . . . , 103}.
3. LMMCC: Learning a Mahalanobis matrix for data clustering and classifica-

tion (Xiang et al., 2008). This method maximizes the ratio of the sum of

distances between examples in the cannot-link pairs and the sum of distances

between those in the must-link pairs. Due to the orthogonality constraint, the

problem cannot be analytically solved. To this end, the authors developed an

iterative procedure to find the solution in an efficient way.

4. LMNN: Large margin nearest neighbor classification (Weinberger and Saul,

2009). As previously mentioned, LMNN aims to realize that the nearest neigh-

bors of each training example share the same class label, while pushing away

examples of other classes. The authors developed an efficient solver based

on the subgradient descent method. For LMNN, the trade-off parameter µ is

chosen considering as set of values {0.125, 0.25, 0.5}. Following Weinberger and

Saul (Weinberger and Saul, 2009), we use principal components analysis (PCA)

as a preprocessing step for LMNN.

5. DML-eig: Distance metric learning with eigenvalue optimization (Ying and Li,

2012). This method learns a Mahalanobis distance metric by solving a convex

optimization problem, which is inspired on the distance metric learning method

for clustering introduced by Xing et al. (2002). The authors proposed an efficient

solver based on the Frank-Wolf algorithm, which requires only the computation

of the largest eigenvalue and corresponding eigenvector in each iteration to keep

the solution within the PSD cone.

6. DMLMJ: Distance metric learning through maximization of the Jeffrey diver-

gence. This method learns a linear transformation that maps the input data to

a new space, in which the Jeffrey divergence between two Gaussian distributions

derived from local constraints is maximized. For DMLMJ, we use five nearest

neighbors to estimate the difference spaces.

7. DML-dc: Distance metric learning using DC programming described in Algo-

rithm 5. For DML-dc, we tune the trade-off parameter λ considering as set of

values {0.001, 0.01, 0.1, 1}. Based on empirical observations, the parameter s is

set to −1, which yields the best results in most of our experiments.

The source codes of these methods are available online from the corresponding

139

Chapter 7. Distance metric learning based on DC programming

authors’ websites2. The source code in MATLAB of DML-dc can also be downloaded

from http://users.ugent.be/~bacnguye/DML-dc.v1.0.zip.

7.6.2. Benchmark data sets

We perform experiments on fifteen benchmark data sets from the KEEL repository

and three data sets from LIBSVM3, namely mnist (MNIST), pendigits (PEN),

and satimage (SAT). All data sets are normalized to have zero mean and unit

variance over the training data. Experimental results are obtained by averaging

over 10 runs. In each run, the classification accuracies are computed using a 5-fold

cross-validation except for the three data sets from LIBSVM where the training

and test sets are predefined. Due to the high dimensionality of the MNIST data set,

PCA is employed as a preprocessing step to reduce the dimensionality to 100.

The results obtained by the competing methods are reported in Table 7.1.

In general, the performance of nearest-neighbor classification is improved using

distance metric learning methods. This result confirms that having a good distance

metric can lead to improvements for metric-based problems. Our method is

competitive with other state-of-the-art distance metric learning methods: ITML,

LMMCC, LMNN, DML-eig, and DMLMJ. In most of the cases, DML-dc obtains

the best performance. Among the competing methods, LMMCC performs slightly

worse than the others. This can be explained by the fact that LMMCC aims to

satisfy all possible pairwise constraints, which may constitute a difficult problem.

In contrast, local methods such as LMNN, DMLMJ and DML-dc perform quite

well in most cases, resulting in a significant improvement in the overall performance

of nearest-neighbor classification. As expected, DML-dc outperforms LMNN on

various data sets, e.g. balance, bupa, monk-2, and ring. This is due to the fact that

LMNN predefines the target neighbors using the Euclidean distance metric, whereas

DML-dc adaptively updates the target neighbors during the training process. To

give a fair comparison, on each data set, we also rank the competing methods based

on their classification accuracy. The method with the highest accuracy is assigned

rank 1, the one with the second highest accuracy is assigned rank 2, and so on.

The average rank of each method over all data sets is presented in the last row of

Table 7.1. From these results, we can see that DML-dc achieves the best average

rank, demonstrating its robustness and stability for classification tasks.

2 ITML: http://www.cs.utexas.edu/~pjain/itml/
LMMCC: https://sites.google.com/site/feipingnie
LMNN: http://www.cse.wustl.edu/~kilian/code/code.html
DML-eig: http://empslocal.ex.ac.uk/people/staff/yy267/software.html

DMLMJ: http://users.ugent.be/~bacnguye/DMLMJ.zip
3 LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

140

http://users.ugent.be/~bacnguye/DML-dc.v1.0.zip
http://www.cs.utexas.edu/~pjain/itml/
https://sites.google.com/site/feipingnie
http://www.cse.wustl.edu/~kilian/code/code.html
http://empslocal.ex.ac.uk/people/staff/yy267/software.html
http://users.ugent.be/~bacnguye/DMLMJ.zip
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

§7
.6
.
E
xp

erim
en
ts

Table 7.1: Classification accuracies (standard deviations) of the competing distance metric learning methods on the KEEL data sets. Best
results are highlighted in boldface.

Id Euclidean ITML LMMCC LMNN DML-eig DMLMJ DML-dc

APP 83.07 (3.84) 79.26 (6.29) 79.31 (6.90) 83.03 (5.37) 83.90 (6.50) 81.17 (6.56) 82.99 (4.38)

BAL 78.88 (2.69) 90.52 (2.23) 83.52 (2.30) 79.52 (1.93) 82.24 (5.58) 90.40 (2.19) 90.72 (1.93)

BUP 64.93 (4.02) 58.55 (4.42) 60.29 (4.18) 61.16 (4.02) 65.51 (2.38) 60.29 (8.67) 65.51 (4.02)

IRI 94.67 (4.47) 95.33 (3.80) 94.67 (5.06) 94.67 (4.47) 94.00 (3.65) 94.67 (4.47) 96.00 (3.65)

LET 95.05 (0.41) 95.38 (0.54) 96.36 (0.23) 96.47 (0.14) 95.09 (0.57) 97.58 (0.10) 96.99 (0.27)

MAG 81.57 (0.41) 81.71 (0.46) 80.07 (0.16) 81.46 (0.40) 81.27 (0.58) 81.74 (0.42) 81.96 (0.49)

MON 73.84 (2.45) 82.39 (14.66) 92.34 (9.55) 85.42 (13.36) 100.0 (0.00) 98.60 (1.91) 98.14 (3.03)

MOV 84.44 (5.50) 82.78 (6.48) 85.56 (4.00) 87.78 (3.73) 79.72 (6.26) 83.06 (3.60) 83.33 (5.20)

OPT 97.99 (0.52) 97.92 (0.52) 97.95 (0.55) 98.61 (0.55) 98.47 (0.18) 98.67 (0.51) 98.68 (0.34)

RIN 74.61 (1.50) 79.30 (2.00) 75.96 (1.09) 74.95 (1.14) 83.05 (1.12) 84.43 (1.13) 84.57 (1.00)

SEG 96.15 (0.91) 96.75 (1.00) 95.71 (1.24) 96.67 (1.25) 94.94 (0.91) 96.93 (0.86) 97.06 (0.82)

SON 84.59 (4.50) 85.55 (4.63) 84.60 (4.13) 84.16 (4.27) 84.12 (2.79) 84.62 (5.82) 86.52 (6.50)

WDB 96.13 (1.33) 97.01 (1.00) 94.90 (0.40) 96.31 (2.28) 95.78 (1.15) 96.66 (1.16) 96.31 (1.57)

WIN 94.97 (3.60) 96.62 (2.36) 97.21 (3.40) 98.86 (2.56) 96.08 (2.51) 97.78 (3.62) 98.32 (1.54)

WIS 95.61 (1.87) 95.90 (2.23) 95.76 (2.16) 96.19 (1.97) 95.90 (2.35) 95.90 (1.42) 95.61 (1.63)

MNIST 97.16 (0.00) 97.16 (0.00) 97.08 (0.00) 97.56 (0.00) 85.64 (0.00) 97.39 (0.00) 97.71 (0.00)

PEN 97.40 (0.00) 97.60 (0.00) 97.46 (0.00) 97.43 (0.00) 97.80 (0.00) 97.68 (0.00) 97.71 (0.00)

SAT 88.80 (0.00) 88.80 (0.00) 84.05 (0.00) 89.70 (0.00) 88.90 (0.00) 90.05 (0.00) 90.35 (0.00)

Rank 5.27 4.27 5.11 3.72 4.58 2.94 2.08

1
4
1

Chapter 7. Distance metric learning based on DC programming

The training time of the competing methods on each data set is reported in

Table 7.2. Note that the training time also includes the time for tuning hyper-

parameters. All the experiments are run in MATLAB using the same PC. DML-eig

is the fastest method because it does not require tuning any hyper-parameter,

however, its performance is much lower than other distance metric learning methods.

LMMCC also runs quite fast as it has an exponential convergence rate. DMLMJ is

the third fastest method since it only needs to perform an eigenvalue decomposition

in order to find the linear transformation. Our method is only slightly slower

than ITML and LMNN in most cases. This slowness is a result of the fact that

DML-dc requires solving several convex subproblems. It is also important to

note that our method has mainly been implemented in MATLAB, but further

running time improvements can be anticipated. For instance, using intelligent

data structures like Ball-Trees and Kd-Trees can speed up the search of nearest

neighbors; using C-mex functions can speed up functions written in MATLAB; using

online learning techniques can efficiently solve the convex subproblems. Clearly, a

careful implementation can make a significant difference in the real computation

time.

Table 7.2: Training time (in seconds) of the competing distance metric learning methods
on the KEEL data sets. Best results are highlighted in boldface.

Id ITML LMMCC LMNN DML-eig DMLMJ DML-dc

APP 8.36 0.06 7.38 0.28 0.03 13.17

BAL 62.57 0.02 12.03 0.47 0.11 25.96

BUP 9.88 0.01 10.88 0.26 0.06 19.55

IRI 42.94 0.01 7.59 0.20 0.03 9.70

LET 243.33 28.79 121.96 8.09 95.85 1,439.89

MAG 64.84 15.41 728.50 6.99 57.14 634.91

MON 11.73 0.01 5.23 0.44 0.08 21.16

MOV 523.98 0.11 15.53 1.04 0.41 100.71

OPT 368.01 1.57 72.61 8.94 35.50 715.46

RIN 21.79 2.80 111.61 1.42 20.69 577.38

SEG 132.50 0.27 27.71 0.38 1.59 111.64

SON 9.42 0.05 9.52 0.64 0.15 56.97

WDB 12.38 0.02 9.78 0.53 0.23 44.62

WIN 52.67 0.01 6.86 0.39 0.05 16.33

WIS 9.10 0.02 9.91 0.33 0.15 24.68

MNIST 2,280.02 1,546.18 5,013.76 188.28 9,815.32 15,826.41

PEN 105.30 7.64 59.98 7.00 69.06 520.94

SET 112.83 8.13 848.47 2.82 49.93 326.61

142

§7.6. Experiments

7.6.3. Experiments on image data sets

To demonstrate the effectiveness of the proposed method, we further compare DML-

dc with ITML, LMMCC, LMNN, DML-eig, and the baseline Euclidean distance

metric on two image data sets. The first one is the Coil-100 4 data set (Nene et al.,

1996), which has been widely used in the object recognition literature (Zou et al.,

2012; Liu and Srivastava, 2002). This data set consists of 100 objects. Each object

comes with 72 images, which are obtained by rotating the object every 5 degrees

w.r.t. a fixed color camera (some examples are shown in Fig. 7.2(a)). We convert

all images to grayscale and downsample them to 32 × 32 pixels. Each image is

then represented by a 1024-dimensional feature vector. Due their high-dimensional

nature, these feature vectors are reduced to 100-dimensional feature vectors using

PCA.

The second one is the Extended Yale B (Y-Faces)5 data set (Soleimani and

Matwin, 2016), consisting of 2,424 frontal face images of 39 individuals, which

were taken under different illumination conditions (some examples are shown in

Fig. 7.2(b)). For each individual, 64 images were captured (a few individuals are

represented with fewer images). We use the cropped images and resize them to

32×32 pixels. Apart from pixel features, we also adopt LBP features (Ahonen et al.,

2006) computed from local regions to represent each face image (Y-Faces+LBP).

Due to the high dimensionality, PCA is employed to obtain a 100-dimensional

feature vector for each image. This data set has been used in several distance

metric learning studies (Weinberger and Saul, 2009; Yu et al., 2014).

Table 7.3 shows the average classification accuracy and standard deviation of the

competing methods. The results here are reported using 5-fold cross-validation in

the context of nearest-neighbor classification. As we can see from the results, using

the Mahalanobis distance metric leads to a great improvement in the performance

of nearest-neighbor classification over the Euclidean distance metric. Interestingly,

when using LBP features, DML-dc is still able to improve the performance. We

observe that our method outperforms other competing methods, demonstrating the

effectiveness of the proposed method. It is important to note that some methods,

including LMMCC and DML-eig, cannot even perform better than the Euclidean

distance metric.

4 Available at: http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
5 Available at: http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html

143

http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html

C
h
a
p
t
e
r
7
.

D
ist

a
n
c
e
m
e
t
r
ic

l
e
a
r
n
in
g

b
a
se

d
o
n
D
C

p
r
o
g
r
a
m
m
in
g

(a) Coil-100 (b) Extended Yale B

Figure 7.2: Examples of the images in (a) the Coil-100 and (b) the Extended Yale B data sets.

Table 7.3: Classification accuracies (standard deviations) of the competing distance metric learning methods on the Coil-100 and Y-Faces
data sets. Best results are highlighted in boldface.

Data set Euclidean ITML LMMCC LMNN DML-eig DMLMJ DML-dc

Coil-100 96.46 (0.23) 98.31 (0.27) 96.43 (0.23) 98.46 (0.28) 93.28 (0.90) 98.36 (0.28) 99.36 (0.21)

Y-Faces 90.39 (0.53) 92.49 (0.92) 90.59 (0.75) 93.36 (0.48) 84.28 (2.11) 94.18 (0.47) 94.97 (0.38)

Y-Faces+LBP 98.93 (0.23) 97.81 (2.60) 98.84 (0.31) 98.35 (0.76) 95.50 (5.13) 99.38 (0.39) 99.46 (0.31)

1
4
4

§7.6. Experiments

7.6.4. Sensitivity to noise

This subsection aims to compare the sensitivity to noise of the competing methods.

For this purpose, we carry out an experiment on handwritten digit recognition

(USPS) (Hull, 1994). This data set contains 16×16 grayscale images of the numbers

0–9 written on postal materials. All features are normalized into the interval [0, 1].

Since the number of features is large, PCA is employed to reduce the dimensionality

to 100 in order to avoid a high computational burden. The training set consists of

7,291 examples and the test set consists of 2,007 examples. Following Ertekin et al.

(2011), we generate synthetic data sets with different noise levels by randomly

changing the class labels of the training examples. Each noise level corresponds

to a different subset of training examples of which the class label will be changed.

In our experiment, the percentage of noise is varied from 1 to 10 percent of the

training examples. Test accuracies of each method are reported in Table 7.4 by

averaging the results over 10 runs. Note that we use the same test set for all

methods.

As we can see from this table, all methods (except DML-eig) perform competi-

tively on the original data set without noise. LMMCC is sensitive to the presence of

outliers due to the fact that its objective function is based on the squared `2-norm

distances, making the covariance matrices are very sensitive to outliers. This has

also been observed by Wang et al. (2014a). Both DMLMJ and ITML are less

sensitive to noise. DMLMJ uses a set of nearest neighbors to estimate the difference

spaces instead of using only one nearest neighbor, resulting in a distance metric

that is less affected by noisy neighbors. ITML randomly chooses a set of pairwise

constraints to learn the distance metric. Therefore, the probability of selecting

“wrong” pairwise constraints is low when the noise level is low. In contrast, there

is a significant decrease in performance for LMNN when the noise level increases.

This behavior is caused by the “wrong” target neighbors in the training set. Our

method alleviates the effect of these “wrong” target neighbors by using the ramp

loss function, making it robust to noise.

145

C
h
a
p
t
e
r
7
.

D
ist

a
n
c
e
m
e
t
r
ic

l
e
a
r
n
in
g

b
a
se

d
o
n
D
C

p
r
o
g
r
a
m
m
in
g

Table 7.4: Classification accuracies (standard deviations) of the competing distance metric learning methods on the USPS data set with
noise. Best results are highlighted in boldface.

%noise Euclidean ITML LMMCC LMNN DML-eig DMLMJ DML-dc

0 94.52 (0.00) 94.53 (0.14) 94.47 (0.00) 94.57 (0.00) 91.88 (0.00) 94.67 (0.00) 95.27 (0.00)

1 93.53 (0.24) 93.70 (0.33) 93.45 (0.22) 92.27 (0.48) 91.67 (0.55) 94.15 (0.21) 94.29 (0.23)

2 92.60 (0.38) 92.74 (0.35) 92.55 (0.42) 90.66 (0.25) 90.47 (0.94) 93.52 (0.38) 93.07 (0.35)

5 89.89 (0.35) 89.98 (0.38) 89.82 (0.56) 87.54 (1.24) 86.67 (0.92) 90.59 (0.42) 90.64 (0.38)

7 88.05 (0.69) 87.73 (0.93) 87.89 (0.73) 85.22 (1.30) 83.71 (0.87) 88.68 (0.39) 88.74 (0.46)

10 85.23 (0.43) 85.70 (0.53) 85.12 (0.53) 81.88 (0.75) 80.61 (0.81) 85.46 (0.60) 86.10 (0.54)

−2 −1 0 1
94

94.5

95

95.5

s

T
es

t
ac

cu
ra

cy
 (

%
)

DML−dc

(a) USPS

−2 −1 0 1
89

89.5

90

90.5

91

s

T
es

t
ac

cu
ra

cy
 (

%
)

DML−dc

(b) USPS + 5% noise

Figure 7.3: Classification accuracy of DML-dc versus different values of s in the ramp loss function.

1
4
6

§7.7. Conclusion

We also study the behavior of DML-dc when varying the value of s in the ramp

loss function. For this purpose, we report the performance of DML-dc on the USPS

data set against different values of s in Fig. 7.3. When s takes large negative values,

the ramp loss becomes the hinge loss, i.e., it cannot help to remove the outliers

from the data. On the other hand, increasing the value of s to be close to 1 may

prevent the influences of misclassified examples, which are the most informative

examples. As a consequence, this will decrease the generalization performance of

DML-dc.

7.6.5. Convergence rate

In this subsection, we empirically verify the convergence rate of DML-dc. As

an illustration, Fig 7.4 shows the convergence of DML-dc on the balance data

set. We show the objective function value and the classification accuracy versus

the number of iterations. The training accuracy is computed using leave-one-out

cross-validation. As we can see from this figure, DML-dc converges after only five

iterations. Both training and test accuracies remain more or less the same once a

certain number of iterations is reached.

0 5 10 15
of iterations

0.7

0.9

1.1

1.3

Ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

loss

(a) Objective function value

0 5 10 15
of iterations

70

80

90

100

Ac
cu

ra
cy

 (%
)

training
test

(b) Accuracy

Figure 7.4: An illustration of the convergence rate for DML-dc on the balance data set:
(a) objective function value versus number of iterations and (b) classification accuracy
versus number of iterations.

7.7. Conclusion

In this chapter, we have proposed a large-margin distance metric learning method

for nearest-neighbor classification. In contrast to previous work on margin maxi-

mization in distance metric learning, our method replaces the traditional convex

loss function with the ramp loss function, making it more robust in the presence of

147

Chapter 7. Distance metric learning based on DC programming

noise. To deal with both the nonconvexity and the nonsmoothness of the objective

function, an efficient DC programming algorithm has been introduced. It amounts

to solving a sequence of convex optimization problems and usually requires a few

iterations only. Furthermore, the theoretical foundations of DML-dc have been

analyzed, proving that our method yields a good generalization ability to unseen

examples. Finally, we provided empirical results demonstrating the effectiveness of

our method on several standard benchmark data sets. In general, DML-dc is only

slightly slower, however, it performs better than other state-of-the-art distance

metric learning methods for nearest-neighbor classification.

148

8 An efficient method for

clustered multi-metric learning

Although there has been an increasing interest in the distance metric learning

field, learning a global distance metric is insufficient to obtain satisfactory results

when dealing with heterogeneously distributed data. A simple solution to tackle

this kind of data is based on kernel embedding methods. However, it quickly

becomes computationally intractable as the number of examples increases. In

this chapter, we propose an efficient method that learns multiple local distance

metrics instead of a single global one. More specifically, the training examples are

divided into several disjoint clusters, in each of which a distance metric is trained

to separate the data locally. Additionally, a global regularization is introduced to

preserve some common properties of different clusters in the learned metric space.

By learning multiple distance metrics jointly within a single unified optimization

framework, our method consistently outperforms single distance metric learning

methods, while being more efficient than other state-of-the-art multi-metric learning

methods.

The material of this chapter is based on the following publication:

Nguyen, B., Ferri, F. J., Morell, C., and De Baets, B. (2019a). An efficient method

for clustered multi-metric learning. Information Sciences, 471:149–163

8.1. Motivation

A successful application of distance metric learning is to improve the performance

of k-NN classification. Despite its simplicity, k-NN is well suited for multi-class

problems with very large numbers of training examples. It is well known that the

performance of k-NN crucially depends on the choice of distance metric (Davis

et al., 2007; Mu et al., 2013). Although there is a large amount of works on

distance metric learning, most of them simply learn a global distance metric. In

many real-world applications, such methods may fail to handle the nonlinearity

inherent in the data, especially data from a multimodal distribution. In such cases,

there exists no single distance metric that appropriately satisfies all the constraints

derived from the data.

A simple solution is to use kernel embedding methods (Schölkopf and Smola,

2001). The idea is to map the input data into a high-dimensional feature space,

in which a linear transformation could separate well the data. Many kernel

distance metric learning methods have been developed, including ITML (Davis

149

Chapter 8. An efficient method for clustered multi-metric learning

et al., 2007), LMCA (Torresani and Lee, 2007), and KDMLMJ (see Chapter 3). A

general kernel-based framework for distance metric learning can be found in (Jain

et al., 2012). By learning a distance metric in the kernel-induced feature space,

we can capture any nonlinearity in the original feature space. Following the

representer theorem (Schölkopf et al., 2001), the optimal distance metric is implicitly

represented by a matrix, which scales quadratically with the number of training

examples. As a consequence, the computational burden of these kernel-based

methods limits their application to large-scale data sets. Another solution is

to learn multiple distance metrics, referred to as multi-metric learning, where

each distance metric captures a different region of the data. In the literature,

multi-metric learning has recently been studied (Bohné et al., 2014; Parameswaran

and Weinberger, 2010; Ramanan and Baker, 2011; Shi et al., 2014; Weinberger

and Saul, 2009). However, the scalability on large data sets is not satisfactorily

addressed.

Motivated by the above discussion, we propose a novel method, namely clustered

multi-metric learning (CMML), for heterogeneously distributed data. In particular,

we first divide the data into several clusters using, for instance, k-means cluster-

ing (Hartigan and Wong, 1979), then learn a single distance metric for each cluster

based on triplet constraints. Moreover, a global distance metric is introduced to

capture the common structure among all the clusters, which requires that the

distance metric in each cluster should be as close as possible to the global one. On

the one hand, the global distance metric serves as a regularization that controls

overfitting; on the other hand, it can lead to the propagation of side-information

among clusters, resulting in a more robust and stable model. To make CMML

scalable for large data sets, we adopt the block-coordinate descent algorithm (Tseng,

2001), which enables us to solve the optimization problem efficiently. For each

block, we develop an efficient algorithm based on stochastic gradient descent (SGD).

The proposed algorithm only needs the computation of the smallest eigenvalue and

corresponding eigenvector of the Mahalanobis matrix at each iteration. Due to

the convexity of the stated optimization problem, our algorithm is guaranteed to

converge to an optimal solution.

The remainder of this chapter is organized as follows. In Section 8.2, we briefly

review several related works. In Section 8.3, we discuss our problem formulation for

clustered multi-metric learning and present the proposed algorithm. In Section 8.4,

we conduct extensive experiments on various standard benchmark data sets to

validate the effectiveness of the proposed algorithm. Finally, we provide some

concluding remarks and suggestions for future work in Section 8.5.

150

§8.2. Related work

8.2. Related work

In the literature, various approaches have been proposed to learn multiple distance

metrics that efficiently handle heterogeneously distributed data. The common idea

is to locally adjust the distance metric to the properties of the training data in

each region. For instance, one distance metric is learned for each class (Weinberger

and Saul, 2009), for each training example (Frome et al., 2007a,b; Mu et al., 2013),

or for each test example (Domeniconi et al., 2001; Hastie and Tibshirani, 1996).

According to Ramanan and Baker (2011), these local distance metrics can provide

an approximation to the geodesic distance computed by a metric tensor that defines

a possibly different distance metric at each point in the input space. The result

may explain the advantage of using multiple distance metrics over a single global

one. Below, we review some relevant approaches for each of those categories.

In an early work, Hastie and Tibshirani (1996) used local linear discriminant

analysis (LDA) to estimate a distance metric from the neighborhood of each

test example (DANN). Similarly, Domeniconi et al. (2001) proposed adaptive

metric nearest neighbor (ADAMENN), which learns a local distance metric for

each test example such that its neighborhood is elongated along less relevant

feature dimensions and shrunk along the most influential ones. Although DANN

and ADAMENN can significantly improve the performance of k-NN classification,

training a distance metric for each test example is computationally expensive,

especially when the number of test examples is large. To reduce this computational

burden, Weinberger and Saul (2009) partitioned the training data into clusters

and learned a single distance metric for each cluster using LMNN (mmLMNN).

Unlike DANN and ADAMENN, mmLMNN learns all the local distance metrics

within a unified optimization framework, making them meaningfully comparable

for purposes of retrieval and classification. Bohné et al. (2014) proposed LMLML,

which first partitions the input space by a Gaussian mixture model and subsequently

learns a local distance metric associated with each cluster. In another work, Frome

et al. (2007b) jointly learned a weight vector for each training example, yielding

local distance functions that capture the relationship in the neighborhoods. Mu

et al. (2013) proposed the local discriminative distance metrics (LDDM) algorithm,

which learns a distance metric from the neighborhood of each training example. In

order to reduce the risk of overfitting and high training cost, Wang et al. (2012)

restricted each local distance metric as a linear combination of only a few basis

matrices. This framework can be seen as learning a smooth metric matrix function

over the data manifold. Similarly, Shi et al. (2014) decomposed the Mahalanobis

matrix as a weighted sum of rank-one matrices and learned a smooth function that

maps any example to the weighted sum defining its local distance metric. Our

method CMML differs from the above methods by the use of global regularization,

which assumes that distance metrics from different clusters share some common

properties.

151

Chapter 8. An efficient method for clustered multi-metric learning

Other recent research has focused on dealing with multiple feature representa-

tions for multimodal classification problems (Hu et al., 2018; Liang et al., 2018;

Zhang et al., 2017). The idea is to extract knowledge from multiple sources rep-

resenting the same example in order to improve the performance of using only a

single source. Unlike conventional methods that learn a distance metric on the

concatenated features, these methods jointly learn different distance metrics for

different feature representations (modalities). In (Zhang et al., 2017), the distance

metric in each modality is defined as the product of an individual matrix from

a modality and a global matrix shared across different modalities. Similarly, Hu

et al. (2018) forced to learn a shared representation for different modalities in order

to preserve their common properties. Instead of learning from different feature

representations, our method tries to learn different distance metrics from different

regions of the input space.

Multi-task multi-metric learning is also related to our method in the sense that

both frameworks learn multiple distance metrics from different subproblems. More

specifically, each cluster can be seen as a single task and the global regularization

corresponds to the common structure, which is shared by each task. Along with

this research direction, there have been several efforts to improve the classifica-

tion performance. For instance, Parameswaran and Weinberger (2010) extended

LMNN (Weinberger and Saul, 2009) to the multi-task paradigm, following the

formulation of multi-task SVMs (Evgeniou and Pontil, 2004). Yang et al. (2013)

introduced the geometry-preserving criterion among the related tasks based on

the von Neumann divergence between two matrices. Recently, Hao et al. (2017)

proposed to learn multiple similarity functions for related tasks simultaneously

from the triplet constraints via online learning. Zheng et al. (2017) proposed the

hierarchical multi-task sparse distance metric learning algorithm that can learn

a tree of multiple sparse distance metrics hierarchically over a visual tree. Even

though multi-task multi-metric learning methods and our method use information

from several subproblems, there exist crucial differences between them in the

problem formulation as well as in the objective. In multi-task learning, each task

is an independent sample of possibly different distributions, while in our method,

each cluster is a disjoint subset of the same sample from the same distribution.

More importantly, the objective of multi-task learning is to improve the perfor-

mance of all tasks simultaneously by enforcing a common regularization. Our

objective is to simplify the original problem by partitioning it into several smaller

subproblems.

In particular, our method is inspired by an extension of support vector machines

(namely CSVM) by Gu and Han (2013). This method is developed using several

linear support vector machines to handle nonlinearly distributed data. Instead

of learning separating hyperplanes, CMML learns different Mahalanobis distance

metrics based on local triplet constraints. Note that these triplet constraints can

involve examples from different clusters, while in CSVM, only examples from the

152

§8.3. Clustered multi-metric learning

same cluster are used for training individual support vector machines. Due to the

positive semidefiniteness constraint, our problem is more difficult to solve than the

one in (Gu and Han, 2013). To this end, we propose an efficient algorithm that

can quickly converge to an optimal solution.

8.3. Clustered multi-metric learning

In this section, we develop a multi-metric learning method that learns multiple

distance metrics in order to tackle heterogeneously distributed data. In particular,

the training data set is divided into several clusters such that each training example

belongs to only one of the clusters. These clusters should be representative and

contain enough discriminative information (i.e. triplet constraints). In this chapter,

we use k-means as the baseline clustering algorithm due to its simplicity and

efficiency. The prediction of an unseen example is performed using the local

distance metric learned from its corresponding cluster. Next, we will describe in

detail our formulation as well as the optimization procedures for training.

8.3.1. Problem formulation

We will consider the standard classification problem defined in RD. Let D =

{(xi, yi)}Ni=1 denote the training set, where xi ∈ RD denotes the i-th training

example with its corresponding label yi. The Mahalanobis distance between two

examples xi and xj is defined as

dM(xi,xj) =
√

(xi − xj)>M(xi − xj) ,

where M < 0. Assume that the training set is divided into T > 1 disjoint clusters

D = C(1) ∪ · · · ∪ C(T). For each cluster C(c), we aim at learning a Mahalanobis

distance metric dM(c) that satisfies a given set of triplet constraints

T (c) =
{

(xi,xj ,xl) | xi ∈ C(c) and xi is closer to xj than to xl
}
.

In particular, our formulation aims to satisfy the following criteria. First,

similarly to the single distance metric learning case, each local distance metric

should satisfy as many triplet constraints as possible. Let dM(c) , where M(c) < 0,

denote the local distance metric for the c-th cluster, then we aim to enforce

dM(c)(xi,xl) > dM(c)(xi,xj)

for any (xi,xj ,xl) ∈ T (c), 1 ≤ c ≤ T , which can be achieved by maximizing the

153

Chapter 8. An efficient method for clustered multi-metric learning

margin

d2
M(c)(xi,xl)− d2

M(c)(xi,xj) = 〈M(c),Zr〉 ,

where Zr = (xi − xl)(xi − xl)
> − (xi − xj)(xi − xj)

> with a subscript r to denote

the triplet (xi,xj ,xl). As the triplet constraints are enumerable, by abusing

the notation slightly, we will also call a triplet constraint as r. Several loss

functions, such as the square or logistic loss, can be used to maximize the above

margin. In particular, we consider to minimize the hinge loss with margin one,

i.e. max(1 − 〈M(c),Zr〉, 0). The margin is set to one since its value only has

an impact on the scale of M(c) and not on the performance of nearest-neighbor

retrieval.

Second, following the intuition behind multi-task learning (Gu and Han, 2013;

Parameswaran and Weinberger, 2010; Yang et al., 2013), an appropriate sharing

of information among different distance metrics may result in several benefits. It

might allow for the propagation of side-information among clusters, thus avoiding

overfitting in each cluster. For this purpose, let dM(0) , where M(0) < 0, denote

the global distance metric, then we enforce each local distance metric dM(c) to be

similar to dM(0) using the squared Frobenius norm, i.e. ‖M(0)−M(c)‖2F , 1 ≤ c ≤ T .

By doing so, all local distance metrics are related with each other. Additionally, a

trace-norm regularization is applied to the global distance metric, which implicitly

imposes the low-rank constraint (Recht et al., 2010) on M(0), and as a result, it

also reduces the risk of overfitting. Note that this regularization may affect all

local distance metrics since these are enforced to be close to the global one.

Summarizing, we can formulate our multi-metric learning problem as an instance

of the following optimization problem

minimize
M(0),...,M(T)

α tr
(
M(0)

)
+ 1

T

∑T
c=1

[
β
2

∥∥∥M(0) −M(c)
∥∥∥2

F
+ 1

N(c)

∑
r∈T (c) ξr

]
subject to 〈M(c),Zr〉 ≥ 1− ξr, ξr ≥ 0 ,∀r ∈ T (c), c ∈ {1, . . . , T}

M(0), . . . ,M(T) < 0 ,

(8.1)

where N (c) denotes the number of constraints in T (c), α > 0 and β > 0 are hyper-

parameters, and ξr are slack variables. Clearly, problem (8.1) is jointly convex

with respect to all parameters in V = {M(0), . . . ,M(T)}. It can be seen that

when increasing α (while keeping β relatively small), the matrix M(0) tends to 0.

Consequently, our multi-metric learning problem amounts to learning independent

distance metrics, which are trained in each cluster separately. On the other hand,

when increasing β (while keeping α relatively small), all the local distance metrics

tend to be similar. Consequently, the above formulation can be thought of as a

generalization framework between learning one single distance metric and learning

several independent ones.

154

§8.3. Clustered multi-metric learning

For illustrative purposes, Fig. 8.1 shows the main idea behind our method.

There are three clusters, each of which contains three classes. Examples belonging

to the same class are denoted by the same shape; the red, green and blue colors are

used to represent the training examples, while the yellow color is used to represent

the test examples. On the left-hand side of the figure, if the distance metrics are

trained independently, M(3) is easily overfitted to the training data, since the third

cluster contains very few training examples and as a result, it cannot represent

the distribution of the data accurately. On the right-hand side of the figure, by

jointly learning all the distance metrics, we expect that the global distance metric

can capture the shared information between different clusters. In this case, the

distance metric defined by M(3) tends to be similar to the global one, making the

prediction more reliable.

Independently Jointly

M
(0)

M(3)

M
(1)

M(2)

Global distance metric

Test examples

Training examples

M
(2)M

(1)

M
(3)

Figure 8.1: An illustration of CMML. Examples belonging to the same class are denoted
by the same shape. Left-hand side: all local distance metrics are trained independently.
Right-hand side: all local distance metrics are jointly trained.

8.3.2. Optimization solver

Although problem (8.1) is convex, it is very expensive to directly solve it using

standard semidefinite programming techniques (Boyd and Vandenberghe, 2004).

Another common solution is to use first-order algorithms such as batch gradient

descent as in (Weinberger and Saul, 2009; Xing et al., 2002). However, these

algorithms are not scalable in practical settings. This is mainly due to the large

number of triplets as well as the positive semidefiniteness constraints. To address

this computational burden, we adopt the bock-coordinate descent method (Tseng,

2001) to solve problem (8.1) in a more efficient manner. In particular, we solve the

problem based on a single distance metric, while keeping the remaining distance

metrics unchanged. This optimization procedure is cycled over all parameters in V
until it converges, i.e. the objective function corresponding to problem (8.1)

J(M(0), . . . ,M(T))

155

Chapter 8. An efficient method for clustered multi-metric learning

= α tr
(
M(0)

)
+

1

T

T∑
c=1

[
β

2

∥∥∥M(0) −M(c)
∥∥∥2

F
+

1

N (c)

∑
r∈T (c)

max
(
1− 〈M(c),Zr〉, 0

)]
(8.2)

no longer decreases in successive iterations. All the distance metrics are initialized

using the identity matrix. Algorithm 7 briefly summarizes the optimization proce-

dure of our method. As shown below, the global distance metric can be obtained

as a closed-form solution, while each local distance metric will require a further

optimization procedure.

Algorithm 7 Block-coordinate descent to solve problem (8.1)

Input: {(xi, yi)}Ni=1, {T (c)}Tc=1, α, β, ε

Output: Vs = {M(c)
s }Tc=0

1: Initialize M
(c)
0 ← I for c = 0, . . . , T . Initialize all parameters

2: Compute the objective function J0 in (8.2) at V0 = {M(c)
0 }Tc=0

3: Set s← 0
4: repeat
5: Increase the iteration counter s← s+ 1
6: Update the global distance metric
7: Set M(0)

s ←M(0)
∗ using Eq. (8.4)

8: Update the local distance metrics
9: for c← 1, . . . , T do

10: Run Algorithm 8 to obtain M(c)
s

11: end for
12: Compute the objective function Js in (8.2) at Vs = {M(c)

s }Tc=0

13: until |Js − Js−1| < ε

Solving for the global distance metric

Keeping V \M(0) fixed, we can obtain the matrix M(0) by solving the following

optimization problem

M(0)
∗ = argmin

M(0)<0

α tr
(
M(0)

)
+

1

T

T∑
c=1

β

2

∥∥∥M(0) −M(c)
∥∥∥2

F
, (8.3)

which admits, in fact, a simple closed-form solution.

Theorem 8.1. The optimal solution to problem (8.3) is given by

M(0)
∗ = PS+

(
1

T

T∑
c=1

M(c) − α

β
I

)
. (8.4)

Proof. Multiplying the objective function in (8.3) with 2/β and using the standard

156

§8.3. Clustered multi-metric learning

properties of the Frobenius norm yield

argmin
M(0)<0

2α

β
tr
(
M(0)

)
+
∥∥M(0)

∥∥2

F
− 2

T

T∑
c=1

〈
M(0),M(c)

〉
+

1

T

T∑
c=1

∥∥M(c)‖2F .

Adding a constant term

∥∥∥ 1

T

T∑
c=1

M(c) − α

β
I
∥∥∥2

F
− 1

T

T∑
c=1

∥∥M(c)
∥∥2

F

to the objective function, we obtain the following equivalent problem

argmin
M(0)<0

∥∥M(0)
∥∥2

F
− 2
〈
M(0),

1

T

T∑
c=1

M(c) − α

β
I
〉

+
∥∥∥ 1

T

T∑
c=1

M(c) − α

β
I
∥∥∥2

F

≡
∥∥∥M(0) −

(1

T

T∑
c=1

M(c) − α

β
I
)∥∥∥2

F
.

The latter is known as the nearest PSD matrix approximation problem under the

Frobenius norm (Higham, 1988), and as a result, the optimal solution is given by

Eq. (8.4).

