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Abstract

In this paper, we classify all homogeneous pseudo-embeddings of the point-line
geometry defined by the points and k-dimensional subspaces of PG(n, 2), and use
this to study the local structure of homogeneous full projective embeddings of the
dual polar space DW (2n − 1, 2). Our investigation allows us to distinguish n pos-
sible types for such homogeneous embeddings. For each of these n types, we shall
construct a homogeneous full projective embedding of DW (2n− 1, 2).
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1 Introduction

In [15], we introduced pseudo-hyperplanes and pseudo-embeddings of point-line geometries.
For geometries with three points per line, these notions coincide with the notions of
hyperplanes and full projective embeddings. If pseudo-embeddings exist, then there exists
a largest one which is called the universal pseudo-embedding. The vector dimension of
the universal pseudo-embedding space will be called the pseudo-embedding rank. As we
will see in Section 2.1 (Proposition 2.4), an important tool for determining whether a
pseudo-embedding is universal is the notion of pseudo-generating rank.

If all automorphisms of the geometry lift to automorphisms of the pseudo-embedding
space, then the pseudo-embedding is called homogeneous. In [14, 16], we classified all
homogeneous pseudo-embeddings of the affine spaces AG(n, 4), the projective spaces
PG(n, 4) and all generalized quadrangles of order (3, t). The present paper achieves
this goal for another family of geometries. The classification of the homogeneous pseudo-
embeddings of these geometries will have implications for projective embeddings of sym-
plectic dual polar spaces. In fact, this was also our initial motivation for studying this
problem. Let us first define the geometries whose pseudo-embeddings will be investigated.
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For all n, k ∈ N with 1 ≤ k ≤ n+ 1, let Sn,k be the point-line geometry whose points
and lines are the points and k-dimensional subspaces of PG(n, 2), with incidence being
the one induced by PG(n, 2). If k = 1, then the geometry Sn,k is just PG(n, 2) (regarded
as a point-line geometry). If k = n+ 1, then Sn,k has 2n+1 − 1 points, but no lines.

With n and k as above, let εn,k be the map from PG(n, 2) to PG(Nn,k, 2), where

Nn,k := −1 +
∑k

i=1

(
n+1
i

)
, mapping the point (X0, X1, . . . , Xn) of PG(n, 2) to the point

(X0, X1, . . . , Xn, X0X1, X0X2, . . . , Xn−1Xn, X0X1X2, . . . , Xn−k+1Xn−k+2 · · ·Xn)

of PG(Nn,k, 2). The following is our first main result of this paper.

Theorem 1.1 (1) The pseudo-generating and pseudo-embedding ranks of Sn,k are equal

to
∑k

i=1

(
n+1
i

)
.

(2) εn,k is isomorphic to the universal pseudo-embedding of Sn,k.

(3) If k ≤ n, then every homogeneous pseudo-embedding of Sn,k is isomorphic to εn,k.

The fact that the pseudo-embedding rank of Sn,k is equal to
∑k

i=1

(
n+1
i

)
implies (see

Section 2.1) that the binary code of the points and k-dimensional subspaces of PG(n, 2)
has dimension |PG(n, 2)| −

∑k
i=1

(
n+1
i

)
=
∑n+1

i=k+1

(
n+1
i

)
=
∑n−k

i=0

(
n+1
i

)
. This is precisely

Corollary 5.3.2 of Assmus and Key [1]. General formulas for the dimension of the p-
ary code of the points and k-dimensional subspaces of PG(n, q), q = ph with p prime
and h ∈ N \ {0}, can be found in Hamada [17, Theorem 1] or Inamdar and Sastry
[19, Theorem 2.13]. These formulas are usually more complex. E.g., Theorem 2.13 of
[19] tells us that the dimension of the above-mentioned binary code is also equal to
1 +

∑n−k
i=1

∑i−1
s=0(−1)s

(
n+1
s

)(
n+i−2s

n

)
.

Let ∆ = DW (2n − 1, 2) with n ∈ N \ {0, 1} denote the symplectic dual polar space
associated with a symplectic polarity of PG(2n− 1, 2).

Let x denote a point of ∆. For every convex subspace F through x, we denote by LF
the set of lines through x contained in F . Let Sx denote the point-line geometry whose
points and lines are the lines and quads through x, with incidence being containment.
Then Sx ∼= PG(n − 1, 2). The k-dimensional subspaces of Sx are then the sets LF for
convex subspaces F of diameter k + 1 through x. After having introduced coordinates
in Sx, we may identify PG(n− 1, 2) with Sx and assume that the map εn−1,k (as defined
above) maps lines of ∆ through x to points of PG(Nn−1,k, 2).

Suppose now that ε is a full projective embedding of DW (2n− 1, 2) into a projective
space Σ. The image of x⊥ (i.e. the set of points collinear with x) generates a subspace
Σx of Σ. The map ε naturally induces a map εx from the points of Sx to the points of the
quotient space Σx/ε(x). The following is our second main result of this paper.

Theorem 1.2 Suppose ε is a homogeneous full embedding of DW (2n−1, 2) in a projective
space Σ and x is a point of DW (2n− 1, 2). Then there exists a unique k ∈ {1, 2, . . . , n}
such that the maps εx and εn−1,k are isomorphic. For this value of k, we thus have

dim(Σx) =
∑k

i=1

(
n
i

)
.
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A homogeneous full projective embedding ε of DW (2n − 1, 2) is said to be of type k ∈
{1, 2, . . . , n} if the maps εx and εn−1,k are isomorphic. The fact that ε is homogeneous
implies that this definition is independent of the considered point x. Homogeneous full
projective embeddings of DW (2n − 1, 2) have not yet been intensively studied. Up to
now, four such embeddings were known, the spin-embedding, the Grassmann embedding,
the universal embedding and the full projective embedding of DW (2n − 1, 2) induced
by the universal embedding of the Hermitian dual polar space DH(2n− 1, 4) into which
DW (2n− 1, 2) is fully and isometrically embeddable. We also prove the following.

Theorem 1.3 (1) For every i ∈ {1, 2, . . . , n}, there exists a homogeneous full projective
embedding of DW (2n− 1, 2) that has type i.

(2) Every homogeneous full projective embedding of DW (2n − 1, 2) that has type 1 is
isomorphic to the spin-embedding.

(3) The Grassmann embedding of DW (2n− 1, 2) has type 2.

(4) The full projective embedding of DW (2n− 1, 2) induced by the universal embedding
of DH(2n− 1, 4) has type 2 if n = 2 and type 3 if n ≥ 3.

(5) The universal embedding of DW (2n− 1, 2) has type n.

We also show that among the homogeneous full projective embeddings of type i of
DW (2n− 1, 2), there exists a universal one from which all others of type i can be derived
(by means of quotients).

In the area of full projective embeddings of geometries, there are several results of the
following form:

If S1 and S2 are two point-line geometries admitting universal full projective
embeddings ε̃1 and ε̃2 such that S1 is a full subgeometry of S2, then the full
projective embedding of S1 induced by ε̃2 is isomorphic to ε̃1.

E.g., it is known that the full projective embedding of Q(4, 2) ∼= DW (3, 2) induced by
the universal embedding of Q−(5, 2) ∼= DH(3, 4) is also universal. In [10, Theorem 1.8],
we showed that the full projective embedding of DW (5, 2) induced by the universal em-
bedding of DH(5, 4) is also universal. Invoking parts (4) and (5) of Theorem 1.3, we now
see that the above statement is false in case S1 = DW (2n− 1, 2) and S2 = DH(2n− 1, 4)
with n ≥ 4. Summarizing, we then have:

Corollary 1.4 Let n ∈ N \ {0, 1}. Then the full projective embedding of DW (2n− 1, 2)
induced by the universal embedding of DH(2n− 1, 4) is itself also universal if and only if
n ∈ {2, 3}.
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2 Preliminaries

2.1 Pseudo-embeddings and pseudo-hyperplanes

Suppose S = (P ,L, I) is a point-line geometry having the property that the number of
points on each line is finite and at least three. If X1, X2 ⊆ P , then X1 ∗X2 = X1 ∗P X2

denotes the complement P \ (X1∆X2) of the symmetric difference X1∆X2 of X1 and X2.
The operator ∗ on the set 2P of all subsets of P is commutative and associative. Moreover,
X ∗ X = P and X ∗ P = X for every X ∈ 2P . A map ε from P to the point set of a
projective space Σ will often be denoted by ε : S → Σ. Two such maps ε1 : S → Σ1 and
ε2 : S → Σ2 are called isomorphic if there exists an isomorphism φ : Σ1 → Σ2 such that
ε2 = φ ◦ ε1.

Let V be a (possibly infinite-dimensional) vector space over the finite field F2 of order
2. If W is a k-dimensional subspace of V with 2 ≤ k <∞, then a frame of PG(W ) is any
set of points of the form {〈ē1〉, 〈ē2〉, . . . , 〈ēk〉, 〈ē1 + ē2 + · · · + ēk〉}, where {ē1, ē2, . . . , ēk}
is a basis of W . A pseudo-embedding of S into the projective space PG(V ) is a mapping
ε : S → PG(V ) for which the following hold:

(PE1) The image of ε generates the projective space PG(V ).

(PE2) ε maps every line of S to a frame of some subspace of PG(V ).

If ε is moreover injective, then the pseudo-embedding is called faithful. A pseudo-embed-
ding ε : S → PG(V ) is called G-homogeneous, where G is a group of automorphisms of S,
if for every θ ∈ G, there exists a (necessarily unique) projectivity θ of PG(V ) such that

ε(xθ) = ε(x)θ for every point x of S. In case G consists of all automorphisms of S, we
will also talk about a homogeneous pseudo-embedding.