According to Theorem 8.1, we can easily find the optimal solution for prob-

lem (8.3) in O(D3) by performing only one projection onto the cone of PSD

matrices.

Solving for the local distance metric

Keeping V \M(c) fixed, we update M(c), 1 ≤ c ≤ T , by solving the following

problem

minimize
M(c)

β
2

∥∥∥M(c) −M(0)
∥∥∥2

F
+ 1

N(c)

∑
r∈T (c) ξr

subject to 〈M(c),Zr〉 ≥ 1− ξr, ξr ≥ 0 ,∀r ∈ T (c)

M(c) < 0 .

(8.5)

In order to solve this problem, we employ stochastic subgradient descent (SGD),

which has been widely used for neural networks (Bottou, 1991) and SVMs (Shalev-

Shwartz et al., 2007). Unlike batch gradient descent methods (Parameswaran

and Weinberger, 2010; Weinberger and Saul, 2009), SGD consists in drawing an

example at random and optimizing the objective function based on that example,

avoiding the full-gradient computation. In particular, SGD is suitable for large-scale

learning problems since its computational complexity does not depend on the size

of problem.

157

Chapter 8. An efficient method for clustered multi-metric learning

We start by writing the objective function in (8.5) as a sum of loss functions

associated with each triplet constraint, i.e.

F (M(c)) =
β

2

∥∥∥M(c) −M(0)
∥∥∥2

F
+

1

N (c)

∑
r∈T (c)

max
(
1− 〈M(c),Zr〉, 0

)
.

Using this formulation, our algorithm performs as follows. At the t-th iteration, we

replace the objective function F (M(c)) with an approximation based on a single

triplet constraint r ∈ T (c), i.e.

ft(M
(c)) =

β

2

∥∥∥M(c) −M(0)
∥∥∥2

F
+ max

(
1− 〈M(c),Zr〉, 0

)
.

We consider the subgradient at M
(c)
t , given by

∇(c)
t = β(M

(c)
t −M(0))− J〈M(c)

t ,Zr〉 < 1K Zr , (8.6)

where J.K denotes the indicator function which takes value 1 if its argument is true

and 0 otherwise. Subsequently, we update M
(c)
t to M

(c)
t+1 by setting

M
(c)
t+1/2 = M

(c)
t − ηt∇(c)

t ,

M
(c)
t+1 = PS+(M

(c)
t+1/2) ,

where ηt > 0 denotes the step size. Since the projection of M
(c)
t+1/2 onto the

cone of PSD matrices scales as O(D3), the latter update can be computationally

expensive, especially when the dimensionality is high. Due to the fact that F (M(c))

is β-strongly convex, by setting ηt = 1/(βt) as is commonly done (Shalev-Shwartz

et al., 2007), we obtain

M
(c)
t+1/2 =

(
1− 1

t

)
M

(c)
t +

1

t
M(0) + ηtJ〈M(c)

t ,Zr〉 < 1K Zr . (8.7)

Since Zr is the difference of two rank-one matrices, M
(c)
t+1/2 has at most a single

negative eigenvalue (Golub and Van Loan, 1996). As a consequence, M
(c)
t+1 can be

efficiently computed using the following formulation,

M
(c)
t+1 = M

(c)
t+1/2 −min

(
λmin, 0

)
uminu>min ,

where λmin is the smallest eigenvalue of M
(c)
t+1/2 with corresponding eigenvector

umin. Using the Lanczos method or the power method (Golub and Van Loan,

1996) with a random start vector, λmin and umin can be approximated in O(D2).

A similar idea to reduce the computational burden of this projection was also

introduced in (Shalev-Shwartz et al., 2004). Consequently, the computational

complexity of updating the matrix M(c) per iteration scales as O(D2) instead of

158

§8.3. Clustered multi-metric learning

O(D3). The entire optimization procedure is summarized in Algorithm 8, where

K > 0 denotes the maximum number of iterations. Note that we initialize the

local distance metric with M(0).

Algorithm 8 Stochastic subgradient descent to solve problem (8.5)

Input: T (c), M(0), β, K

Output: M
(c)
K+1

1: Set M
(c)
1 ←M(0)

2: for t← 1, dots,K do
3: Choose r ∈ T (c) uniformly at random
4: Set ηt ← 1

βt

5: if 〈Zr,M(c)
t 〉 < 1 then

6: Set M
(c)
t+1/2 :=

(
1− 1

t

)
M

(c)
t + 1

tM
(0) + ηtZr

7: Compute (λmin,umin) for M
(c)
t+1/2

8: Set M
(c)
t+1 ←M

(c)
t+1/2 −min

(
λmin, 0

)
uminu>min

9: else
10: Set M

(c)
t+1 ←

(
1− 1

t

)
M

(c)
t + 1

tM
(0)

11: end if
12: end for

8.3.3. Convergence

In this subsection, we show that the proposed method converges to an optimal

solution. Typically, the convergence of block-coordinate descent requires that

the objective function is strictly convex (or quasiconvex and hemivariate) and

differentiable (Sargent and Sebastian, 1973) because the method may otherwise

get stuck at a nonstationary point for a nondifferentiable function. Unfortunately,

this is not the case for the objective function in Eq. (8.2). The latter forces us to

use the convergence result of block-coordinate descent for nonsmooth optimization

developed by Tseng (2001) when the nondifferentiable part is separable.

In particular, we make use of Proposition 5.1 (Tseng, 2001) (see A.2) by

extending the objective function in Eq. (8.2). We start by introducing an indicator

function σ that takes value 0 if its argument is true and +∞ otherwise. The

resulting extended-valued function is then

L(M(0), . . . ,M(T)) = L0(M(0), . . . ,M(T)) + LT+1(M(0)) +

T∑
c=1

Lc(M
(c)) ,

159

Chapter 8. An efficient method for clustered multi-metric learning

where

L0(M(0), . . . ,M(T)) =
β

2T

T∑
c=1

∥∥∥M(0) −M(c)
∥∥∥2

F
,

Lc(M
(c)) = σ(M(c) < 0) +

1

N (c)T

∑
r∈T (c)

max
(
1− 〈M(c),Zr〉, 0

)
,

c = 1 . . . , T ,

LT+1(M(0)) = σ(M(0) < 0) + αtr
(
M(0)

)
.

We demonstrate that the following conditions are satisfied:

(B1) L0 is continuous since the squared Frobenius norm is continuous.

(B2) For each t ∈ {0, 1, . . . , T} and M(c), c 6= t, the function at each coordinate

block `t(M
(t)) = L(M(0), . . . ,M(t), . . . ,M(T)) is quasiconvex and hemivari-

ate. Due to the fact that L is jointly convex, `t is quasiconvex. Since the

squared Frobenius norm is strictly quasiconvex, it is easy to show that `t is

also hemivariate (Ortega and Rheinboldt, 1979).

(B3) L0, . . . , LT+1 are lower semicontinuous. Since S+ is a closed set, the extended-

valued function Lc, 1 ≤ c ≤ T + 1, remains lower semicontinuous (Hiriart-

Urruty and Lemaréchal, 2012). Clearly, L0 is lower semicontinuous because

it is a continuous function.

(C2) Since L0 contains only the squared Frobenius norm, dom L0 = RD×D ×
· · · × RD×D and dom Lc = RD×D, 1 ≤ c ≤ T + 1.

We have shown above that L0, . . . , LT+1 satisfy assumptions (B1)–(B3) and (C2)

in Proposition 5.1 (Tseng, 2001). In our block-coordinate descent method, the

essentially cyclic rule (Tseng, 2001) is employed. Moreover, for each small block,

we employ SGD in Algorithm 8, which has an O(logK/K) convergence rate. This

result directly follows from (Shamir and Zhang, 2013).

Theorem 8.2 ((Shamir and Zhang, 2013)). Let M(c)
∗ be an optimal solution for

problem (8.5). Consider a sequence of PSD matrices M
(c)
1 , . . . ,M

(c)
K such that

M
(c)
t+1 = PS+(Mt − 1

βt∇
(c)
t) for t ≥ 1. Assume that E

[
‖∇(c)

t ‖2F
]
≤ G2 for all t,

then, for any K > 1, it holds that

E
[
F (M

(c)
K)− F (M(c)

∗)
]
≤ 17G2(1 + logK)

βK
.

Therefore, our block-coordinate descent method is guaranteed to converge to

an optimal solution.

160

§8.3. Clustered multi-metric learning

8.3.4. Computational complexity

The computational complexity of CMML involves the identification of the clusters

and solving the overall optimization problem. First, we analyze the complexity of

partitioning the training data using a clustering algorithm. One of the reasons for

choosing k-means clustering is its simplicity and efficiency. It is well known that

the complexity of k-means scales as O(N ∗ T ∗D ∗ I), where I denotes the number

of iterations (Hartigan and Wong, 1979) and T denotes the number of clusters.

In our experiments, we employ the standard implementation for k-means with

a maximum of 100 iterations, but further improvements can be anticipated, for

instance, using the triangle inequality (Elkan, 2003b) to speed up k-means.

Empirically, we have found that the block-coordinate descent method to solve our

optimization problem converges after very few iterations (less than 20 iterations) in

the outer loop. In each iteration, we need to solve a sequence of convex semidefinite

programs, each of which scales as O(K ∗D2) for the local distance metric case and

O(D3) for the global distance metric case. Summarizing, the overall complexity of

block-coordinate descent at each iteration scales as O(T ∗K ∗D2 +D3).

8.3.5. Testing phase

Once the clusters are defined and the corresponding local distance metrics are

trained, we need to select a proper local distance metric which will be employed

to classify a test example. This selection can be done efficiently by determining

to which cluster the test example belongs. Essentially, it consists in selecting the

cluster whose center is the nearest center with respect to the test example. The

same distance metric should be used to perform k-means clustering as well as

to determine the cluster. Depending on the application, there may exist some

auxiliary information or prior knowledge about the distance metric that naturally

leads to a good partition. In the absence of prior knowledge, a simple strategy is

to adopt the Euclidean distance metric. Note that unlike other approaches such

as PLML (Wang et al., 2012) and SCML (Shi et al., 2014), which combine all the

basis distance metrics to define the local distance metric, CMML only uses a single

local distance metric from one cluster.

An ideal distance between two examples should be computed as the geodesic

distance using different local distance metrics on a Riemannian manifold (Ramanan

and Baker, 2011; Shi et al., 2014; Wang et al., 2012). However, this requires a

computationally expensive optimization and complicated algorithm. Therefore, we

only adopt the local distance metric of the test example to compute its nearest

neighbors, which results in a very fast search. An intuitive explanation for this

simple strategy is that the class label assigned by the k-NN classifier for a test

example only depends on its neighborhood. If the local discriminative information

161

Chapter 8. An efficient method for clustered multi-metric learning

is preserved by using an appropriate distance metric, then we can still improve the

performance of k-NN classification. Next, we will show how to select the triplet

constraints in order to preserve the local discriminative information.

8.3.6. Strategy of selecting triplet constraints

Since conventional clustering methods only consider the similarity between examples,

they often group examples of the same class together. As a consequence, the clusters

tend to be pure and the local distance metrics result in a trivial solution. To avoid

this situation, we ensure that triplet constraints contain examples from all classes.

More specifically, we generate triplet constraints by using k nearest neighbors

of the same class and k nearest neighbors of different classes for each training

example (Ying and Li, 2012). This has the advantage of avoiding the large number

of triplet constraints, which scales as O(N3) for all possible triplets, making the

optimization algorithm more tractable. Moreover, it exploits the fact that if each

training example is surrounded by k neighbors of the same class, then the k-NN

classification will succeed (Weinberger and Saul, 2009). Therefore, only triplet

constraints derived from the neighborhood of each training example should be

considered. When no prior knowledge is available, the search for the nearest

neighbors is based on, for instance, the Euclidean distance. Note that the nearest

neighbors are searched in the entire training set. Therefore, the selection of triplet

constraints is not influenced by the clustering algorithm.

After having obtained a set of triplet constraints (xi,xj ,xl), we can divide

it into T subsets of constraints according to the cluster membership of xi. As

mentioned above, one triplet constraint may involve examples of more than one

cluster. By satisfying all triplet constraints simultaneously, we implicitly learn the

local distance metrics in a “global” sense. This strategy also makes sure that there

is no cluster with an empty set of constraints, since there always exists a set of

triplet constraints for each training example. We expect that CMML can perform

consistently well in terms of classification accuracy, even on small data sets.

8.4. Experiments

In this section, we conduct extensive experiments on several publicly available data

sets to show the effectiveness of our proposed method in terms of classification

performance and running time. As is commonly done in various distance metric

learning studies (Weinberger and Saul, 2009; Ying and Li, 2012), all experimental

results are reported in the context of k-NN classification with k = 3. Next, we will

detail the experimental settings and results.

162

§8.4. Experiments

8.4.1. Experimental settings

We compare the following distance metric learning methods:

1. Euclidean: The baseline Euclidean distance metric.

2. LMNN1 (Weinberger and Saul, 2009): It is a representative method using

the large-margin principle to improve the performance of k-NN classification.

The authors proposed an efficient solver based on projected subgradient

descent. As proposed in (Weinberger and Saul, 2009), we set the maximum

number of iterations to 1,000 and tune the trade-off parameter µ considering

as set of values {0.125, 0.25, 0.5}.
3. ITML2 (Davis et al., 2007): This method minimizes the LogDet divergence

between two matrices while satisfying pairwise constraints on the distance

metric. The authors introduced a fast and scalable algorithm based on the

Bregman projection. We set the maximum number of iterations to 105 and

tune the slack parameter γ considering as set of values {10−3, . . . , 103}.
4. DML-eig3 (Ying and Li, 2012): Inspired by the work in (Xing et al., 2002),

this method learns a Mahalanobis distance metric by solving a convex op-

timization problem. The solver is based on an eigenvalue optimization

framework, which requires only the computation of the maximum eigenvalue

in each iteration.

5. mmLMNN4 (Weinberger and Saul, 2009): This method learns several

distance metrics in different clusters of the input space, where each class

corresponds to a cluster. The distance to a target example is computed

using the local distance metric associated with the cluster to which the target

example belongs. Similarly to LMNN, a convex optimization framework is

developed to learn the local distance metrics simultaneously.

6. kmLMNN: This is a simple baseline. We first divide the training set into

several clusters using k-means, then learn a Mahalanobis distance metric

for each cluster using LMNN. Note that all the distance metrics are learned

independently.

7. DANN (Hastie and Tibshirani, 1996): As mentioned above, it is a state-

of-the-art multi-metric learning method. Following Hastie and Tibshirani

(1996), the number of nearest neighbors used to estimate the distance metric

is set to max(N/5, 50) and the regularization parameter ε is set to 1. For

each test example, DANN is trained with 5 iterations.

1 http://www.cse.wustl.edu/~kilian/code/code.html
2 http://www.cs.utexas.edu/~pjain/itml/
3 http://empslocal.ex.ac.uk/people/staff/yy267/software.html
4 http://www.cse.wustl.edu/~kilian/code/code.html

163

http://www.cse.wustl.edu/~kilian/code/code.html
http://www.cs.utexas.edu/~pjain/itml/
http://empslocal.ex.ac.uk/people/staff/yy267/software.html
http://www.cse.wustl.edu/~kilian/code/code.html

Chapter 8. An efficient method for clustered multi-metric learning

8. SCML5 (Shi et al., 2014): For learning multiple local distance metrics, SCML

learns a smooth function that maps an example to a weighted sum defining

its local distance metric. We tune the hyperparameter β considering as set of

values {10−6, . . . , 10−2}. Following the authors, kernel PCA is performed to

learn the embedding of each example so that the weights can vary nonlinearly.

The number of basis matrices is set to 400 and the embedding dimension

to 40. Similarly to CMML, the triplet constraints are generated using three

nearest neighbors of the same class and three nearest neighbors of different

classes for each training example.

9. CMML: We tune the hyper-parameter α considering as set of values {0.001,

0.1, 10} and β considering as set of values {0.001, 0.01, 0.1}. For the SGD

algorithm in Algorithm 8, we set the maximum number of iterations to 105.

The Euclidean distance metric is used to perform k-means and to determine

the corresponding cluster for each test example. The source code in MATLAB

of CMML can be downloaded from https://github.com/bacnguyencong/

CMML.

8.4.2. A synthetic data set

We first illustrate CMML with a synthetic data set for which a single distance metric

is not sufficient to improve the performance of k-NN classification (see Fig. 8.2(a)).

The data set consists of six classes, each of which is randomly generated from a

bivariate normal distribution. Examples of the same class are represented with the

same color and style. The data set is partitioned into three clusters in order to

train CMML. Figures 8.2(b) to 8.2(d) show how examples of the same class are

grouped together in the transformed spaces induced by the corresponding local

distance metrics. These results confirm that CMML can fit well the distance metric

over different regions of the input space.

−10 −5 0 5 10
−10

−5

0

5

10

(a) Synthetic data

−10 −8 −6 −4 −2
0

0.1

0.2

0.3

(b) Cluster 1

−4 −3 −2 −1 0

32

34

36

(c) Cluster 2

26 28 30 32 34
−20

−15

−10

−5

0

(d) Cluster 3

Figure 8.2: An illustration of CMML on a synthetic data set: (a) Original data generated
by normal distributions, (b)-(d) Projection of the data in the space induced by each local
distance metric.

5 http://researchers.lille.inria.fr/abellet/code.html

164

https://github.com/bacnguyencong/CMML
https://github.com/bacnguyencong/CMML
http://researchers.lille.inria.fr/abellet/code.html

§8.4. Experiments

8.4.3. Benchmark KEEL data sets

We use eighteen benchmark data sets from the Knowledge Extraction based on

Evolutionary Learning (KEEL) (Triguero et al., 2017) (see Table A.1). All features

are normalized to have zero mean and unit standard deviation over the training

data. The average classification accuracy and standard deviation are estimated

using 5-fold cross-validation. Each experiment is repeated five times to remove

the randomness in the sampling process. All partitions for training and testing

are collected by stratified sampling from all classes. To get the best results for all

methods, the hyper-parameters are tuned via internal validation using only the

training data. For CMML and kmLMNN, we set the number of clusters to 3 for

small data sets (N ≤ 1, 000) and 10 for large data sets. In the next section, we

empirically show that CMML is not very sensitive to this number.

The average classification accuracies are shown in Table 8.2. For each data set,

we assign rank 1 to the method with the highest accuracy, rank 2 to the one with

the second highest accuracy, and so on. The average rank for each method over

all data sets is reported in the last row of Table 8.2. From the results, we can

see that the performance of k-NN classification is significantly improved by using

the distance metrics learned from the data. Generally, the methods that learn

multiple distance metrics (i.e. mmLMNN, DANN, SCML, and CMML) outperform

the methods that learn a single distance metric (i.e. ITML, LMNN, and DML-eig).

According to the average rank, CMML performs the best among the competing

methods, followed by SCML as second best. Interestingly, DANN does not always

obtain a better performance than that of single distance metric learning methods.

This is mainly due to the lack of training examples, since DANN only estimates the

distance metric based on information from the neighborhood of each test example.

In most cases, mmLMNN performs slightly better than LMNN. There are relatively

few cases in which kmLMNN outperforms LMNN. This means that jointly learning

multiple distance metrics (i.e. mmLMNN and CMML) can perform better than

learning multiple distance metrics separately (i.e. mkLMNN). The results also

confirm that CMML consistently performs well, even on small data sets.

Table 8.1: Unadjusted p-value and adjusted p-values according to the Wilcoxon test
and different post-hoc tests over eighteen data sets based on classification accuracy using
CMML as the control method.

Method pUnadj pBonf pHolm pHoch pHomm Hypothesis

Euclidean 8.2439E-7 6.5951E-6 6.5951E-6 6.5951E-6 6.5951E-6 Rejected
kmLMNN 2.3407E-5 1.8725E-4 1.6384E-4 1.6384E-4 1.4044E-4 Rejected
DML-eig 3.9923E-5 3.1939E-4 2.3954E-4 2.3954E-4 2.3954E-4 Rejected
ITML 0.0019 0.0153 0.0096 0.0085 0.0057 Rejected
DANN 0.0032 0.0253 0.0126 0.0085 0.0063 Rejected
LMNN 0.0035 0.0279 0.0126 0.0085 0.0070 Rejected
mmLMNN 0.0042 0.0339 0.0126 0.0085 0.0085 Rejected
SCML 0.0106 0.0847 0.0126 0.0106 0.0106 Rejected

165

C
h
a
p
t
e
r
8
.

A
n
e
f
f
ic
ie
n
t
m
e
t
h
o
d

f
o
r
c
l
u
st

e
r
e
d

m
u
lt

i-m
e
t
r
ic

l
e
a
r
n
in
g

Table 8.2: Classification accuracies (standard deviation) of the competing distance metric learning methods on the KEEL data sets. The best
results are highlighted in boldface.

Id
Single metric Multiple metrics

Euclidean ITML LMNN DML-eig mmLMNN kmLMNN DANN SCML CMML

APP 83.03(5.4) 83.98(5.3) 82.08(4.0) 84.89(5.3) 82.08(4.0) 80.17(4.1) 84.89(5.3) 83.98(5.3) 84.98(2.5)

BAL 83.04(2.0) 91.84(2.3) 87.84(2.2) 87.68(3.1) 86.72(1.8) 88.80(3.4) 95.52(0.9) 87.68(2.6) 92.48(1.7)

BUP 65.51(3.3) 63.19(4.3) 62.90(2.2) 62.32(5.3) 65.22(3.1) 64.35(3.5) 69.57(5.1) 70.72(4.7) 66.96(9.6)

ION 84.90(4.8) 87.19(2.6) 90.03(3.9) 85.48(4.7) 94.29(2.7) 87.18(3.3) 86.90(3.4) 87.75(4.9) 87.76(4.5)

IRI 94.00(3.7) 94.67(3.0) 96.00(1.5) 95.33(3.0) 95.33(1.8) 94.67(3.8) 95.33(3.0) 96.00(2.8) 96.67(2.4)

MON 96.07(2.7) 98.84(2.0) 97.22(2.5) 100.0(0.0) 97.22(2.5) 97.22(1.8) 93.75(1.8) 97.68(2.7) 100.0(0.0)

SON 85.12(3.4) 85.10(5.7) 86.97(5.7) 84.12(2.3) 86.05(4.0) 80.73(7.5) 59.63(8.3) 83.64(7.1) 85.56(5.1)

VEH 70.33(2.1) 79.90(3.5) 78.37(1.3) 71.04(1.3) 75.77(1.8) 78.02(1.8) 83.33(0.5) 77.89(2.3) 77.90(2.3)

VOW 95.76(1.5) 96.46(1.2) 96.77(1.6) 94.95(1.4) 98.38(0.7) 97.17(0.8) 95.56(2.3) 96.36(1.4) 97.97(1.6)

WDB 97.19(0.7) 97.01(1.8) 96.66(1.3) 96.31(1.4) 97.01(1.0) 96.66(1.9) 88.40(3.4) 97.19(1.3) 97.19(1.0)

WIN 95.51(1.5) 97.75(1.3) 96.62(1.3) 97.21(2.0) 97.75(1.3) 94.95(2.3) 94.38(2.0) 98.33(2.5) 97.76(1.3)

LET 94.61(0.5) 97.04(0.3) 96.23(0.3) 87.61(0.4) 97.22(0.3) 96.20(0.4) 95.86(0.5) 96.33(0.5) 97.29(0.2)

MAG 83.33(0.5) 83.30(0.3) 83.39(0.6) 82.70(0.2) 82.39(0.6) 83.30(0.4) 84.51(0.7) 84.00(0.6) 84.40(0.5)

PAG 96.69(0.4) 96.67(0.4) 96.80(0.4) 95.74(0.9) 96.35(0.4) 96.64(0.5) 96.69(0.6) 96.56(0.4) 96.88(0.4)

PHO 88.29(0.6) 88.38(0.6) 88.01(0.6) 88.55(0.7) 88.27(0.7) 88.55(0.8) 88.88(0.5) 88.45(0.8) 88.58(0.6)

RIN 70.89(1.6) 80.38(0.8) 71.12(1.7) 86.41(1.0) 95.20(0.4) 82.66(1.3) 93.41(0.5) 73.69(1.4) 86.47(0.9)

SPA 91.10(0.5) 91.97(0.7) 92.28(0.4) 92.15(1.1) 92.30(0.6) 92.04(0.4) 90.49(1.0) 91.04(0.3) 92.36(0.2)

TWO 96.39(0.4) 96.22(0.5) 96.54(0.4) 97.32(0.3) 96.51(0.3) 95.38(0.8) 97.24(0.3) 97.19(0.4) 96.86(0.4)

Rank 6.69 5.03 4.86 5.94 4.81 6.06 4.89 4.53 2.19

1
6
6

§8.4. Experiments

In order to determine whether there exist significant differences in classification

performance among the results reported in Table 8.2, we follow the recommendations

made by Demšar (2006). First, the Friedman test is employed at a confidence

level of α = 0.05 with the null hypothesis that all the competing methods obtain

the same results on average. Since the p-value was 1.2423× 10−4, we reject the

null hypothesis. This implies that there exist statistically significant differences

between at least two competing methods. Subsequently, we employ the Wilcoxon

signed-rank test and several post-hoc tests, including Bonferroni-Dunn, Holm,

Hochberg, and Hommel, to determine whether a competing method performs

equivalently or significantly different from the control method (i.e. CMML, which

has the lowest rank). In order to compensate for multiple comparisons (Demšar,

2006), the p-values in post-hoc tests are adjusted. If the adjusted p-value for a

particular null hypothesis is less than α = 0.05, then that hypothesis is rejected.

Table 8.1 reports the unadjusted p-value (pUnadj) computed by the Wilcoxon

signed-rank test, the adjusted p-values computed by the Bonferroni-Dunn (pBonf),

Holm (pHolm), Hochberg (pHoch), and Hommel (pHomm) tests. These test results

show that CMML significantly outperforms the other competing methods (except

in one case, namely SCML for the Bonferroni-Dunn test with a confidence level of

α = 0.05).

Tables 8.3 and 8.4 report the average running time of the competing methods

in terms of training as well as testing time, respectively. To facilitate a comparison

among the competing methods, we also show the total running time in the last

row of these tables. Note that the training time reported in Table 8.3 takes into

consideration the time for tuning the hyper-parameters. DANN only estimates the

distance metric in the test phase. Clearly, DML-eig is the fastest method since it

learns a single distance metric and does not require tuning any hyper-parameter.

In most cases, CMML runs faster than other multi-metric learning methods (i.e.

SCML, mmLMNN and kmLMNN) although the latter two do not require tuning

hyper-parameters. Because the number of clusters is small, CMML is significantly

faster than ITML and LMNN in terms of training time. The overall running time

in the test phase of mmLMNN, kmLMNN, and CMML is approximately equal

to that of single distance metric learning methods. In contrast, DANN requires

a running time proportional to the number of test examples. This may limit the

application of DANN to real-world problems when the number of test examples is

relatively large. SCML requires to compute the embedding of each test example

in the feature space using kernel PCA, making the test process relatively slow on

large data sets.

8.4.4. Real data sets

In this subsection, we evaluate our method on several real challenging data sets,

including USPS (Hull, 1994), MNIST (Lecun et al., 1998), and ISOLET (Cole

167

Chapter 8. An efficient method for clustered multi-metric learning

Table 8.3: Training time (in seconds) of the competing methods on the KEEL data sets.
Best results are highlighted in boldface.

#
Single disance metric Multiple distance metrics

ITML LMNN DML-eig mmLMNN kmLMNN SCML CMML

1. 44.38 20.78 0.31 9.22 10.97 9.53 0.68
2. 60.63 27.19 0.43 20.72 21.26 102.36 2.35
3. 51.59 27.38 0.16 3.31 20.48 39.66 3.40
4. 65.91 32.67 1.32 16.04 21.16 45.6 17.90
5. 49.66 19.81 0.20 10.67 12.59 13.43 0.33
6. 55.91 17.83 0.50 8.97 18.08 53.02 1.63
7. 155.11 29.99 1.42 16.68 20.55 27.25 54.66
8. 67.39 43.12 0.59 29.54 23.47 118.46 70.74
9. 69.81 29.61 0.87 29.26 23.96 137.26 18.52
10. 73.34 25.80 1.42 14.89 15.72 167.98 15.66
11. 53.77 19.69 0.48 10.09 0.85 24.69 1.14
12. 175.19 294.38 224.77 686.34 238.6 1305.10 171.53
13. 162.26 798.58 169.78 886.87 526.74 1513.75 119.29
14. 83.23 256.25 9.51 149.58 104.66 228.13 22.53
15. 79.03 191.51 9.27 232.69 138.82 269.87 23.14
16. 93.00 253.55 18.13 121.28 210.00 593.48 173.31
17. 222.17 133.75 9.49 66.99 59.67 512.7 487.23
18. 93.89 60.02 18.17 24.09 81.11 633.40 84.20

Total 1656.27 2281.91 466.82 2337.23 1548.69 5795.67 1268.24

Table 8.4: Testing time (in seconds) of the competing methods on the KEEL data sets.

#
Single disance metric Multiple distance metrics

ITML LMNN DML-eig mmMNN kmLMNN DANN SCML CMML

1. 1.47E-03 1.50E-03 1.38E-03 6.06E-03 4.01E-03 0.17 0.15 2.87E-03
2. 3.45E-03 4.15E-03 3.70E-03 6.67E-03 6.08E-03 0.86 1.13 4.50E-03
3. 1.81E-03 2.20E-03 1.70E-03 2.67E-03 3.38E-03 0.40 0.29 3.57E-03
4. 2.60E-03 3.10E-03 3.49E-03 5.66E-03 6.13E-03 1.05 0.35 5.03E-03
5. 1.22E-03 1.24E-03 1.04E-03 2.27E-03 2.84E-03 0.16 0.13 2.49E-03
6. 2.56E-03 2.61E-03 2.66E-03 3.25E-03 5.75E-03 0.55 0.39 5.06E-03
7. 2.89E-03 2.24E-03 2.03E-03 4.07E-03 5.29E-03 0.93 0.29 5.52E-03
8. 4.72E-03 4.74E-03 5.04E-03 6.81E-03 0.01 2.49 1.48 8.08E-03
9. 5.13E-03 5.48E-03 5.18E-03 9.13E-03 0.01 3.03 2.1 8.93E-03
10. 3.22E-03 4.85E-03 3.40E-03 5.02E-03 8.40E-03 1.85 1.72 6.94E-03
11. 2.39E-03 1.78E-03 3.64E-03 2.41E-03 2.72E-03 0.23 0.19 2.71E-03
12. 1.24 1.27 1.25 1.74 1.33 588.13 568.74 1.42
13. 1.12 1.14 1.13 0.67 1.17 387.47 484.9 1.16
14. 0.08 0.09 0.09 0.06 0.10 42.49 28.44 0.10
15. 0.08 0.09 0.09 0.05 0.10 35.17 30.31 0.09
16. 0.15 0.17 0.16 0.10 0.17 93.04 60.57 0.18
17. 0.07 0.07 0.07 0.05 0.10 93.70 21.21 0.10
18. 0.19 0.17 0.16 0.10 0.17 86.73 92.11 0.19

Total 2.96 3.03 2.98 2.82 3.20 1338.45 1294.50 3.30

and Fanty, 1990). The first two correspond to handwritten digit recognition

problems while the third one is about letter speech recognition. These data sets

are widely used in several distance metric learning studies (Shalev-Shwartz et al.,

2004; Weinberger and Saul, 2009; Yang et al., 2013). The USPS6 data set contains

6 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

168

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

§8.4. Experiments

7,291 examples of digits for training and 2,007 for testing of size 16 × 16 pixels.

The MNIST7 data set contains 60,000 examples of digits for training and 10,000 for

testing of size 28× 28 pixels. All partitions for training and testing are predefined.

The ISOLET data set was collected from 150 different speakers (each one spoke

the name of each letter of the alphabet twice), where the objective is to recognize

what letter was been uttered. There are 26 classes corresponding to the letters of

the alphabet. Since the data set consists of five groups, the first four groups are

used for training and the last one for testing. We summarize the characteristics

of the data sets in Table 8.5. Due to the high dimensionality, PCA is employed

as a preprocessing step to reduce the dimensionality of the input data to 100. All

the competing methods are configured with the same settings as in the preceding

experiments.

Table 8.5: Description of real data sets used in our experiments.

Data set Features Classes Training Test

1. ISOLET 617 26 6,238 1,559

2. MNIST 784 10 60,000 10,000

3. USPS 256 10 7,291 2,007

Table 8.6 shows the classification accuracy on the test sets of the competing

methods. Clearly, distance metric learning leads to a significant improvement in

letter speech recognition. We observe that CMML performs competitively with

mmLMNN, while it performs significantly better than other competing methods.

It is interesting to see that the baseline kmLMNN method also performs well on

the ISOLET and MNIST data sets. However, it obtains a very poor performance

on the USPS data set.

Table 8.6: Classification accuracies of the competing distance metric learning methods
on real data sets.

#
Single distance metric Multiple distance metrics

Euclidean ITML LMNN DML-eig mmLMNN kmLMNN DANN SCML CMML

1. 90.19 94.87 95.15 91.28 95.13 94.23 94.42 94.68 95.25

2. 97.33 97.51 97.66 73.50 98.68 97.67 96.36 97.41 97.73

3. 94.87 93.57 94.77 90.33 95.12 92.92 92.03 94.88 95.22

We also conduct experiments to investigate the classification performance of

CMML under changes in the number of clusters. For this purpose, we vary the

number of clusters from 5 to 20. Figure 8.4 illustrates the classification accuracy

of CMML versus the numbers of clusters on the test sets. As expected, CMML

obtains a stable performance with different number of clusters. This is mainly

7 http://yann.lecun.com/exdb/mnist/

169

http://yann.lecun.com/exdb/mnist/

Chapter 8. An efficient method for clustered multi-metric learning

due to the strategy of selecting triplet constraints, which guarantees that all local

distance metrics are correlated.

It is important to mention that the training time of CMML is approximately

proportional to the number of clusters (see Subsection 8.3.4). Since the prediction

of CMML is not very sensitive to the number of clusters, we could choose a low

number of clusters to balance between the effectiveness and efficiency.

5 10 15 20
of clusters

90

93

96

99

Ac
cu

ra
cy

 (%
)

(a) ISOLET

5 10 15 20
of clusters

90

93

96

99

Ac
cu

ra
cy

 (%
)

(b) MNIST

5 10 15 20
of clusters

90

93

96

99

Ac
cu

ra
cy

 (%
)

(c) USPS

Figure 8.3: Classification accuracy of CMML versus number of clusters on real data
sets.

8.4.5. Convergence

We further verify the convergence of block-coordinate descent. For this purpose, we

empirically show the convergence of CMML on three real data sets, namely ISOLET,

MNIST, and USPS (see Fig. 8.4). As an illustration, the hyper-parameters are set

as follows: α = 0.01 and β = 0.1. As can be seen from the figure, CMML converges

after only 10 iterations. The objective function values remain more or less the

same when a certain number of iterations is reached.

1 5 10 15 20
of iterations

0

1

2

3

Ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(a) ISOLET

1 5 10 15 20
of iterations

0.0

0.5

1.0

1.5

2.0

Ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(b) MNIST

1 5 10 15 20
of iterations

0.0

0.5

1.0

1.5

2.0

Ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(c) USPS

Figure 8.4: Convergence of CMML versus number of iterations on real data sets.

170

§8.5. Conclusion

8.5. Conclusion

In this chapter, we have developed a multi-metric learning method to handle

heterogeneously distributed data. A divide-and-conquer strategy has been proposed

to address this kind of data. More specifically, data are divided into several clusters,

in each of which a distance metric is trained to separate the data locally. We

have also introduced an additional global distance metric, which requires the

local distance metrics being similar to the global one. This global regularization

allows for sharing information between clusters. Experimental results on several

benchmark data sets show that the proposed CMML method outperforms single

distance metric learning methods and other multi-metric learning methods while

having a low computational cost.

171

9 Distance metric learning for

k-nearest-neighbor regression

This chapter presents a distance metric learning method for k-nearest neighbors

regression. We define the constraints based on triplets, which are built from the

neighborhood of each training example, to learn the distance metric. The resulting

optimization problem can be formulated as a convex quadratic program. Quadratic

programming has as disadvantage that it does not scale well in large-scale settings.

To reduce the time complexity of training, we propose a novel dual coordinate

descent method for this type of problem. Experimental results on several regression

data sets show that our method obtains a competitive performance when compared

with the state-of-the-art distance metric learning methods, while being an order of

magnitude faster.

The material of this chapter is based on the following publication:

Nguyen, B., Morell, C., and De Baets, B. (2016). Large-scale distance metric

learning for k-nearest neighbors regression. Neurocomputing, 214:805–814

9.1. Motivation

One of the oldest and simplest regression methods is k-nearest neighbors regression

(k-NNR) (Cover and Hart, 1967). The k-NNR method attributes the same weight

to all neighbors, ignoring the similarity between the test example and its neighbors.

To counter this issue, we can assign higher weights to more similar neighbors. The

weight of each training example can be computed using a kernel function, which

depends on the distance (as opposed to similarity) between itself and the test

example. A common distance metric used to measure the distance between two

examples is the Euclidean distance metric. However, using this distance metric

may not be appropriate for every application domain, because it does not take into

account the correlation between attributes and it ignores the presence of irrelevant

attributes (Weinberger and Saul, 2009). The ideal distance metric should preserve

the similarity relationships in the data, i.e., similar examples should be close to

each other and dissimilar examples should be far away from each other. In this

work, we focus on the Mahalanobis distance metric, which provides a well-studied

and successful framework for distance metric learning. Using the Mahalanobis

distance metric is a flexible way to learn an appropriate distance metric, thus

allowing for arbitrary linear rotations and scaling of attributes.

One of the most important requirements for a distance metric learning method

173

Chapter 9. Distance metric learning for k-nearest-neighbor regression

is that the algorithm should be fast and scalable. Most of the previous optimization

algorithms for distance metric learning tend to require a larger computation time

for large-scale problems, where they may become computationally intractable. In

particular, learning a Mahalanobis distance metric typically requires estimating a

matrix with D2 parameters (where D is the data dimensionality). This quadratic

dependency poses a huge challenge for learning a good Mahalanobis distance metric

in high-dimensional settings. Here, we consider a distance metric defined by a

diagonal matrix to simplify the distance metric learning problem.

For this purpose, we extend the distance metric learning method proposed

by Schultz and Joachims (2004) to the regression setting. The original method is

intended to be used in information retrieval applications, but it is general enough

to be applied in other contexts. This method uses a diagonal matrix and avoids

costly projections of the Mahalanobis matrix onto the positive semidefinite cone.

The formulation results in a quadratic program, which can be solved by standard

quadratic programming solvers. However, the general-purpose solvers tend to scale

poorly in the number of constraints. Motivated by these reasons, we:

(i) Extend the previous work of Schultz and Joachims (2004), so that it can be

used in the context of k-NNR. We refer to the proposed method as large-scale

distance metric learning for k-nearest neighbors regression (LDMLR).