If ε : S → Σ is a pseudo-embedding and π is a subspace of Σ that is disjoint from the
image of ε and every subspace of the form 〈ε(x1), ε(x2), . . . , ε(xk)〉, where x1, x2, . . . , xk
are all the points of a line of S, then a new pseudo-embedding ε/π : S → Σ/π can be
defined which maps each point x of S to the point 〈π, ε(x)〉 of the quotient projective
space Σ/π. This pseudo-embedding ε/π is called a quotient of ε. We will write ε1 ≥ ε2 if

ε2 is isomorphic to a quotient of ε1. A pseudo-embedding ε̃ : S → Σ̃ is called universal
if ε̃ ≥ ε for any pseudo-embedding ε of S. If this is the case, then there exists a unique
subspace π of Σ̃ for which ε is isomorphic to ε̃/π. If S has a pseudo-embedding, then by
[15, Theorem 1.2(1)] we know that S has a universal pseudo-embedding, which is moreover
unique (up to isomorphism) and homogeneous ([16, Theorem 2.4]). If S has a faithful

pseudo-embedding, then its universal pseudo-embedding is also faithful. If ε̃ : S → PG(Ṽ )

is the universal pseudo-embedding of S, then the dimension of the F2-vector space Ṽ is
called the pseudo-embedding rank of S and denoted by er(S). In case S is finite, we know
from [15, Theorem 1.2(2)] that er(S) = |P| − rankF2(M), where M is any point-line
incidence matrix of S.

A pseudo-hyperplane of S is a proper subset H of P such that every line of S contains
an even number of points of P \ H. Note that if all lines have even size, then ∅ is a
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pseudo-hyperplane. If H1 and H2 are two distinct pseudo-hyperplanes of S, then H1 ∗H2

is again a pseudo-hyperplane of S. If ε : S → PG(V ) is a pseudo-embedding, then Hε

denotes the set of all subsets of the form ε−1(ε(P)∩Π), where Π is a hyperplane of PG(V ).
By [15, Theorem 1.1] every element of Hε is a pseudo-hyperplane of S, a so-called pseudo-
hyperplane arising from ε. By [15] (Theorem 1.3 and page 79, part (d)), we know the
following.

Proposition 2.1 ([15]) If S has a pseudo-embedding and ε̃ : S → Σ̃ denotes its universal
pseudo-embedding, then Hε̃ is the set of all pseudo-hyperplanes of S. Moreover, if ε is a
pseudo-embedding of S such that Hε coincides with the set of all pseudo-hyperplanes of
S, then ε is isomorphic to ε̃.

The following result is a special case of Lemma 2.2 of [15].

Proposition 2.2 ([15]) Let ε be a pseudo-embedding of S, L a line of S and x1, x2 two
distinct points of L. Then there exists a pseudo-hyperplane H ∈ Hε containing all points
of L, except x1 and x2.

The following result is precisely Corollary 2.7 of [16].

Proposition 2.3 ([16]) Let G be a group of automorphisms of S.

• If ε is a G-homogeneous pseudo-embedding of S, then the set H = Hε satisfies the
following:

(a) H can be written as a disjoint union
⋃
i∈I Hi, where each Hi, i ∈ I, is a G-orbit

of pseudo-hyperplanes of S.

(b) If H1, H2 ∈ H with H1 6= H2, then H1 ∗H2 ∈ H.

(c) If L is a line of S containing an odd number of points, then for every point x
of L, there exists a pseudo-hyperplane of H having only the point x in common
with L.

(d) If L is a line of S containing an even number of points, then for every two
distinct points x1 and x2 of L, there exists a pseudo-hyperplane of H having
only the points x1 and x2 in common with L.

(e) For every point x of S, there exists a pseudo-hyperplane of H not containing
x.

• Conversely, if H is a finite set of pseudo-hyperplanes of S satisfying the conditions
(a), (b), (c), (d) and (e) above, then there exists a pseudo-embedding ε of S such
that H = Hε. The pseudo-embedding ε is uniquely determined, up to isomorphism,
and is G-homogeneous.
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Observe that condition (e) in Proposition 2.3 follows from conditions (c) and (d) if there
is at least one line incident with x.

A pseudo-subspace of S is a set X of points of S such that no line of S has a unique
point in common with P \X. Every set X of points of S is contained in a unique smallest
pseudo-subspace, namely the intersection of all pseudo-subspaces of S containing the set
X. If this smallest pseudo-subspace coincides with P , then X is called a pseudo-generating
set. The smallest size of a pseudo-generating set of S is called the pseudo-generating rank
of S and denoted by gr(S). The following proposition is precisely Theorem 1.5 of [15].
This proposition often allows to determine whether a given pseudo-embedding is universal.

Proposition 2.4 ([15]) If S has a pseudo-embedding, then the following hold:

(1) er(S) ≤ gr(S).

(2) If there exists a pseudo-embedding ε : S → PG(V ) and a pseudo-generating set X
such that |X| = dim(V ) < ∞, then er(S) = gr(S) = dim(V ) and ε is isomorphic
to the universal pseudo-embedding of S.

2.2 The symplectic dual polar space DW (2n− 1, 2)

Let ζ be a symplectic polarity of the projective space PG(2n − 1, 2), n ≥ 2. Then
associated with ζ, there is the following point-line geometry DW (2n− 1, 2):

• The points of DW (2n− 1, 2) are the (n− 1)-dimensional subspaces that are totally
isotropic with respect to ζ.

• The lines of DW (2n − 1, 2) are the (n − 2)-dimensional subspaces that are totally
isotropic with respect to ζ,

• Incidence is reverse containment.

The point-line geometry DW (2n− 1, 2) belongs to the family of dual polar spaces. Every
line of DW (2n − 1, 2) is incident with precisely three points. If x and y are two points
of DW (2n − 1, 2), then d(x, y) denotes the distance between x and y in the collinearity
graph Γ of DW (2n − 1, 2). This collinearity graph Γ has diameter n. The dual polar
space DW (2n− 1, 2) is a near polygon, meaning that for every point x and every line L,
there exists a unique point on L nearest to x.

If α is a totally isotropic subspace of PG(2n − 1, 2) of dimension n − 1 − k, k ∈
{0, 1, . . . , n}, then the set of all (n−1)-dimensional totally isotropic subspaces containing
α is a convex subspace of diameter k of DW (2n − 1, 2), and every convex subspace of
diameter k of DW (2n− 1, 2) is obtained in this way. Convex subspaces of diameter 2 are
also called quads. If F is a convex subspace of diameter k ≥ 2 of DW (2n − 1, 2), then

the point-line geometry F̃ induced on F by those lines that have all their points in F is
isomorphic to DW (2k − 1, 2). If x and y are two points of DW (2n − 1, 2) at distance
k ∈ {0, 1, . . . , n} from each other, then x and y are contained in a unique convex subspace
〈x, y〉 of diameter k. The maximal distance of a point of DW (2n−1, 2) to a given convex
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subspace of diameter k is equal to n−k. If x is a point of DW (2n−1, 2) at distance l from
a convex subspace F of diameter k, then the smallest convex subspace 〈x, F 〉 containing
x and F has diameter k+ l. If F is a convex subspace and x is a point, then F contains a
unique point πF (x) nearest to x, and d(x, y) = d(x, πF (x)) + d(πF (x), y) for every point
y ∈ F .

Since every line of DW (2n−1, 2) has three points, the pseudo-hyperplanes of DW (2n−
1, 2) are precisely the hyperplanes of DW (2n − 1, 2), i.e. the proper sets of points of
DW (2n− 1, 2) intersecting each line in either one or three points. We give two construc-
tions for hyperplanes of DW (2n− 1, 2).

• For every point x of DW (2n− 1, 2), the set Hx of points at distance at most n− 1
from x is a hyperplane of DW (2n − 1, 2), called a singular hyperplane with center
x.

• Suppose F is a convex subspace of diameter δ ≥ 1 of DW (2n − 1, 2) and G is a

hyperplane of F̃ . Denote by G the set of points at distance at most n− δ − 1 from
F , together with all points x at distance n− δ from F for which πF (x) ∈ G. Then
G is a hyperplane of DW (2n− 1, 2), called the extension of G.

Since every line of DW (2n−1, 2) has three points, the pseudo-embeddings of DW (2n−
1, 2) are precisely the (possibly non-injective) full projective embeddings (meaning that
lines are mapped to lines). The universal pseudo-embedding will then also be called the
universal embedding. A full projective embedding of DW (2n − 1, 2) is called polarized
if every singular hyperplane arises from it. Up to now, four homogeneous full projective
embeddings of DW (2n− 1, 2) were known.

• The Grassmann embedding of DW (2n − 1, 2) is a homogeneous full embedding in
the projective space PG(

(
2n
n

)
−
(

2n
n−2

)
− 1, 2), see Cooperstein [8, Proposition 5.1].

• The spin-embedding of DW (2n − 1, 2) is a homogeneous full embedding in the
projective space PG(2n − 1, 2), see Buekenhout & Cameron [5, Section 7].

• The universal embedding of DW (2n − 1, 2) is homogeneous. This embedding is
not so well-understood but its vector dimension (i.e. (pseudo-)embedding rank of

DW (2n−1, 2)) has been determined. This embedding rank is equal to (2n+1)(2n−1+1)
3

as was proved by Yoshiara [28] for n = 3, by Cooperstein [7] for n ∈ {4, 5} and for
general n independently by Blokhuis & Brouwer [4] and Li [20].

• Similarly as a symplectic polarity of PG(2n − 1, 2) defines the dual polar space
DW (2n − 1, 2), a unitary polarity of PG(2n − 1, 4) will define a dual polar space
DH(2n − 1, 4) with three points per line. By De Bruyn [9], we know that the
dual polar space DW (2n − 1, 2) can be fully and isometrically embedded into
DH(2n− 1, 4) such that every automorphism of DW (2n− 1, 2) lifts to an automor-
phism of DH(2n− 1, 4). The latter implies that every homogeneous full projective
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embedding, in particular1 the universal embedding, of DH(2n− 1, 4) will induce a
homogeneous full projective embedding of DW (2n − 1, 2). Also the universal em-
bedding of DH(2n− 1, 4) is not so well-understood. Its vector dimension 4n+2

3
has

been determined by Yoshiara [28] for n = 3 and by Li [21] for general n.

3 A pseudo-generating set of the geometry Sn,k
The proof of the following lemma provides an inductive way to construct pseudo-generating
sets of Sn,k. Later, we shall see that the pseudo-generating sets that arise in this way have
the smallest possible size.