(ii) Introduce a novel strategy to define the constraints. Instead of randomly

selecting triplet constraints to satisfy an application-specific criterion, we

extract the constraints from the local neighborhood of each training example,

which allow us to preserve discriminative information from this neighborhood.

(iii) Propose a special solver for this type of optimization problem. The proposed

method is simple to implement, and it ensures very fast training, which can

be computationally tractable for large-scale data sets.

(iv) Conduct an empirical study evaluating our method on twenty data sets. The

experiments show that the proposed method is comparable with the state-

of-the-art distance metric learning methods in terms of regression accuracy,

while being much more efficient in terms of training time.

The remainder of this chapter is organized as follows. In Section 9.2, we

introduce our distance metric learning method for regression. The proposed

method is based on solving a constrained optimization problem. First, we describe

the selection of constraints in Subsection 9.2.1. Second, we formulate our proposal

as a quadratic program in Subsection 9.2.2. To make problem solving more

straightforward and effective than a general-purpose solver, we present a dual

coordinate descent method in Subsection 9.2.3. In Section 9.3, we discuss the

related work to highlight the main differences of our method compared to existing

methods, focusing on the problems that are addressed by our method. In Section 9.4,

we evaluate the capabilities of the proposed method by comparing its regression

174

§9.2. Distance metric learning for regression

accuracy on several public standard data sets to that of various state-of-the-art

distance metric learning methods. Finally, we present some concluding remarks in

Section 9.5.

9.2. Distance metric learning for regression

In this section, we focus on distance metric learning in the regression setting. In

contrast to the classification setting, in this case the output space Y can be a set

of real values. It turns out to be difficult to build two sets of pairwise constraints

S and D. In order to preserve the similarity relationships among the data in

the transformed space, we learn a distance metric that satisfies a set of relative

constraints T . First, we present a strategy for selecting the triplet constraints

making up the set T . Then, we formulate our distance metric learning problem

based on those triplet constraints. Finally, we present a coordinate gradient descent

method in order to solve our distance metric learning problem.

9.2.1. Selection of triplet constraints

The major assumption underlying example-based learning methods, such as k-

NN (Cover and Hart, 1967), is the commonsense principle suggesting that “similar

problems have similar solutions.” This “similarity hypothesis” serves as a basic

inference paradigm. In the classification context, it is translated into the assertion

that similar examples have similar class labels. In the regression context, it means

that two examples that are close to each other in the input space are also close in

the output space. The intuition behind our method is to learn a distance metric

that guarantees the fulfillment of the given principle for each training example. It

may be difficult to globally satisfy all constraints for each example, so we will keep

track of each example x(i) only by means of its neighborhood V(x(i)), which is the

set of the nearest neighbors of x(i) in X . More specifically, our method will identify

a set of triplet constraints in the neighborhood of each example that enforce the

resulting distance metric to agree with the similarity hypothesis. A distance metric

induces, for any example, a total ordering of its neighborhood. Such ordering will

be correct if the outputs associated with the neighbors can be ranked in the same

order. That is, an example x(i) should be closer to x(j) than to x(k) if y(i) is closer

to y(j) than to y(k).

Let us define the order-preserving function FΩ as a real-valued function on

the metric space Ω associated with a distance metric dΩ for a triplet δijkΩ =

(u(i),u(j),u(k)) ∈ Ω3 as

FΩ(δijkΩ) = dΩ(u(i),u(j))− dΩ(u(i),u(k)) .

175

Chapter 9. Distance metric learning for k-nearest-neighbor regression

The triplets in the input space X and the output space Y are denoted as δijkX =

(x(i),x(j),x(k)) and δijkY = (y(i), y(j), y(k)), respectively. In the absence of prior

knowledge or information about the distance metric, we can use the Euclidean

distance metric on both spaces X and Y , in order to compute the order-preserving

function. We define π(i, j, k) as the indicator function given by

π(i, j, k) =


1 , if FY(δijkY) < 0 ;

1 , if FY(δijkY) = 0 and FX (δijkX) < 0 ;

0 , otherwise .

Finally, we define the set T of triplet constraints as:

T =
{

(x(i),x(j),x(k)) | x(j),x(k) ∈ V(x(i)) and π(i, j, k) = 1
}
.

In order to build the set T , we need to find the neighborhood of each example

in the training set. Using linear nearest neighbor search, the time complexity is

quadratic in terms of the number of examples O(s2). To reduce the cost of the

nearest neighbor search, for bigger data sets, we can use sophisticated tree data

structures, such as Cover Tree (Beygelzimer et al., 2006), Ball Tree (Omohundro,

1989) or k-d-trees (Moore, 1991).

9.2.2. Problem formulation

Similarly as Schultz and Joachims (2004), we are interested in learning the Maha-

lanobis distance metric parameterized by a linear transformation A and a diagonal

matrix W, such that

d2
A,W(u,v) = (u− v)>AWA>(u− v) .

In order to guarantee that dA,W is a distance metric, W has to be a diagonal

matrix with non-negative values and A can be any real matrix of rank m, where

A ∈ RD×m, W ∈ Rm×m, and m ≤ D. The magnitude of each diagonal element of

W represents the relevance of the corresponding attribute in the input space after

applying the linear transformation A.

In particular, for the setting that example x(i) is the i-th column of the matrix

A, we obtain

d2
A,W(u,v) =

(
A>(u− v)

)>
W
(
A>(u− v)

)
=

s∑
i=1

Wii

(
〈u,x(i)〉 − 〈v,x(i)〉

)2
. (9.1)

Equation (9.1) only depends on the inner products of two vectors, hence we can

176

§9.2. Distance metric learning for regression

apply the “kernel trick” to do the mapping implicitly by a kernel function instead of

inner products (Schölkopf and Smola, 2001). Kernel functions can represent inner

products in a high- or even infinite-dimensional space, which provides a flexible

way to learn non-linear transformations in the input space.

x(i)

x(k)

x(j)

Input space X

y(i)y(j) y(k)

Output space Y
(a) Before training

x(i)

x(k)

x(j)

Input space X

y(i)y(j) y(k)

Output space Y
(b) After training

Figure 9.1: Illustration of the intuition behind our distance metric learning method for
k-NNR. examples x(j) and x(k) are nearest neighbors of x(i). Before learning, the triplet
constraint (x(i),x(j),x(k)) is violated (y(i) is closer to y(j) than to y(k), but x(i) is closer
to x(k) than to x(j)). After learning, the new distance metric induces the same ranking
and example x(k) is pushed away from x(j) by a safe margin.

The learned distance metric should make sure that for each triplet constraint

(x(i),x(j),x(k)) in T , it holds that in the transformed space the squared distance

between examples x(i) and x(k) is at least ε > 0 greater than the squared distance

between x(i) and x(j) (see Fig. 9.1). Furthermore, a good distance metric should

be able to remove noisy attributes in training data, while leading to a reduced

dimension. For this purpose, among all distance metrics that satisfy the set of

constraints T , we are only interested in the one that results in a minimum `1-norm

of the eigenvalues of AWA>. However, it is difficult to use this norm directly,

so we use the squared `2-norm of the eigenvalues of AWA>, which is equal to

the squared Frobenius norm of AWA>. Finally, we aim to solve the following

optimization problem

minimize
W�0

1
2‖AWA>‖2F + C

∑
(ijk) ξijk

subject to ∀(x(i),x(j),x(k)) ∈ T ,
d2

A,W(x(i),x(k))− d2
A,W(x(i),x(j)) ≥ ε− ξijk ,

ξijk ≥ 0 ,

(9.2)

where ξijk are slack variables used to penalize the constraints that cannot be

satisfied, and the parameter C > 0 controls the trade-off between the slack variable

penalties and the squared Frobenius norm.

Furthermore, the distance metric dA,W can be expressed in the following

177

I
I
I

' I I ' '

....,.
I

I

•

' I /

' I
1 I
I I

I I
l I

' ,f' ,
' ' 1 I

l I

' ' I I
I I

I I

I ' . '

Chapter 9. Distance metric learning for k-nearest-neighbor regression

form:

d2
A,W(u,v) = w>

[
(A>u−A>v) ◦ (A>u−A>v)

]
,

where w is the diagonal vector of the matrix W. Let us define:

L = (A>A) ◦ (A>A) ,

∆u,v = (A>u−A>v) ◦ (A>u−A>v) ,

z(ijk) = ∆x(i),x(k) −∆x(i),x(j)

.

Since z(ijk) are enumerable, we can change the superscripts (ijk) to an enumerable

set {1, 2, . . . , n}. Hence, problem (9.2) can be rewritten as:

minimize
w

1
2w>Lw + C

∑n
i=1 ξi

subject to w>z(i) ≥ ε− ξi ,
ξi ≥ 0, i = 1, ..., n ,

wj ≥ 0, j = 1, ...,m .

(9.3)

Note that L is positive definite, therefore problem (9.3) is a convex quadratic

program.

For the constraints, we introduce multipliers λ,µ, t ≥ 0 for the Lagrangian

function L : Rm × Rn × Rn × Rn × Rm → R, and obtain:

L(w, ξ,λ,µ, t) =
1

2
w>Lw + C

n∑
i=1

ξi −
n∑
i=1

λi(w
>z(i) − ε+ ξi)

−
n∑
i=1

µiξi −
m∑
i=1

tiwi .

To minimize the objective function in (9.3), we have to find the saddle point of the

function L(w, ξ,λ,µ, t), i.e., we have to minimize over the primal variables w, ξ

and maximize over the dual variables λ,µ, t. Setting the derivatives with respect

to the primal variables equal to zero yields the following equations:

∂L
∂w

(w, ξ,λ,µ, t) = 0 ,

resulting in

w = L−1

(
n∑
i=1

λiz
(i) + t

)
, (9.4)

178

§9.2. Distance metric learning for regression

and

∂L
∂ξi

(w, ξ,λ,µ, t) = C − λi − µi = 0 ,

resulting in

C = λi + µi . (9.5)

Substituting these expressions back into L(w, ξ,λ,µ, t) leads to the Wolfe dual

optimization problem which has as objective function (to be maximized):

g(λ,µ, t) =
1

2
w>Lw + C

n∑
i=1

ξi −
n∑
i=1

λi(w
>z(i) − ε+ ξi)−

n∑
i=1

µiξi −
m∑
i=1

tiwi

=
1

2
w>Lw +

n∑
i=1

ξi(C − λi − µi)︸ ︷︷ ︸
=0

−
n∑
i=1

λiw
>z(i) + ε

n∑
i=1

λi −w>t

=
1

2
w>Lw −w>L L−1

(
n∑
i=1

λiz
(i) + t

)
︸ ︷︷ ︸

=w

+ε

n∑
i=1

λi

= −1

2
w>Lw + ε

n∑
i=1

λi

= −1

2

(
n∑
i=1

λi(z
(i))>

)
L−1

(
n∑
i=1

λiz
(i)

)
−
(

1

2
t>L−1t

)

−
(

t>L−1
n∑
i=1

λiz
(i)

)
+ ε

n∑
i=1

λi .

To simplify the notation of the function g(λ,µ, t), let us define the functions

h(t) = 1
2t>L−1t and l(t,λ) = t>L−1

∑n
i=1 λiz

(i). We also define the matrix

H ∈ Rn×n given by Hij = (z(i))>L−1(z(j)). From (9.5), since µi ≥ 0 implies

λi ≤ C, the primal problem (9.3) is converted into the dual problem:

minimize
λ,t

f(λ, t) = 1
2λ
>Hλ+ h(t) + l(t,λ)− ε∑n

i=1 λi

subject to C ≥ λi ≥ 0, i = 1, . . . , n ,

tj ≥ 0, j = 1, . . . ,m .

(9.6)

Problem (9.6) can be solved by standard quadratic programming solvers, such as

CPLEX (ILOG, 2012) and MOSEK (Mosek, 2010), but they quickly tend to scale

poorly in the number of constraints. In the following subsection, we will describe a

dual coordinate descent method to solve this problem more efficiently and faster

than a general-purpose solver.

179

Chapter 9. Distance metric learning for k-nearest-neighbor regression

9.2.3. Learning a distance metric with coordinate descent

The coordinate descent method is a powerful optimization technique that has been

used to solve a number of machine learning tasks, such as linear SVMs (Hsieh et al.,

2008) and Lasso regression (Friedman et al., 2007). In general, the coordinate

descent method is efficient if each single iteration can be performed with a minimal

cost. The convergence analysis of coordinate descent methods can be found

in (Shalev-Shwartz and Zhang, 2013; Luo and Tseng, 1992). In this subsection, we

describe our coordinate descent method for solving problem (9.6).

Notations

We introduce some notations to express the optimization procedure conveniently.

The optimization procedure starts from an initial point (λ0, t0) ∈ Rn+m and

generates a sequence of vectors {(λk, tk)}∞k=0. We refer to an outer iteration as

the process of updating from (λk, tk) to (λk+1, tk+1). At each outer iteration,

(λk+1, tk+1) is constructed by sequentially updating each component of (λk, tk).

In other words, in each outer iteration we have n + m inner iterations, so that

λ1, . . . , λn, t1, . . . , tm are updated. Thus, each outer iteration generates vectors

(λk,i, tk) ∈ Rn+m, for i = 1, . . . , n+1, and (λk+1, tk,j) ∈ Rn+m, for j = 1, . . . ,m+1,

such that λk,1 = λk, λk,n+1 = λk+1, tk,1 = tk, tk,m+1 = tk+1, and

λk,i =
(
λk+1

1 , . . . , λk+1
i−1 , λ

k
i , . . . , λ

k
n

)>
,

tk,j =
(
tk+1
1 , . . . , tk+1

j−1 , t
k
j , . . . , t

k
m

)>
.

First, we update each component of λk and then we update each component of tk.

We describe in detail the method for updating from (λk,i, tk) to (λk,i+1, tk) and

from (λk+1, tk,j) to (λk+1, tk,j+1) in each inner iteration.

Solving for (λk,i+1, tk)

To update from (λk,i, tk) to (λk,i+1, tk), we solve the following one-variable sub-

problem:

minimize
d∈R

f
(
λk+1

1 , . . . , λk+1
i−1 , d+ λki , λ

k
i+1, . . . , λ

k
n, t

k
1 , . . . , t

k
m

)
≡ f(λk,i + de(i), tk)

subject to C ≥ d+ λki ≥ 0 ,

(9.7)

180

§9.2. Distance metric learning for regression

where e(i) = (0, . . . , 1, . . . , 0)>. The objective function in (9.7) is a simple quadratic

function of variable d:

f(λk,i + de(i), tk) =
1

2
Hiid

2 +∇if(λk,i, tk)d+ constant,

where ∇if(λk,i, tk) is the i-th component of the gradient ∇f , which is defined

as:

∇if(λk,i, tk) =
1

2

n∑
j=1

Hijλ
k,i
j +

1

2

n∑
j=1

Hjiλ
k,i
j +

∂l

∂λk,ii
(λk,i, tk)− ε

=

n∑
j=1

Hijλ
k,i
j + (z(i))>L−1tk − ε

=

n∑
j=1

(z(i))>L−1z(j)λk,ij + (z(i))>L−1tk − ε

= (z(i))>

L−1

 n∑
j=1

λk,ij z(j) + tk

− ε
= (z(i))>w − ε . (9.8)

It is easy to see that (9.7) has as optimal solution d = 0 (i.e., no need to update

λki) if and only if:

∇Pi f(λk,i + de(i), tk) = 0 , (9.9)

where ∇Pi f(λ, t) is the projected gradient (Lin and Moré, 1999), which is calculated

as:

∇Pi f(λ, t) =


∇if(λ, t) , if 0 < λi < C ;

min(0,∇if(λ, t)) , if λi = 0 ;

max(0,∇if(λ, t)) , if λi = C .

We only update in case (9.9) does not hold, i.e., the projected gradient ∇Pi f(λ, t) 6=
0. Since f(λk,i + de(i), tk) is a simple quadratic function of a single variable d,

the optimal point that minimizes the objective function f(λk,i + de(i), tk) when

Hii > 0 is:

d = −∇if(λk,i, tk)

Hii
.

181

Chapter 9. Distance metric learning for k-nearest-neighbor regression

Subsequently, we need to truncate the argument (λki + d) into the interval [0, C] to

obtain a feasible solution:

λk,i+1
i = min

(
max

(
λki −

∇if(λk,i, tk)

Hii
, 0

)
, C

)
. (9.10)

If Hii = 0, i.e., (z(i))>L−1(z(i)) = 0, then z(i) = 0. Therefore, due to (9.8), we

have that ∇if(λk,i, tk) = −ε, and the optimal solution of (9.7) is d = C − λki , thus

λk,i+1
i = C. We can also include this case in (9.10) by setting 1/0 = +∞.

To calculate ∇if(λk,i, tk), we need to update w throughout the coordinate

descent procedure. This can be easily computed as follows:

w← w + dL−1z(i) .

To reduce the complexity of this process, we can pre-compute the values of L−1z(i).

Hence, this update only takes O(m) operations to update w in each inner iteration.

Finally, we set the value of (λk,i+1, tk) as:

(λk,i+1, tk)← (λk,i + de(i), tk) .

Solving for (λk+1, tk,j+1)

To update from (λk+1, tk,j) to (λk+1, tk,j+1), we solve the following one-variable

subproblem:

minimize
d∈R

f
(
λk+1

1 , . . . , λk+1
n , tk+1

1 , . . . , tk+1
j−1 , d+ tkj , t

k
j+1, . . . , t

k
m

)
≡ f(λk+1, tk,j + de(j))

subject to d+ tkj ≥ 0 ,

(9.11)

where e(j) = (0, . . . , 1, . . . , 0)>. The objective function (9.11) is also a simple

quadratic function of a single variable d:

f(λk+1, tk,j + de(j)) =
1

2
L−1
jj d

2 +∇(n+j)f(λk+1, tk,j)d+ constant ,

where ∇(n+j)f(λk+1, tk,j) is the (n+ j)-th component of the gradient ∇f , which

is defined as:

∇(n+j)f(λk+1, tk,j) =
1

2

m∑
i=1

L−1
ij t

k,j
i +

1

2

m∑
i=1

L−1
ji t

k,j
i +

∂h

∂tk,jj
(tk,j)

=

m∑
i=1

L−1
ji t

k,j
i +

(
L−1

n∑
i=1

λk+1
i z(i)

)
j

182

§9.2. Distance metric learning for regression

=

m∑
i=1

L−1
ji t

k,j
i +

(
T (λk+1)

)
j
, (9.12)

where T (λ) = L−1
∑n
i=1 λiz

(i). As for the objective function in (9.7), we do not

need to update tkj if and only if:

∇P(n+j)f(λk+1, tk,j + de(j)) = 0 , (9.13)

where ∇P(n+j)f(λ, t) is the projected gradient (Lin and Moré, 1999), which is

calculated as:

∇P(n+j)f(λ, t) =

{
∇(n+j)f(λ, t) , if tj > 0 ;

min(0,∇(n+j)f(λ, t)) , if tj = 0 .

Hence, when (9.13) does not hold, the optimal solution that minimizes the function

f(λk+1, tk,j + de(j)) is given by:

d = −∇(n+j)f(λk+1, tk,j)

L−1
jj

.

Subsequently, we need to truncate the argument (tkj + d) to the interval [0,+∞[to

obtain a feasible solution of (9.11):

tk,j+1
j = max

(
tkj −

∇(n+j)f(λk+1, tk,j)

L−1
jj

, 0

)
.

We can calculate ∇(n+j)f(λk+1, tk,j) in a time complexity of O(m). Since the

first term
∑m
i=1 L

−1
ji t

k,j
i in (9.12) can be computed in O(m) and the second term(

T (λ)
)
j

can be computed in O(1) if we pre-compute T (λ) and update it throughout

the coordinate descent procedure after updating each λk,i, this only takes a time

complexity of O(m):

T (λ)← T (λ) + (λk+1
i − λki)L−1z(i) .

Finally, we set the value of (λk+1, tk,j+1) as:

(λk+1, tk,j+1)← (λk+1, tk,j + de(j)) .

After updating tk, we must update w as follows:

w← w + L−1(tk+1 − tk) .

183

Chapter 9. Distance metric learning for k-nearest-neighbor regression

Random permutation of subproblems

The above coordinate descent method solves the one-variable subproblems in

the order of λ1, . . . , λn, t1, . . . , tm. As discussed by Chang et al. (2008), when

the components of λ or the components of t are correlated, the order of the

components may affect the training speed. To improve the convergence, we

randomly permute the subproblems at each outer iteration, i.e., at the k-th outer

iteration, we construct a random permutation πλ of {1, . . . , n} and a random

permutation πt of {1, . . . ,m}, then sequentially solve the subproblems in the order

of λπλ(1), . . . , λπλ(n), tπt(1), . . . , tπt(m).

The initial value for w can be set to 0 by using λ = 0 and t = 0. A brief

description is given in Algorithm 9. Our method has time complexity of O(nm+m2),

which is much more efficient than O(n3 + nm+ n2m), the time complexity of the

normally used coordinate descent method in each outer iteration.

Algorithm 9 A dual coordinate descent method for regression (LDMLR)

• Given initial values of λ, t and the corresponding
w← L−1

(∑n
i=1 λiz

(i) + t
)

T← L−1
∑n
i=1 λiz

(i)

• While λ, t are not optimal (outer iteration)
◦ Randomly permute (1, . . . , n) to (π(1), . . . , π(n))
(a) For i = π(1), . . . , π(n), (inner iteration)

(1) Gλ ← (z(i))>w − ε

(2) Pλ ←


Gλ , if 0 < λi < C ;

min(0, Gλ) , if λi = 0 ;

max(0, Gλ) , if λi = C .

(3) If |Pλ| 6= 0, then
λoldi ← λi

λi ← min
(

max
(
λi − Gλ

Hii
, 0
)
, C
)

w← w + (λi − λoldi)L−1z(i)

T← T + (λi − λoldi)L−1z(i)

(b) told ← t
◦ Randomly permute (1, . . . ,m) to (π(1), . . . , π(m))
(c) For j = π(1), . . . , π(m), (inner iteration)

(1) Gt ←
∑m
i=1 L

−1
ji t

k,j
i + Tj

(2) Pt ←
{
Gt , if tj > 0 ;

min(0, Gt) , if tj = 0 .

(3) If |Pt| 6= 0, then

tj ← max

(
tj − Gt

L−1
jj

, 0

)
(d) w← w + L−1(t− told)

184

§9.3. Related work

9.3. Related work

In the literature, a number of methods have been proposed recently to learn a

Mahalanobis distance metric (Yang and Xu, 2016; Miao et al., 2015; Wang et al.,

2014b; Baghshah and Shouraki, 2010a; Zhang et al., 2012a). However, there are

only few methods that are developed to be used in the regression setting. Next,

we review some distance metric learning methods that are closely related to our

method.

Weinberger and Tesauro (2007) have successfully incorporated distance metric

learning into the kernel function, leading to a great improvement of the regression

accuracy. The main idea of their method, which is called metric learning for kernel

regression (MLKR), is to learn a Mahalanobis matrix for a Gaussian kernel via

the minimization of the leave-one-out regression error. Inspired by MLKR, Huang

and Sun (2013) introduced kernel regression with sparse metric learning (KR -

SML). To reduce the risk of overfitting, KR SML enforces the sparsity constraint

on the Mahalanobis matrix. MLKR and KR SML can perform well on small

data sets, however, they may suffer from local optima since the problems are not

convex.

Assi et al. (2014) adapted the large margin nearest neighbor method (Wein-

berger and Saul, 2009) for regression settings (LMNNR). It learns a Mahalanobis

matrix by solving a semidefinite program, and it has the same formulation as the

original method for classification. The optimization process is also based on triplet

constraints, but they only focus on the violated triplets. That is, they look for

triplets that have an ordering in the input space X that is different from the ordering

in the output space Y . The main drawback of this work is the lack of regularization.

It may lead to overfitting in case of high-dimensional data sets.

Problem (9.2) resulting from our formulation has the same form as the one

proposed by Schultz and Joachims (2004). Their work uses a random procedure to

select triplet constraints. That is, it randomly selects three examples x(i), x(j), and

x(k) from the training set. If x(i) and x(j) are from the same class and x(k) is from

a different class, then they add the triplet (x(i),x(j),x(k)) to T . This selection

may lead to a loss of the information contained in the discarded training examples.

However, in our work, we propose a different way to select the triplet constraints.

We just focus on the neighborhood of each example, and try to preserve its local

similarity relationships.

Taking into account the similarities of our formulation with support vector

machines (SVM) (Schölkopf and Smola, 2001), we proposed a solver that is inspired

by the coordinate descent method used to train large-scale linear SVM (Hsieh

et al., 2008). The authors of the latter work also solved the dual problem with the

coordinate descent method, and the key technique for making coordinate descent

iterations fast is to keep track of the vector w during optimization. The main

185

Chapter 9. Distance metric learning for k-nearest-neighbor regression

difference with (Hsieh et al., 2008) is that in our formulation the first term of

the objective function contains an embedded positive definite matrix L and the

additional constraints wj ≥ 0, for j = 1, . . . ,m. Therefore, our problem is more

difficult to solve than the one in (Hsieh et al., 2008).

9.4. Experiments

In this section, we present some experiments to highlight the advantages of the

proposed method in regression settings. We compare the performance of LDMLR

with LMNNR (Assi et al., 2014), MLKR (Weinberger and Tesauro, 2007),

MLRC (Schultz and Joachims, 2004) and k-NNR using the Euclidean distance

metric (Euclidean). All methods were implemented in Matlab, and the experi-

ments were carried out on a PC with 4 Intel Core i5-3570 CPUs (3.40 GHz) and

8GB RAM.

9.4.1. Data description and configuration

In our experiments, we used twenty regression data sets (see Table 9.1 for a brief

description). These data sets represent an important challenge for the selected

methods. The first 16 data sets were taken from the Data for Evaluating Learning

in Valid Experiments (DELVE)1 collection. These data sets were generated by two

synthetic robot arms2. Half of the sixteen data sets contain 32 input attributes

and the other half contain 8 input attributes. Each data set was randomly split

into four disjoint sets containing 2048 examples, 1024 examples were used for

training and 1024 examples were used for testing. The final result for each data

set was the average of the four individual runs. We chose the DELVE data sets for

assessing the performance of our method since there are several published papers

on these data sets (Weinberger and Tesauro, 2007; Huang and Sun, 2013; Williams

and Rasmussen, 1996). The last four data sets were taken from the Knowledge

Extraction based on Evolutionary Learning (KEEL) (Triguero et al., 2017) machine

learning repository3. These data sets cover a range from 3 to 85 attributes and

from 2178 to 22784 examples. The KEEL package randomly splits each data

set to perform 5-cross validation. We conducted experiments on the KEEL data

sets to also evaluate our method on more complex problems. For LDMLR, the

hyperparameter ε is set to ε = 1.

The predicted output value ŷ(j) for a test example x(j) is computed as the

1 DELVE: http://www.cs.toronto.edu/~delve/data/datasets.html
2 For more details on the specific data sets, see:
http://www.cs.toronto.edu/~delve/data/pumadyn/desc.html

and http://www.cs.toronto.edu/~delve/data/kin/desc.html
3 KEEL: http://sci2s.ugr.es/keel/datasets.php

186

http://www.cs.toronto.edu/~delve/data/datasets.html
http://www.cs.toronto.edu/~delve/data/pumadyn/desc.html
http://www.cs.toronto.edu/~delve/data/kin/desc.html
http://sci2s.ugr.es/keel/datasets.php

§9.4. Experiments

locally weighted average of the values of its nearest neighbors in the training set

using the Gaussian kernel, which is defined as:

K(u,v) =
1√

2πσ2
exp
(
− d(u,v)

σ2

)
,

where d is the learned Mahalanobis distance metric. Thus, we can compute ŷ(j)

as:

ŷ(j) =

∑s
i=1 1

(
x(i) ∈ V(x(j))

)
y(i)K

(
x(j),x(i)

)∑s
i=1 1

(
x(i) ∈ V(x(j))

)
K
(
x(j),x(i)

) ,

where 1(.) is a function that takes value 1 if its argument is true, otherwise it

takes value 0. In our experiments, we only considered σ = 1 and five neighbors

of each test example. For LDMLR, we also used five nearest neighbors to get the

triplet constraints; the transformation matrix A was set to the identity matrix. To

improve the quadratic nearest neighbor search for some big data sets, we used a

sophisticated data structure named Ball Tree (Omohundro, 1989). The trade-off

parameter C in the objective function of LDMLR and MLRC was tuned by cross-

validation on the training set considering as set of values {0.001, 0.01, . . . , 1000}.
For MLRC, we use a dual active-set method to solve the optimization problem.

We adapt MLRC to be used in regression settings by randomly selecting triplets of

the type (x(i),x(j),x(k)), where |y(i) − y(j)| < |y(i) − y(k)|.
To compare the performance of the proposed method with other related methods,

we use the root mean squared error (RMSE):

RMSE =

√√√√ 1

st

st∑
j=1

(y(j) − ŷ(j))2 ,

where st denotes the number of test examples.

9.4.2. Methodology

To compare the performance of several methods over multiple data sets, we follow

the recommendation in (Demšar, 2006; Garćıa and Herrera, 2008) associated with

the computation of the p-value. First, we apply the non-parametric Friedman test

(Friedman, 1940), which is equivalent to the repeated-measures ANOVA (Fisher,

1959), to test the null hypothesis that all methods obtain the same results on

average. After the Friedman test rejects the null hypothesis, we can apply a

post-hoc test to analyze which methods perform significantly different from the

best-ranked method. To this end, we apply the Bonferroni-Dunn test (Dunn,

1961), which permits to identify significant differences between a control method

(in our case, the best-ranked method) and other methods. One method performs

187

Chapter 9. Distance metric learning for k-nearest-neighbor regression

Table 9.1: Description of the data sets used in the experiment

Data set Features Examples # Data set Features Examples

1. kin8fh 8 1024 11. puma8nh 8 1024

2. kin8fm 8 1024 12. puma8nm 8 1024

3. kin8nh 8 1024 13. puma32fh 32 1024

4. kin8nm 8 1024 14. puma32fm 32 1024

5. kin32fh 32 1024 15. puma32nh 32 1024

6. kin32fm 32 1024 16. puma32nm 32 1024

7. kin32nh 32 1024 17. house 16 22784

8. kin32nm 32 1024 18. pole 25 14998

9. puma8fh 8 1024 19. quake 3 2178

10. puma8fm 8 1024 20. tic 85 9822

significantly different from the best-ranked method if the corresponding average

rank differs by, at least, a critical distance (CD), which is calculated as:

CD = qα ×
√
nc(nc + 1)

6nt
, (9.14)

where nc and nt are the number of methods and the number of data sets, respec-

tively, and qα is the critical value (Sheskin, 2007). Finally, we use Holm’s step-down

procedure (Holm, 1979) to complement the multiple comparison statistical analy-

sis.

9.4.3. Experimental results and discussion

Table 9.4 shows the training time for each method on each data set. Clearly, LDMLR

is significantly faster than LMNNR, MLKR, and MLRC. In Table 9.3, we highlight

the lowest RMSE on each data set and the average rank (Rank) of each method

according to the Friedman test at a confidence level of 0.05. Since the p-value for

the Friedman test was 0.00194, we rejected the null hypothesis that all competing

methods obtained the same results on average. Therefore, to detect which distance

metric learning method performed significantly different from the best-ranked

method (i.e., LDMLR), we applied the Bonferroni-Dunn test at a confidence level

of α = 0.05. The performance of two methods is significantly different if their

corresponding average ranks differ by at least the critical difference:

CD = qα ×
√
nc(nc + 1)

6nt
= 2.498×

√
5× 6

6× 20
= 1.249 .

188

§9.4. Experiments

Figure 9.2 visualizes the significant differences among the RMSE values of the

different distance metric learning methods. Any distance metric learning method

with a rank outside this marked area is significantly different from the control

method (i.e., LDMLR).

1 2 3 4

CD

LDMLR
MLKR

LMNNR
MLRC
Euclidean

Figure 9.2: Visualization of the post-hoc Bonferroni-Dunn test of RMSE.

We also applied Holm’s step-down procedure at a confidence level of α = 0.05

to compare the best-ranked method (i.e., LDMLR) with the remaining methods.

Table 9.2 presents the z-value, p-value, and adjusted α for the Holm test. The

methods are ordered with respect to the p-value. The Holm test rejected the

first and second hypothesis (i.e., Euclidean and MLRC obtain the same results on

average as LDMLR) since the corresponding p-value was smaller than the adjusted

α. But the third and fourth hypothesis (i.e., RLMNN and MLKR obtain the same

results on average as LDMLR) could not be rejected as the corresponding p-value

was greater than the adjusted α.

Table 9.2: Holm’s post-hoc test for the competing methods with α = 0.05 (control
method: LDMLR).

Method z-value p-value Holm’s adjusted α Hypothesis

Euclidean 3.1500 0.0016 0.0125 Rejected

MLRC 3.0000 0.0027 0.0167 Rejected

RLMNN 1.5000 0.1336 0.0250 Accepted

MLKR 0.3500 0.7263 0.0500 Accepted

The statistical results allow us to conclude some trends:

(i) Our strategy for building the triplet constraints leads to an improved per-

formance compared with the subsampling strategy proposed in Schultz and

Joachims (2004) (see the RMSE results of LDMLR and MLRC).

(ii) Our dual coordinate gradient descent is significantly faster than a general-

purpose solver for finding the solution of a quadratic program (see the training

time results of LDMLR and MLRC). Since the time complexity of LDMLR

is O(mn+m2) in each outer iteration, we could expect LDMLR to perform

well for more complex problems, where other methods, such as LMNNR and

MLKR, could not achieve a good performance due to the high computational

complexity in each iteration.

189

Chapter 9. Distance metric learning for k-nearest-neighbor regression

(iii) LDMLR exhibits a slightly better behavior compared to LMNNR and MLKR.

This unexpected result is due to the fact that our method learns only a

diagonal matrix, which has fewer parameters than other methods that learn

a full Mahalanobis matrix.

(iv) Methods that learn a full Mahalanobis matrix require a memory complexity

of O(D2), which poses a huge challenge when handling high-dimensional

problems. In contrast, LDMLR only stores a diagonal matrix with a memory

complexity of O(D).

Table 9.3: Experimental results in terms of RMSE.

Euclidean RLMNN MLKR MLRC LDMLR

1. 0.051563 0.051220 0.049009 0.054875 0.056518

2. 0.028276 0.027087 0.016588 0.029336 0.028129

3. 0.196502 0.197256 0.190883 0.21574 0.202931

4. 0.150332 0.149030 0.109057 0.205514 0.139877

5. 0.360485 0.341728 0.317247 0.363681 0.340263

6. 0.272334 0.238165 0.144129 0.303363 0.237400

7. 0.483901 0.481393 0.521417 0.512054 0.503052

8. 0.446595 0.440956 0.447151 0.467792 0.449575

9. 3.688479 3.684056 3.508015 3.455432 3.496472

10. 1.813290 1.737894 1.191496 1.213079 1.158852

11. 4.152913 4.137456 3.573474 3.481092 3.394903

12. 2.994171 2.881655 1.294109 1.573102 1.174007

13. 0.024956 0.024781 0.025927 0.022591 0.022444

14. 0.012350 0.010897 0.004860 0.005406 0.005235

15. 0.036197 0.036081 0.030225 0.035769 0.028683

16. 0.029167 0.028801 0.011677 0.029050 0.017354

17. 39249.24 42230.38 39249.24 41832.60 38582.66

18. 8.067374 6.251509 7.521751 29.647121 7.419996

19. 0.200677 0.200868 0.201301 0.205264 0.200547

20. 0.250528 0.248829 0.261938 0.248818 0.250846

Rank 3.775000 2.950000 2.375000 3.70000 2.200000

9.5. Conclusion

In this chapter, we have proposed a new distance metric learning method to

improve the performance of k-NNR. This was accomplished by formulating a

convex optimization problem. To solve this problem, we have developed a special

solver based on the coordinate descent method. We evaluated the method on a

190

§9.5. Conclusion

Table 9.4: Experimental results in terms of training time (in seconds).

RLMNN MLKR MLRC LDMLR

1. 9.81000 2.38556 217.518 0.77911

2. 9.89502 2.44267 213.220 0.81447

3. 9.70097 2.51613 213.497 0.77781

4. 8.09799 2.50395 213.150 0.78570

5. 24.8306 6.50735 454.399 1.82979

6. 21.9150 6.43434 460.688 1.63494

7. 20.3224 6.55719 325.564 1.55986

8. 18.2022 6.30261 299.474 1.81043

9. 8.42433 2.46434 207.913 0.71277

10. 8.72317 2.47085 200.182 0.78939

11. 10.2451 2.38182 211.207 0.86834

12. 8.62751 2.44820 209.708 0.72931

13. 16.8085 6.35133 266.689 1.45746

14. 15.2522 6.34046 195.784 1.59970

15. 15.7750 6.42428 270.898 1.59220

16. 15.1270 6.62855 271.122 1.50747

17. 1301.84 7832.16 2052.01 70.4357

18. 274.734 577.405 2041.11 36.6199

19. 133.610 3.43870 1919.36 0.56642

20. 183.197 1760.30 1828.70 31.9248

collection of twenty publicly available data sets. Experimental results show that

our method outperforms the standard k-NNR using the Euclidean distance metric,

while obtaining comparable results compared to the state-of-the-art methods MLKR

and LMNNR. The results also show that our method is an order of magnitude faster

than its competitors. The proposed method also enjoys a significant advantage in

memory complexity, making it more practical for real-world applications, which are

not tractable using the full Mahalanobis distance metric learning methods. Future

work will include a deeper theoretical analysis, the inclusion of kernel functions

and a deeper experimental analysis on high-dimensional data sets.

191

10 Distance metric learning

for ordinal classification

Ordinal classification is a problem setting in-between nominal classification

and metric regression, where the goal is to predict classes of an ordinal scale.

Usually, there is a clear ordering of the classes, but the absolute distances between

them are unknown. Disregarding the ordering information, this kind of problems

is commonly treated as multi-class classification problems, although this is not

appropriate from a semantic point of view. Exploring such ordering information

can help to improve the effectiveness of classifiers. In this chapter, we propose

a distance metric learning approach for ordinal classification by incorporating

local triplet constraints containing the ordering information into a conventional

large-margin distance metric learning approach. Specifically, our approach tries to

preserve, for each training example, the ordinal relationship as well as the local

geometry structure of its neighbors, which is suitable for use in local distance-

based algorithms such as k-NN classification. Different from previous works that

usually learn distance metrics by weighing the distances between training examples

according to their class label differences, the proposed approach can directly satisfy

the ordinal relationships where no assumptions about the distances between classes

are made.