Lemma 3.1 For all k, n ∈ N \ {0} with k ≤ n + 1, the geometry Sn,k has a pseudo-
generating set of size

(
n+1
1

)
+
(
n+1
2

)
+ · · ·+

(
n+1
k

)
.

Proof. We first prove the claim in the case k = 1. If k = 1, then Sn,k is isomorphic to
the point-line system of PG(n, 2) and in this case a pseudo-generating set of Sn,k is just
a generating set of PG(n, 2). The smallest size of such a generating set is n+ 1 =

(
n+1
1

)
.

Next, we prove the claim in the cases where k = n or k = n + 1. If k = n + 1,
then Sn,k contains 2n+1 − 1 points but no lines, and so Sn,k has a pseudo-generating set
of size 2n+1 − 1 =

(
n+1
1

)
+
(
n+1
2

)
+ · · · +

(
n+1
n+1

)
. If k = n, then Sn,k is isomorphic to

a line of size 2n+1 − 1 and such a line has a pseudo-generating set of size 2n+1 − 2 =(
n+1
1

)
+
(
n+1
2

)
+ · · ·+

(
n+1
n

)
.

Let us now turn to the general case. We shall prove the claim by induction on n. The
base case is the case where n = 1 (and so k ∈ {1, 2}), but then we already know that the
claim is valid. We may therefore suppose that n ≥ 2 and 1 < k < n. (In fact, we then
have that n ≥ 3 since n > k ≥ 2.)

Let (p, π) be a non-incident point-hyperplane pair of PG(n, 2). The points of π and
the k-dimensional subspaces contained in π define a subgeometry S1 of Sn,k isomorphic
to Sn−1,k. By the induction hypothesis, the geometry S1 has a pseudo-generating set X1

of size
(
n
1

)
+
(
n
2

)
+ · · · +

(
n
k

)
. The points of π and the (k − 1)-dimensional subspaces

contained in π define a point-line geometry S2 isomorphic to Sn−1,k−1. By the induction
hypothesis, the geometry S2 has a pseudo-generating set Y2 of size

(
n
1

)
+
(
n
2

)
+ · · ·+

(
n
k−1

)
.

For every y ∈ π, let y′ denote the unique point on the line py distinct from p and y, and
put X2 := {y′ | y ∈ Y2}.

We claim that the set X := {p} ∪X1 ∪X2 is a pseudo-generating set of Sn,k. Let X
denote the smallest pseudo-subspace containing X. Since X1 is a pseudo-generating set
of S1, we have π ⊆ X and hence {p}∪π ⊆ X. Let π′ denote the set of points of PG(n, 2)
not contained in π∪{p}. Let S3 be the subgeometry of Sn,k determined by the points of π′

and the k-dimensional subspaces through p. The map y 7→ y′ determines an isomorphism
between S2 and S3, implying that X2 is a pseudo-generating set of the geometry S3.

1Another homogeneous full projective embedding of DH(2n− 1, 4) is known, namely the Grassmann
embedding, but the induced embedding is the Grassmann embedding of DW (2n−1, 2), see [12, Theorem
1.1].
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We claim that X ∩ π′ is a pseudo-subspace of S3. Suppose that this is not the case.
Then there exists a k-dimensional subspace α through p such that all but one point of
α ∩ π′ belong to X ∩ π′. As {p} ∪ π ⊆ X, this implies that all but one point of α belong
to X, in contradiction with the fact that X is a pseudo-subspace of Sn,k.

As X ∩ π′ is a pseudo-subspace of S3 containing the pseudo-generating set X2 of S3,
we have that the point set π′ of S3 is contained in X ∩π′. Hence, X contains {p}∪π∪π′,
i.e. all points of PG(n, 2). So, X = {p} ∪X1 ∪X2 is a pseudo-generating set. Applying
Pascal’s rule a number of times, we find that its size is equal to

1+

(
n

1

)
+

(
n

2

)
+· · ·+

(
n

k

)
+

(
n

1

)
+

(
n

2

)
+· · ·+

(
n

k − 1

)
=

(
n+ 1

1

)
+

(
n+ 1

2

)
+· · ·+

(
n+ 1

k

)
.

�

4 A 2n+1-dimensional GL(n + 1, 2)-module

In this section, we define a 2n+1-dimensional module for the groupGL(n+1, 2), n ∈ N\{0},
and classify all its submodules. This will be useful later when we want to classify all
homogeneous pseudo-embeddings of Sn,k, k ∈ {1, 2, . . . , n+ 1}.

Consider the polynomial ring F2[X0, X1, . . . , Xn] and let I be the ideal (X2
0−X0, X

2
1−

X1, . . . , X
2
n − Xn) of F2[X0, X1, . . . , Xn]. Put f ∗1 := 1 and f ∗2 :=

∑
M∈MM , where M

denotes the set of all monomials of the form Xi1Xi2 · · ·Xil where l ∈ {1, 2, . . . , n +
1} and i1, i2, . . . , il ∈ {0, 1, . . . , n} with i1 < i2 < · · · < il. The polynomial ring
F2[X0, X1, . . . , Xn] can be regarded as an infinite-dimensional vector space over F2. For ev-
ery k ∈ {1, 2, . . . , n+1}, let Fk denote the subspace of dimension

(
n+1
1

)
+
(
n+1
2

)
+· · ·+

(
n+1
k

)
generated by all monomials of M having degree at most k. Also, put F0 := {0} and
F := 〈Fn+1, f

∗
1 〉. We note the following.