The material of this chapter is based on the following publication:

Nguyen, B., Morell, C., and De Baets, B. (2018a). Distance metric learning

for ordinal classification based on triplet constraints. Knowledge-Based Systems,

142:17–28

10.1. Motivation

Ordinal classification (also called ordinal regression) has recently become an impor-

tant research topic as a consequence of the growing amount of human preference

information in many real-world applications, such as human age estimation (Chang

et al., 2011), face recognition (Kim and Pavlovic, 2010), medical research (Pérez-

Ortiz et al., 2014), social sciences (Fullerton and Xu, 2012), and so on. This

learning task consists in predicting a target variable on an ordinal scale. Very often,

for qualifying objects, humans prefer using ordinal labels instead of continuous

scores. An ordinal variable can represent, for instance, the grades of students,

which are usually represented in linguistic terms such as bad, average, good, and

excellent. Clearly, average is more preferable than bad, and good is better than

both. In contrast to nominal (binary or multi-class) classification, there exists a

193

Chapter 10. Distance metric learning for ordinal classification

linear ordinal relationship among the different class labels, which can be written as

bad ≺ average ≺ good ≺ excellent, where ≺ denotes the order relation.

At least two important challenges can be identified from the differences between

nominal classification and ordinal classification (Gutiérrez and Garćıa, 2016). First,

it is important to consider the ordering information among class labels. An ordinal

classifier not only needs to recognize what class the data belong to, but it should

also preserve the ordinal relationships of the data. Second, the measure used

for assessing the performance of ordinal classifiers should take into account the

deviations of the predictions from the true class labels as well as the consistency

of the relative ordering among the class labels. In the literature, different types

of solutions have been proposed to address this kind of problems. According

to Gutiérrez et al. (2016), ordinal classification approaches can be divided into

three categories: näıve approaches, threshold approaches, and ordinal binary

decomposition approaches.

Näıve approaches treat ordinal classification problems as standard classification

or regression problems by making some simplifying assumptions on the class labels.

By ignoring the ordinal relationship among classes, unseen data can be classified

using conventional nominal classifiers, such as support vector machines (Vapnik,

1998) and neural networks (Anthony and Bartlett, 2009). Although it is possible

to directly use nominal classifiers, the classification accuracy may be limited due

to the loss of training information. Another early effort in this category was

proposed by Kramer et al. (2001). The idea is to transform the target variable

into a real-valued and continuous variable, and then solve the ordinal classification

problem using regression trees. The main drawback of this approach is that the true

distances among the class labels are unknown in most cases, and as a consequence,

it is difficult to estimate an appropriate function to map the class labels.

Threshold approaches try to overcome the aforementioned limitation by auto-

matically estimating the distances between the class labels. They assume that the

target variable is a one-dimensional latent continuous variable and learn thresholds

that divide the real line into consecutive intervals. Each class label corresponds to

an interval delimited by these thresholds. Different from näıve approaches, the dis-

tances between class labels are estimated during the learning process. Approaches

belonging to this category are also popular in problems of learning to rank (Shashua

and Levin, 2002). Within this context, Chu and Keerthi (2005) extended support

vector machines to deal with ordinal classification. Two approaches were proposed

to find parallel discriminant hyperplanes that separate examples of different classes.

An interesting property of the second approach is that the constraints on thresholds

are implicitly satisfied at the optimal solution.

Ordinal binary decomposition approaches, on the other hand, transform an

ordinal classification problem into a set of binary (two-class) classification problems,

which are separately solved by binary classifiers (Frank and Hall, 2001; Lin and Li,

194

§10.1. Motivation

2012). Hence, class labels are predicted by combining the binary outputs. Using

the ranking information contained in the class labels, a simple definition of the set

of binary classification problems can be made, for instance, by asking “if the class

label of an example x is greater than q” (Frank and Hall, 2001). It is important

to note that, apart from the way of defining two-class classification problems, the

performance of approaches belonging to this category also depends on the way of

combining the outputs.

Distance metric learning is now a well-established discipline in pattern recog-

nition, but much of the attention has been focused on classification and cluster-

ing (Bellet et al., 2015). Due to the significant different characteristics of ordinal

classification (Li et al., 2015), most of the previous works in distance metric learning

cannot be directly applied for dealing with ordinal classification. One solution is to

use additional constraints that indicate the ordinal relationships among examples

of different classes, e.g., “examples A and B are closer in preference than A and

C,” which imposes ranking constraints A ≺ B ≺ C or C ≺ B ≺ A. In the

context of distance metric learning, these triplet constraints mean “A should be

closer to B than to C.” Therefore, by learning a distance metric that satisfies

the ordinal relationships, we can address ordinal classification problems using

distance-based classifiers. In particular, we aim to incorporate local triplet con-

straints into a conventional large-margin distance metric learning approach to

improve the performance of k-nearest-neighbor (k-NN) classification (Cover and

Hart, 1967). Although distance metric learning has been explored in some previous

studies for ordinal classification (Li et al., 2012a, 2015; Fouad and Tino, 2013; Tian

et al., 2016), to the best of our knowledge, there is no existing work that directly

formulates this problem using triplet constraints. In short, our main contributions

are summarized as follows:

(i) To bridge the gap between distance metric learning and ordinal classification,

we propose a large-margin distance metric learning approach by adapting the

ordering information on the training examples. Unlike previous works, the

proposed approach makes no assumptions about the distances between the

classes, thus leading to a better performance.

(ii) To further capture nonlinear structures in a complex data set, we extend the

proposed approach to a kernelized version. We first map the input space into

a Hilbert space by a nonlinear kernel function, then the distance metric is

learned in the transformed space.

(iii) To validate the effectiveness of the proposed approach, we conduct exten-

sive experiments using public benchmark data sets for ordinal classification.

We show that the proposed approach improves the performance of k-NN

classification.

The remainder of this chapter is organized as follows. Section 10.2 describes

some basic concepts and background in distance metric learning. Subsequently, we

195

Chapter 10. Distance metric learning for ordinal classification

review some distance metric learning approaches closely related to ours, focusing

specifically on the case of ordinal classification. Section 10.3 introduces the main

idea of the proposed approach and its nonlinear kernelized version. Subsequently,

an analysis of the computational complexity of the proposed approach is discussed.

Section 10.4 discusses some issues and challenges in evaluating the performance

of ordinal classifiers. Section 10.5 provides the experimental results, analyzing

different aspects of the proposed approach. Finally, some concluding remarks and

future work are presented in Section 10.6.

10.2. Preliminaries

The main goal of distance metric learning approaches is to estimate a distance

metric that satisfies some application-specific requirements, but all follow the same

guiding principle: similar examples should be close together and dissimilar examples

should be far away from each other. In this section, we briefly describe the general

framework of distance metric learning. An overview of challenges in distance metric

learning is also provided.

10.2.1. Notations

We start by introducing some notations that will be used throughout this chapter.

Let D = {(xi, yi) | i = 1, . . . , n} denote the training set, where example xi belongs

to the input space X ⊆ RD and its corresponding class label yi belongs to the

output space Y = {C1, . . . , Cr}. An ordinal classification setting can be seen as

a special case of nominal classification where there exists a linear order relation

among the class labels, i.e., C1 ≺ · · · ≺ Cr.

10.2.2. Problem definition

Among the many different ways of learning a distance measure, we aim at finding

the Mahalanobis distance metric (Weinberger and Saul, 2009), due to its simplicity

and flexibility in incorporating the correlation between different features into the

distance. The Mahalanobis distance metric can be seen as the Euclidean distance

metric after performing a linear transformation on the input space. In other

words, learning a Mahalanobis distance metric corresponds to learning a linear

transformation (Nguyen et al., 2017c). Formally, the squared Mahalanobis distance

between two examples xi and xj is defined as

d2
M(xi,xj) = (xi − xj)

>M(xi − xj) = 〈M, (xi − xj)(xi − xj)
>〉 ,

where M < 0 is a symmetric positive semidefinite (PSD) matrix.

196

§10.2. Preliminaries

In the general distance metric learning framework, given a set of constraints R,

one can formulate the problem as a constrained optimization,

minimize
M<0

α reg(M) + `(M,R) , (10.1)

with reg a regularization function to reduce the risk of overfitting, ` a loss function

penalizing violations of constraints in R, and α ≥ 0 a trade-off parameter. Essen-

tially, our objective is to learn dissimilarities between examples by determining the

importance of the input features and their correlations.

There have been several successful approaches for solving problem (10.1). The

main challenge is to satisfy the positive semidefiniteness constraint on the matrix M.

Using a convex loss function and a convex regularizer, problem (10.1) then turns

into a convex semidefinite program which can be solved in polynomial time by

standard semidefinite programming methods (Boyd and Vandenberghe, 2004). The

drawback of this technique is that it quickly becomes computationally intractable on

large-scale data sets. To further reduce the computational complexity, Weinberger

and Saul (2009) proposed an efficient solver based on the subgradient descent

method. Davis et al. (2007) introduced an iterative Bregman projection method.

More advanced optimization methods such as the Frank-Wolfe algorithm (Ying

and Li, 2012), the block-coordinate descent (Qi et al., 2009; Atzmon et al., 2015),

and the Boosting-like algorithm (Shen et al., 2012) are also studied in the context

of distance metric learning.

In the literature, the constraints in R are usually represented in a pairwise (Xing

et al., 2002) or triplet form (Schultz and Joachims, 2004). A pairwise constraint

(i, j, yij) indicates whether two given examples, xi and xj , belong to the same

class (yij = 1) or not (yij = −1). A triplet constraint (i, j, l) indicates a relative

comparison among three given examples such as “xi is more similar to xj than to

xl.” Triplet constraints can be seen as an extension of pairwise constraints since

two pairwise constraints of the form (i, j, 1) and (i, l,−1) imply a triplet constraint

(i, j, l), but not vice versa. That is, given a triplet constraint (i, j, l), it does not

necessarily mean that xi and xj belong to the same class, neither that xi and xl
belong to different classes. Due to this flexibility, we will exploit triplet constraints

to impose the ordinal relationships on learning a Mahalanobis distance metric. In

the next section, we show how to implement this idea.

10.2.3. Related work

Although there is a large number of works in distance metric learning (Weinberger

and Saul, 2009; Shen et al., 2012; Nguyen et al., 2016), most of them only concentrate

on nominal classification. One of the most popular methods is the large margin

nearest neighbor (LMNN) proposed by Weinberger and Saul (2009) for improving

197

Chapter 10. Distance metric learning for ordinal classification

the performance of k-NN classification. In essence, LMNN aims to maximize

margins between target neighbors and all examples of different classes, leading to

solve a convex semidefinite program. Compared with LMNN, our approach also

follows the large-margin principle, but the formulation is quite different. While

LMNN ignores any ordering information present in the data and solely focuses on

increasing the classification performance of k-NN, our approach tries to preserve the

ordinal relationships, entailing an even larger increase in performance. Our main

contribution is the use of the matrix trace norm, which yields a simple explanation

in the hypothesis space, thus reducing the risk of overfitting. Additionally, to

avoid a large number of unnecessary constraints, we introduce a strategy to select

only the local triplet constraints derived from neighborhoods of each training

example.

Recently, several proposals have been formulated to reduce the gap between

distance metric learning and ordinal classification. Compared to nominal distance

metric learning approaches, ordinal approaches take the ordering information into

account, thus resulting in more accurate predictions, especially when data sets are

small (Gutiérrez et al., 2016). Below, we review some distance metric learning

approaches particularly designed for dealing with ordinal classification.

Xiao et al. (2009) introduce a distance metric learning approach with the

goal of preserving the local neighborhoods in the semantic space for human age

estimation. To be more specific, the learned distance metric tries to keep the

pairwise distances between examples of the same class in the local neighborhoods

unchanged, while pushing examples of different classes far away. The limitation

of such methodology is that the ordinal relationships with examples of different

classes is neglected.

Fouad and Tino (2013) extend the information-theoretic metric learning (ITML)

method (Davis et al., 2007) for ordinal classification by weighing pairwise constraints

according to the differences between their class labels (OITML). However, this

method may lead to suboptimal performance due to the assumption that the

learned distance metric should be as close as possible to a predefined distance

metric, e.g., the Euclidean distance metric.

Li et al. (2015) propose an ordinal distance metric learning method (LDMLR)

for image ranking. The idea is to preserve the local structure for each training

example with its target neighbors, while the ordinal relationships are preserved

by weighing the distances between training examples according to the differences

between their class labels. Nevertheless, this simple strategy may not be powerful

enough for preserving the ordinal relationships.

Tian et al. (2016) attempt to preserve the ordinal relationships by minimizing

distances between examples of the same class and simultaneously making all classes

orderly distributed in the transformed space. The main limitation of this approach

is that many hyper-parameters need to be tuned, which can make the selection

198

§10.3. Distance metric learning in ordinal settings

difficult in practice. Compared to this approach, our approach is much simpler and

easier to implement.

Most of the existing approaches are based on the idea of weighing distances

between examples to preserve the ordinal relationships among the class labels.

Assuming that the class labels are represented by a set of consecutive integers, the

weighing function depends on the differences between the class labels. This implies

that all pairs of consecutive class labels in the ordinal scale have the same distance,

which is not the case in many real-world ordinal classification problems (Gutiérrez

et al., 2016). Therefore, this assumption is not always reasonable, and as a

consequence, it may cause serious errors in the estimation of distance metrics.

In contrast to these approaches, our approach tries to naturally preserve the

ordinal relationships using triplet constraints, where no assumptions about the

true distances between class labels are made.

10.3. Distance metric learning in ordinal settings

In this section, we present a novel distance metric learning approach based on the

large-margin principle to improve the performance of k-NN in ordinal classification

settings. We substitute the loss function in (10.1) by the widely applied hinge

loss function resulting in a convex optimization framework. By imposing triplet

constraints, the ordering of the data set is locally preserved, which makes it suitable

for local methods such as k-NN classification. We also extend the proposed approach

into a kernelized version to capture nonlinearities in the data. In the following, we

will describe the proposed approach and its extension in more detail.

10.3.1. Linear distance metric learning

For the purpose of improving the performance of k-NN classification, our distance

metric learning approach is based on the following considerations. First, each

training example should share the same class label with its k nearest neighbors due

to the majority voting rule of k-NN classification. Second, the ordinal relationships

between a training example and its neighbors should be preserved in terms of

distances, which makes the k-NN classifier more reliable in ordinal classification

settings.

Similar to many existing distance metric learning approaches for nominal

classification (Weinberger and Saul, 2009; Shi et al., 2014), the learned distance

metric should preserve the local structure of each training example. That is, each

training example is surrounded by k examples with the same class label, namely

target neighbors (Weinberger and Saul, 2009). The target neighbors can be specified

as k nearest neighbors of the same class using the Euclidean distance metric. For

199

Chapter 10. Distance metric learning for ordinal classification

the sake of simplicity, let ηij be an indicator variable that takes value one when

example xj is a target neighbor of example xi, otherwise it takes value zero. Ideally,

we would like to make distances from xi to its target neighbors xj smaller than to

all examples xl of different classes by at least a safe margin. However, this may

cause a large number of constraints, which is computationally challenging. Instead,

we approximate these full constraints by considering only local constraints in the

neighborhood of each training example. Let N (xi) be the neighborhood of xi,

which is a set of its nearest neighbors. The local neighborhood constraint can be

defined as the following set of triplet constraints

R1 =
{

(i, j, l) | i, j, l ∈ {1, . . . , n},xl ∈ N (xi), ηij = 1, and yi 6= yl
}
. (10.2)

On the other hand, for each training example, the ordering information in

its neighborhood should be preserved as well. Instead of considering only large

margins between target neighbors and examples of different classes, we also keep

a safe margin between different classes, thus making the ordinal relationships of

classes explicit. That is, the larger the class dissimilarity of two examples is, the

larger the distance between these two examples is. In other words, if yl ≺ yj ≺ yi
or yi ≺ yj ≺ yl, then examples of class yl should be separated from those of class

yj by at least a safe margin. This consideration leads to the following sets of triplet

constraints

R2 =
{

(i, j, l) | i, j, l ∈ {1, . . . , n},xj ,xl ∈ N (xi) and yl ≺ yj ≺ yi
}
, (10.3)

R3 =
{

(i, j, l) | i, j, l ∈ {1, . . . , n},xj ,xl ∈ N (xi) and yi ≺ yj ≺ yl
}
. (10.4)

It is important to remark that we cannot determine any triplet constraint when

yl ≺ yi ≺ yj or yj ≺ yi ≺ yl, since the true distances between class labels are

unknown. In these cases, it is not clear whether the distance between xi and xj
should be smaller than the distance between xi and xl or not.

Finally, combining all triplet constraints given in (10.2), (10.3), and (10.4) we

obtain the following set of constraints

R = R1 ∪R2 ∪R3 .

Inspired by the large-margin principle, we aim to estimate a Mahalanobis distance

metric that satisfies, for any triplet constraint (i, j, l) in R, the inequality

d2
M(xi,xj) + 1 ≤ d2

M(xi,xl) . (10.5)

The margin in (10.5) is set to 1 since its value only has an impact on the scale

of M and not on the performance of k-NN classification. In order to allow for

some inequalities to be violated, a soft margin is introduced to deal with the

non-separable case. Following the general framework for distance metric learning

200

§10.3. Distance metric learning in ordinal settings

in (10.1), we define our problem as

minimize
M,ξ

fL(M) = α tr(M) + 1
m

∑
(i,j,l)∈R ξijl

subject to d2
M(xi,xl)− d2

M(xi,xj) ≥ 1− ξijl ,
ξijl ≥ 0 for (i, j, l) ∈ R ,
M < 0 ,

(10.6)

where m denotes the number of constraints in R and ξijl are slack variables to

handle the case of soft margins for the sake of computational feasibility. In addition,

the trace norm on M yields a sparse solution in eigenspectrum (Recht et al., 2010),

thus our approach can simultaneously perform feature selection along with distance

metric learning. This regularization function is also an implementation of Occam’s

razor principle according to which one should favor the simplest explanation

consistent with the training examples (Vapnik, 1998).

≺ ≺ ≺ ≺
Class ordering

margin

target neighbors

Nominal Ordinal

xi xi

Figure 10.1: An illustration of distance metric learning for nominal (left) and ordinal
(right) classification. Examples from different classes are represented as different shapes
filled with different colors. The ellipse represents all examples having the same distance
to example xi.

Table 10.1: Constraints derived from nominal and ordinal distance metric learning
approaches with respect to example xi in Fig. 10.1.

d(),d(), < d(),d(), <

d(),d(), <d(),d(), <

d(),<d(),

d(),d(), < d(),d(), <

d(),d(), < d(),d(), <

d(),<d(),

Nominal Ordinal

201

Chapter 10. Distance metric learning for ordinal classification

For illustrative purposes, Fig. 10.1 shows the differences between the nominal

(left-hand side) and ordinal (right-hand side) approaches. In both approaches,

example xi is surrounded by three target neighbors (shown as circles filled with

green color). Although the nominal approach has a larger margin separating its

target neighbors and other neighbors of different classes than that of our ordinal

approach, the latter should be more favorable since the ordinal relationships are

preserved. More concretely, example xi is closer to the square example than to the

pentagon example and xi is closer to the star example than to the triangle example.

Therefore, the probability of misclassifying xi as pentagon is less than that of

misclassifying it as square and the probability of misclassifying xi as triangle is

less than that of misclassifying it as star. It is important to note that the ordinal

relationships are no longer guaranteed in the nominal approach. Additionally,

Table 10.1 lists all constraints derived from the nominal distance metric learning

approach and those from our ordinal approach. Clearly, our approach imposes

more useful constraints than the nominal approach, thus making it more suitable

for ordinal classification tasks.

To further understand the objective function in (10.6), we rewrite it into another

form,

fL(M) = α tr(M) +
1

m

∑
(i,j,l)∈R

[
1 + d2

M(xi,xj)− d2
M(xi,xl)

]
+

= α tr(M) +
1

m

∑
(i,j,l)∈R

[
1 + tr(MXij)− tr(MXil)

]
+
,

where Xij = (xi − xj)(xi − xj)
> and [z]+ = max(z, 0). Hence, the subgradient of

fL can be computed as

gL(M) =
∂

∂M
fL = αI +

1

m

∑
(i,j,l)∈R

βijl(Xij −Xil) , (10.7)

where

βijl =

{
1 , if 1 + tr(MXij)− tr(MXil) > 0 ;

0 , otherwise .

To find the solution for problem (10.6), we employ the projected subgradient

descent method due to its simplicity and effectiveness (Weinberger and Saul, 2009).

Let Mt be the solution at the t-th iteration, then Mt+1 can be computed as

Mt+1 = Mt − γgL(Mt) ,

where γ denotes the step size. To guarantee that Mt+1 is PSD, we project it

onto the cone of PSD matrices using eigendecomposition. First, we perform the

202

§10.3. Distance metric learning in ordinal settings

eigendecomposition of Mt+1 as

Mt+1 = Vt+1∆t+1V
>
t+1 .

Then, the projection of Mt+1 onto the cone of PSD matrices can be computed

as

M∗
t+1 = Vt+1 max(∆t+1, 0)V>t+1 .

A brief overview of our algorithm is given in Algorithm 10. We refer to the proposed

algorithm as LODML.

Algorithm 10 Linear distance metric learning for ordinal classification

Input: {(xi, yi) | i = 1, . . . , n}, k, γ;
Output: Mt < 0;

1: Set M0 ← I and t← 0;
2: Construct a set of local triplet constraints R;
3: while not converged do
4: Compute the subgradient gL(Mt) using (10.7);
5: Set Mt+1 ←Mt − γ gL(Mt);
6: Project Mt+1 onto the PSD cone;
7: Set t← t+ 1;
8: end while

10.3.2. Nonlinear distance metric learning

A simple Mahalanobis distance metric might not always be appropriate for a

supervised learning problem (Schölkopf and Smola, 2001), especially in solving

complex problems. In this subsection, we extend LODML into a kernelized version,

which can overcome this limitation. Similarly as in (McFee et al., 2011), the

kernelized algorithm can be performed as follows.

Let φ denote a function, possibly nonlinear, that maps each example from

the input space X ⊆ RD into a feature space F with a high, possibly infinite,

dimensionality. Instead of learning directly a distance metric in the input space, we

are interested in learning a distance metric in the feature space mapped by φ.

Since M < 0, we can factorize the matrix M into M = A>A. According to

the representer theorem (Schölkopf et al., 2001), the optimal linear transformation

A, corresponding to the optimal Mahalanobis matrix M, lies within the span of all

training examples mapped by the function φ,

A = ÂΦ> ,

where Φ = (φ(x1), . . . , φ(xn)) and Â is the coefficient matrix. Thus, the Maha-

203

Chapter 10. Distance metric learning for ordinal classification

lanobis distance between two examples xi and xj in the feature space F can be

computed as follows

d2
M(φ(xi), φ(xj)) = (φ(xi)− φ(xj))

>M(φ(xi)− φ(xj))

= (φ(xi)− φ(xj))
>ΦÂ

>
ÂΦ>(φ(xi)− φ(xj))

=
[
Φ>(φ(xi)− φ(xj))

]>
Â
>

Â
[
Φ>(φ(xi)− φ(xj))

]
= (Ki −Kj)

>M̂(Ki −Kj)

= d2
M̂

(Ki,Kj) ,

where Ki = Φ>φ(xi) and M̂ = Â
>

Â. In a similar way, we can rewrite the

regularization function in (10.6) as

tr(M) = tr(ΦÂ
>

ÂΦ>)

= tr(Â
>

ÂΦ>Φ)

= tr(M̂K) ,

where K = Φ>Φ = (K1, . . . ,Kn) is the kernel matrix. Let R̂ be the set containing

triplet constraints in the feature space using the Euclidean distance metric by

setting Â to be the identity matrix I, our distance metric learning problem (10.6)

can be reformulated as

minimize
M̂,ξ

fK(M̂) = α tr(M̂K) + 1
m

∑
(i,j,l)∈R̂

ξijl

subject to d2
M̂

(Ki,Kl)− d2
M̂

(Ki,Kj) ≥ 1− ξijl ,
ξijl ≥ 0 for (i, j, l) ∈ R̂ ,
M̂ < 0 .

(10.8)

Note that problem (10.8) has a very similar form as problem (10.6) in the sense

that if we slightly change the regularization function and substitute each training

example in (10.6) by a column vector of the kernel matrix, then we obtain prob-

lem (10.8). Most interestingly, the kernel matrix K can be evaluated using the

kernel trick (Schölkopf and Smola, 2001), which consists in replacing the inner

product by an arbitrary kernel function. Thereby, we can avoid explicitly expressing

the mapping φ, which is usually unknown and difficult to estimate due to the high

dimensionality.

Similar to LODML, we perform the projected subgradient descent method to

solve problem (10.8). First, we remove the slack variables and rewrite the objective

204

§10.3. Distance metric learning in ordinal settings

function in (10.8) as follows

fK(M̂) = α tr(M̂K) +
1

m

∑
(i,j,l)∈R̂

[
1 + d2

M̂
(Ki,Kj)− d2

M̂
(Ki,Kl)

]
+

= α tr(M̂K) +
1

m

∑
(i,j,l)∈R̂

[
1 + tr(M̂X̂ij)− tr(M̂X̂il)

]
+
,

where X̂ij = (Ki−Kj)(Ki−Kj)
>. Hence, the subgradient of fK can be computed

as

gK(M̂) =
∂

∂M̂
fK = αK +

1

m

∑
(i,j,l)∈R̂̂

βijl(X̂ij − X̂il) , (10.9)

where

β̂ijl =

{
1 , if 1 + tr(M̂X̂ij)− tr(M̂X̂il) > 0 ;

0 , otherwise .

Algorithm 11 Nonlinear distance metric learning for ordinal classification

Input: {(xi, yi) | i = 1, . . . , n}, k, γ, K;

Output: M̂t < 0;

1: Set M̂0 ← I and t = 0;
2: Construct a set of local triplet constraints R̂;
3: while not converged do

4: Compute the subgradient gK(M̂t) using (10.9);

5: Set M̂t+1 ← M̂t − γ gK(M̂t);

6: Project M̂t+1 onto the PSD cone;
7: Set t← t+ 1;
8: end while

Let M̂t be the solution at the t-th iteration, then the solution M̂t+1 can be

computed as

M̂t+1 = M̂t − γgK(M̂t) .

Subsequently, we need to project M̂t+1 onto the cone of PSD matrices. First, we

perform the eigendecomposition of M̂t+1 as

M̂t+1 = V̂t+1∆̂t+1V̂
>
t+1 .

Then, the projection of matrix Mt+1 onto the PSD cone can be computed as

M̂
∗
t+1 = V̂t+1 max(∆̂t+1, 0)V̂

>
t+1 .

205

Chapter 10. Distance metric learning for ordinal classification

Algorithm 11 gives a brief description of our algorithm. We refer to the proposed

algorithm as KODML.

10.3.3. Computational complexity

We now analyze the computational complexity of LODML presented in Algo-

rithm 10. The search for target neighbors can be performed in O(kn2 +Dn2) using

linear nearest neighbor search. Similarly, we can find the neighborhood for each

training example in O(vn2 +Dn2) where v denotes the size of neighborhood. The

time complexity of computing the subgradient gL as in (10.7) is O(mD2). The

projection of M onto the cone of PSD matrices scales as O(D3). The overall time

complexity of LODML per iteration is O(D3 +mD2).

Note that the computation of subgradient gL requires to perform the outer

products Xij , which scale quadratically with the dimensionality O(mD2). When

the number of triplet constraints is large, the computation of gL using brute-force

methods might be limited due to the high computational cost. Let At denote the

set of active constraints, containing all triplet constraints (i, j, l) that satisfy the

following inequality

d2
Mt

(xi,xj) + 1 > d2
Mt

(xi,xl) .

Following Weinberger and Saul (2009), we observe that only the differences between

two sets of active constraints are required to compute gL which enables us to reduce

the computational burden of gL as follows

gL(Mt+1) = gL(Mt)−
1

m
Ut ,

where

Ut =
∑

(i,j,l)∈At\At+1

(Xij −Xil)−
∑

(i,j,l)∈At+1\At
(Xij −Xil) .

That is, the update of gL(Mt+1) is computed by adding contributions of triplet

constraints that become active and subtracting the contributions of triplets that

are no longer active.

The computational complexity of KODML presented in Algorithm 11 can be

analyzed as follows. We first compute the kernel matrix K in O(Dn2). The target

neighbors and neighborhood of each training example are performed in the feature

space using the Euclidean distance metric

d(φ(xi), φ(xj)) =
√

(φ(xi)− φ(xj))>(φ(xi)− φ(xj))

=
√
Kii − 2Kij +Kjj ,

206

§10.4. Performance evaluation

which scales as O(1). Thus, the time complexity of searching target neighbors

and neighborhoods is O(kn2 + vn2). The regularization function tr(M̂K) in (10.8)

can be computed in O(n2). The computation of subgradient gK in (10.9) scales

as O(mn2). The projection of M̂ onto the cone of PSD matrices scales as O(n3).

Summarizing, the time complexity of KODML per iteration is O(mn2 +n3). Let Ât
denote the set of active constraints at the t-th iteration. Similar to the computation

of gL, to further reduce the time complexity of computing gK , we can perform

gK(M̂t+1) = gK(M̂t)−
1

m
Ût ,

where

Ût =
∑

(i,j,l)∈Ât\Ât+1

(X̂ij − X̂il)−
∑

(i,j,l)∈Ât+1\Ât

(X̂ij − X̂il) .

The update of gK can be computed using only the differences between two sets of

active constraints.

10.4. Performance evaluation

In this section, we briefly discuss some performance measures for assessing the

performance of ordinal classifiers, along with their shortcomings. As the main goal of

classification is to produce a hypothesis h : X → Y , very often, the misclassification

rate or Mean Zero-One Error (MZE) is considered (Chu and Keerthi, 2005; Chu

and Ghahramani, 2005). Let nt denote the number of test examples, then the MZE

is computed as

MZE =
1

nt

nt∑
j=1

Jyj 6= h(xj)K ,

where J.K is the indicator function that takes value one if its argument is true,

and zero otherwise. This measure, however, treats every misclassification equally,

which is not robust to evaluate the performance of ordinal classifiers (Gutiérrez and

Garćıa, 2016). For instance, in the system of predicting student grades, labeling a

good student as bad is not the same as labeling it as average. To overcome this

limitation of MZE, we can use alternative measures that also take into account the

magnitude of the prediction errors. One of the most commonly used measures is

the Mean Absolute Error (MAE) (Baccianella et al., 2009). Assuming that class

labels are represented by numbers, the MAE is computed as

MAE =
1

nt

nt∑
j=1

|yj − h(xj)| .

207

Chapter 10. Distance metric learning for ordinal classification

To be more specific, MAE is defined as the average deviation of the predicted class

labels from the true ones. Since the true distances between class labels are usually

unknown, the performance given by MAE is strongly influenced by the numerical

representation of the class labels.

To avoid this kind of influence, one solution is to consider only the ordinal

relationships between the predicted and the true class labels (Gutiérrez and Garćıa,

2016). Along this line, the C-index or the concordance index (Gönen and Heller,

2005) is reported as one of the most popular measures. Formally, the C-index is

defined as the ratio of the number of concordant pairs to the number of comparable

pairs, i.e.

C-index =
1∑

k<l nknl

∑
yj1<yj2

(
Jh(xj1) < h(xj2)K +

1

2
Jh(xj1) = h(xj2)K

)
with nk and nl the numbers of test examples having class label k and l, respectively.

In the binary case, the C-index corresponds to the Wilcoxon–Mann–Whitney

statistic or, equivalently, the area under the receiver operating characteristics

(ROC) curve (AUC) (Cortes and Mohri, 2004).

10.5. Experiments

In order to show the effectiveness of using triplet constraints in ordinal settings,

we compare the performance of the proposed methods, LODML and KODML,

with other state-of-the-art distance metric learning methods, including the baseline

Euclidean distance metric, ITML (Davis et al., 2007), LMNN (Weinberger and

Saul, 2009), DML-eig (Ying and Li, 2012), LDMLR and its kernelized version

KDMLR (Li et al., 2015). The latter two methods have been especially designed

for ordinal classification tasks. All methods are implemented in Matlab1. The

source codes of LODML and KODML are available online at http://users.ugent.

be/~bacnguye/ODMLv1.0.zip. All results are reported in the context of 3-NN

classification. To obtain the best results for all methods, the hyper-parameters are

tuned via cross-validation based on the MZE, MAE, or C-index, depending on the

measure considered. For LMNN, we set the maximum number of iterations to 1,000

and tune the trade-off parameter µ considering as set of values {0.125, 0.25, 0.5}
as in (Weinberger and Saul, 2009). For ITML, we set the maximum number

of iterations to 100,000 and tune the slack parameter γ considering as set of

values {10−3, . . . , 103}. Following Li et al. (2015), we set p = 0.5 and β = 0.1

for LDMLR and KDMLR, and tune the hyper-parameter α considering as set of

1 The source codes are available from the corresponding authors’ websites (except LDMLR):
ITML: http://www.cs.utexas.edu/~pjain/itml/download/itml-1.2.tar.gz
LMNN: http://www.cse.wustl.edu/~kilian/code/
DML-eig: http://empslocal.ex.ac.uk/people/staff/yy267/software.html

208

http://users.ugent.be/~bacnguye/ODMLv1.0.zip
http://users.ugent.be/~bacnguye/ODMLv1.0.zip
http://www.cs.utexas.edu/~pjain/itml/download/itml-1.2.tar.gz
http://www.cse.wustl.edu/~kilian/code/
http://empslocal.ex.ac.uk/people/staff/yy267/software.html

§10.5. Experiments

values {10−3, . . . , 103}. For LODML and KODML, we use 15 nearest neighbors

to build the neighborhood and tune the hyper-parameter α considering as set of

values {10−5, . . . , 102}. The maximum number of iterations for LDMLR, KDMLR,

LODML, and KODML is set to 1,000. The following RBF Gaussian kernel is

adopted for the kernelized methods, including KDMLR and KODML, K(xi,xj) =

exp(−‖xi − xj‖2/σ). We tune the kernel width σ considering as set of values

{10−3, . . . , 103}.

10.5.1. Benchmark data sets

For comparison purposes, we carry out experiments on fifteen real-world ordinal

classification data sets, which were also used in (Gutiérrez et al., 2016; Pérez-Ortiz

et al., 2016). All these benchmark data sets are extracted from public repositories,

including the UCI machine learning repository (Frank and Asuncion, 2010) and

the mldata.org repository (PASCAL, 2011). We should remark that ordinal data

sets are usually created by gathering information from human experts, therefore,

they are often of small to moderate size only (Agresti, 2010). Additionally, we use

some large data sets provided by Chu and Ghahramani (2005). These data sets

were generated from regression problems by discretizing target values into ordinal

classes using 10 equal-length bins. One major limitation is that they assume the

ordinal classes to be equidistant, which is not always the case in ordinal settings.

The characteristics of the data sets are summarized in Table 10.2. In each row,

we specify the number of features, classes, and examples. To avoid the influence

carried by the scale of features, all features are normalized (to have zero mean

and unit standard deviation) over the training data. A 5-fold cross-validation

scheme is employed to estimate the performance of the competing methods. All

partitions are performed using stratified sampling in order to maintain the original

distribution of classes. The results will be obtained by averaging over five runs.

According to Cruz-Ramı́rez et al. (2014), using a single performance measure for

ordinal classification might lead to partial or inexact conclusions, therefore, we will

report the results using several measures, including the MZE, MAE, and C-index,

to compare the performances of the competing methods.

Tables 10.3 to 10.5 show the experimental results based on the selected measures

for the linear distance metric learning methods (i.e., Euclidean, ITML, LMNN,

DML-eig, LDMLR, and LODML). The average ranks of the competing methods

are listed in the penultimate row of these tables. For each data set, we rank the

methods based on their performance, i.e., rank 1 is assigned to the best method,

rank 2 is assigned to the second best, and so on. We define the average rank of

one method as the mean rank over the 23 data sets considered, providing a fair

comparison between the competing methods (Demšar, 2006). From the results, it

is clear that using distance metric learning methods, the performance of the k-NN

classifier is improved. Interestingly, LDMLR yields only competitive results when

209

Chapter 10. Distance metric learning for ordinal classification

Table 10.2: Description of the benchmark data sets used in our experiments.

Id Data set Features Classes Examples

Real ordinal classification data sets

ER ERA 4 9 1,000
ES ESL 4 9 488
LE LEV 4 5 1,000
SW SWD 10 4 1,000
AU automobile 71 6 205
BA balance-scale 4 3 625
BO bondrate 37 5 57
CA car 21 4 1,728
EU eucalyptus 91 5 736
NE newthyroid 5 3 215
PA pasture 25 3 36
SD squash-stored 51 3 52
SE squash-unstored 51 3 52
TA tae 54 3 151
WI winequality-red 11 6 1,599

Discretized regression data sets

AB abalone 11 10 4,177
B1 bank1 8 10 8,192
B2 bank2 32 10 8,192
CH calhousing 8 10 20,640
S1 census1 8 10 22,784
S2 census2 16 10 22,784
C1 computer1 12 10 8,192
C2 computer2 21 10 8,192

compared to the state-of-the-art LMNN, which is successfully used for nominal

classification. This behavior may be due to the fact that LDMLR tries to preserve

the ordinal relationships globally for each training example, which is very difficult

to achieve. In general, LODML consistently outperforms ITML, LMNN, DML-eig,

and LDMLR.

10.5.2. Statistical analysis of the results

In order to detect whether there are significant differences in performance among

the results reported in Tables 10.3 to 10.5, we follow the recommendations made

by Demšar (2006). We first perform the Friedman test (Friedman, 1940) at a

confidence level of α = 0.05 with the null hypothesis that all the competing methods

obtain the same results on average. For each performance measure (i.e., MZE,

MAE, and C-index), the p-value of the Friedman test with 5 degrees of freedom

is shown in the last row of Tables 10.3 to 10.5. Since the p-values are less than

the confidence level α, we reject the null hypothesis. This means that there exist

statistically significant differences between at least two methods.

210

§10.5. Experiments

Table 10.3: MZE of the linear distance metric learning methods on the benchmark data
sets. Best results are highlighted in boldface.

Id Euclidean ITML LMNN DML-eig LDMLR LODML

ER 0.8280 0.8280 0.8280 0.8280 0.8280 0.8280

ES 0.3298 0.3156 0.3196 0.3995 0.3463 0.3135

LE 0.4900 0.4900 0.4890 0.4890 0.4900 0.4900

SW 0.5300 0.5280 0.5330 0.5270 0.5260 0.5290

AU 0.4195 0.3366 0.2829 0.3268 0.3707 0.3073

BA 0.1744 0.0848 0.1472 0.1056 0.1824 0.0496

BO 0.4697 0.5076 0.4530 0.4727 0.4439 0.4015

CA 0.2627 0.0324 0.0405 0.0909 0.2282 0.0284

EU 0.5299 0.4199 0.4620 0.4960 0.4483 0.4185

NE 0.0465 0.0279 0.0326 0.0372 0.0279 0.0279

PA 0.3607 0.3393 0.3357 0.3857 0.3514 0.3357

SD 0.3818 0.4000 0.4364 0.4473 0.4964 0.3655

SE 0.3455 0.3473 0.4218 0.4273 0.4255 0.2873

TA 0.5295 0.4574 0.4699 0.5228 0.4501 0.4163

WI 0.4497 0.4534 0.4390 0.4534 0.4497 0.4321

AB 0.7826 0.7763 0.7754 0.7766 0.7745 0.7735

B1 0.7062 0.5697 0.6078 0.5540 0.6062 0.5055

B2 0.8629 0.8252 0.8431 0.8003 0.8529 0.8002

CH 0.6598 0.6592 0.6573 0.7092 0.6293 0.6302

S1 0.7508 0.7569 0.7563 0.7688 0.7508 0.7519

S2 0.7398 0.7409 0.7373 0.7882 0.7380 0.7373

C1 0.5836 0.5833 0.5815 0.5734 0.5730 0.5690

C2 0.5584 0.5341 0.5481 0.5400 0.5584 0.5354

Rank 4.7174 3.4130 3.3478 4.2826 3.5435 1.6957

p-value 1.2678× 10−6

Subsequently, we perform the Wilcoxon signed-rank test (Wilcoxon, 1945) and

several post-hoc tests, including Bonferroni-Dunn (Dunn, 1961), Holm (Holm,

1979), Hochberg (Hochberg, 1988), Hommel (Hommel, 1988), to detect whether a

competing method performs equivalently or significantly different from the control

method (i.e., LODML, which obtained the lowest rank). Using the post-hoc tests,

the p-values are adjusted in order to compensate for multiple comparisons (Demšar,

2006). If the adjusted p-value for a particular null hypothesis is less than a

confidence level of α = 0.05, then that hypothesis is rejected. Tables 10.6 to 10.8

show the unadjusted p-value (pUnadj) computed by the Wilcoxon signed-rank

test, the adjusted p-values computed by the Bonferroni-Dunn (pBonf), Holm

(pHolm), Hochberg (pHoch), and Hommel (pHomm) tests. The test results

211

Chapter 10. Distance metric learning for ordinal classification

Table 10.4: MAE of the linear distance metric learning methods on the benchmark data
sets. Best results are highlighted in boldface.

Id Euclidean ITML LMNN DML-eig LDMLR LODML

ER 1.8360 1.8360 1.8360 1.8360 1.8360 1.8360

ES 0.3585 0.3381 0.3524 0.4240 0.3750 0.3381

LE 0.6220 0.6220 0.6210 0.6210 0.6220 0.6220

SW 0.6130 0.6110 0.6160 0.6120 0.6090 0.6160

AU 0.6585 0.4439 0.3951 0.5171 0.4780 0.3951

BA 0.2128 0.0928 0.1888 0.1328 0.2144 0.0640

BO 0.6091 0.5773 0.5394 0.5955 0.5700 0.4545

CA 0.3559 0.0353 0.0480 0.1042 0.0634 0.0336

EU 0.7772 0.4784 0.5571 0.6292 0.5530 0.5041

NE 0.0465 0.0279 0.0326 0.0372 0.0279 0.0279

PA 0.4179 0.3964 0.3357 0.4107 0.3500 0.3357

SD 0.4000 0.4182 0.4545 0.5055 0.5145 0.3836

SE 0.3636 0.3655 0.4600 0.4473 0.4636 0.3055

TA 0.7075 0.5957 0.6015 0.6617 0.5428 0.5215

WI 0.5297 0.5185 0.5185 0.5347 0.5297 0.5160

AB 1.8952 1.8559 1.9054 1.9241 1.9104 1.8793

B1 1.2919 0.7601 0.8709 0.7313 1.0919 0.5941

B2 2.8633 2.3713 2.6127 2.0912 2.0863 1.9965

CH 1.3044 1.1911 1.2873 1.6313 1.1900 1.1900

S1 1.8025 1.8343 1.8319 1.9548 1.8025 1.8085

S2 1.6074 1.6091 1.5943 2.0235 1.6070 1.5973

C1 0.9441 0.9349 0.9424 0.9366 0.9341 0.8953

C2 0.8370 0.8048 0.8163 0.8273 0.8370 0.7789

Rank 4.7174 2.9130 3.4348 4.5217 3.6087 1.8043

p-value 4.0196× 10−7

confirm that our method significantly outperforms the other competing methods

based on all selected performance measures, except in one case, namely for the

C-index and ITML.

10.5.3. Influence of using ordering information

Additionally, we compare the performance of the nominal distance metric learning

method (i.e., LMNN) and that of our ordinal distance metric learning method (i.e.,

LODML) when the training size increases. Figure 10.2 illustrates the MZEs and

MAEs of LMNN and LODML with a varying number of training examples on the

balance-scale data set. All results are reported using the same test sets. When

212

§10.5. Experiments

Table 10.5: C-index of the linear distance metric learning methods on the benchmark
data sets. Best results are highlighted in boldface.

Id Euclidean ITML LMNN DML-eig LDMLR LODML

ER 0.6356 0.6356 0.6356 0.6356 0.6356 0.6356

ES 0.9183 0.9199 0.9164 0.9066 0.9185 0.9224

LE 0.7416 0.7416 0.7413 0.7413 0.7416 0.7416

SW 0.7021 0.7022 0.7006 0.7007 0.7028 0.6978

AU 0.7591 0.8088 0.8533 0.8018 0.8306 0.8569

BA 0.8922 0.9521 0.8969 0.9191 0.8924 0.9689

BO 0.5446 0.7038 0.6401 0.5725 0.6445 0.6734

CA 0.6511 0.9790 0.9676 0.9379 0.7306 0.9840

EU 0.7706 0.8670 0.8447 0.8278 0.8426 0.8706

NE 0.9470 0.9623 0.9620 0.9606 0.9694 0.9567

PA 0.7729 0.7732 0.8512 0.8006 0.7889 0.8324

SD 0.7249 0.7166 0.6954 0.6710 0.7007 0.7344

SE 0.7050 0.6993 0.6026 0.6254 0.6189 0.7818

TA 0.6206 0.6628 0.6783 0.6265 0.6960 0.6907

WI 0.6891 0.7020 0.7026 0.6934 0.6891 0.6991

AB 0.7580 0.7620 0.7561 0.7538 0.7245 0.7572

B1 0.8618 0.9204 0.9076 0.9183 0.8618 0.9373

B2 0.6135 0.6901 0.6561 0.7265 0.6135 0.7393

CH 0.8333 0.8423 0.8355 0.7864 0.8433 0.8492

S1 0.7633 0.7579 0.7589 0.7400 0.7633 0.7627

S2 0.7898 0.7878 0.7917 0.7237 0.7898 0.7911

C1 0.8842 0.8849 0.8840 0.8857 0.8852 0.8905

C2 0.8988 0.9015 0.9012 0.8991 0.8988 0.9061

Rank 4.5217 2.8261 3.6522 4.3913 3.6087 2.0000

p-value 1.4218× 10−5

Table 10.6: Unadjusted p-value and adjusted p-values according to the Wilcoxon test
and different post-hoc tests over 23 data sets based on MZE using LODML as the control
method.

Method pUnadj pBonf pHolm pHoch pHomm Hypothesis

Euclidean 4.317E-8 2.158E-7 2.158E-7 2.158E-7 2.158E-7 Rejected

DML-eig 2.741E-6 1.370E-5 1.096E-5 1.096E-5 1.096E-5 Rejected

LDMLR 8.096E-4 0.0040 0.0024 0.0024 0.0024 Rejected

ITML 0.0018 0.0092 0.0037 0.0027 0.0027 Rejected

LMNN 0.0027 0.0137 0.0037 0.0027 0.0027 Rejected

213

Chapter 10. Distance metric learning for ordinal classification

Table 10.7: Unadjusted p-value and adjusted p-values according to the Wilcoxon test
and different post-hoc tests over 23 data sets based on MAE using LODML as the control
method.

Method pUnadj pBonf pHolm pHoch pHomm Hypothesis

Euclidean 1.289E-7 6.447E-7 6.447E-7 6.447E-7 6.447E-7 Rejected

DML-eig 8.406E-7 4.203E-6 3.362E-6 3.362E-6 3.362E-6 Rejected

LDMLR 0.0011 0.0054 0.0032 0.0032 0.0032 Rejected

LMNN 0.0031 0.0156 0.0062 0.0062 0.0062 Rejected

ITML 0.0445 0.2223 0.0445 0.0445 0.0445 Rejected

Table 10.8: Unadjusted p-value and adjusted p-values according to the Wilcoxon test
and different post-hoc tests over 23 data sets based on C-index using LODML as the
control method.

Method pUnadj pBonf pHolm pHoch pHomm Hypothesis

Euclidean 4.853E-6 2.426E-5 2.426E-5 2.426E-5 2.426E-5 Rejected
DML-eig 1.460E-5 7.301E-5 5.840E-5 5.840E-5 5.840E-5 Rejected
LMNN 0.0027 0.0137 0.0082 0.0071 0.0055 Rejected
LDMLR 0.0035 0.0177 0.0082 0.0071 0.0071 Rejected
ITML 0.1343 0.6714 0.1343 0.1343 0.1343 Accepted

the training size is large, there is a significant difference between the performances

of LMNN and LODML. This is due to the fact that our method (LODML) takes

advantage of the ordering information, whereas LMNN simply ignores this mean-

ingful information. Beyond a training set of 200 examples, the difference becomes

more apparent. These results support the claim that ordinal classifiers taking the

ordering of the classes into account can result in more accurate predictions.

training examples

100 200 300 400

M
Z

E

0.1

0.15

0.2

0.25

LMNN

LODML

training examples

100 200 300 400

M
A

E

0.1

0.15

0.2

0.25

LMNN

LODML

Figure 10.2: MZE and MAE vs. number of training examples on the balance-scale data
set for LMNN and LODML.

214

§10.5. Experiments

10.5.4. Nonlinear distance metric learning

We further compare the performance of our kernelized method KODML with that

of KDMLR on these benchmark data sets. Note that both kernelized methods

learn a Mahalanobis matrix that scales quadratically with the number of training

examples, making the experiments on large data sets computationally expensive.

Due to this reason, we restrict our experiments to small data sets (i.e., n ≤ 1000).

From Table 10.9, we can observe that our kernelized method KODML outperforms

KDMLR in most cases. Interestingly, KODML consistently obtain better results

than KDMLR based on the C-index. Compared to the linear method LODML, the

nonlinear method KODML outperforms KDMLR for nine out of the thirteen data

sets considering the MZE.

Table 10.9: MZE, MAE, and C-index of the nonlinear distance metric learning methods
on the small benchmark data sets. Best results are highlighted in boldface.

Id
MZE MAE C-index

KDMLR KODML KDMLR KODML KDMLR KODML

ER 0.8260 0.8250 1.8280 1.8100 0.6361 0.6376

ES 0.3646 0.3686 0.3912 0.3953 0.9139 0.9160

LE 0.4900 0.4810 0.6220 0.6050 0.7416 0.7508

SW 0.5270 0.5160 0.6120 0.5950 0.6991 0.7076

AU 0.4000 0.3512 0.5512 0.4732 0.8109 0.8345

BA 0.1280 0.0480 0.1664 0.0640 0.9139 0.9692

BO 0.3848 0.3985 0.4712 0.5030 0.6204 0.6251

EU 0.5501 0.4810 0.8511 0.6183 0.7506 0.8246

NE 0.0419 0.0233 0.0419 0.0233 0.9486 0.9762

PA 0.3107 0.2821 0.3393 0.2821 0.8295 0.8795

SD 0.4036 0.3573 0.4418 0.3855 0.6893 0.7624

SE 0.3073 0.2673 0.3073 0.2673 0.7383 0.7813

TA 0.4837 0.5301 0.6355 0.7019 0.6510 0.5892

10.5.5. Convergence analysis

According to Boyd and Vandenberghe (2004), subgradient descent methods converge

to the optimal solution provided that the step size is small enough. In this section,

we empirically test the convergence of the proposed methods, LODML and KODML,

on the balance-scale data set. As shown in Fig. 10.3, the objective function value

always decreases in subsequent iterations and both methods converge after a certain

number of iterations. To further illustrate their classification performance, we

report the test results in terms of MZE and MAE versus the number of iterations

215

Chapter 10. Distance metric learning for ordinal classification

for LODML and KODML in Fig. 10.4. Using the Euclidean distance metric, the

3-NN classifier obtains an MZE = 0.2087 and MAE = 0.2699. We can observe that

minimizing the objective functions in (10.6) and (10.8) results in improving the

classification performance. After 500 iterations, both LODML and KODML obtain

significantly better results than the baseline Euclidean distance metric.

125 250 375 500
0.2

0.4

0.6

0.8

1

of iterations

O
b
je

ct
iv

e
fu

n
ct

io
n
 v

al
u
e

o
f

L
O

D
M

L

125 250 375 500
0.1

0.45

0.8

1.15

1.5

of iterations

O
b
je

ct
iv

e
fu

n
ct

io
n
 v

al
u
e

o
f

K
O

D
M

L

Figure 10.3: Objective function value vs. number of iterations on the balance-scale data
set for LODML and KODML.

125 250 375 500

0.05

0.1

0.15

0.2

0.25

of iterations

M
Z

E

KODML

LODML

125 250 375 500

0.08

0.16

0.24

0.32

of iterations

M
A

E

KODML

LODML

Figure 10.4: Test results (MZE and MAE) vs. number of iterations on the balance-scale
data set for LODML and KODML.

10.5.6. Influence of neighborhood size

Since our approach uses only the information from the local neighborhood of each

training example, it is interesting to analyze the influence of the neighborhood size

on the performance. For this purpose, we perform an experiment on the ESL data

set with a varying number of nearest neighbors used to build the neighborhood of

each training example. Figure 10.5 shows the performance of LODML in terms

of MAE versus the neighborhood size. From the left panel in this figure, we can

observe that an increasing number of neighbors implies an increasing performance,

216

§10.6. Conclusion

which becomes relatively stable once the number of neighbors is sufficiently large

(but still relatively small). The latter implies that adding more constraints increases

the training cost without such benefit. This means the number of neighbors can

be kept low, which is important, since the number of triplet constraints could

otherwise become very large, leading to a high computational complexity, which

is intractable for large-scale problems. From the right panel in Fig. 10.5, we can

observe that, when the neighborhood size is relatively small, LODML is much faster

than the conventional method LMNN while keeping a similar performance.

Neighborhood size

3 10 25 40 55

M
A

E

0.1

0.35

0.6

0.85

LMNN

LODML

Neighborhood size

3 10 25 40 55

T
ra

in
in

g
 t

im
e

(i
n
 s

ec
o
n
d
s)

0

10

20

30

LMNN

LODML

Figure 10.5: MAE and training time vs. the neighborhood size on the ESL data set for
LODML compared to LMNN.

10.6. Conclusion

We have proposed a novel distance metric learning approach (LODML) for ordinal

classification problems. We argued that the ordinal relationships can be preserved

by satisfying triplet constraints derived from the local neighborhood of each training

example. Compared to previous approaches, our approach does not make any

assumption about the absolute distances between the class labels, making it more

robust and suitable for ordinal classification tasks. To validate this claim, we have

carried out extensive experiments on a set of publicly available benchmark data sets.

The experimental results have been analyzed using several standard performance

measures, allowing to capture different aspects of the prediction capability of

ordinal classifiers. Moreover, we have proposed a kernelized version of LODML

to tackle the nonlinearities usually encountered in many complex problems. It is

important to point out that our strategy to preserve the ordinal relationships can

be also incorporated in other existing distance metric learning approaches. More

importantly, our framework can be used to guide further development of distance

metric learning in ordinal settings.

217

PART IV

DISTANCE METRIC LEARNING

FOR CLUSTERING

219

11 Kernel-based distance metric learning

for supervised k-means clustering

Finding an appropriate distance metric that accurately reflects the (dis)similarity

between examples is a key to the success of k-means clustering. While it is not

always an easy task to specify a good distance metric, we can try to learn one

based on prior knowledge from some available clustered data sets, an approach

that is referred to as supervised clustering. In this chapter, a kernel-based distance

metric learning method is developed to improve the practical use of k-means

clustering. Given the corresponding optimization problem, we derive a meaningful

Lagrange dual formulation and introduce an efficient algorithm in order to reduce

the training complexity. Our formulation is simple to implement, allowing a large-

scale distance metric learning problem to be solved in a computationally tractable

way. Experimental results show that the proposed method yields more robust and

better performances on synthetic as well as real-world data sets compared to other

state-of-the-art distance metric learning methods.

The material of this chapter is based on the following publication:

Nguyen, B. and De Baets, B. (2018b). Kernel-based distance metric learning

for supervised k-means clustering. IEEE Transactions on Neural Networks and

Learning Systems, accepted

11.1. Introduction

Clustering is an important task in pattern recognition for data analysis. Among

various clustering techniques, k-means clustering (Lloyd, 1982) is one of the most

popular and most efficient techniques for general clustering tasks. The goal

is to partition a set of examples into disjoint clusters based on some notion

of (dis)similarity, such that related examples belong to the same cluster, while

unrelated examples belong to different clusters (Huang et al., 2014). Despite its

apparent simplicity, it is not always clear how to select “related” examples since

there are many possible ways of defining the similarity of examples for a given task,

e.g. by using different similarity measures or distance metrics. It is well known that

the Euclidean distance metric may not be a good choice for a given task because

it simply ignores the correlations between features, which usually contain useful

discriminative information (Nguyen et al., 2016; Shen et al., 2014; Weinberger and

Saul, 2009; Nguyen and De Baets, 2018a). Depending on the application domain,

one wishes to learn a distance metric that satisfies some specific requirements.

Typical applications include classification (Faraki et al., 2018; Weinberger and Saul,

221

Chapter 11. Distance metric learning for supervised k-means clustering

2009; Goldberger et al., 2005; Nguyen et al., 2018a), regression (Nguyen et al.,

2016), clustering (Jia et al., 2016; Wu et al., 2012; Bilenko et al., 2004; Yin et al.,

2010), ranking (Lim and Lanckriet, 2014), and kernel learning (Jain et al., 2012).

Due to its flexibility in parameterization, we focus on learning a Mahalanobis

distance metric for k-means clustering in a supervised setting.

Formally, supervised clustering is the problem of training a clustering algorithm

with some supervision information, so that it can produce a desirable clustering

for unseen data (Finley and Joachims, 2005; Daumé and Marcu, 2005). Unlike

traditional clustering problems, which are usually referred to as unsupervised

clustering, here we have sets of examples and complete clusterings over these sets.

By adjusting the distance metric to obtain appropriate clusterings on supervised

data, one hopes the distance-based algorithm to cluster unseen data in a similar

fashion. Supervised clustering is closely related to semi-supervised clustering. In

semi-supervised clustering, the supervision information is typically incomplete

and is often provided in the form of pairwise constraints (Xing et al., 2002), e.g.

“examples xi and xj belong to the same cluster” (must-link constraints) or “examples

xi and xj belong to different clusters” (cannot-link constraints). Other kinds of

supervision like triplet constraints, e.g. “example xi is more similar to example

xj than to example xl,” have also been considered in the literature (Schultz and

Joachims, 2004; Kumar and Kummamuru, 2008). However, most of the existing

semi-supervised methods simply attempt to satisfy the constraints derived from

a small amount of labeled data for a single problem. Therefore, it is usually not

reasonable to transfer the knowledge learned from a set of training labels to another

set of testing labels (Finley and Joachims, 2005). On the other hand, supervised

clustering can be seen as a special case of multi-class classification in the sense that

both approaches try to classify related examples into the same class and unrelated

examples into different classes (Finley and Joachims, 2005, 2008). Nevertheless,

supervised clustering can also be used for problems containing new labels that

have not been seen during the training, which seems impossible with multi-class

classification.

Over the last few years, there has been a growing interest in learning a distance

metric in order to improve the clustering performance (Finley and Joachims, 2005;

Xing et al., 2002; Lajugie et al., 2014; Law et al., 2016). A common assumption

is that the available training examples share the same distance metric as that

of test examples, which is then used by a distance-based clustering algorithm.

For instance, Lajugie et al. (2014) adopted the large-margin structured prediction

framework (Tsochantaridis et al., 2005) in a supervised way (LMMLCP) to optimize

the objective of clustering through the use of a Mahalanobis distance metric (or,

equivalently, a linear transformation). This framework was then applied in different

domains such as video segmentation, image segmentation, and detection of change

points in DNA sequences. Unfortunately, in many real-world problems, data

are often nonlinearly separable, which can be challenging for LMMLCP. Despite

222

§11.1. Introduction

its simplicity and generalization abilities, LMMLCP may fail when dealing with

high-dimensional data sets since the number of parameters increases quadratically

with the dimensionality. A solution to address this problem is based on kernel

embedding methods. An additional benefit of using kernel methods lies in the fact

that they have been successfully employed for several types of structured data (even

without having a vectorial representation) (Schölkopf and Smola, 2001). Although

there exist several kernel-based distance metric learning methods (Jain et al., 2012;

Davis et al., 2007; Jain et al., 2010; Wang et al., 2015), they do not necessarily

improve the separability of the data for clustering (Yin et al., 2010; Baghshah and

Shouraki, 2010a).

To overcome the above shortcomings, we consider the same goal as in (Finley

and Joachims, 2005; Lajugie et al., 2014) to learn a Mahalanobis distance metric

in the feature space induced by a nonlinear kernel function, making it more flexible

and effective. In particular, given a set of related data sets with known partitions,

we aim to learn a distance metric that will lead to these partitions when k-means

clustering is performed. The main contributions of this work are summarized

below:

(i) A nonlinear distance metric learning method for k-means clustering is pre-

sented. Although our work is related to that of Lajugie et al. (2014), a novel

formulation is introduced such that partitions induced by k-means clustering

can be optimized more appropriately in the feature space. More specifically,

learning the Mahalanobis distance metric is considered as a structured learning

problem.

(ii) Unlike existing kernel-based methods, we enforce the low-rank constraint

on the solution by adding the trace norm to improve the generalization

ability. As a consequence, the resulting distance metric implicitly performs

feature selection (Recht et al., 2010). We refer to the proposed method as

Kernel-based Distance Metric Learning for Supervised k-means Clustering

(KDMLSC).

(iii) To accelerate the structured support vector machine (SVM) solver, a simple

and scalable algorithm is developed to solve the training problem efficiently.

Our algorithm is based on the Lagrange dual formulation and converges to

an optimal solution. In particular, we employ the block-coordinate descent

technique, which iteratively solves each subproblem in an efficient manner.

(iv) Experimental results on synthetic and real-world data sets show that the

proposed method is more effective than the one introduced in (Lajugie et al.,

2014) and other state-of-the-art distance metric learning methods for clustering

tasks.

The remainder of this chapter is organized as follows. We first motivate our

method by giving a brief discussion of related works in Section 11.2. Then, we

223

Chapter 11. Distance metric learning for supervised k-means clustering

review the spectral relaxation for k-means clustering in Section 11.3. Our kernel-

based distance metric learning method is described in Section 11.4. Results of an

extensive experimental evaluation and comparison are presented in Section 11.5,

followed by some concluding remarks in Section 11.6.

11.2. Related work

The performance of many clustering methods heavily depends on the choice of

the distance metric (Xing et al., 2002; Lajugie et al., 2014), but this choice is

generally not treated as a part of the training process. Without any supervision,

such distance-based clustering methods may not guarantee to achieve a good

partition of unlabeled data. In order to alleviate this problem, several approaches

have incorporated prior knowledge into either the distance metric for k-means

clustering (Xing et al., 2002; Bar-Hillel et al., 2005; Yin et al., 2010) or the

similarity matrix for spectral clustering (Wagstaff et al., 2001; Bach and Jordan,

2003). A common goal is to minimize the distances between related examples and

to maximize the distances between unrelated examples. Below, we will discuss

some relevant methods that are closely related to ours.

Most of the existing methods fall into the semi-supervised category, where some

partial constraints about the clustering are given. In an early work, Xing et al.

(2002) formulated the distance metric learning problem as a convex optimization

problem subject to a set of pairwise constraints. Despite its popularity, this method

obtains a relatively poor performance compared to more recent methods and

the resulting formulation is slow to optimize. Bar-Hillel et al. (2005) used must-

link constraints only to learn a whitening transformation of the within-chunklet

covariance matrix. Their method has the advantage of being simple to implement,

but it does not make use of cannot-link constraints, which carry much more

discriminative information. Also based on pairwise constraints, Yin et al. (2010)

introduced a nonlinear semi-supervised clustering method that makes examples in

the must-link constraints belong to the same cluster while those in the cannot-link

constraints belong to different clusters. Similarly, Kulis et al. (2009a) extended

a probabilistic framework for semi-supervised clustering (Basu et al., 2004) to

handle graph-based clustering using a kernel approach. As an alternative, Bilenko

et al. (2004) combined k-means clustering and distance metric learning in a unified

framework. A fundamental limitation of these semi-supervised methods is that

they cannot fully explore additional prior knowledge contained in the partitions

when several training sets are available.

In order to overcome the above shortcomings, various supervised clustering

methods have been proposed (Finley and Joachims, 2005, 2008; Lajugie et al.,

2014; Law et al., 2016; Bach and Jordan, 2003). Unlike semi-supervised clustering,

these methods consider all the possible must-link as well as cannot-link constraints

224

§11.3. Spectral relaxation of k-means clustering

and take into account the global clustering structure of the training data sets. For

instance, Bach and Jordan (2003) provided a general framework for learning a

similarity matrix for spectral clustering. Given a partition, the objective is to

minimize the error between the target partition and the solution derived from

the spectral relaxation. Due to the nonconvexity of the objective function, this

method may suffer from poor local minima. Based on the structured SVM frame-

work (Tsochantaridis et al., 2005), Finley and Joachims (2005) learned a similarity

function to improve the performance of correlation clustering. Analogously, La-

jugie et al. (2014) proposed a large-margin distance metric learning method for

constrained partitioning problems. However, they provide no kernel extension and

neither solve the training problem efficiently. In an extension of the latter, Law

et al. (2016) derived a closed-form solution when there exists only a single data set

for training. As mentioned earlier, these methods rely on a linear transformation,

limiting their applicability for complex or nonlinearly separable data. To overcome

this limitation, some kernel-based methods have been introduced (Finley and

Joachims, 2008; Baghshah and Shouraki, 2010a; Chatpatanasiri et al., 2010; Yeung

and Chang, 2007). For instance, Finley and Joachims (2008) formulated k-means

clustering in the feature space by learning a weighting function, but it cannot yield

a sufficiently flexible model. In contrast, our method intrinsically provides both

desirable properties: (1) learning a distance metric in a nonlinear feature space

and (2) optimizing the desired clusterings in a unified framework. Moreover, we

try to enforce the low-rank solution in the feature space, making it less sensitive to

overfitting.

11.3. Spectral relaxation of k-means clustering

In this section, we recall the spectral relaxation for k-means clustering, which

was previously presented in (Zha et al., 2002; Ng et al., 2002). Given a set of

examples X = [x1, . . . ,xn] ∈ RD×n, the goal of k-means clustering is to find

an assignment of these examples into k disjoint sets, which leads to a minimal

sum of squared distances between the examples and their corresponding cluster

center. Let Z = [z1, . . . , zk] ∈ RD×k be k center vectors and Y ∈ {0, 1}k×n denote

the assignment matrix where Yc,i = 1 if example xi belongs to the c-th cluster,

otherwise Yc,i = 0. Following Peng and Wei (2007), the objective of k-means

clustering can be formulated as

minimize
Y,Z

∑n
i=1

∑k
c=1 Yc,i ‖xi − zc‖2F

subject to Y ∈ {0, 1}k×n, rank(Y) = k ,Y>1 = 1 ,

Z ∈ RD×k .

(11.1)

225

Chapter 11. Distance metric learning for supervised k-means clustering

This problem is a mixed integer program with a nonlinear objective function,

which is NP-hard (Aloise et al., 2009). This is due to the fact that the constraints

are discrete and the objective function is nonconvex and nonlinear, making the

problem very challenging. To deal with these difficulties, the k-means clustering

algorithm minimizes the objective function in (11.1) using the block-coordinate

descent technique. Despite its popularity, the k-means clustering algorithm can be

easily prone to local minima. More importantly, it is very sensitive to noise as well

as initialization. Although one can find an optimal solution to problem (11.1) by

employing the notion of Voronoi partition (Inaba et al., 1994), the computational

complexity scales as O(nkD+1), which is not practical for medium- and large-sized

problems.

Adopting matrix notation, the objective function in (11.1) can be rewritten

as ‖X− ZY‖2F . Given Y, according to Yu and Schuurmans (2011), the optimal

value of Z for problem (11.1) is Z = XY† = XY>(YY>)−1. Thus, problem (11.1)

becomes
minimize

C∈Ck
‖X−XC‖2F , (11.2)

where Ck = {Y>(YY>)−1Y | Y ∈ {0, 1}k×n, rank(Y) = k ,Y>1 = 1}. It is

important to remark that each matrix C ∈ Ck (rescaled equivalence matrix) has

a special structure. That is, Cij = 1/nc if xi and xj belong to the c-th cluster,

otherwise Cij = 0. It is easy to see that C < 0; C2 = C, i.e. C has eigenvalues

in {0, 1}; and tr(C) = k, i.e. the number of eigenvalues being equal to one is

the number of clusters. To make problem (11.2) more tractable, we relax the

constraints in Ck to

Ĉk = {C | tr(C) = k, C2 = C, C = C>} .

Note that the positive semidefiniteness constraint on C is automatically satisfied.

By simplifying the independent terms, we rewrite problem (11.2) as

maximize
C∈Ĉk

〈C,X>X〉 , (11.3)

since ‖X−XC‖2F = tr(X>X(I−C)(I−C)>) = tr(X>X(I−C)). As proved by Zha

et al. (2002), problem (11.3) has a closed-form solution, which is the orthogonal

projector onto the k leading eigenvectors of X>X. Once the relaxed solution is

obtained, a possible way to estimate Y is to run the k-means clustering algorithm

over the k leading eigenvectors of X>X as suggested in (Ng et al., 2002).

226

§11.4. Proposed method

11.4. Proposed method

In this section, we formulate the problem of learning a Mahalanobis distance

metric for k-means clustering in the structured SVM framework (Tsochantaridis

et al., 2005). Our method operates in the feature space induced by a nonlinear

kernel function. Subsequently, we present the optimization algorithm to solve the

subproblems derived from each iteration of the structured SVM solver. Finally, a

heuristic simplification is introduced in order to make our algorithm scalable when

increasing the number of training examples.

11.4.1. Problem formulation

Let X denote an input space containing all possible sets of examples and let Y
denote an output space containing all possible partitions of those sets. The set

of training sets is denoted by D = {(Xi,Yi)}mi=1 ⊂ X × Y, which consists of m

sets of training examples Xi = [xi,1, . . . ,xi,ni] ∈ RD×ni and their corresponding

clustering Yi = [yi,1, . . . ,yi,ni] ∈ {0, 1}ki×ni . Following the structured output

prediction scheme, the goal is to learn a clustering function h : X → Y such that,

given a set of examples Q ∈ X , its corresponding clustering is computed as

h(Q) = argmax
O∈Y

FM(Q,O) ,

where FM : X × Y → R denotes a linear function parameterized by M, which

characterizes the relationship between Q and a clustering output O. Here, we

adopt the k-means objective function in (11.3) to define FM, which should give the

highest value for the correct clustering output. In other words, given a training set

Di = (Xi,Yi), we aim at learning a Mahalanobis matrix M < 0 that satisfies

∀C ∈ Ĉki \ {Ci} : 〈M,XiCiX
>
i 〉 > 〈M,XiCX>i 〉 , (11.4)

where Ci = Y>i (YiY
>
i)−1Yi is the rescaled equivalence matrix (Lajugie et al.,

2014). By appropriately adjusting M, we can force the correct clustering Yi (or,

equivalently, the matrix Ci) of Xi to have the highest score under the parameterized

k-means objective in (11.3). However, if the data are nonlinearly separable, the

resulting matrix M may not be powerful enough to employ the desired clusterings.

As a result, we are interested in learning a distance metric in a nonlinear feature

space to alleviate this problem.

Formally, let X = [X1, . . . ,Xm] ∈ RD×n with n =
∑m
i=1 ni be the input

matrix containing all training examples and Φ = [Φ1, . . . ,Φm], where Φi =

[φ(xi,1), . . . , φ(xi,ni)], be the transformed matrix containing all training examples

in the feature space F induced by a nonlinear function φ : RD → F . The goal is to

learn M in the feature space F . Following the Representer Theorem (Schölkopf

227

Chapter 11. Distance metric learning for supervised k-means clustering

et al., 2001), the optimal linear transformation induced by M lies within the span

of all training examples. Accordingly, the optimal matrix M has the following

form

M = ΦWΦ> ,

where W ∈ Rn×n and W < 0. The latter condition is to guarantee that M is PSD.

By doing so, learning M amounts to learning W. Alternatively, the problem can be

viewed as learning a parameterized kernel function KW(u,v) = φ(u)>Wφ(v) given

some input kernel function K(u,v) = φ(u)>φ(v) (for a more detailed discussion

see Jain et al., 2012). Consequently, we rewrite the constraints in (11.4) as

∀C ∈ Ĉki \ {Ci} : 〈W,KiCiK
>
i 〉 > 〈W,KiCK>i 〉 ,

where K = Φ>Φ = [Φ>Φ1, . . . ,Φ
>Φm] = [K1, . . . ,Km] denotes the kernel matrix.

The kernel trick allows us to implicitly compute the dot products in F without

mapping the input examples into F . Following the large-margin framework of

structured SVM (Tsochantaridis et al., 2005), we formulate our nonlinear distance

metric learning problem for supervised clustering as

minimize
W

r(W) + γ
∑m
i=1 βi

subject to ∀C ∈ Ĉki \ {Ci} :

〈W,Ki(Ci −C)K>i 〉 ≥ `(C,Ci)− βi ,
βi ≥ 0 , for i = 1, . . . ,m ;

W < 0 ,

(11.5)

where ` : Ĉk × Ĉk → R+ is a loss function that penalizes the violation of clustering;

r : S+ → R+ is a regularization function; βi ≥ 0 are slack variables; and γ ≥ 0 is a

hyperparameter.

Regularization function: In order to reduce the risk of overfitting, the

regularization function in (11.5) is defined as

r(W) =
1

2
‖W‖2F + λ tr(W) ,

where λ ≥ 0 is a hyperparameter. This is also known as Elastic-Net regulariza-

tion (Li et al., 2012b). The main reasons for selecting such regularization are

the following. First, the Frobenius norm can lead to fast, simple and scalable

optimization. Second, minimizing the trace norm can yield a sparse solution in

eigenspectrum (Recht et al., 2010). The trace norm has been extensively studied

in (Jain et al., 2010) for learning a kernel matrix. Since both the Frobenius and

trace norm are convex functions, problem (11.5) results in a convex semidefinite

program. Combining these two norms can be considered as a trade-off between

228

§11.4. Proposed method

sparsity and efficiency, leading to stability of an optimization framework.

Loss function: Let P and Q denote two rescaled equivalence matrices in Ĉki ,
then the following loss function is considered

`(P,Q) = ‖P−Q‖2F = tr(P) + tr(Q)− 2 tr(PQ) . (11.6)

As explained in (Lajugie et al., 2014), unlike the loss function associated with

the Rand index (Finley and Joachims, 2005), the Frobenius norm loss function

takes into account the size of the clusters, avoiding the domination of the problem

by the largest clusters. This loss function has already been used to measure the

dissimilarity between two partitions (Bach and Jordan, 2003).

Since the cardinality of Y is exponential in the number of training examples, the

structured SVM optimization is used to solve problem (11.5). More specifically, our

algorithm is an adaptation of the 1-slack margin-rescaling cutting-plane algorithm

proposed by Joachims et al. (2009). A pseudocode is given in Algorithm 12.

Algorithm 12 Cutting plane algorithm for 1-slack formulation

Input: Training set {(Xi,Yi)}mi=1, λ, ε
Output: A matrix W < 0

1: Compute Ki and Ci using Xi and Yi

2: S ← ∅
3: repeat

(W, ξ) ← argmin
W<0, ξ≥0

‖W‖2F + λ tr(W) + γ ξ

subject to ∀(C1, . . . ,Cn) ∈ S :

1
m

〈
W,

∑m
i=1 Ki(Ci −Ci)K

>
i

〉
≥ 1

m

∑m
i=1 `(Ci,Ci)− ξ

(11.7)

4: for i = 1, . . . ,m do
5: Ĉi ← argmax

Ĉ∈Ĉk
`(Ci, Ĉ) + 〈Ĉ−Ci,K

>
i WKi〉

6: end for
7: S ← S ∪ {(Ĉ1, . . . , Ĉm)}
8:

9: until
1

m

m∑
i=1

`(Ci, Ĉi)−
1

m

〈
W,

m∑
i=1

Ki(Ci − Ĉi)K
>
i

〉
≤ ξ + ε

Essentially, the proposed algorithm iteratively constructs a working set of

constraints S. In each iteration, it finds the most violated constraint and if the

violation is larger than a desired precision ε > 0, then the constraint is added

to the working set. Subsequently, it optimizes the problem based on the current

working set of constraints. The algorithm terminates when no constraint is added

to S. In other words, the solution found by our algorithm is correct up to a certain

approximation that depends on ε. In most machine learning applications, tolerating

229

Chapter 11. Distance metric learning for supervised k-means clustering

the optimal solution by a small value can be acceptable. The theoretical analysis

for the correctness, convergence rate, and scaling behavior of the structured SVM

algorithm can be found in (Joachims et al., 2009). This algorithm is efficient

whenever the most violated constraint (which is called the separation oracle) can

be found efficiently from the working set of constraints.

Finding the separation oracle can be expressed as

maximize
Ĉ∈Ĉki

`(Ci, Ĉ) + 〈Ĉ−Ci,K
>
i WKi〉 ,

which is equivalent to

maximize
Ĉ∈Ĉki

〈Ĉ, I + K>i WKi − 2Ci〉 .

Similarly to problem (11.3), the solution to this problem is the orthogonal projector

onto the ki leading eigenvectors of I + K>i WKi − 2Ci.

11.4.2. A dual approach to distance metric learning

Algorithm 12 requires the solution of a semidefinite program at each iteration.

In this subsection, we will show how to solve problem (11.7) efficiently. For

simplicity in notation, let t denote the number of constraints and let the i-th

combination of rescaled equivalence matrices in S be (C
(i)

1 , . . . ,C
(i)

m). We will

denote Si = 1
m

∑m
j=1 Kj(Cj−C

(i)

j)K>j and li = 1
m

∑m
j=1 `(Cj ,C

(i)

j) for i = 1, . . . , t.

Using these notations, problem (11.7) can be rewritten as

minimize
W

1
2‖W‖2F + λ tr(W) + γξ

subject to 〈W,Si〉 ≥ li − ξ , for i = 1, . . . , t ;

ξ ≥ 0 ;

W < 0 .

(11.8)

Note that this formulation contains only one slack variable ξ. In order to solve the

above problem, we introduce the Lagrange multipliers V < 0, α ≥ 0, and µi ≥ 0

for i = 1, . . . , t, and obtain its Lagrangian as

L(W, ξ︸ ︷︷ ︸
primal

,V,µ, α︸ ︷︷ ︸
dual

)

=
1

2
‖W‖2F + λ tr(W) + γξ

−
t∑
i=1

µi

[
〈W,Si〉 − li + ξ

]
− αξ − 〈V,W〉 .