(P1) If f ∈ F and every element of Fn+1
2 is a root of f , then f = 0.

(P2) For every f ∈ F2[X0, X1, . . . , Xn], there exists a unique g ∈ F such that f − g ∈ I.

(P3) I consists of those elements of F2[X0, X1, . . . , Xn] for which each element of Fn+1
2 is

a root.

Consider the group GL(n + 1, 2) whose elements are the nonsingular (n + 1) × (n + 1)
matrices over the field F2. Every A ∈ GL(n + 1, 2) determines a permutation φA of
F2[X0, X1, . . . , Xn] if one performs the following substitutions to the elements of F2[X0, X1,
. . . , Xn]:

[X0, X1, · · · , Xn]T 7→ A · [X0, X1, · · · , Xn]T .

Then the following hold:

(1) (f1 + f2)
φA = fφA1 + fφA2 for all f1, f2 ∈ F2[X0, X1, . . . , Xn] and all A ∈ GL(n+ 1, 2).

(2) For all A,B ∈ GL(n + 1, 2), φAB = φAφB (where permutations are composed from
left to right).
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(3) If A ∈ GL(n + 1, 2), then φA is the identical permutation if and only if A is the
identity matrix.

So, we obtain a faithful representation A 7→ φA of the group GL(n+1, 2) on the F2-vector
space F2[X0, X1, . . . , Xn], allowing us to regard F2[X0, X1, . . . , Xn] as a GL(n + 1, 2)-
module.

Let A ∈ GL(n + 1, 2) and f ∈ F . Then fφA not necessarily belongs to F . (E.g., the
element X1X2 is mapped to X1X2 +X2

2 by the substitutions X1 7→ X1 +X2, X2 7→ X2).
By Property (P2) however, there exists a unique g ∈ F such that fφA − g ∈ I. We define
fφ
′
A := g. By Property (P3), the element φA stabilizes the ideal I and so permutes the

elements of the quotient space F2[X0, X1, . . . , Xn]/I. We thus see that φ′A permutes the
elements of F . We obtain a faithful representation A 7→ φ′A of the group GL(n+ 1, 2) on
the F2-vector space F , allowing us to regard the 2n+1-dimensional vector space F as a
GL(n + 1, 2)-module. Our aim is now to determine all submodules of this GL(n + 1, 2)-
module.

A coordinate transformation cannot increase the degree of a polynomial f ∈ F , nor
introduce a constant term that was not originally there, implying that the subspaces
{0} = F0,F1, . . . ,Fn,Fn+1, 〈F0, f

∗
1 〉 = 〈f ∗1 〉, 〈F1, f

∗
1 〉, . . . , 〈Fn, f ∗1 〉, 〈Fn+1, f

∗
1 〉 = F are

submodules.

Lemma 4.1 〈f ∗2 〉 is also a submodule.

Proof. In order to show that 〈f ∗2 〉 is a submodule, we need to show that the polynomial
f ∗2 =

∑
M∈MM remains invariant under the following coordinate transformations:

(i) X0 7→ Xσ(0), X1 7→ Xσ(1), . . ., Xn 7→ Xσ(n), where σ is a permutation of {0, 1, . . . , n};

(ii) X0 7→ X0 +X1, X1 7→ X1, . . ., Xn 7→ Xn.

Then f ∗2 =
∑

M∈MM remains invariant under all coordinate transformations. Obviously,
f ∗2 =

∑
M∈MM remains invariant under the coordinate transformations mentioned in (i).

Under the coordinate transformations mentioned in (ii), the polynomial f ∗2 =
∑

M∈MM
becomes

∑
M∈MM +

∑
M∈MM ′, where M ′ with M ∈M is the following monomial:

• If the variable X0 does not occur in M , then M ′ = 0.

• If the variable X0 occurs in M , but not X1, then M ′ is the monomial obtained from
M by replacing X0 by X1.

• If both the variables X0, X1 occur in M , then M ′ is obtained from M by removing
the variable X0.

Obviously, every M ′ with M ∈ M is either zero or is nonzero with degree contained in
the set {1, 2, . . . , n}. In the latter case, the variable X1 occurs in M ′, but the variable X0

does not.
Now, let Xi1Xi2 · · ·Xil be a monomial of M with l ∈ {1, 2, . . . , n} and 1 = i1 < i2 <

· · · < il. Then there are precisely two M ∈ M for which M ′ = Xi1Xi2 · · ·Xil , namely
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M = X0Xi2 · · ·Xil and M = X0Xi1Xi2 · · ·Xil . We conclude that
∑

M∈MM ′ = 0. So,
under the coordinate transformation mentioned in (ii), the polynomial f ∗2 =

∑
M∈MM

remains invariant. �

As also 〈f ∗1 〉 is a submodule, we thus have:

Corollary 4.2 Each subspace of {0, f ∗1 , f ∗2 , f ∗1 + f ∗2} is a submodule.

Theorem 4.3 Every submodule of F has the form V1 ⊕ V2, where V1 is a submodule of
{0, f ∗1 , f ∗2 , f ∗1 + f ∗2} and V2 is one of F0,F1, . . . ,Fn.

Proof. Let B be a submodule of the GL(n+ 1, 2)-module F . If all polynomials of B are
constants, then B is equal to either {0} or 〈f ∗1 〉. So, we may suppose that B contains a
polynomial f1 that is not a constant. We choose this nonconstant f1 such that its degree
d ∈ {1, 2, . . . , n+ 1} is as big as possible. We distinguish two cases.

Case I: 1 ≤ d ≤ n

Let Xi1Xi2 . . . Xid with i1 < i2 < · · · < id be a monomial occurring in f1. As d ≤ n, there
exists a j1 ∈ {0, 1, . . . , n} \ {i1, i2, . . . , id}. The substitutions Xi1 7→ Xi1 + Xj1 , Xi 7→ Xi

for all i ∈ {0, 1, . . . , n} \ {i1} turn f1 in another polynomial g that must belong to B.
The difference g− f1 also belongs to B and has the form Xj1f2, where f2 is a polynomial
of degree d − 1 in the variables of the set {X0, X1, . . . , Xn} \ {Xi1 , Xj1}. In fact, f2 is
obtained as follows:

• Remove in f1 all monomials that do not contain the variable Xi1 .

• In all monomials of f1 where the variables Xi1 and Xj1 occur, remove the factor Xi1 .

• In all monomials of f1 where the variable Xi1 occurs but not Xj1 , replace Xi1 by
Xj1 .

In case d ≥ 2, we can apply the above reasoning on f2 to see that B contains an element
of the form Xj1Xj2f3, with j1, j2 distinct elements of {0, 1, . . . , n} and f3 a polynomial of
degree d− 2 in the set {X0, X1, . . . , Xn} \ {Xj1 , Xj2} of variables. An inductive argument
then shows that B contains a monomial of the form Xj1Xj2 · · ·Xjd with j1, j2, . . . , jd
distinct elements of {0, 1, . . . , n}. Further substitutions then show that B contains all
monomials of degree d.

We now show by downwards induction on i ∈ {1, 2, . . . , d} that B contains all mono-
mials of degree i. As we have shown above, this is true for i = d. Consider now an
i ∈ {1, 2, . . . , d − 1} and suppose the claim is valid for i + 1. Let j1, j2, . . . , ji be dis-
tinct elements of {0, 1, . . . , n} and let ji+1 be still another element of this set. By the
induction hypothesis, the monomial f = Xj1 · · ·XjiXji+1

belongs to B. The substi-
tutions Xj1 7→ Xj1 , . . . , Xji 7→ Xji , Xji+1

7→ Xji+1
+ Xji turn f into the polynomial

Xj1 · · ·XjiXji+1
+ Xj1 · · ·Xji . This polynomial as well as f belong to B, implying that

also Xj1Xj2 · · ·Xji belongs to B. Further substitutions then show that B contains all
monomials of degree i.
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By the above, we then have that Fd ⊆ B ⊆ 〈Fd, f ∗1 〉, implying that either B = Fd or
B = 〈Fd, f ∗1 〉.

Case II: d = n+ 1

Since Fn ∩ B is a submodule, we know from Case I that Fn ∩ B = Fl for some l ∈
{0, 1, 2, . . . , n}. If l = n, then since F = Fn ⊕ V2, B must be among the possibilities that
have been listed.

Suppose therefore that l ≤ n− 1. Let f be an element of B of degree d = n+ 1. Then
X0X1 . . . Xn is a monomial occurring in f . We show that for every m ∈ {l+1, l+2, . . . , n+
1}, all monomials of degree m occur in f . We prove this by downwards induction on m,
the case m = n + 1 being obvious as X0X1 · · ·Xn is a monomial occurring in f . Before
we proceed, we note the following: if f ′ is a polynomial obtained from f by permuting
the variables X0, X1, . . . , Xn, then f − f ′ ∈ Fn ∩ B belongs to Fl, implying that if a
monomial of degree m ∈ {l + 1, l + 2, . . . , n + 1} occurs in f , then all monomials of that
degree occur in f . Suppose now that the monomial X0X1 · · ·Xm occurs in f for a certain
m ∈ {l + 1, l + 2, . . . , n}. Let f ′ be the polynomial obtained from f after performing the
substitutions:

X0 7→ X0 +X1, X1 7→ X1, X2 7→ X2, . . . , Xn 7→ Xn.

As f − f ′ ∈ Fn ∩ B belongs to Fl, the monomial X1X2 · · ·Xm cannot occur in f − f ′.
This is only possible if the monomial X0X2 · · ·Xm occurs in f . Hence, all monomials of
degree m occur in f . As Fl ⊆ B and all monomials of degree m ∈ {l+ 1, l+ 2, . . . , n+ 1}
occur in f , we see that at least one of the following occurs:

• f ∗2 ∈ B and 〈Fl, f ∗2 〉 ⊆ B ⊆ 〈Fl, f ∗1 , f ∗2 〉.