230

§11.4. Proposed method

Setting the derivatives of L w.r.t. the primal variables (i.e. W and ξ) equal to zero

yields the following equations

∂L
∂W

(W, ξ,V,µ, α) = 0 ,

resulting in

W = V +

t∑
i=1

µiSi − λI , (11.9)

and

∂L
∂ξ

(W, ξ,Z,µ, α) = 0 ,

resulting in

t∑
i=1

µi = γ − α , (11.10)

which implies

t∑
i=1

µi ≤ γ . (11.11)

From (11.9), it follows that

〈V,W〉 = ‖W‖2F −
t∑
i=1

µi〈W,Si〉+ λ tr(W) . (11.12)

Substituting Eqs. (11.9)–(11.12) back into the Lagrangian, we get the following

dual problem

minimize
V,µ

1
2

∥∥∥∥V +
∑t
i=1 µiSi − λI

∥∥∥∥2

F

−∑t
i=1 µili

subject to
∑t
i=1 µi ≤ γ , µi ≥ 0 , for i = 1, . . . , t ;

V < 0 .

(11.13)

Note that the strong duality holds since the primal problem in (11.8) is a convex

program and satisfies Slater’s condition (Boyd and Vandenberghe, 2004). This

implies that we can solve the primal problem by solving the dual. Although

problem (11.13) still has a positive semidefiniteness constraint, we can address

it efficiently using the block-coordinate descent algorithm (Tseng, 2001). More

specifically, we first fix V and solve the dual problem in µi for i = 1, . . . , t. Then,

we fix µ and solve the dual problem in V. By updating V and µ alternatingly, we

231

Chapter 11. Distance metric learning for supervised k-means clustering

can find the optimal solution of the dual problem. Next, we will explain in detail

how to perform these updates.

The optimization procedure starts from an initial point (V(0),µ(0)) and gen-

erates a sequence of solutions {(V(k),µ(k))}∞k=1. By fixing V(k), problem (11.13)

becomes the following convex quadratic program:

minimize
µ

f(µ) = 1
2

∑t
i=1

∑t
j=1 µiµj〈Si,Sj〉+

∑t
i=1 µiai

subject to
∑t
i=1 µi ≤ γ , µi ≥ 0 , for i = 1, . . . , t

(11.14)

with ai = 〈V(k) − λI,Si〉 − li, for i = 1, . . . , t. Now, we need to update each

component of µ(k) by minimizing (11.14) over each of µ1, . . . , µt, while fixing the

remaining components at their last updated values. We start by introducing some

notations in order to simplify the description. Let

µ(k,i) = [µ
(k+1)
1 , . . . , µ

(k+1)
i−1 , µ

(k)
i , . . . , µ

(k)
t] ,

thus, updating µ(k,i) to µ(k,i+1) can be carried out by solving the following one-

variable subproblem

minimize
d

f(µ(k,i) + de(i))

subject to −µ(k)
i ≤ d ≤ γ −∑i−1

j=1 µ
(k+1)
j −∑t

j=i µ
(k)
j

(11.15)

with e(i) = [0, . . . , 0, 1, 0, . . . , 0]> a vector with all entries equal to 0, except for the

i-th entry being equal to 1. It is important to note that the objective function

of (11.15) is a quadratic function in d, i.e.

f(µ(k,i) + de(i)) =

[
1

2
〈Si,Si〉

]
d2 +∇if(µ(k,i))d+ constant ,

where ∇if is the i-th component of the gradient of f , which is given by

∇if(µ) = ai +

t∑
j=1

µj〈Si,Sj〉 = ai +

〈
Si,

t∑
j=1

µjSj

〉
. (11.16)

It is easy to see that problem (11.15) has as optimal solution d = 0 (i.e. no need to

update µ
(k)
i) if and only if the projected gradient (Lin and Moré, 1999) of f at the

i-component ∇Pi f(µ(k,i)) equals 0, which is defined as

∇Pi f(µ)=


min(∇if(µ), 0) , if µi = 0 ;

max(∇if(µ), 0) , if γ =
∑t
j=1 µj ;

∇if(µ) , if 0 < µi < γ −∑t
j=1,j 6=i µj .

When ∇Pi f(µ(k,i)) 6= 0, we need to find the optimal solution d of problem (11.15).

232

§11.4. Proposed method

If 〈Si,Si〉 > 0, then the optimal solution is given by

d=min

(
max

(
−µ(k)

i ,−
∇Pi f(µ(k,i))

〈Si,Si〉
)
, γ−

i−1∑
j=1

µ
(k+1)
j −

t∑
j=i

µ
(k)
j

)
. (11.17)

If 〈Si,Si〉 = 0, then it follows that Si = 0. From (11.16), if Si = 0, then

∇if(µk,i) = −li ≤ 0. Since d is bounded in an interval, the optimal solution is

given by

d = γ −
i−1∑
j=1

µ
(k+1)
j −

t∑
j=i

µ
(k)
j .

By setting 1/0 = +∞, we can also include this case into (11.17). From (11.16), the

computation of ∇if(µ) scales as O(tn2), which is very expensive when t is large.

To reduce this computational burden, we define

T =

t∑
j=1

µjSj ,

hence, ∇if(µ) = ai + 〈Si,T〉, which scales as O(n2). After updating µ
(k)
i , we can

efficiently keep track of T by

T← T + dSi .

Note that this computation takes only O(n2). Consequently, the complexity of

computing ∇if(µ) is reduced to O(n2) instead of O(tn2).

After having computed µ(k+1), problem (11.13) can be simplified as

minimize
V

1
2

∥∥∥∥V +
∑t
i=1 µ

(k+1)
i Si − λI

∥∥∥∥2

F

subject to V < 0 .

This is known as the nearest PSD matrix approximation problem under the

Frobenius norm (Higham, 1988). Consequently, it has a closed-form solution

V(k+1) = P+

(
λI−

t∑
i=1

µ
(k+1)
i Si

)
= P+ (λI−T) ,

where P+ denotes the projection onto the cone of PSD matrices. From Eq. (11.9),

we can easily compute W, which is also guaranteed to be PSD.

Summarizing, the computational complexity of this algorithm to perform the

update from (V(k),µ(k)) to (V(k+1),µ(k+1)) scales as O(tn2 + n3). A pseudocode

is given in Algorithm 13. In our implementation, we initialize the values of V and µ

233

Chapter 11. Distance metric learning for supervised k-means clustering

to be zero. Indeed, V could be initialized by any PSD matrix. It is straightforward

to see that µ = 0 implies that T = 0. Therefore, we can avoid the expensive cost

of initializing T, which scales as O(tn2).

Algorithm 13 A block-coordinate descent algorithm for distance metric learning

Input: {(Si, li)}ti=1, λ, γ
Output: W < 0

1: Initialize the values of V← 0, µ← 0, T← 0
2: while V and µ are not optimal do
3: for i← 1, . . . , t do . solving for µ
4: G← 〈V − λI,Si〉 − li + 〈Si,T〉

5: P ←


min(G, 0) , if µi = 0 ;

max(G, 0) , if γ =
∑t
j=1 µj ;

G , otherwise .
6: if P 6= 0 then

7: d← min
(
max

(
−µi,− P

〈Si,Si〉
)
, γ −∑t

j=1 µj

)
8: µi ← µi + d
9: T← T + dSi

10: end if
11: end for
12: V← P+(λI−T) . solving for V
13: end while
14: W← V + T− λI

11.4.3. Learning a Mahalanobis distance metric for large-

scale problems

The above formulation learns a full matrix W of size n× n, which poses a huge

challenge in terms of computational as well as space complexity. When the number

of examples is high, it quickly becomes intractable. In order to deal with this

issue, one can simplify the distance metric learning problem by considering W

as a diagonal matrix (Nguyen et al., 2016; Schultz and Joachims, 2004; Lajugie

et al., 2014). The space complexity is then reduced to O(n). Another advantage is

computational simplicity as the positive semidefiniteness constraint is no longer

required. Instead, all the elements of W are required to be nonnegative. Without

too much additional effort, we can slightly modify the above algorithm to solve this

problem. It turns out that the projection onto the PSD cone amounts to enforcing

negative diagonal elements of W to be zero. The computational complexity of

updating all coordinates scales as O(tn). As a consequence of its simplicity, the

resulting distance metric of this approach is very restrictive because it neglects the

possible correlations between features.

In this subsection, we employ a simple heuristic method to reduce the dimen-

234

§11.5. Experiments

sionality for the kernel implementation. Let the singular value decomposition of the

kernel matrix K be K = UΣH>. Kulis (2012) showed that if W∗ is an optimal

solution of (11.8), then it admits the following form

W∗ = UW′U>,

where W′ < 0. Since U is orthogonal, we can rewrite problem (11.8) in terms of

W′ as

minimize
W′

1
2‖W

′‖2F + λ tr(W′) + γξ

subject to 〈W′,U>SiU〉 ≥ li − ξ , for i = 1, . . . , t ;

ξ ≥ 0 ;

W′ < 0 .

(11.18)

This result leads to a simple method to learn W. That is, we first apply a

transformation to the input U>SiU and then run Algorithm 13 to find W′. A

more detailed discussion of this result can be found in (Jain et al., 2012; Kulis,

2012; Chatpatanasiri et al., 2010). Instead of projecting using all eigenvectors

and eigenvalues of the kernel matrix K to estimate U, here we only use the P

leading eigenvectors and eigenvalues. As a consequence, W′ has a size of P × P .

In other words, the number of parameters to optimize changes from O(n2) to

O(P 2), making our algorithm more tractable when n is large (up to ten thousand

of training examples) and P � n.

11.5. Experiments

In this section, we present experimental results on both synthetic and real-world data

sets, showing the effectiveness of our method against other supervised clustering

methods as well as state-of-the-art distance metric learning methods. All the

results here are reported in the context of k-means clustering. To account for the

sensitivity of k-means clustering, we measure the performance over ten different

initial cluster centroid positions and report the result with the lowest squared sum.

Next, we describe the experimental settings and give a more detailed overview of

our experiments on each data set.

11.5.1. Experimental settings

The following distance metric learning methods are considered:

(1) Euclidean: The baseline Euclidean distance metric, which corresponds to the

case when the Mahalanobis matrix is the identity matrix.

235

Chapter 11. Distance metric learning for supervised k-means clustering

(2) MMC1 (Xing et al., 2002): This method aims to minimize the sum of squared

distances between examples in must-link constraints while keeping the distances

between those in cannot-link constraints at least one unit. A simple projected

gradient descent was proposed to solve the corresponding optimization problem.

Unfortunately, MMC is still limited to small-sized and low-dimensional problems

due to the expensive projection onto the cone of PSD matrices.

(3) ITML2 (Davis et al., 2007): This method introduces the use of the LogDet

divergence regularization, providing a cheap way to preserve the positive

semidefiniteness constraint. For ITML, the slack parameter γ is tuned consid-

ering as set of values {10−3, . . . , 103}.
(4) LMNN3 (Weinberger and Saul, 2009): The main aim of this method is to

improve the performance of k-nearest-neighbor classification by minimizing

distances of one example to its target neighbors and maximizing distances to

its impostor neighbors. For LMNN, the hyperparameter µ is tuned considering

as set of values {0.125, 0.25, 0.5}. In our experiment, we set the number of

target neighbors to 3.

(5) LMMLCP4 (Lajugie et al., 2014): This supervised clustering method is

the most closely related to our work. To get the best results, we tune the

hyperparameter C considering as set of values {10−2, . . . , 102}.
(6) MLCA5 (Law et al., 2016): This method provides a closed-form solution

for the supervised clustering problem. Although the method is efficient, it is

limited to the case where there is only a single set of training data.

(7) KDMLSC: In our experiments, we set the parameter P (see Subsection 11.4.3)

to be the number of features D. As a result, KDMLSC will learn D × D
parameters as other linear methods, making a fair comparison. The RBF

kernel is adopted, K(u,v) = exp(−‖u− v‖2/σ). For KDMLSC, we tune the

hyperparamters λ considering as set of values {10−2, . . . , 100}, γ as set of values

{102, . . . , 104}, and σ as set of values {10−3, . . . , 100}. Following Joachims

et al. (2009), we set ε = 0.1 as a stopping criterion.

In our experiment, we consider all possible pairwise combinations of the training

examples for those distance metric learning methods that are based on pairwise

constraints (i.e. MMC and ITML). For hyperparameter optimization, a grid search

is performed for all possible combinations of values. The same validation strategy

is used for all the competing methods. For each set of training data containing m

sets of training examples, a validation data set containing m subsets is created. In

particular, we randomly subsample 10% from each subset of training data to form

1 http://www.cs.cmu.edu/~epxing/papers/
2 http://www.cs.utexas.edu/users/pjain/itml/
3 https://www.cs.cornell.edu/~kilian/code/code.html
4 http://www.di.ens.fr/~lajugie/
5 https://github.com/MarcTLaw/MLCA

236

http://www.cs.cmu.edu/~epxing/papers/
http://www.cs.utexas.edu/users/pjain/itml/
https://www.cs.cornell.edu/~kilian/code/code.html
http://www.di.ens.fr/~lajugie/
https://github.com/MarcTLaw/MLCA

§11.5. Experiments

the validation set. The best validation score corresponds to the lowest Frobenius

loss (Eq. (11.6)) on average. Note that other criteria can also be used to select the

best parameters.

As noted by Daumé and Marcu (2005), using a single measure to validate the

clustering performance might lead to partial or inexact conclusions. In order to make

a fair comparison, results for several clustering measures are reported, including

(1) Purity (PUR) (Zhou et al., 2013), which computes the average accuracy of

the dominating class correctly assigned in each cluster, (2) Normalized Mutual

Information (NMI) (Vinh et al., 2009), which computes the dependence between

the predicted and ground-truth clusterings under the independence assumption,

and (3) Rand Index (RI) (Rand, 1971), which computes the agreement of the

predicted with ground-truth clusterings. For ease of notation, let C̃ = {C̃1, . . . , C̃k̃}
be a clustering result and C = {C1, . . . , Ck} be the original partition of a set X
containing N examples. The purity is computed as

PUR(C̃, C) =
1

N

k̃∑
i=1

max
j=1,...,k

Nij

with Nij the number of common examples of C̃i and Cj , which is defined as

Nij = |C̃i ∩ Cj |, where 1 ≤ i ≤ k̃ and 1 ≤ j ≤ k. If the number of clusters is large,

it is easy to achieve a high purity value. In particular, when each example gets

its own cluster, purity becomes 1. Therefore, purity is not a suitable measure to

trade off the quality of the clustering against the number of clusters. To make this

trade-off, we can instead use NMI. Let Ñi be the number of examples in C̃i and

N j be the number of examples in Cj , then NMI is computed as

NMI(C̃, C) =

∑k̃
i=1

∑k
j=1Nij log

NijN

ÑiNj√(∑k̃
i=1 Ñi log Ñi

N

)(∑k
j=1N j log

Nj
N

) .
Let A denote the number of pairs of examples belonging to the same cluster in C̃
and C, and let B denote the number of pairs of examples belonging to different

clusters in C̃ and C, then RI is computed as

RI(C̃, C) =
2(A+B)

N(N − 1)
.

All measures lie in the range of [0, 1], with 1 representing a perfect clustering. Note

that there may exist some inconsistency between different measures due to their

discrepancy (Vinh et al., 2010). Additionally, we report the Frobenius loss (FRO)

in Eq. (11.6), which is minimized by LMMLCP, MLCA, and our method.

237

Chapter 11. Distance metric learning for supervised k-means clustering

11.5.2. Experiments on a synthetic data set

We conduct an experiment to show the clustering performance of our method on a

synthetic data set containing nonlinearly separable clusters. More specifically, the

training data consist of two data sets (Figs. 11.1(a) and 11.1(b)), each of which

contains 300 examples. Examples in one cluster are generated from a bivariate

normal distribution with the same covariance but different mean. All examples of

the same class are denoted by the same color and style. The clusters in the test set

are generated with the same properties as those of the training set. This data set

is challenging for linear distance metric learning methods because clusters of the

same class are not linearly separable.

Figure 11.1 shows the clustering results of k-means clustering with k = 2 on

the test set using the Euclidean distance metric (Fig. 11.1(c)) and our method

(Fig. 11.1(d)), where examples of the same color and style are predicted as the

same cluster. One can observe that KDMLSC clearly obtains a better clustering

performance than the Euclidean baseline. Our resulting distance metric allows to

obtain a clustering close to the desired one for the test data. We do not report

the results of other linear methods (i.e., MCC, ITML, LMNN, LMMLCP, and

MLCA) as they are similar to those of the Euclidean baseline on this synthetic

data set.

11.5.3. Experiments on handwritten digits data

The USPS digits data set6 is adopted to create a supervised clustering problem. It

contains 9,298 handwritten digit images of size 16× 16 pixels. We use the raw pixel

representation, i.e., each image is represented by a 256-dimensional feature vector.

All examples are normalized to have zero mean and unit variance. Experiments here

are performed with a subset of classes (digits 0, 1, 2, 3, 5, 6, and 8). USPS is often

used in multiclass classification tasks. To turn it into a supervised clustering task,

we use images of digits 2, 5, 6, 8 for training and those of 0, 1, 3 for testing. This

data set has also been used as a benchmark for supervised clustering in (Daumé

and Marcu, 2005).

By seeing only images of a few digits in the training set, a supervised clustering

method should be able to predict the structure of digits in the test set, even though

they have not been seen during training. The results on training as well as test

sets are reported in Table 11.1.

We observe that KDMLSC consistently obtains a better performance than other

competing methods, only with a slight drop in terms of NMI on the test set. The

accuracy (or purity) of the Euclidean baseline on the test set is only 0.87364, while

our method achieves 0.94960. The magnitude of the difference shows a substantial

6 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/

238

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/

§11.5. Experiments

(a) Training data I

(b) Training data II

(c) Euclidean

(d) KDMLSC

Figure 11.1: An illustration of clustering of a nonlinearly separable data set: (a)-(b)
training data sets, (c) k-means clustering using the Euclidean distance metric and (d)
k-means clustering using the distance metric learned by our method on the test set.

gain. Surprisingly, both LMMLCP and MLCA obtain relatively poor results, even

worse than the Euclidean baseline. This can be explained by the fact that the

optimization techniques used are not very robust. LMNN obtains similar results as

ITML on the test set, but the latter performs significantly better on the training

set.

239

C
h
a
p
t
e
r
1
1
.

D
ist

a
n
c
e
m
e
t
r
ic

l
e
a
r
n
in
g

f
o
r
su

p
e
r
v
ise

d
k
-m

e
a
n
s
c
l
u
st

e
r
in
g

Table 11.1: Performances of the competing methods on the USPS data set based on different measures. The best results are highlighted in
boldface.

Measure Euclidean MMC ITML LMNN LMMLCP MLCA KDMLSC

Train

RI 0.85629 0.85629 0.96661 0.93437 0.70501 0.71036 0.98157

PUR 0.83434 0.83434 0.96590 0.93341 0.56679 0.55556 0.98115

NMI 0.57997 0.57997 0.87108 0.78167 0.22627 0.31582 0.92550

FRO 2.33078 2.33078 0.53777 0.99219 4.62389 4.37081 0.30393

Test

RI 0.86738 0.86738 0.90914 0.91300 0.66596 0.79689 0.93534

PUR 0.87364 0.87364 0.93035 0.92440 0.59643 0.76864 0.94960

NMI 0.75873 0.75873 0.74048 0.80296 0.31676 0.63783 0.80097

FRO 1.11806 1.11806 0.79366 0.80269 2.94509 1.76364 0.61711

2
4
0

§11.5. Experiments

11.5.4. Experiments on WebKB data

We perform an evaluation on the WebKB data set (Craven et al., 1998), which

contains 1,091 web pages retrieved from the computer science departments of the

following universities: Cornell, Texas, Washington, and Wisconsin. All web pages

are organized according to one of the following topics: faculty page, student page,

staff page, department page, research project page, course page, and other. This

task has previously been used as a benchmark by Finley and Joachims (2008).

Following the setup in (Finley and Joachims, 2008), each web page is represented

as a tf-idf vector of dimension 41,131. Due to the high dimensionality, PCA is

employed to reduce the dimensionality to 100.

We conduct four leave-one-out experiments in order to evaluate the clustering

performance. In each experiment, web pages from one university are considered as

a test set and the rest are used for training. The results of all methods are reported

in Table 11.2.

Our method yields a good clustering performance and generalization ability.

Even though the number of training examples is low, KDMLSC consistently

outperforms the Euclidean baseline on all measures, which seems to be inconsistent

with MMC, LMMLCP, and MLCA. KDMLSC obtains the lowest values in terms

of FRO, except for the case of Cornell University. This is important as the

objective of our algorithm is to minimize the Frobenius norm loss during the

training phase. Without any metric learning, the clustering performance is only

0.6241 in terms of RI on the case of Wisconsin University, while our method using

distance metric learning reaches a rate of 0.7136, thus improving significantly the

performance.

241

C
h
a
p
t
e
r
1
1
.

D
ist

a
n
c
e
m
e
t
r
ic

l
e
a
r
n
in
g

f
o
r
su

p
e
r
v
ise

d
k
-m

e
a
n
s
c
l
u
st

e
r
in
g

Table 11.2: Performances of the competing methods on the WebKB data set based on different measures. The best results are highlighted in
boldface.

Method
RI PUR

Cornell Texas Washington Wisconsin Cornell Texas Washington Wisconsin

Euclidean 0.6978 0.5930 0.6355 0.6241 0.6976 0.5938 0.6917 0.6667

MMC 0.6677 0.6432 0.6297 0.6430 0.6613 0.7148 0.6767 0.7072

ITML 0.7047 0.6619 0.6785 0.6794 0.6976 0.6875 0.6429 0.7259

LMNN 0.7031 0.6683 0.7336 0.6892 0.7016 0.7266 0.7293 0.6947

LMMLCP 0.6684 0.5873 0.6655 0.6518 0.6129 0.6250 0.6541 0.5981

MLCA 0.6431 0.6131 0.6230 0.6866 0.6129 0.6211 0.5790 0.6355

KDMLSC 0.7116 0.7037 0.6885 0.7136 0.7137 0.7500 0.6993 0.7383

Method
NMI FRO

Cornell Texas Washington Wisconsin Cornell Texas Washington Wisconsin

Euclidean 0.3039 0.1826 0.3000 0.2857 7.8777 9.2414 8.5047 8.4936

MMC 0.2861 0.3271 0.2655 0.3611 8.2601 7.9442 8.6367 7.9592

ITML 0.4195 0.3025 0.2659 0.3521 7.3427 8.4864 8.7012 7.9462

LMNN 0.3169 0.3255 0.3802 0.3257 7.5877 8.1313 8.0761 8.3339

LMMLCP 0.2285 0.1426 0.2210 0.1664 8.4845 9.1424 8.6441 8.9728

MLCA 0.1622 0.1572 0.1094 0.2428 9.0574 9.1053 9.3684 8.5222

KDMLSC 0.3247 0.3764 0.3170 0.3956 7.8335 7.8247 8.0556 7.5479

2
4
2

§11.5. Experiments

11.5.5. Experiments on text categorization

5 15 25 35 45 50
0

0.25

0.5

0.75

1

R
I

k

Euclidean

MMC

ITML

LMNN

MLCA

KDMLSC

(a) RI

5 15 25 35 45 50
0

0.125

0.25

0.375

0.5

P
U

R
k

Euclidean

MMC

ITML

LMNN

MLCA

KDMLSC

(b) PUR

5 15 25 35 45 50
0

0.125

0.25

0.375

0.5

N
M

I

k

Euclidean

MMC

ITML

LMNN

MLCA

KDMLSC

(c) NMI

5 15 25 35 45 50
21

33

45

57

69

F
R

O

k

Euclidean

MMC

ITML

LMNN

MLCA

KDMLSC

(d) FRO

Figure 11.2: Performances of the competing methods versus the number of clusters on
the 20news data set based on different clustering measures (a)-(d).

The third benchmark is the 20 newsgroups data set (20news), which consists of

different UseNet discussion groups collected by Lang (1995) representing diverse

areas, including computing, politics, sports, sciences, and so on. This data set has

been widely used as a benchmark in machine learning (Weinberger and Saul, 2009;

Kumar and Kummamuru, 2008; Zha et al., 2002). We use the bydate version7,

which contains 18,774 documents of 20 groups, with approximately 1,000 documents

per group. The 20news data set is divided into two sets, 60% for training and 40%

for testing. As noted by Slonim and Tishby (2000), the true clusters are fuzzy

due to the fact that some documents are present in more than one group and

many of those groups describe similar topics. In our experiments, each document

7 http://qwone.com/~jason/20Newsgroups/

243

http://qwone.com/~jason/20Newsgroups/

Chapter 11. Distance metric learning for supervised k-means clustering

is represented by a tf-idf vector using the 26,214 most common words in the

vocabulary. We then employ PCA to reduce the dimensionality to 100 in order

to alleviate the effect of noise and to make other linear methods computationally

tractable.

As the class labels of the test data are known, they can be used to analyze the

effect of varying the number of clusters. For this purpose, we show the performance

of KDMLSC and the competing methods when increasing the number of clusters in

Fig. 11.2. Each learning curve represents the performance of the k-means clustering

algorithm with different numbers of clusters. Using the code provided by the

authors, LMMLCP did not converge within seven days on this large data set,

therefore, we did not report its results.

From Fig. 11.2, it is clear that our method achieves a superior performance

on different clustering measures. It is important to note that ITML optimizes all

possible pairwise constraints derived from the training data, and as a consequence,

it obtains a good performance on the RI measure. However, it shows an inconsistent

result on the other clustering measures. This can be explained by the fact that ITML

treats all pairwise constraints as independent, which is a strong assumption and is

not so easily satisfied. Unlike methods based on pairwise constraints, KDMLSC can

take advantage of dependencies between pairwise constraints in order to optimize

the clustering measures. There is a significant difference in performance between

our method and other linear distance metric learning methods. This result confirms

the ability of KDMLSC to exploit the cluster structure.

11.5.6. Running time

All the competing methods are implemented in Matlab, running on the same PC.

The result of each method is computed with the best hyperparameters. Note that

KDMLSC can operate in a high-dimensional input space without reducing the

dimensionality, but to allow a fair comparison and faster experimentation, it is

trained with the same number of parameters like other methods, which scales

quadratically with the number of features. The training times of KDMLSC and the

competing methods (MMC, ITML, LMNN, LMMLCP, and MLCA) are reported

in Table 11.3.

From Table 11.3, MLCA is the fastest method because it provides a direct

analytical solution. However, MLCA cannot achieve a good performance compared

to other competing methods. KDMLSC is always the second fastest method and

the third fastest one is LMNN. These methods are relatively fast compared to MMC

and ITML. This is because the computation time of the latter two methods heavily

depends on the number of pairwise constraints, which increases quadratically with

the size of the data set. As shown in the table, there is a significant difference in

running time between KDMLSC and LMMLCP although both methods are based

244

§11.6. Conclusion

Table 11.3: Training time of the competing methods on the data sets used in our
experiments (N/A: not available).

Data set MMC ITML LMNN LMMLCP MLCA KDMLSC

USPS 1 h 51 m 1 h 54 m 5 m 15 s 14 h 24 m 0.1 s 2 m 8 s

WebKB 30 m 23 s 3 m 4 s 7 m 35 s 4 m 22 s 0.1 s 1.9 s

20News 6 h 12 m 6 h 51 m 22 m 20 s N/A 1.8 s 4 m 13 s

on the same framework. Clearly, our method is several orders of magnitude faster.

This result demonstrates the efficiency of our dual algorithm in order to learn the

distance metric in large-scale settings.

11.6. Conclusion

In this chapter, we have proposed a kernel-based distance metric learning method,

namely KDMLSC, for supervised k-means clustering. Our method offers three

main advantages over previous methods. First, it learns a distance metric that best

fits the nonlinear structure of the data by employing kernel learning. Second, it

implicitly reduces the risk of overfitting by incorporating a low-rank constraint on

the learned Mahalanobis matrix. Third, our dual algorithm is simple to implement

and more scalable to large data sets than most of the semidefinite programming

solvers. Although we have only applied this dual algorithm in the context of

supervised clustering, it can be used as a general solver for developing new distance

metric learning methods that involve semidefinite programming. Experiments

across different domains have shown that KDMLSC outperforms the state-of-the-

art distance metric learning methods on supervised clustering tasks.

245

PART V

EPILOGUE

247

12 Conclusions and future work

A good distance metric mostly depends on the application domain and should

yield small distances between similar examples and large distances between dissim-

ilar examples. Recent advances in distance metric learning have demonstrated a

promising approach to compute more effective distance metrics for a given problem.

However, they either lack scalability, robustness, ability to handle different learning

settings and data types, or have no theoretical guarantee on convergence. The

methods proposed in this thesis are motivated by an attempt to overcome these

shortcomings. Below, we will summarize the main conclusions that can be drawn

from this thesis and highlight some pending issues that might be interesting for

future research.

12.1. Conclusions and open issues

In this thesis, we addressed some important limitations of existing distance metric

learning methods by introducing novel methods for different supervised settings.

The applicability of the proposed methods was demonstrated on many synthetic as

well as real-world data sets. These methods were implemented in Matlab and the

resulting toolboxes were made publicly available1, so that any non-expert user can

easily use or test the developed methods on their own data.

In Chapter 3, we introduced the DMLMJ method that aims at learning a

linear transformation through maximization of the Jeffrey divergence between

two multivariate Gaussian distributions derived from local pairwise constraints.

Learning the linear transformation was formulated as an unconstrained optimization

problem, which can be solved analytically. In addition, a kernelized version of

DMLMJ was derived to tackle nonlinear problems.

In Chapter 4, we proposed the use of kernels for the KISSME method, allowing

to capture the nonlinear structure in the data set. This method operates in the

kernel spaces, yielding a highly flexible distance metric. We also presented an

incremental update strategy for k-KISSME upon the arrival of a new pairwise

constraint, which could be computationally expensive. Despite the promising

results, there are still some aspects of k-KISSME and its incremental version that

require further efforts. For instance, the computational bottleneck of k-KISSME

becomes impractical on large-scale data sets. The latter is endemic to most kernel-

based methods and reducing the training set size may be useful in this case. While

our incremental update strategy for k-KISSME may be initially sufficient, it would

1 https://github.com/bacnguyencong

249

https://github.com/bacnguyencong

Chapter 12. Conclusions and future work

be more interesting to be able to keep the Mahalanobis matrix within the cone of

PSD matrices and to perform an update upon arrival of multiple constraints at

the same time.

In Chapter 6, we employed the principle of margin maximization to learn the

distance metric with the goal of improving the performance of k-NN classification.

To make our method scalable on large-data sets, an efficient online algorithm

based on SGD, namely LMDML-A, was developed. Our algorithm keeps the

solution always within the PSD cone by computing an appropriate step size in each

iteration. We use the Schur complement to find an upper bound of the step size that

guarantees that the solution remains within the PSD cone. It would be interesting

to extend LMDML-A to make it applicable for very high-dimensional data sets,

which would be computationally attractive. One may improve the training speed

of LMDML-A by considering the possibility of implementing it in parallel and

averaging the resulting solutions.

In Chapter 7, we proposed the DML-dc method to minimize the misclassification

rate of the nearest-neighbor classifier. Due to the use of the ramp loss function,

our objective function for margin maximization has a strong ability to avoid the

influence of outliers. Since the objective function can be decomposed into a DC

program, we iteratively solved a sequence of convex subproblems using DCA. To

further reduce the computational cost of DCA, it would be interesting to explore

more advanced optimization techniques (e.g. stochastic gradient) to reduce the

computational complexity of solving the convex subproblems.

In Chapter 8, we proposed the CMML method that learned multiple local

distance metrics instead of a single global one in order to tackle heterogeneously

distributed data. First, data were divided into several clusters using k-means

clustering, then a single distance metric was estimated for each cluster based on

triplet constraints. Moreover, a global distance metric was introduced to capture

the common structure among all the clusters, which required that the distance

metric in each cluster should be as close as possible to the global one. To make

CMML scalable for large data sets, the block-coordinate descent algorithm was

adopted, which enabled us to solve the optimization problem efficiently. We used

k-means clustering to partition the input data due to its simplicity and efficiency,

but future studies employing other clustering algorithms could be interesting. One

may extend CMML by incorporating the clustering procedure into the training

process, which could optimally partition the input data.

In Chapter 9, we presented the LDMLR method for k-NN regression. Instead

of randomly selecting triplet constraints to satisfy an application-specific criterion,

we extracted the constraints from the local neighborhood of each training example,

which allowed us to preserve discriminative information from this neighborhood. In

order to solve this problem, a special solver based on coordinate gradient descent

method was developed.

250

§12.2. Potential research directions

In Chapter 10, we developed the ODML method for ordinal classification by

incorporating local triplet constraints containing the ordering information into a

conventional large-margin distance metric learning method. Compared to previous

methods, our method did not make any assumption about the absolute distances

between the class labels, making it more robust and suitable for ordinal classification

tasks.

In Chapter 11, we introduced the KDMLSC method to improve the practical use

of k-means clustering. A common assumption of this method is that the available

training examples share the same distance metric as that of test examples, which

was then used by a distance-based clustering algorithm. In order to reduce the

training time, we derived a meaningful Lagrange dual formulation and introduced an

efficient algorithm based on block-coordinate descent. Our current implementation

using internal cross-validation to select an appropriate kernel function may limit

the expressiveness of the resulting KDMLSC method. While kernel-based methods

use a single kernel function, in practice it is often more effective to use multiple

kernel functions as they can naturally handle multiple data sources. It will be

interesting to explore the use of multiple predefined kernel functions to overcome

this limitation. Another extension would be to generalize our model to the case

where the number of clusters is unknown. In this situation, one may estimate the

number of clusters directly from the data by penalizing the objective function of

k-means (Lajugie et al., 2014).

12.2. Potential research directions

Several directions have been discussed in the preceding section to improve our meth-

ods as well as to establish a more general framework for distance metric learning.

In addition, we will explore some potential research directions as follows.

12.2.1. Distance metric learning for extreme classification

The complexity of a machine learning problem is often characterized in terms of

the number of examples and the number of features. Recent studies (Deng et al.,

2011; Gupta et al., 2014) have shown that increasing the number of labels (classes)

also poses a huge challenge. Such challenge appears in many applications, e.g.,

text classification, ranking, tagging locations, photo and video annotation, where

the goal is to learn a predictor that automatically tags a data point with the most

relevant labels from an extremely large label set (up to several millions). Problems

of this kind are referred to as extreme classification problems. They are mainly of

two kinds: single-label classification where each example is assigned only one label

and multi-label classification where each example can be associated with many

labels. The latter case usually contains a very few labels per example. Consider,

251

Chapter 12. Conclusions and future work

for instance, a problem of tagging Wikipedia articles, where one might wish to

tag a document with a couple of relevant labels, which are chosen from a set of

more than a million possible tags. Extreme classification has also opened the door

to ranking and recommendation systems by reformulating them as multi-label

classification problems, where each item to be ranked/recommended is treated as a

separate label (Agrawal et al., 2013).

A naive one-versus-all approach is to independently learn a single model for

each label. Since the space and time complexities are linear in the number of labels,

this approach quickly becomes intractable both for training and prediction. An

important characteristic of extreme classification problems is that a large fraction

of labels have very few training examples assigned to them, referred to as long-tail

label distributions. Unlike conventional classification approaches, distance metric

learning becomes a very appealing technique in extreme classification because of its

ability to learn the general concept of distance metric (differently from label-specific

concepts) and its compatibility with an efficient nearest neighbor search on the

learned metric space.

12.2.2. Deep metric learning

With the remarkable success in learning useful semantic representations of data, so-

called deep metric learning aims at learning an embedding function through a deep

neural network (e.g., a convolutional neural network), which directly optimizes a

loss function related to the similarity of examples (Hu et al., 2014; Song et al., 2016,

2017; Sohn, 2016; Wang et al., 2017; Duan et al., 2017). Specifically, embeddings are

optimized to pull similar examples close to each other and push dissimilar examples

far apart from each other. For instance, Hu et al. (2014) proposed a two-layer

discriminative network, which learns a set of nonlinear transformations that make

the distances between examples of must-link pairs smaller than a threshold and the

distances between those of cannot-link pairs larger than a threshold. Sohn (2016)

introduced the multi-class N-pairs loss, which extends the triplet loss by allowing

the joint comparison between an example and multiple examples of different classes.

By learning from the general concept of similarity instead of category-specific

concepts, deep metric learning can naturally deal with problems involving millions

of labels, which could be impossible for conventional deep neural networks due to

the computational bottleneck (unless advanced techniques, such as hierarchical

softmax and negative sampling are employed).

A central issue for deep metric learning consists in collecting and creating

meaningful training constraints (e.g., pairwise, triplet, or quadruplet constraints).

In this thesis, we have shown that an efficient strategy of building constraints

is very critical to the success of the algorithms. This is also indicated in recent

literature (Ge, 2018). The usual solution to minimize the loss in an online fashion

252

§12.2. Potential research directions

with stochastic gradient descent is to randomly sample constraints. Unfortunately,

the number of violated constraints decreases if there are more labels (Gupta et al.,

2014), leading to slow convergence and low performance. To make learning more

effective and efficient, only difficult (or hard) constraints should be considered.

However, selecting hard constraints could be a very expensive operation. Design-

ing a more effective sampling strategy to avoid this issue would be a promising

direction.

Several loss functions have been developed for deep metric learning, such as

contrastive loss, triplet loss, quadruplet loss, and N-pair loss. Compared to softmax

loss, these loss functions are more difficult to optimize. Existing loss functions often

employ only one negative example while not interacting with the other negative

labels. Therefore, a potential research direction is to develop new loss functions

with multiple negative examples. In particular, the loss function should take into

account the global structure of the embedding space.

12.2.3. Theoretical understanding

Similarly to conventional supervised learning, one may prove generalization bounds

by considering each pairwise or triplet constraint as an independent and identically

distributed (i.i.d.) sample. However, the i.i.d. assumption is violated in distance

metric learning because the constraints are built from the training set. That is

why obtaining generalization bounds in distance metric learning is very challenging.

Although several recent works have attempted to prove a generalization bound,

analyzing the link between the consistency of the learned distance metric and its

performance in a given algorithm (classifier, ranking, regression, etc) remains an

important open problem. So far, only a few results for linear classification have

been obtained using the notion of uniform stability (Jin et al., 2009), algorithmic

robustness (Bellet and Habrard, 2015), and Rademacher complexity (Guo and

Ying, 2014). As mentioned in Bellet et al. (2015), there is still no theoretical result

for k-NN classification using the learned distance metric.

253

Appendices

255

A Appendix

A.1. Jeffrey divergence

Let P1 and P2 be two D-dimensional multivariate Gaussian distributions with

means µ1 and µ2, covariance matrices Σ1 and Σ2, and corresponding probability

density functions p1 and p2, respectively. The Kullback-Leibler divergence between

P1 and P2 is defined as:

KL(P1, P2) =

ˆ
ln

(
p1(x)

p2(x)

)
p1(x) dx

=
1

2

[
log

(|Σ2|
|Σ1|

)
−D + tr

(
Σ−1

2 Σ1

)
+ (µ2 − µ1)

>
Σ−1

2 (µ2 − µ1)

]
.

The proof of the latter expression can be found in (Davis and Dhillon, 2007).

We now consider the symmetric Kullback-Leibler divergence or Jeffrey divergence

between P1 and P2:

JF(P1, P2) = KL(P1, P2) + KL(P2, P1)

=
1

2

[
log

(|Σ2|
|Σ1|

)
−D + tr

(
Σ−1

2 Σ1

)
+ (µ2 − µ1)

>
Σ−1

2 (µ2 − µ1)

]
+

1

2

[
log

(|Σ1|
|Σ2|

)
−D + tr

(
Σ−1

1 Σ2

)
+ (µ1 − µ2)

>
Σ−1

1 (µ1 − µ2)

]
=

1

2
tr
(
Σ−1

1 Σ2 + Σ−1
2 Σ1

)
+

1

2
tr
(

(µ2 − µ1)
>

Σ−1
2 (µ2 − µ1)

)
+

1

2
tr
(

(µ1 − µ2)
>

Σ−1
1 (µ1 − µ2)

)
−D

=
1

2
tr
(
Σ−1

1 Σ2 + Σ−1
2 Σ1

)
−D +

1

2
tr
(
(Σ−1

1 + Σ−1
2)(µ2 − µ1)(µ2 − µ1)>

)
.

If µ1 = µ2 = 0, then the Jeffrey divergence between P1 and P2 reduces to:

JF(P1, P2) =
1

2
tr
(
Σ−1

1 Σ2 + Σ−1
2 Σ1

)
−D .

257

Chapter A. Appendix

A.2. Conditions to guarantee the convergence of

block-coordinate descent

Assume that the objective function to be optimized has the following form

f(x(1), . . . ,x(n)) = f0(x(1), . . . ,x(n)) +

n∑
k=1

fk(x(k))

for some f0 : RN(1)+···+N(n) → R ∪ {∞} and some fk : RN(k) → R ∪ {∞}, k =

1, . . . , n. We refer to each x(k), k = 1, . . . , n, as a coordinate block of x =

(x1, . . . , xN(k)). In order to guarantee the convergence of block-coordinate descent,

the following conditions are proposed by Tseng (2001):

(B1) f0 is continuous on domf0.

(B2) For each k ∈ {1, . . . , n} and x(j), j 6= k, the function x(k) 7→ f(x(1), . . . ,x(n))

is quasiconvex and hemivariate.

(B3) f0, f1, . . . , fn are lower semicontinuous.

(C1) domf0 is open and f0 tends to ∞ at every boundary point of domf0.

(C2) domf0 = Y(1) × · · · × Y(n), for some Y(k) ⊆ RN(k)

, k = 1, . . . , n.

Proposition A.1 ((Tseng, 2001)). Suppose that f, f0, . . . , fn satisfy assumptions

(B1)-(B3) and that f0 satisfies either assumption (C1) or (C2). Using the essentially

cyclic rule, the block-coordinate descent method converges to an optimal point of f .

258

§A
.3
.
D
ata

sets

A.3. Data sets

Data sets from the Knowledge Extraction based on Evolutionary Learning (KEEL) machine learning repository1. These data sets

cover a range from 4 to 90 features with the number of examples varying from 106 to 20,000. A brief description of these data sets is

given in Table A.1.

Table A.1: A brief description of the KEEL data sets

Id Data sets Features Examples Classes Id Data sets Features Examples Classes

APP appendicitis 7 106 2 PIM pima 8 768 2

BAN balance 4 625 3 RIN ring 20 7400 2

BUP banana 2 5300 2 SAT satimage 36 6435 7

BUP bupa 6 345 2 SEG segment 19 2310 7

ION ionosphere 33 351 2 SON sonar 60 208 2

IRI iris 4 150 3 SPA spambase 57 4597 2

LED led7digit 7 500 10 TEX texture 40 5500 11

LET letter 16 20000 26 TWO twonorm 20 7400 2

MAG magic 10 19020 2 VEH vehicle 18 846 4

MON monk-2 6 432 2 VOW vowel 13 990 11

MOV movement libras 90 360 15 WDB wdbc 30 569 2

OPT optdigits 64 5620 10 WIN wine 13 178 3

PAG page-blocks 10 5472 5 WIS wisconsin 9 683 2

PHO phoneme 5 5404 2

1 KEEL: http://sci2s.ugr.es/keel/datasets.php

2
5
9

http://sci2s.ugr.es/keel/data sets.php

Bibliography

Abbasnejad, M. E., Ramachandram, D., and Mandava, R. (2012). A survey of the

state of the art in learning the kernels. Knowledge and Information Systems,

31(2):193–221.

Aghaeepour, N., Nikolic, R., Hoos, H. H., and Brinkman, R. R. (2011). Rapid cell

population identification in flow cytometry data. Cytometry A, 79 A:6–13.

Agrawal, R., Gupta, A., Prabhu, Y., and Varma, M. (2013). Multi-label learning

with millions of labels: Recommending advertiser bid phrases for web pages. In

Proceedings of the 22nd International Conference on World Wide Web, pages

13–24.

Agresti, A. (2010). Analysis of Ordinal Categorical Data. John Wiley & Sons.

Ahmed, E., Jones, M., and Marks, T. K. (2015). An improved deep learning

architecture for person re-identification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3908–3916.

Ahonen, T., Hadid, A., and Pietikainen, M. (2006). Face description with local

binary patterns: Application to face recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 28(12):2037–2041.

Aloise, D., Deshpande, A., Hansen, P., and Popat, P. (2009). Np-hardness of

euclidean sum-of-squares clustering. Machine Learning, 75(2):245–248.

Amir, E., Davis, K. L., Tadmor, M. D., Simonds, E. F., Levine, J. H., Bendall,

S. C., Shenfeld, D. K., Krishnaswamy, S., Nolan, G. P., and Pe’er, D. (2013).

viSNE enables visualization of high dimensional single-cell data and reveals

phenotypic heterogeneity of leukemia. Nat Biotechnol, 31:545–552.

Anthony, M. and Bartlett, P. L. (2009). Neural Network Learning: Theoretical

Foundations. Cambridge University Press, 1st edition.

Assi, K. C., Labelle, H., and Cheriet, F. (2014). Modified large margin nearest

neighbor metric learning for regression. IEEE Signal Processing Letters, 21(3):292–

296.

Atzmon, Y., Shalit, U., and Chechik, G. (2015). Learning sparse metrics, one

feature at a time. The Journal of Machine Learning Research, 1:1–48.

Baccianella, S., Esuli, A., and Sebastiani, F. (2009). Evaluation measures for ordinal

regression. In Proceedings of the 9th International Conference on Intelligent

Systems Design and Applications, pages 283–287.

261

Bibliography

Bach, F. R. and Jordan, M. I. (2003). Learning spectral clustering. In Advances in

Neural Information Processing Systems 16, pages 305–312.

Baghshah, M. S. and Shouraki, S. B. (2010a). Kernel-based metric learning for

semi-supervised clustering. Neurocomputing, 73(7-9):1352–1361.

Baghshah, M. S. and Shouraki, S. B. (2010b). Non-linear metric learning using

pairwise similarity and dissimilarity constraints and the geometrical structure of

data. Pattern Recognition, 43(8):2982–2992.

Bagirov, A. M., Taheri, S., and Ugon, J. (2016). Nonsmooth DC programming ap-

proach to the minimum sum-of-squares clustering problems. Pattern Recognition,

53:12–24.

Baltieri, D., Vezzani, R., and Cucchiara, R. (2011). 3dpes: 3d people dataset for

surveillance and forensics. In Proceedings of the Joint ACM Workshop on Human

Gesture and Behavior Understanding, pages 59–64.

Bar-Hillel, A., Hertz, T., Shental, N., and Weinshall, D. (2005). Learning a

Mahalanobis metric from equivalence constraints. The Journal of Machine

Learning Research, 6(6):937–965.

Bartlett, P. L. (1998). The sample complexity of pattern classification with neural

networks: the size of the weights is more important than the size of the network.

IEEE Transactions on Information Theory, 44(2):525–536.

Basu, S., Bilenko, M., and Mooney, R. J. (2004). A probabilistic framework for semi-

supervised clustering. In Proceedings of the 10th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 59–68.

Bedagkar-Gala, A. and Shah, S. K. (2014). A survey of approaches and trends in

person re-identification. Image and Vision Computing, 32(4):270–286.

Beernaerts, J., Derie, R., Nguyen, B., Vansteenkiste, P., De Baets, B., Deconinck,

F., Lenoir, M., De Clercq, D., and Van de Weghe, N. (2019). Assessing the

potential of the qualitative trajectory calculus to detect gait pathologies: a case

study of children with developmental coordination disorder. Computer Methods

in Biomechanics and Biomedical Engineering, accepted.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps and spectral techniques for

embedding and clustering. Neural Computation, 15(6):1373–1396.

Bellet, A. and Habrard, A. (2015). Robustness and generalization for metric

learning. Neurocomputing, 151:259–267.

Bellet, A., Habrard, A., and Sebban, M. (2011). Learning good edit similarities

with generalization guarantees. In Proceedings of the Joint European Conference

on Machine Learning and Knowledge Discovery in Databases, pages 188–203.

262

Bibliography

Bellet, A., Habrard, A., and Sebban, M. (2012). Good edit similarity learning by

loss minimization. Machine Learning, 89:5–35.

Bellet, A., Habrard, A., and Sebban, M. (2015). Metric learning. Synthesis Lectures

on Artificial Intelligence and Machine Learning, 9(1):1–151.

Ben-David, S., Eiron, N., and Long, P. M. (2003). On the difficulty of approximately

maximizing agreements. Journal of Computer and System Sciences, 66:496 –

514.

Benavoli, A., Corani, G., Demšar, J., and Zaffalon, M. (2017). Time for a change: a

tutorial for comparing multiple classifiers through bayesian analysis. The Journal

of Machine Learning Research, 18:2653–2688.

Benavoli, A., Corani, G., and Mangili, F. (2016). Should we really use post-

hoc tests based on mean-ranks? The Journal of Machine Learning Research,

17(1):152–161.

Benedetti, J. K. (1977). On the nonparametric estimation of regression functions.

Journal of the Royal Statistical Society, 39(2):248–253.

Bertsekas, D. P. (1999). Nonlinear programming. Athena Scientific.

Beygelzimer, A., Kakade, S., and Langford, J. (2006). Cover trees for nearest

neighbor. In Proceedings of the 23rd International Conference on Machine

Learning, pages 97–104.

Bigi, B. (2003). Using Kullback-Leibler distance for text categorization. In

Proceedings of the 25th European Conference on IR Research, pages 305–319.

Bigi, B., Mori, R. D., El-Bèze, M., and Spriet, T. (2000). A fuzzy decision

strategy for topic identification and dynamic selection of language models. Signal

Processing, 80(6):1085–1097.

Bilenko, M., Basu, S., and Mooney, R. J. (2004). Integrating constraints and metric

learning in semi-supervised clustering. In Proceedings of the 21st International

Conference on Machine Learning, pages 81–88.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag,

Berlin, Heidelberg.

Boddy, L., Morris, C., Wilkins, M., Al-Haddad, L., Tarran, G., Jonker, R., and

Burkill, P. (2000). Identification of 72 phytoplankton species by radial basis

function neural network analysis of flow cytometric data. Mar Ecol Prog Ser,

195:47–59.

Bohné, J., Ying, Y., Gentric, S., and Pontil, M. (2014). Large margin local metric

learning. In Proceedings of the European Conference on Computer Vision, pages

679–694.

263

Bibliography

Bottou, L. (1991). Stochastic gradient learning in neural networks. In Proceedings

of Neuro-Nı̂mes 91.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University

Press.

Bregman, L. (1967). The relaxation method of finding the common point of convex

sets and its application to the solution of problems in convex programming.

USSR Computational Mathematics and Mathematical Physics, 7(3):200–217.

Brinkman, R. R., Aghaeepour, N., Finak, G., Gottardo, R., Mosmann, T., and

Scheuermann, R. H. (2016). Automated analysis of flow cytometry data comes

of age. Cytometry A, 89:13–15.

Campbell, S. L. and Meyer, C. D. (1979). Generalized Inverses of Linear Transfor-

mations. SIAM.

Cauchy, A. (1847). Méthode générale pour la résolution des systemes d’équations

simultanées. Compte Rendu à l’Académie des Sciences, 25:536–538.

Censor, Y. and Zenios, S. A. (1997). Parallel Optimization: Theory, Algorithms,

and Applications. Oxford University Press.

Chang, C.-C. (2010). Generalized iterative RELIEF for supervised distance metric

learning. Pattern Recognition, 43(8):2971–2981.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27.

Chang, K.-W., Hsieh, C.-J., and Lin, C.-J. (2008). Coordinate descent method

for large-scale `2-loss linear support vector machines. The Journal of Machine

Learning Research, 9:1369–1398.

Chang, K. Y., Chen, C. S., and Hung, Y. P. (2011). Ordinal hyperplanes ranker

with cost sensitivities for age estimation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 585–592.

Chapelle, O., Do, C. B., Teo, C. H., Le, Q. V., and Smola, A. J. (2009). Tighter

bounds for structured estimation. In Advances in Neural Information Processing

Systems 21, pages 281–288.

Chatpatanasiri, R., Korsrilabutr, T., Tangchanachaianan, P., and Kijsirikul, B.

(2010). A new kernelization framework for mahalanobis distance learning algo-

rithms. Neurocomputing, 73:1570–1579.

Chechik, G., Sharma, V., Shalit, U., and Bengio, S. (2010). Large scale online

learning of image similarity through ranking. The Journal of Machine Learning

Research, 11:1109–1135.

264

Bibliography

Chen, J., Zhang, Z., and Wang, Y. (2015). Relevance metric learning for person

re-identification by exploiting listwise similarities. IEEE Transactions on Image

Processing, 24(12):4741–4755.

Chen, S., Guo, C., and Lai, J. (2016). Deep ranking for person re-identification

via joint representation learning. IEEE Transactions on Image Processing,

25:2353–2367.

Cheng, D., Gong, Y., Zhou, S., Wang, J., and Zheng, N. (2016). Person re-

identification by multi-channel parts-based cnn with improved triplet loss func-

tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1335–1344.

Cheng, D. S., Cristani, M., Stoppa, M., Bazzani, L., and Murino, V. (2011). Custom

pictorial structures for re-identification. In Proceedings of the British Machine

Vision Conference, pages 68.1–68.11.

Chu, W. and Ghahramani, Z. (2005). Gaussian processes for ordinal regression.

The Journal of Machine Learning Research, 6:1019–1041.

Chu, W. and Keerthi, S. S. (2005). New approaches to support vector ordinal

regression. In Proceedings of the 22nd International Conference on Machine

Learning, pages 145–152.

Cinbis, R. G., Verbeek, J., and Schmid, C. (2011). Unsupervised metric learning for

face identification in TV video. In Proceedings of the International Conference

on Computer Vision, pages 1559–1566.

Cole, R. and Fanty, M. (1990). Spoken letter recognition. In Proceedings of the

Third DARPA Speech and Natural Language Workshop, pages 385–390.

Collins, M. and Duffy, N. (2002). Convolution kernels for natural language. In

Advances in Neural Information Processing Systems 14, pages 625–632.

Collobert, R., Sinz, F., Weston, J., and Bottou, L. (2006a). Large scale transductive

SVMs. The Journal of Machine Learning Research, 7:1687–1712.

Collobert, R., Sinz, F., Weston, J., and Bottou, L. (2006b). Trading convexity

for scalability. In Proceedings of the 23rd International Conference on Machine

Learning, pages 201–208.

Cong, Y., Liu, J., Yuan, J., and Luo, J. (2014). Low-Rank and Sparse Modeling

for Visual Analysis, chapter Low-Rank Online Metric Learning, pages 203–233.

Springer International Publishing.

Cortes, C. and Mohri, M. (2004). AUC optimization versus error rate minimization.

In Advances in Neural Information Processing Systems 16, pages 313–320.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,

20(3):273–297.

265

Bibliography

Cover, T. (1968). Estimation by the nearest neighbor rule. IEEE Transactions on

Information Theory, 14(1):50–55.

Cover, T. M. and Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE

Transactions on Information Theory, 13(1):21–27.

Crammer, K., Gilad-Bachrach, R., Navot, A., and Tishby, N. (2003). Margin

analysis of the LVQ algorithm. In Advances in Neural Information Processing

Systems 15, pages 479–486.

Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K.,

and Slattery, S. (1998). Learning to extract symbolic knowledge from the world

wide web. In Proceedings of the Conference on Artificial Intelligence/Innovative

Applications of Artificial Intelligence, pages 509–516.

Cruz-Ramı́rez, M., Hervás-Mart́ınez, C., Sánchez-Monedero, J., and Gutiérrez, P. A.

(2014). Metrics to guide a multi-objective evolutionary algorithm for ordinal

classification. Neurocomputing, 135:21–31.

Cucker, F. and Smale, S. (2002). On the mathematical foundations of learning.

Bulletin of the American Mathematical Society, 39(1):1–49.

Dahl, J. and Vandenberghe, L. (2004). Cvxopt python software for convex opti-

mization.

Daumé, H. and Marcu, D. (2005). A Bayesian model for supervised clustering

with the Dirichlet process prior. The Journal of Machine Learning Research,

6:1551–1577.

Davis, J. V. and Dhillon, I. S. (2007). Differential entropic clustering of multivariate

Gaussians. In Advances in Neural Information Processing Systems 19, pages

337–344. MIT Press.

Davis, J. V., Kulis, B., Jain, P., Sra, S., and Dhillon, I. S. (2007). Information-

theoretic metric learning. In Proceedings of the 24th International Conference

on Machine Learning, pages 209–216.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets.

The Journal of Machine Learning Research, 7:1–30.

Deng, J., Satheesh, S., Berg, A. C., and Li, F. (2011). Fast and balanced: Efficient

label tree learning for large scale object recognition. In Advances in Neural

Information Processing Systems 24, pages 567–575.

Deza, M.-M. and Deza, E. (2006). Dictionary of distances. Elsevier.

Dikmen, M., Akbas, E., Huang, T. S., and Ahuja, N. (2011). Pedestrian recognition

with a learned metric. In Proceedings of the Asian Conference on Computer

Vision, pages 501–512.

266

Bibliography

Ding, S., Lin, L., Wang, G., and Chao, H. (2015). Deep feature learning with

relative distance comparison for person re-identification. Pattern Recognition,

48(10):2993–3003.

Domeniconi, C., Peng, J., and Gunopulos, D. (2001). An adaptive metric machine

for pattern classification. In Advances in Neural Information Processing Systems

13, pages 458–464.

Donoho, D. L. and Elad, M. (2003). Optimally sparse representation in general

(nonorthogonal) dictionaries via `1 minimization. In Proceedings of the National

Academy of Sciences, pages 2197–2202.

Duan, Y., Lu, J., Feng, J., and Zhou, J. (2017). Deep localized metric learning.

IEEE Transactions on Circuits and Systems for Video Technology, To appear:In

press.

Duda, R. O., Hart, P. E., and Stork, D. G. (2012). Pattern Classification. Wiley-

Interscience, 2nd edition.

Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American

Statistical Association, 56(293):52–64.

Elkan, C. (2003a). Using the triangle inequality to accelerate k-means. In Pro-

ceedings of the 20th International Conference on International Conference on

Machine Learning, pages 147–153.

Elkan, C. (2003b). Using the triangle inequality to accelerate k-means. In Proceed-

ings of the 20th International Conference on Machine Learning, pages 147–153.

Ertekin, S., Bottou, L., and Giles, C. L. (2011). Nonconvex online support vector

machines. IEEE Transactions on Pattern Analysis and Machine Intelligence,

33(2):368–381.

Evgeniou, T. and Pontil, M. (2004). Regularized multi–task learning. In Proceedings

of the 10th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 109–117.

Faraki, M., Harandi, M. T., and Porikli, F. (2018). Large-scale metric learning:

A voyage from shallow to deep. IEEE Transactions on Neural Networks and

Learning Systems, 29(9):4339–4346.

Finak, G., Perez, J. M., Weng, A., and Gottardo, R. (2010). Optimizing transfor-

mations for automated, high throughput analysis of flow cytometry data. BMC

Bioinformatics, 11:546.

Finley, T. and Joachims, T. (2005). Supervised clustering with support vector

machines. In Proceedings of the 22nd International Conference on Machine

Learning, pages 217–224.

267

Bibliography

Finley, T. and Joachims, T. (2008). Supervised k-means clustering. Technical

report, Department of Computer Science, Cornell University, Ithaca, NY, USA.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.

Annals of Eugenics, 7(2):179–188.

Fisher, R. A. (1959). Statistical Methods and Scientific Inference. Oliver and Boyd,

Edinburgh, second edition.

Fouad, S. and Tino, P. (2013). Ordinal-based metric learning for learning using

privileged information. In Proceedings of the International Joint Conference on

Neural Networks, pages 1–8.

Frank, A. and Asuncion, A. (2010). UCI machine learning repository.

Frank, E. and Hall, M. (2001). A simple approach to ordinal classification. In

Proceedings of the 12th European Conference on Machine Learning, pages 145–156.

Springer Berlin Heidelberg.

Frank, M. and Wolfe, P. (1956). An algorithm for quadratic programming. Naval

Research Logistics Quarterly, 3(1-2):95–110.

François, D. (2008). High-dimensional Data Analysis: From Optimal Metrics to

Feature Selection. PhD thesis, Universit´e catholique de Louvain.

Fréchet, M. M. (1906). Sur quelques points du calcul fonctionnel. Rendiconti del

Circolo Matematico di Palermo (1884-1940), 22:1–72.

Friedman, J., Hastie, T., Höfling, H., and Tibshirani, R. (2007). Pathwise coordinate

optimization. The Annals of Applied Statistics, 1(2):302–332.

Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American

Statistical Association, 84(405):165–175.

Friedman, M. (1940). A comparison of alternative tests of significance for the

problem of m rankings. The Annals of Mathematical Statistics, 11(1):86–92.

Frome, A., Singer, Y., and Malik, J. (2007a). Image retrieval and classification

using local distance functions. In Advances in Neural Information Processing

Systems 19, pages 417–424.

Frome, A., Singer, Y., Sha, F., and Malik, J. (2007b). Learning globally-consistent

local distance functions for shape-based image retrieval and classification. In

Proceedings of IEEE International Conference on Computer Vision, pages 1–8.

IEEE.

Fujiwara, S., Takeda, A., and Kanamori, T. (2017). DC algorithm for extended

robust support vector machine. Neural Computation, 29(5):1406–1438.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Academic

Press, second edition.

268

Bibliography

Fullerton, A. S. and Xu, J. (2012). The proportional odds with partial proportion-

ality constraints model for ordinal response variables. Social Science Research,

41(1):182–198.

Gallier, J. (2010). The schur complement and symmetric positive semidefinite (and

definite) matrices. Technical report, Penn Engineering.

Gao, X., Hoi, S. C. H., Zhang, Y., Wan, J., and Li, J. (2014). SOML: Sparse online

metric learning with application to image retrieval. In Proceedings of the 28th

AAAI Conference on Artificial Intelligence, pages 1206–1212.

Garćıa, S. and Herrera, F. (2008). An extension on “statistical comparisons of

classifiers over multiple data sets” for all pairwise comparisons. The Journal of

Machine Learning Research, 9:2677–2694.

Gärtner, T. (2003). A survey of kernels for structured data. ACM SIGKDD

Explorations Newsletter, 5:49–58.

Gärtner, T., Flach, P., and Wrobel, S. (2003). On graph kernels: Hardness results

and efficient alternatives. In Proceedings of the 16th Annual Conference on

Computational Learning Theory and 7th Kernel Workshop, pages 129–143.

Ge, W. (2018). Deep metric learning with hierarchical triplet loss. In Proceedings

of the European Conference on Computer Vision, pages 269–285.

Ge, Y. and Sealfon, S. C. (2012). Flowpeaks: A fast unsupervised clustering

for flow cytometry data via k-means and density peak finding. Bioinformatics,

28:2052–2058.

Gilad-Bachrach, R., Navot, A., and Tishby, N. (2004). Margin based feature

selection - theory and algorithms. In Proceedings of the 21st International

Conference on Machine Learning, pages 43–50.

Globerson, A. and Roweis, S. T. (2006). Metric learning by collapsing classes. In

Advances in Neural Information Processing Systems 18, pages 451–458.

Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R. (2005). Neigh-

bourhood components analysis. In Advances in Neural Information Processing

Systems 17, pages 513–520.

Goldstein, A. A. (1964). Convex programming in hilbert space. Bulletin of the

American Mathematical Society, 70(5):709–710.

Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations. Johns Hopkins

University Press, 3rd edition.

Gönen, M. and Heller, G. (2005). Concordance probability and discriminatory

power in proportional hazards regression. Biometrika, 92(4):965–970.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

269

Bibliography

Grant, M. and Boyd, S. (2014). CVX: Matlab software for disciplined convex

programming, version 2.1. http://cvxr.com/cvx.

Gray, D., Brennan, S., and Tao, H. (2007). Evaluating appearance models for

recognition, reacquisition, and tracking. In Proceedings of the IEEE International

Workshop on Performance Evaluation for Tracking and Surveillance, pages 41–48.

Gray, D. and Tao, H. (2008). Viewpoint invariant pedestrian recognition with an

ensemble of localized features. In Proceedings of the European Conference on

Computer Vision, pages 262–275.

Gu, Q. and Han, J. (2013). Clustered support vector machines. In Proceedings of

the 16th International Conference on Artificial Intelligence and Statistics, pages

307–315.

Guillaumin, M., Verbeek, J., and Schmid, C. (2009). Is that you? Metric learning

approaches for face identification. In Proceedings of the 12-th International

Conference on Computer Vision, pages 498–505.

Guo, Z. and Ying, Y. (2014). Guaranteed classification via regularized similarity

learning. Neural Computation, 26(3):497–522.

Gupta, M. R., Bengio, S., and Weston, J. (2014). Training highly multiclass

classifiers. The Journal of Machine Learning Research, 15:1461–1492.

Gutiérrez, P. A. and Garćıa, S. (2016). Current prospects on ordinal and monotonic

classification. Progress in Artificial Intelligence, 5(3):171–179.

Gutiérrez, P. A., Pérez-Ortiz, M., Sánchez-Monedero, J., Fernández-Navarro, F.,

and Hervás-Mart́ınez, C. (2016). Ordinal regression methods: Survey and

experimental study. IEEE Transactions on Knowledge and Data Engineering,

28(1):127–146.

Hao, S., Zhao, P., Liu, Y., Hoi, S. C. H., and Miao, C. (2017). Online multi-

task relative similarity learning. In Proceedings of the 26th International Joint

Conference on Artificial Intelligence, pages 1823–1829.

Hartigan, J. A. and Wong, M. A. (1979). Algorithm AS 136: A k-means clustering

algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),

28(1):100–108.

Hastie, T. and Tibshirani, R. (1996). Discriminant adaptive nearest neighbor

classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,

18(6):607–616.

Hazan, E. (2008). Sparse approximate solutions to semidefinite programs. In

Proceedings of the 8-th Latin American Conference on Theoretical informatics,

pages 306–316.

270

http://cvxr.com/cvx

Bibliography

Hazan, E. and Kale, S. (2012). Projection-free online learning. In Proceedings of

the 29th International Conference on Machine Learning, pages 521–528.

He, J., Li, M., Zhang, H.-J., Tong, H., and Zhang, C. (2004). Manifold-ranking

based image retrieval. In Proceedings of the 12th Annual ACM International

Conference on Multimedia, pages 9–16.

Higham, N. J. (1988). Computing a nearest symmetric positive semidefinite matrix.

Linear Algebra and its Applications, 103:103–118.

Hiriart-Urruty, J.-B. and Lemaréchal, C. (2012). Fundamentals of Convex Analysis.

Springer Science & Business Media.

Hirzer, M., Roth, P. M., and Bischof, H. (2012a). Person re-identification by

efficient impostor-based metric learning. In Proceedings of the 9-th International

Conference on Advanced Video and Signal-Based Surveillance, pages 203–208.

Hirzer, M., Roth, P. M., Köstinger, M., and Bischof, H. (2012b). Relaxed pairwise

learned metric for person re-identification. In Proceedings of the European

Conference on Computer Vision, pages 780–793.

Hochberg, Y. (1988). A sharper bonferroni procedure for multiple tests of signifi-

cance. Biometrika, 75(4):800–802.

Hoi, S. C. H., Liu, W., Lyu, M. R., and Ma, W.-Y. (2006). Learning distance

metrics with contextual constraints for image retrieval. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

volume 2, pages 2072–2078.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandina-

vian Journal of Statistics, 6(2):65–70.

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a

modified bonferroni test. Biometrika, 75(2):383–386.

Horst, R. and Thoai, N. V. (1999). DC programming: Overview. Journal of

Optimization Theory and Applications, 103(1):1–43.

Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., and Sundararajan, S. (2008).

A dual coordinate descent method for large-scale linear SVM. In Proceedings

of the 25th International Conference on Machine Learning, pages 408–415, New

York, NY, USA. ACM.

Hu, J., Lu, J., and Tan, Y.-P. (2014). Discriminative deep metric learning for face

verification in the wild. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1875–1882.

Hu, J., Lu, J., and Tan, Y. P. (2015a). Deep transfer metric learning. In Proceedings

of the Conference on Computer Vision and Pattern Recognition, pages 325–333.

271

Bibliography

Hu, J., Lu, J., and Tan, Y. P. (2018). Sharable and individual multi-view metric

learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,

40(9):2281 – 2288.

Hu, J., Lu, J., Yuan, J., and Tan, Y.-P. (2015b). Large margin multi-metric

learning for face and kinship verification in the wild. In Proceedings of the 12th

Asian Conference on Computer Vision, pages 252–267.

Huang, R. and Sun, S. (2013). Kernel regression with sparse metric learning.

Journal of Intelligent and Fuzzy Systems, 24(4):775–787.

Huang, X., Ye, Y., and Zhang, H. (2014). Extensions of kmeans-type algorithms: A

new clustering framework by integrating intracluster compactness and intercluster

separation. IEEE Transactions on Neural Networks and Learning Systems,

25(8):1433–1446.

Hull, J. J. (1994). A database for handwritten text recognition research. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 16(5):550–554.

ILOG (2012). Cplex optimizer.

Inaba, M., Katoh, N., and Imai, H. (1994). Applications of weighted voronoi

diagrams and randomization to variance-based k-clustering. In Proceedings of

the 10th Annual Symposium on Computational Geometry, pages 332–339.

J. Kushner, H. and Yin, G. (2003). Stochastic Approximation and Recursive

Algorithms and Applications. Springer.

Jaggi, M. (2013). Revisiting Frank-Wolfe: Projection-free sparse convex optimiza-

tion. In Proceedings of the 30th International Conference on Machine Learning,

pages 427–435.

Jain, P., Kulis, B., Davis, J. V., and Dhillon, I. S. (2012). Metric and kernel learning

using a linear transformation. The Journal of Machine Learning Research, 13:519–

547.

Jain, P., Kulis, B., and Dhillon, I. S. (2010). Inductive regularized learning of

kernel functions. In Advances in Neural Information Processing Systems 23,

pages 946–954.

Jain, P., Kulis, B., Dhillon, I. S., and Grauman, K. (2009). Online metric learning

and fast similarity search. In Advances in Neural Information Processing Systems

21, pages 761–768.

Jia, H., Cheung, Y., and Liu, J. (2016). A new distance metric for unsupervised

learning of categorical data. IEEE Transactions on Neural Networks and Learning

Systems, 27(5):1065–1079.

Jiang, N., Liu, W., and Wu, Y. (2012). Order determination and sparsity-regularized

272

Bibliography

metric learning adaptive visual tracking. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1956–1963.

Jin, R., Wang, S., and Zhou, Y. (2009). Regularized distance metric learning:

Theory and algorithm. In Advances in Neural Information Processing Systems

22, pages 862–870.

Joachims, T., Finley, T., and Yu, C.-N. J. (2009). Cutting-plane training of

structural SVMs. Machine Learning, 77:27–59.

Jobson, D. J., Rahman, Z., and Woodell, G. A. (1997). Properties and performance

of a center/surround retinex. IEEE Transactions on Image Processing, 6:451–462.

Jolliffe, I. (2005). Principal Component Analysis. Wiley Online Library.

Kato, T. and Nagano, N. (2010). Metric learning for enzyme active-site search.

Bioinformatics, 26(21):2698–2704.

Kim, M. and Pavlovic, V. (2010). Structured output ordinal regression for dy-

namic facial emotion intensity prediction. In Proceedings of the 11th European

Conference on Computer Vision, pages 649–662.

Kira, K. and Rendell, L. A. (1992). A practical approach to feature selection.

In Proceedings of the 9th International Workshop on Machine Learning, pages

249–256.

Köstinger, M., Hirzer, M., Wohlhart, P., Roth, P. M., and Bischof, H. (2012). Large

scale metric learning from equivalence constraints. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2288–2295.

Kramer, S., Widmer, G., Pfahringer, B., and De Groeve, M. (2001). Prediction of

ordinal classes using regression trees. Fundamenta Informaticae, 47:1–13.

Kuczyński, J. and Woźniakowski, H. (1992). Estimating the largest eigenvalue by

the power and lanczos algorithms with a random start. SIAM Journal on Matrix

Analysis and Applications, 13(4):1094–1122.

Kulis, B. (2012). Metric learning: A survey. Foundations and Trends in Machine

Learning, 5(4):287–364.

Kulis, B., Basu, S., Dhillon, I., and Mooney, R. (2009a). Semi-supervised graph

clustering: a kernel approach. Machine Learning, 74:1–22.

Kulis, B., Jain, P., and Grauman, K. (2009b). Fast similarity search for learned

metrics. IEEE Transactions on Pattern Analysis and Machine Intelligence,

31(12):2143–2157.

Kulis, B., Saenko, K., and Darrell, T. (2011). What you saw is not what you get:

Domain adaptation using asymmetric kernel transforms. In Proceedings of the

Conference on Computer Vision and Pattern Recognition, pages 1785–1792.

273

Bibliography

Kulis, B., Sustik, M. A., and Dhillon, I. S. (2009c). Low-rank kernel learning

with bregman matrix divergences. The Journal of Machine Learning Research,

10:341–376.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals

of Mathematical Statistics, 22(1):79–86.

Kumar, N. and Kummamuru, K. (2008). Semisupervised clustering with metric

learning using relative comparisons. IEEE Transactions on Knowledge and Data

Engineering, 20:496–503.

Lajugie, R., Bach, F., and Arlot, S. (2014). Large-margin metric learning for

constrained partitioning problems. In Proceedings of the 31st International

Conference on Machine Learning, pages 297–305.

Lang, K. (1995). Newsweeder: Learning to filter netnews. In Proceedings of the

12th International Conference on Machine Learning, pages 331–339.

Law, M. T., Thome, N., and Cord, M. (2013). Quadruplet-wise image similarity

learning. In Proceedings of the 2013 IEEE International Conference on Computer

Vision, pages 249–256.

Law, M. T., Yu, Y., Cord, M., and Xing, E. P. (2016). Closed-form training of

Mahalanobis distance for supervised clustering. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 3909–3917.

Lebanon, G. (2006). Metric learning for text documents. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 28:497–508.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, J.-E., Jin, R., and Jain, A. K. (2008). Rank-based distance metric learning:

An application to image retrieval. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1–8.

Leslie, C., Eskin, E., and Noble, W. S. (2002). The spectrum kernel: A string

kernel for svm protein classification. In Proceedings of the Pacific Symposium on

Biocomputing, pages 564–575.

Levine, J. H., Simonds, E. F., Bendall, S. C., Davis, K. L., Amir, E.-A. D., Tadmor,

M., Litvin, O., Fienberg, H. G., Jager, A., Zunder, E. R., Finck, R., Gedman,

A. L., Radtke, I., Downing, J. R., Pe’er, D., and Nolan, G. P. (2015). Data-

driven phenotypic dissection of aml reveals progenitor-like cells that correlate

with prognosis. Cell, 162:184–197.

Li, C., Liu, Q., Liu, J., and Lu, H. (2012a). Learning distance metric regression

for facial age estimation. In Proceedings of the 21st International Conference on

Pattern Recognition, pages 2327–2330.

274

Bibliography

Li, C., Liu, Q., Liu, J., and Lu, H. (2015). Ordinal distance metric learning for

image ranking. IEEE Transactions on Neural Networks and Learning Systems,

26(7):1551–1559.

Li, H., Chen, N., and Li, L. (2012b). Error analysis for matrix elastic-net reg-

ularization algorithms. IEEE Transactions on Neural Networks and Learning

Systems, 23(5):737–748.

Li, M., Wang, Q., Zhang, D., Li, P., and Zuo, W. (2017). Joint distance and

similarity measure learning based on triplet-based constraints. Information

Sciences, 406:119–132.

Li, W., Zhao, R., and Wang, X. (2013a). Human reidentification with transferred

metric learning. In Proceedings of the Asian Conference on Computer Vision,

pages 31–44.

Li, Z., Chang, S., Liang, F., Huang, T. S., Cao, L., and Smith, J. R. (2013b).

Learning locally-adaptive decision functions for person verification. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages

3610–3617.

Liang, J., Hu, Q., Zhu, P., and Wang, W. (2018). Efficient multi-modal geometric

mean metric learning. Pattern Recognition, 75:188–198.

Liao, S., Hu, Y., Zhu, X., and Li, S. Z. (2015). Person re-identification by local

maximal occurrence representation and metric learning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 2197–2206.

Liao, S., Zhao, G., Kellokumpu, V., Pietikainen, M., and Li, S. Z. (2010). Modeling

pixel process with scale invariant local patterns for background subtraction in

complex scenes. In Proceedings of the Computer Society Conference on Computer

Vision and Pattern Recognition, pages 1301–1306.

Lim, D. and Lanckriet, G. (2014). Efficient learning of Mahalanobis metrics for

ranking. In Proceedings of the Thirty-First International Conference on Machine

Learning, pages 1980–1988.

Lim, D., Lanckriet, G., and McFee, B. (2013). Robust structural metric learning.

In Proceedings of the 30th International Conference on Machine Learning, pages

615–623.

Lin, C.-J. and Moré, J. J. (1999). Newton’s method for large bound-constrained

optimization problems. SIAM Journal on Optimization, 9(4):1100–1127.

Lin, H. T. and Li, L. (2012). Reduction from cost-sensitive ordinal ranking to

weighted binary classification. Neural Computation, 24(5):1329–1367.

Lisanti, G., Masi, I., Bagdanov, A. D., and Bimbo, A. D. (2015). Person re-

275

Bibliography

identification by iterative re-weighted sparse ranking. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 37:1629–1642.

Liu, B., Fang, B., Liu, X., Chen, J., Huang, Z., and He, X. (2013). Large margin

subspace learning for feature selection. Pattern Recognition, 46(10):2798–2806.

Liu, K., Bellet, A., and Sha, F. (2014). Similarity learning for high-dimensional

sparse data. In Proceedings of the Eighteenth International Conference on

Artificial Intelligence and Statistics, pages 653–662.

Liu, W., Mu, C., Ji, R., Ma, S., Smith, J. R., and Chang, S.-F. (2015a). Low-rank

similarity metric learning in high dimensions. In Proceedings of the 29th AAAI

Conference on Artificial Intelligence, pages 2792–2799.

Liu, X. and Srivastava, A. (2002). A spectral representation for appearance-based

classification and recognition. In Proceedings of the 16th International Conference

onPattern Recognition, volume 1, pages 37–40.

Liu, X., Wang, H., Wu, Y., Yang, J., and Yang, M. H. (2015b). An ensemble

color model for human re-identification. In Proceedings of the IEEE Winter

Conference on Applications of Computer Vision, pages 868–875.

Liu, Y. and Shen, X. (2006). Multicategory ψ-learning. Journal of the American

Statistical Association, 101:500–509.

Liu, Y., Shen, X., and Doss, H. (2005). Multicategory ψ-learning and support

vector machine: Computational tools. Journal of Computational and Graphical

Statistics, 14(1):219–236.

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on

Information Theory, 28(2):129–137.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110.

Luo, Y., Liu, T., Tao, D., and Xu, C. (2014). Decomposition-based transfer distance

metric learning for image classification. IEEE Transactions on Image Processing,

23(9):3789–3801.

Luo, Z. and Tseng, P. (1992). On the convergence of the coordinate descent method

for convex differentiable minimization. Journal of Optimization Theory and

Applications, 72(1):7–35.

Lux, M., Brinkman, R. R., Chauve, C., Laing, A., Lorenc, A., Abeler-Dörner, L.,

and Hammer, B. (2018). flowlearn: fast and precise identification and quality

checking of cell populations in flow cytometry. Bioinformatics, 15:1–9.

Ma, B., Su, Y., and Jurie, F. (2012). Local descriptors encoded by fisher vectors for

person re-identification. In Proceedings of the European Conference on Computer

Vision, pages 413–422.

276

Bibliography

Mahalanobis, P. C. (1936). On the generalized distance in statistics. In Proceedings

of the National Institute of Sciences (Calcutta) 2, pages 49–55.

Mahdavi, M., Yang, T., Jin, R., Zhu, S., and Yi, J. (2012). Stochastic gradient

descent with only one projection. In Advances in Neural Information Processing

Systems 25, pages 494–502.

Mason, L., Bartlett, P. L., and Baxter, J. (2000). Improved generalization through

explicit optimization of margins. Machine Learning, 38(3):243–255.

McFee, B., Galleguillos, C., and Lanckriet, G. (2011). Contextual object localization

with multiple kernel nearest neighbor. IEEE Transactions on Image Processing,

20(2):570–585.

McFee, B. and Lanckriet, G. R. (2010). Metric learning to rank. In Proceedings of

the 27th International Conference on Machine Learning, pages 775–782.

Mclachlan, G. J. (2004). Discriminant Analysis and Statistical Pattern Recognition.

Wiley.

Mei, J., Liu, M., Karimi, H., and Gao, H. (2014). Logdet divergence-based metric

learning with triplet constraints and its applications. IEEE Transactions on

Image Processing, 23(11):4920–4931.

Miao, Y., Tao, X., Sun, Y., Li, Y., and Lu, J. (2015). Risk-based adaptive metric

learning for nearest neighbour classification. Neurocomputing, 156:33–41.

Mignon, A. and Jurie, F. (2012). PCCA: A new approach for distance learning

from sparse pairwise constraints. In Proceedings of the Conference on Computer

Vision and Pattern Recognition, pages 2666–2672.

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., and Müller, K.-R. (1999). Fisher

discriminant analysis with kernels. In Proceedings of the IEEE Intenational

Workshop Neural Networks for Signal Processing IX, pages 41–48.

Moghaddam, B., Jebara, T., and Pentland, A. (2000). Bayesian face recognition.

Pattern Recognition, 33(11):1771–1782.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of Machine

Learning. The MIT Press.

Monaco, G., Chen, H., Poidinger, M., Chen, J., de Magalhaes, J. P., and Larbi,

A. (2016). Flowai: automatic and interactive anomaly discerning tools for flow

cytometry data. Bioinformatics, 32:2473–2480.

Moore, A. W. (1991). An intoductory tutorial on k-d-trees. In Extracted from

Moore’s PhD Thesis-Efficient Memory-based Learning for Robot Control. Com-

puter Laboratory, University of Cambridge.

277

Bibliography

Moreno, P. J., Ho, P. P., and Vasconcelos, N. (2004). A Kullback-Leibler divergence

based kernel for SVM classification in multimedia applications. In Advances in

Neural Information Processing Systems 16, pages 1385–1392.

Mosek, A. (2010). The MOSEK optimization software.

Moutafis, P., Leng, M., and Kakadiaris, I. A. (2017). An overview and empir-

ical comparison of distance metric learning methods. IEEE Transactions on

Cybernetics, 47(3):612–625.

Mu, Y., Ding, W., and Tao, D. (2013). Local discriminative distance metrics

ensemble learning. Pattern Recognition, 46(8):2337–2349.

Nene, S. A., Nayar, S. K., and Murase, H. (1996). Columbia object image li-

brary (coil-100). Technical report, Department of Computer Science, Columbia

University.

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: Analysis

and an algorithm. In Advances in Neural Information Processing Systems 14,

pages 849–856.

Nguyen, B. and De Baets, B. (2018a). An approach to supervised distance met-

ric learning based on difference of convex functions programming. Pattern

Recognition, 81:562–574.

Nguyen, B. and De Baets, B. (2018b). Kernel-based distance metric learning for

supervised k-means clustering. IEEE Transactions on Neural Networks and

Learning Systems, accepted.

Nguyen, B. and De Baets, B. (2019). Kernel distance metric learning using pairwise

constraints for person re-identification. IEEE Transactions on Image Processing,

28(2):589–600.

Nguyen, B., Ferri, F. J., Morell, C., and De Baets, B. (2019a). An efficient method

for clustered multi-metric learning. Information Sciences, 471:149–163.

Nguyen, B., Morell, C., and De Baets, B. (2016). Large-scale distance metric

learning for k-nearest neighbors regression. Neurocomputing, 214:805–814.

Nguyen, B., Morell, C., and De Baets, B. (2017a). Distance metric learning: a

two-phase approach. In Proceedings of the 25th European symposium on artificial

neural networks, computational intelligence and machine learning, pages 123–128.

Nguyen, B., Morell, C., and De Baets, B. (2017b). Distance metric learning with

the Universum. Pattern Recognition Letters, 100:37–43.

Nguyen, B., Morell, C., and De Baets, B. (2017c). Supervised distance metric

learning through maximization of the Jeffrey divergence. Pattern Recognition,

64:215–225.

278

Bibliography

Nguyen, B., Morell, C., and De Baets, B. (2018a). Distance metric learning for

ordinal classification based on triplet constraints. Knowledge-Based Systems,

142:17–28.

Nguyen, B., Morell, C., and De Baets, B. (2018b). Scalable large-margin dis-

tance metric learning using stochastic gradient descent. IEEE Transactions on

Cybernetics, accepted.

Nguyen, B., Rubbens, P., Kerckhof, F.-M., Boon, N., De Baets, B., and Waegeman,

W. (2019b). Learning single-cell distances from cytometry data. Cytometry Part

A, submitted.

Nguyen, N. and Guo, Y. (2008). Metric learning: A support vector approach. In

The European Conference on Machine Learning, pages 125–136.

Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution gray-scale

and rotation invariant texture classification with local binary patterns. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(7):971–987.

Omohundro, S. M. (1989). Five Balltree Construction Algorithms. International

Computer Science Institute Berkeley.

O’Neill, K., Aghaeepour, N., Spidlen, J., and Brinkman, R. (2013). Flow cytometry

bioinformatics. PLoS Comput Biol, 9:e1003365.

Ortega, J. M. and Rheinboldt, W. C. (1979). Iterative Solution of Nonlinear

Equations in Several Variables. Academic Press.

Overton, M. (1988). On minimizing the maximum eigenvalue of a symmetric

matrix. SIAM Journal on Matrix Analysis and Applications, 9(2):256–268.

Paisitkriangkrai, S., Shen, C., and Van Den Hengel, A. (2015). Learning to rank

in person re-identification with metric ensembles. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1846–1855.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions

on Knowledge and Data Engineering, 22(10):1345–1359.

Parameswaran, S. and Weinberger, K. Q. (2010). Large margin multi-task metric

learning. In Advances in Neural Information Processing Systems 23, pages

1867–1875.

PASCAL (2011). Pascal (Pattern Analysis, Statistical Modelling and Computational

Learning) machine learning benchmarks repository.

Pedagadi, S., Orwell, J., Velastin, S., and Boghossian, B. (2013). Local fisher

discriminant analysis for pedestrian re-identification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 3318–3325.

279

Bibliography

Peng, J. and Wei, Y. (2007). Approximating k-means-type clustering via semidefi-

nite programming. SIAM Journal on Optimization, 18:186–205.

Peng, X., Lu, C., Yi, Z., and Tang, H. (2018). Connections between nuclear-

norm and frobenius-norm-based representations. IEEE Transactions on Neural

Networks and Learning Systems, 29:218–224.

Peng, X., Lu, J., Yi, Z., and Yan, R. (2017). Automatic subspace learning via

principal coefficients embedding. IEEE Transactions on Cybernetics, 47(11):3583–

3596.

Pérez-Ortiz, M., Cruz-Ramı́rez, M., Ayllón-Terán, M., Heaton, N., Ciria, R., and

Hervás-Mart́ınez, C. (2014). An organ allocation system for liver transplantation

based on ordinal regression. Applied Soft Computing, 14, Part A:88–98.

Pérez-Ortiz, M., Gutiérrez, P., Carbonero-Ruz, M., and Hervás-Mart́ınez, C.

(2016). Semi-supervised learning for ordinal kernel discriminant analysis. Neural

Networks, 84:57–66.

Petersen, K. B. and Pedersen, M. S. (2012). The matrix cookbook. Technical

report, Technical University of Denmark.

Pham Dinh, T., Le, H. M., Le Thi, H. A., and Lauer, F. (2014). A difference of

convex functions algorithm for switched linear regression. IEEE Transactions on

Automatic Control, 59(8):2277–2282.

Pham Dinh, T. and Le Thi, H. A. (1997). Convex analysis approach to DC pro-

gramming: Theory, algorithms and applications. Acta Mathematica Vietnamica,

22(1):289–355.

Pouyan, M. B., Jindal, V., Birjandtalab, J., and Nourani, M. (2016). Single and

multi-subject clustering of flow cytometry data for cell-type identification and

anomaly detection. BMC Med Genomics, 9:41.

Props, R., Monsieurs, P., Mysara, M., Clement, L., and Boon, N. (2016). Measuring

the biodiversity of microbial communities by single-cell analysis. Methods Ecol

Evol, 7:n/a–n/a.

Prosser, B., Zheng, W.-S., Gong, S., and Xiang, T. (2010). Person re-identification

by support vector ranking. In Proceedings of the British Machine Vision Confer-

ence, pages 1–11.

Pyne, S., Hu, X., Wang, K., Rossin, E., Lin, T.-I., Maier, L. M., Baecher-Allan, C.,

McLachlan, G. J., Tamayo, P., Hafler, D. A., De Jager, P., and Mesirov, J. P.

(2009). Automated high-dimensional flow cytometric data analysis. Proc Natl

Acad Sci U S A, 106(21):8519–8524.

Qi, G.-J., Tang, J., Zha, Z.-J., Chua, T.-S., and Zhang, H.-J. (2009). An efficient

sparse metric learning in high-dimensional space via `1-penalized log-determinant

280

Bibliography

regularization. In Proceedings of the 26th Annual International Conference on

Machine Learning, pages 841–848.

Qian, Q., Jin, R., Yi, J., Zhang, L., and Zhu, S. (2015a). Efficient distance metric

learning by adaptive sampling and mini-batch stochastic gradient descent (sgd).

Machine Learning, 99(3):353–372.

Qian, Q., Jin, R., Zhu, S., and Lin, Y. (2015b). Fine-grained visual categorization

via multi-stage metric learning. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 3716–3724.

Rahim, A., Meskas, J., Drissler, S., Yue, A., Lorenc, A., Laing, A., Saran, N., White,

J., Abeler-Dorner, L., Hayday, A., and Brinkman, R. R. (2018). High throughput

automated analysis of big flow cytometry data. Methods, 134-135:164–176.

Ramanan, D. and Baker, S. (2011). Local distance functions: A taxonomy, new

algorithms, and an evaluation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 33(4):794–806.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical Association, 66(336):846–850.

Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed minimum-rank

solutions of linear matrix equations via nuclear norm minimization. SIAM

Review, 52(3):471–501.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The

Annals of Mathematical Statistics, 22(3):400–407.

Robnik-Šikonja, M. and Kononenko, I. (2003). Theoretical and empirical analysis

of ReliefF and RReliefF. Machine Learning, 53(1-2):23–69.

Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory

of Brain Mechanisms. Spartan.

Roth, P. M., Hirzer, M., Köstinger, M., Beleznai, C., and Bischof, H. (2014).

Mahalanobis distance learning for person re-identification. In Advances in

Computer Vision and Pattern Recognition, pages 247–267.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally

linear embedding. Science, 290:2323–2326.

Rubbens, P., Props, R., Boon, N., and Waegeman, W. (2017a). Flow cytometric

single-cell identification of populations in synthetic bacterial communities. PLoS

One, 12(1):e0169754.

Rubbens, P., Props, R., Garcia-Timermans, C., Boon, N., and Waegeman, W.

(2017b). Stripping flow cytometry: How many detectors do we need for bacterial

identification? Cytometry A, 91A:1184–1191.

281

Bibliography

Saenko, K., Kulis, B., Fritz, M., and Darrell, T. (2010). Adapting visual category

models to new domains. In Proceedings of the 11th European Conference on

Computer Vision: Part IV, pages 213–226.

Saeys, Y., Van Gassen, S., and Lambrecht, B. (2016). Computational flow cytom-

etry: helping to make sense of high-dimensional immunology data. Nat Rev

Immunol, 16:449–462.

Sargent, R. W. H. and Sebastian, D. J. (1973). On the convergence of sequential

minimization algorithms. Journal of Optimization Theory and Applications,

12(6):567–575.

Schapire, R. E., Freund, Y., Barlett, P., and Lee, W. S. (1997). Boosting the margin:

A new explanation for the effectiveness of voting methods. In Proceedings of the

14th International Conference on Machine Learning, pages 322–330.

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized representer

theorem. In Proceedings of the 14th Annual Conference on Computational

Learning Theory, pages 416–426.

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis

as a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319.

Schölkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. MIT Press.

Schultz, M. and Joachims, T. (2004). Learning a distance metric from relative

comparisons. In Advances in Neural Information Processing Systems 16, pages

41–48.

Sgier, L., Freimann, R., Zupanic, A., and Kroll, A. (2016). Flow cytometry

combined with visne for the analysis of microbial biofilms and detection of

microplastics. Nat Commun, 7:11587.

Shalev-Shwartz, S., Singer, Y., and Ng, A. Y. (2004). Online and batch learning of

pseudo-metrics. In Proceedings of the 21-st International Conference on Machine

Learning, pages 94–101.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007). Pegasos: Primal estimated

sub-gradient solver for SVM. In Proceedings of the 24th International Conference

on Machine Learning, pages 807–814.

Shalev-Shwartz, S. and Tewari, A. (2011). Stochastic methods for `1-regularized

loss minimization. The Journal of Machince Learning Research, 12:1865–1892.

Shalev-Shwartz, S. and Zhang, T. (2013). Stochastic dual coordinate ascent methods

for regularized loss. The Journal of Machine Learning Research, 14(1):567–599.

Shamir, O. and Zhang, T. (2013). Stochastic gradient descent for non-smooth

282

Bibliography

optimization: Convergence results and optimal averaging schemes. In Proceedings

of the Thirtieth International Conference on Machine Learning, pages 71–79.

Shashua, A. and Levin, A. (2002). Ranking with large margin principle: Two

approaches. In Advances in Neural Information Processing Systems 15, pages

937–944.

Shen, C., Kim, J., Liu, F., Wang, L., and van den Hengel, A. (2014). Efficient dual

approach to distance metric learning. IEEE Transactions on Neural Networks

and Learning Systems, 25(2):394–406.

Shen, C., Kim, J., and Wang, L. (2010). Scalable large-margin Mahalanobis distance

metric learning. IEEE Transactions on Neural Networks, 21(9):1524–1530.

Shen, C., Kim, J., Wang, L., and Van Den Hengel, A. (2012). Positive semidefinite

metric learning using boosting-like algorithms. The Journal of Machine Learning

Research, 13(1):1007–1036.

Shen, X., Tseng, G. C., Zhang, X., and Wong, W. H. (2003). On ψ-learning.

Journal of the American Statistical Association, 98:724–734.

Sheskin, D. J. (2007). Handbook of Parametric and Nonparametric Statistical

Procedures. Chapman & Hall/CRC, fourth edition.

Shi, Y., Bellet, A., and Sha, F. (2014). Sparse compositional metric learning.

In Procedings of the 28th AAAI Conference on Artificial Intelligence, pages

2078–2084.

Slonim, N. and Tishby, N. (2000). Document clustering using word clusters via the

information bottleneck method. In Proceedings of the 23rd Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval,

pages 208–215.

Sohn, K. (2016). Improved deep metric learning with multi-class n-pair loss

objective. In Advances in Neural Information Processing Systems 29, pages

1857–1865.

Soleimani, B. H. and Matwin, S. (2016). Nonlinear dimensionality reduction by unit

ball embedding (ube) and its application to image clustering. In Proceedings of

the 15th IEEE International Conference on Machine Learning and Applications,

pages 983–988.

Song, H. O., Jegelka, S., Rathod, V., and Murphy, K. (2017). Deep metric learning

via facility location. In Proceedings of The IEEE Conference on Computer Vision

and Pattern Recognition.

Song, H. O., Xiang, Y., Jegelka, S., and Savarese, S. (2016). Deep metric learning

via lifted structured feature embedding. In The IEEE Conference on Computer

Vision and Pattern Recognition, pages 4004–4012.

283

Bibliography

Sun, C., Wang, D., and Lu, H. (2017). Person re-identification via distance

metric learning with latent variables. IEEE Transactions on Image Processing,

26(1):23–34.

Sun, Y. (2007). Iterative RELIEF for feature weighting: Algorithms, theories, and

applications. IEEE Transactions on Pattern Analysis and Machine Intelligence,

29(6):1035–1051.

Sun, Y., Todorovic, S., and Goodison, S. (2010). Local-learning-based feature

selection for high-dimensional data analysis. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 32(9):1610–1626.

Takeuchi, I., Nakagawa, M., and Seto, M. (2009). Metric learning for dna microarray

data analysis. In Proceedingso of International Workshop on StatisticalMechanical

Informatics.

Tao, D., Cheng, J., Song, M., and Lin, X. (2016a). Manifold ranking-based matrix

factorization for saliency detection. IEEE Transactions on Neural Networks and

Learning Systems, 27:1122–1134.

Tao, D., Guo, Y., Li, Y., and Gao, X. (2018). Tensor rank preserving discriminant

analysis for facial recognition. IEEE Transactions on Image Processing, 27:325–

334.

Tao, D., Guo, Y., Song, M., Li, Y., Yu, Z., and Tang, Y. Y. (2016b). Person

re-identification by dual-regularized KISS metric learning. IEEE Transactions

on Image Processing, 25(6):2726–2738.

Tao, D., Guo, Y., Yu, B., Pang, J., and Yu, Z. (2017). Deep multi-view feature

learning for person re-identification. IEEE Transactions on Circuits and Systems

for Video Technology, To appear(In press):To appear.

Tao, D., Jin, L., Wang, Y., and Li, X. (2015). Person reidentification by min-

imum classification error-based KISS metric learning. IEEE Transactions on

Cybernetics, 45(2):242–252.

Tenenbaum, J. B., Vin, D. S., and Langford, J. C. (2000). A global geometric

framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323.

Tian, Q., Chen, S., and Qiao, L. (2016). Ordinal margin metric learning and its

extension for cross-distribution image data. Information Sciences, 349-350:50–64.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society, 58(1):267–288.

Torresani, L. and Lee, K.-C. (2007). Large margin component analysis. In Advances

in Neural Information Processing Systems 19, pages 1385–1392.

Tran, D. and Sorokin, A. (2008). Human activity recognition with metric learning.

284

Bibliography

In Proceedings of the 10th European Conference on Computer Vision: Part I,

pages 548–561.

Triguero, I., González, S., Moyano, J. M., Garćıa, S., Alcalá-Fdez, J., Luengo, J.,

Fernández, A., del Jesús, M. J., Sánchez, L., and Herrera, F. (2017). KEEL 3.0:

An open source software for multi-stage analysis in data mining. International

Journal of Computational Intelligence Systems, 10:1238–1249.

Tseng, P. (2001). Convergence of a block coordinate descent method for non-

differentiable minimization. Journal of Optimization Theory and Applications,

109(3):475–494.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large margin

methods for structured and interdependent output variables. The Journal of

Machine Learning Research, 6:1453–1484.

van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. The

Journal of Machine Learning Research, 9:2579–2605.

Van Der Maaten, L., Postma, E., and Van den Herik, J. (2009). Dimensionality

reduction: a comparative. The Journal of Machine Learning Research, 10:66–71.

Van Gassen, S., Callebaut, B., Van Helden, M. J., Lambrecht, B. N., Demeester,

P., Dhaene, T., and Saeys, Y. (2015). Flowsom: Using self-organizing maps for

visualization and interpretation of cytometry data. Cytometry A, 87A:636–645.

Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley & Sons.

Vedaldi, A. and Zisserman, A. (2012). Efficient additive kernels via explicit

feature maps. IEEE Transactions on Pattern Analysis and Machine Intelligence,

34(3):480–492.

Vinh, N. X., Epps, J., and Bailey, J. (2009). Information theoretic measures for

clusterings comparison: Is a correction for chance necessary? In Proceedings of

the 26th Annual International Conference on Machine Learning, pages 1073–1080.

Vinh, N. X., Epps, J., and Bailey, J. (2010). Information theoretic measures for

clusterings comparison: Variants, properties, normalization and correction for

chance. The Journal of Machine Learning Research, 11:2837–2854.

Wagstaff, K., Cardie, C., Rogers, S., and Schrödl, S. (2001). Constrained k-means

clustering with background knowledge. In Proceedings of the 18th International

Conference on Machine Learning, pages 577–584.

Wang, F. (2011a). Semisupervised metric learning by maximizing constraint margin.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

41(4):931–939.

Wang, F., Zuo, W., Zhang, L., Meng, D., and Zhang, D. (2015). A kernel

285

Bibliography

classification framework for metric learning. IEEE Transactions on Neural

Networks and Learning Systems, 26:1950–1962.

Wang, H., Nie, F., and Huang, H. (2014a). Robust distance metric learning via

simultaneous l1-norm minimization and maximization. In Proceedings of the 31st

International Conference on Machine Learning, pages 1836–1844.

Wang, J., Kalousis, A., and Woznica, A. (2012). Parametric local metric learning

for nearest neighbor classification. In Advances in Neural Information Processing

Systems 25, pages 1601–1609.

Wang, J., Zhou, F., Wen, S., Liu, X., and Lin, Y. (2017). Deep metric learning

with angular loss. In The IEEE International Conference on Computer Vision,

pages 2593–2601.

Wang, Q., Yuen, P. C., and Feng, G. (2013). Semi-supervised metric learning via

topology preserving multiple semi-supervised assumptions. Pattern Recognition,

46(9):2576–2587.

Wang, W., Hu, B.-G., and Wang, Z.-F. (2014b). Globality and locality incorporation

in distance metric learning. Neurocomputing, 129:185–198.

Wang, X. (2011b). A fast exact k-nearest neighbors algorithm for high dimensional

search using k-means clustering and triangle inequality. In Proceedings of the

International Joint Conference on Neural Networks, pages 1293–1299.

Weber, L. M. and Robinson, M. D. (2016). Comparison of clustering methods

for high-dimensional single-cell flow and mass cytometry data. Cytometry A,

89:1084–1096.

Weinberger, K. and Tesauro, G. (2007). Metric learning for kernel regression. In

Proceedings of the 11th International Conference on Artificial Intelligence and

Statistics, pages 608–615.

Weinberger, K. Q. and Saul, L. K. (2009). Distance metric learning for large margin

nearest neighbor classification. The Journal of Machine Learning Research,

10:207–244.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics

Bulletin, 1(6):80–83.

Williams, C. K. and Rasmussen, C. E. (1996). Gaussian processes for regression.

In Advances in Neural Information Processing Systems 8, pages 514–520. MIT

press.

Wright, S. J. (1997). Primal-Dual Interior-Point Methods. Siam.

Wu, L., Hoi, S. C. H., Jin, R., Zhu, J., and Yu, N. (2012). Learning bregman distance

functions for semi-supervised clustering. IEEE Transactions on Knowledge and

Data Engineering, 24:478–491.

286

Bibliography

Xiang, S., Nie, F., and Zhang, C. (2008). Learning a mahalanobis distance metric

for data clustering and classification. Pattern Recognition, 41(12):3600–3612.

Xiao, B., Yang, X., Xu, Y., and Zha, H. (2009). Learning distance metric for

regression by semidefinite programming with application to human age estimation.

In Proceedings of the 17th ACM International Conference on Multimedia, pages

451–460, New York, NY, USA.

Xiao, T., Li, H., Ouyang, W., and Wang, X. (2016). Learning deep feature

representations with domain guided dropout for person re-identification. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 1249–1258.

Xing, E. P., Jordan, M. I., Russell, S., and Ng, A. (2002). Distance metric learning

with application to clustering with side-information. In Advances in Neural

Information Processing Systems 14, pages 505–512.

Xiong, F., Gou, M., Camps, O., and Sznaier, M. (2014). Person re-identification

using kernel-based metric learning methods. In Proceedings of the European

Conference on Computer Vision, pages 1–16.

Xiong, H. and Chen, X.-W. (2006). Kernel-based distance metric learning for

microarray data classification. BMC Bioinformatics, 7(1):1–11.

Yan, S., Xu, D., Zhang, B., j. Zhang, H., Yang, Q., and Lin, S. (2007). Graph

embedding and extensions: A general framework for dimensionality reduction.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1):40–51.

Yang, J. and Xu, H. (2016). Metric learning based object recognition and retrieval.

Neurocomputing, 190:70–81.

Yang, P., Huang, K., and Liu, C.-L. (2011). Multi-task low-rank metric learning

based on common subspace. In Proceedings of the 18th International Conference

on Neural Information Processing, pages 151–159, Berlin, Heidelberg. Springer

Berlin Heidelberg.

Yang, P., Huang, K., and Liu, C.-L. (2013). Geometry preserving multi-task metric

learning. Machine Learning, 92(1):133–175.

Yang, Y., Liao, S., Lei, Z., and Li, S. Z. (2016). Large scale similarity learning

using similar pairs for person verification. In Proceedings of the 30th AAAI

Conference on Artificial Intelligence, pages 3655–3661.

Yang, Y., Yang, J., Yan, J., Liao, S., Yi, D., and Li, S. Z. (2014). Salient color

names for person re-identification. In Proceedings of the European Conference

on Computer Vision, pages 536–551.

Yeung, D.-Y. and Chang, H. (2006). Extending the relevant component analysis

287

Bibliography

algorithm for metric learning using both positive and negative equivalence

constraints. Pattern Recognition, 39(5):1007 – 1010.

Yeung, D. Y. and Chang, H. (2007). A kernel approach for semisupervised metric

learning. IEEE Transactions on Neural Networks, 18:141–149.

Yin, X., Chen, S., Hu, E., and Zhang, D. (2010). Semi-supervised clustering with

metric learning: An adaptive kernel method. Pattern Recognition, 43(4):1320–

1333.

Ying, Y. and Li, P. (2012). Distance metric learning with eigenvalue optimization.

The Journal of Machine Learning Research, 13(1):1–26.

Yu, J., Tao, D., Li, J., and Cheng, J. (2014). Semantic preserving distance metric

learning and applications. Information Sciences, 281:674–686.

Yu, Y. and Schuurmans, D. (2011). Rank/norm regularization with closed-form so-

lutions: Application to subspace clustering. In Proceedings of the 27th Conference

on Uncertainty in Artificial Intelligence, pages 778–785.

Yuille, A. L. and Rangarajan, A. (2002). The concave-convex procedure (CCCP).

In Advances in Neural Information Processing Systems 14, pages 1033–1040.

Zha, H., He, X., Ding, C., Gu, M., and Simon, H. D. (2002). Spectral relaxation

for k-means clustering. In Advances in Neural Information Processing Systems

14, pages 1057–1064.

Zhang, H., Patel, V. M., and Chellappa, R. (2017). Hierarchical multimodal metric

learning for multimodal classification. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2925–2933.

Zhang, H., Yu, J., Wang, M., and Liu, Y. (2012a). Semi-supervised distance metric

learning based on local linear regression for data clustering. Neurocomputing,

93:100–105.

Zhang, J. and Zhang, L. (2017). Efficient stochastic optimization for low-rank

distance metric learning. In Proceedings of the 31st AAAI Conference on Artificial

Intelligence, pages 933–939.

Zhang, Y. and Yeung, D.-Y. (2010). Transfer metric learning by learning task

relationships. In Proceedings of the 16th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 1199–1208.

Zhang, Z., Zhao, M., and Chow, T. W. (2012b). Constrained large margin local

projection algorithms and extensions for multimodal dimensionality reduction.

Pattern Recognition, 45(12):4466–4493.

Zhao, C., Chen, Y., Wei, Z., Miao, D., and Gu, X. (2018). QRKISS: A two-stage

metric learning via QR-decomposition and KISS for person re-identification.

Neural Processing Letters, 1:1–24.

288

Zhao, R., Oyang, W., and Wang, X. (2017). Person re-identification by saliency

learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,

39(2):356–370.

Zheng, W.-S., Gong, S., and Xiang, T. (2009). Associating groups of people. In

Proceedings of the British Machine Vision Conference, volume 1, pages 1–11.

Zheng, W. S., Gong, S., and Xiang, T. (2013). Reidentification by relative distance

comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence,

35(3):653–668.

Zheng, Y., Fan, J., Zhang, J., and Gao, X. (2017). Hierarchical learning of multi-

task sparse metrics for large-scale image classification. Pattern Recognition,

67:97–109.

Zhou, G.-T., Lan, T., Vahdat, A., and Mori, G. (2013). Latent maximum margin

clustering. In Advances in Neural Information Processing Systems 26, pages

28–36.

Zou, P.-C., Wang, J., Chen, S., and Chen, H. (2016). Margin distribution expla-

nation on metric learning for nearest neighbor classification. Neurocomputing,

177:168–178.

Zou, W., Zhu, S., Yu, K., and Ng, A. Y. (2012). Deep learning of invariant features

via simulated fixations in video. In Advances in Neural Information Processing

Systems 25, pages 3203–3211.

289

Curriculum Vitae

Personalia

Name Bac Nguyen Cong

Date of birth January 22, 1989

Place of birth Bac Ninh, Vietnam

Nationality Vietnamese

E-mail nguyencongbacbk@gmail.com

Educations

• 2013-2015: MSc. in Computer Science, Universidad Central “Marta Abreu”

de Las Villas, Villa Clara, Cuba.

• 2009-2014: BSc. in Computer Science, Universidad Central “Marta Abreu”

de Las Villas, Villa Clara, Cuba.

Research experiences

• Summer 2018: Machine learning software engineer internship, Radix.ai,

Brussels, Belgium

• Winter 2017: Visiting researcher, Universitat de València, València, Spain

Languages

• Vietnamese: Native speaker

• Spanish: Fluent

• English: Fluent

291

nguyencongbacbk@gmail.com

Scientific outputs

Publications in international journals (ISI-papers)

• Nguyen, B., Morell, C., and De Baets, B. (2016). Large-scale distance metric

learning for k-nearest neighbors regression. Neurocomputing, 214:805–814

• Nguyen, B., Morell, C., and De Baets, B. (2017b). Distance metric learning

with the Universum. Pattern Recognition Letters, 100:37–43

• Nguyen, B., Morell, C., and De Baets, B. (2017c). Supervised distance metric

learning through maximization of the Jeffrey divergence. Pattern Recognition,

64:215–225

• Nguyen, B. and De Baets, B. (2018b). Kernel-based distance metric learning

for supervised k-means clustering. IEEE Transactions on Neural Networks

and Learning Systems, accepted

• Nguyen, B. and De Baets, B. (2018a). An approach to supervised distance

metric learning based on difference of convex functions programming. Pattern

Recognition, 81:562–574

• Nguyen, B., Morell, C., and De Baets, B. (2018a). Distance metric learning for

ordinal classification based on triplet constraints. Knowledge-Based Systems,

142:17–28

• Nguyen, B., Morell, C., and De Baets, B. (2018b). Scalable large-margin

distance metric learning using stochastic gradient descent. IEEE Transactions

on Cybernetics, accepted

• Beernaerts, J., Derie, R., Nguyen, B., Vansteenkiste, P., De Baets, B., Decon-

inck, F., Lenoir, M., De Clercq, D., and Van de Weghe, N. (2019). Assessing

the potential of the qualitative trajectory calculus to detect gait pathologies:

a case study of children with developmental coordination disorder. Computer

Methods in Biomechanics and Biomedical Engineering, accepted

• Nguyen, B. and De Baets, B. (2019). Kernel distance metric learning using

pairwise constraints for person re-identification. IEEE Transactions on Image

Processing, 28(2):589–600

• Nguyen, B., Ferri, F. J., Morell, C., and De Baets, B. (2019a). An efficient

method for clustered multi-metric learning. Information Sciences, 471:149–

163

• Nguyen, B., Rubbens, P., Kerckhof, F.-M., Boon, N., De Baets, B., and

Waegeman, W. (2019b). Learning single-cell distances from cytometry data.

Cytometry Part A, submitted

292

Conference proceedings

• Nguyen, B., Morell, C., and De Baets, B. (2017a). Distance metric learning:

a two-phase approach. In Proceedings of the 25th European symposium on

artificial neural networks, computational intelligence and machine learning,

pages 123–128

293

	Acknowledgements
	Summary
	Nederlandstalige samenvatting
	List of acronyms
	Introduction and preliminaries
	Introduction
	A general overview
	Research contributions and structure
	Part II: Distance metric learning using pairwise constraints
	Part III: Distance metric learning using triplet constraints
	Part IV: Distance metric learning for supervised clustering

	Evaluation methodology
	Notational conventions

	Preliminaries
	Supervised learning
	Problem statement
	Empirical risk minimization
	Structural risk minimization
	Regularized risk minimization

	Distance metric learning
	Definitions
	Problem statement
	Distance-based learning algorithms

	Why should we care about distance metric learning?
	Information retrieval
	Computer vision
	Dimensionality reduction
	Transfer learning and domain adaptation
	Bioinformatics

	Optimization techniques for distance metric learning
	Semidefinite programming
	Gradient descent
	Projected gradient descent
	Stochastic gradient descent
	Frank-Wolfe algorithms
	Bregman projection

	Distance metric learning using pairwise constraints
	Distance metric learning based on the Jeffrey divergence
	Motivation
	Definitions
	Proposed method
	Problem formulation
	Nonlinear distance metric learning
	Regularization
	Computational complexity

	Related work
	Experiments
	Experimental settings
	Linear distance metric learning
	Dimensionality reduction
	Influence of the choice of the difference spaces
	Nonlinear distance metric learning

	Conclusion

	Kernel-based distance metric learning for person re-identification
	Motivation
	Related work
	KISSME revisited
	Kernel distance metric learning
	Kernel KISSME
	Incremental settings

	Experiments
	Experimental settings
	Experiments with re-identification benchmark data sets
	Running time
	Experiments with dimensionality
	Experiments with incremental learning

	Conclusion

	Case study: Learning single-cell distances from cytometry data
	Motivation
	Synthetic microbial communities
	Data description
	Experimental setup
	Results

	Mass Cytometry
	Data description
	Experimental setup
	Results

	Discussion and conclusion

	Distance metric learning using triplet constraints
	Scalable metric learning using stochastic gradient descent
	Motivation
	Related work
	Problem formulation
	Online distance metric learning
	Stochastic gradient descent for distance metric learning
	Convergence analysis
	Computational complexity

	Experiments
	Experiments on the KEEL data sets
	Evaluation of the convergence
	Experiments on large-scale data sets

	Discussion and conclusion

	Distance metric learning based on DC programming
	Motivation
	Preliminaries
	Related work
	Proposed method
	Problem formulation
	Algorithm
	Convergence and computational complexity

	Theoretical analysis
	Experiments
	Experimental settings
	Benchmark data sets
	Experiments on image data sets
	Sensitivity to noise
	Convergence rate

	Conclusion

	An efficient method for clustered multi-metric learning
	Motivation
	Related work
	Clustered multi-metric learning
	Problem formulation
	Optimization solver
	Convergence
	Computational complexity
	Testing phase
	Strategy of selecting triplet constraints

	Experiments
	Experimental settings
	A synthetic data set
	Benchmark KEEL data sets
	Real data sets
	Convergence

	Conclusion

	Distance metric learning for k-nearest-neighbor regression
	Motivation
	Distance metric learning for regression
	Selection of triplet constraints
	Problem formulation
	Learning a distance metric with coordinate descent

	Related work
	Experiments
	Data description and configuration
	Methodology
	Experimental results and discussion

	Conclusion

	Distance metric learning for ordinal classification
	Motivation
	Preliminaries
	Notations
	Problem definition
	Related work

	Distance metric learning in ordinal settings
	Linear distance metric learning
	Nonlinear distance metric learning
	Computational complexity

	Performance evaluation
	Experiments
	Benchmark data sets
	Statistical analysis of the results
	Influence of using ordering information
	Nonlinear distance metric learning
	Convergence analysis
	Influence of neighborhood size

	Conclusion

	Distance metric learning for clustering
	Distance metric learning for supervised k-means clustering
	Introduction
	Related work
	Spectral relaxation of k-means clustering
	Proposed method
	Problem formulation
	A dual approach to distance metric learning
	Learning a Mahalanobis distance metric for large-scale problems

	Experiments
	Experimental settings
	Experiments on a synthetic data set
	Experiments on handwritten digits data
	Experiments on WebKB data
	Experiments on text categorization
	Running time

	Conclusion

	Epilogue
	Conclusions and future work
	Conclusions and open issues
	Potential research directions
	Distance metric learning for extreme classification
	Deep metric learning
	Theoretical understanding

	Appendices
	Appendix
	Jeffrey divergence
	Conditions to guarantee the convergence of block-coordinate descent
	Data sets

	Bibliography
	Curriculum Vitae