• f ∗1 + f ∗2 ∈ B and 〈Fl, f ∗1 + f ∗2 〉 ⊆ B ⊆ 〈Fl, f ∗1 , f ∗2 〉.

So, B is equal to either 〈Fl, f ∗2 〉, 〈Fl, f ∗1 + f ∗2 〉 or 〈Fl, f ∗1 , f ∗2 〉. �

5 The universal pseudo-embedding of Sn,k
Let n, k ∈ N \ {0} with k ≤ n + 1. Choose a basis (ē0, ē1, . . . , ēn) in PG(n, 2) such
that 〈X0ē0 + X1ē1 + · · · + Xnēn〉 is the point (X0, X1, . . . , Xn) of PG(n, 2). The num-
ber of nonzero Xi’s is called the weight of the point (X0, X1, . . . , Xn). Choose a basis
(f̄0, f̄1, . . . , f̄N) in PG(N, 2) with N := Nn,k such that 〈Y0f̄0 + Y1f̄1 + · · · + YN f̄N〉 is the
point (Y0, Y1, . . . , YN) of PG(N, 2). The base vector f̄i with i ∈ {0, 1, . . . , N} is said to be
of type j ∈ {1, 2, . . . , k} if

j−1∑
s=1

(
n+ 1

s

)
≤ i ≤ −1 +

j∑
i=1

(
n+ 1

s

)
.

The corresponding 1-space 〈f̄i〉 will be called a point of type j of PG(N, 2).
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Lemma 5.1 (a) The image of the map εn,k generates PG(N, 2).

(b) For every projectivity θ of PG(n, 2), there exists a projectivity θ of PG(N, 2) such

that εn,k(x
θ) = [εn,k(x)]θ for every point x of PG(n, 2).

(c) εn,k is a homogeneous pseudo-embedding of Sn,k.

Proof. (a) Let Σ denote the subspace of PG(N, 2) generated by the image of εn,k. It
easily follows by induction on j ∈ {1, 2, . . . , k} that all points of type j belong to Σ:

• By considering the images of the points of weight 1 of PG(n, 2), we see that all
points of type 1 of PG(N, 2) are contained in Σ.

• By considering the images of the points of weight w ∈ {2, 3, . . . , k} of PG(n, 2) and
invoking the fact that all points of type l ∈ {1, 2, . . . , w − 1} of PG(N, 2) belong to
Σ, we see that also all points of type w of PG(N, 2) belong to Σ.

Claim (a) of the lemma then follows from the fact that PG(N, 2) is generated by the
points of types 1, 2, ..., k.

(b) Claim (b) of the lemma follows from the definition of the map εn,k and the fact that
A 7→ φ′A defines a faithful representation of GL(n+ 1, 2) on Fk.

(c) In order to prove (c), it suffices by (a) and (b) to show that for any m = 2k+1−1 points
p1, p2, . . . , pm forming a k-dimensional subspace π of PG(n, 2), the points εn,k(p1), εn,k(p2),
. . . , εn,k(pm−1) are linearly independent, and εn,k(pm) ∈ 〈εn,k(p1), εn,k(p2), . . . , εn,k(pm−1)〉.
By part (b), we may assume that π has equation Xk+1 = Xk+2 = · · · = Xn = 0 and that
pm = (1, 1, . . . , 1, 0, 0, . . . , 0) has weight k + 1. Let Ω denote the subspace of dimension
2k+1−3 of PG(N, 2) determined by the 2k+1−2 coordinate positions corresponding to the
monomials M that involve only the variables X0, X1, . . . , Xk and for which 1 ≤ deg(M) ≤
k. Obviously, εn,k(pi) ∈ Ω for every i ∈ {1, 2, . . . ,m}. By a similar reasoning as in (a), we
can see that all m− 1 = 2k+1− 2 points of weight 1 of Ω are all contained in the subspace
〈εn,k(p1), εn,k(p2), . . . , εn,k(pm−1)〉, implying that the points εn,k(p1), εn,k(p2), . . . , εn,k(pm−1)
are linearly independent and εn,k(pm) ∈ Ω = 〈εn,k(p1), εn,k(p2), . . . , εn,k(pm−1)〉. �

Parts (1) and (2) of Theorem 1.1 are now immediate consequences of Proposition 2.4 and
Lemmas 3.1, 5.1. We now also see that the pseudo-generating set constructed in Lemma
3.1 has the smallest possible size.

For every f ∈ F , we denote by Xf the set of all points (X0, X1, . . . , Xn) of PG(n, 2)
for which f(X0, X1, . . . , Xn) = 0. Theorem 1.1(2) and Proposition 2.1 then imply the
following.

Theorem 5.2 The pseudo-hyperplanes of Sn,k are precisely the sets Xf for elements f ∈
Fk \ {0}. The map f 7→ Xf defines a bijective correspondence between Fk \ {0} and the
set of pseudo-hyperplanes of Sn,k.
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6 The homogeneous pseudo-embeddings of Sn,k
In this section, we classify all homogeneous pseudo-embeddings of Sn,k, where n, k ∈
N \ {0} with k ≤ n + 1. The case k = n + 1 is straightforward. In this case, the
geometry Sn,k = Sn,n+1 has no lines and so the automorphism group is the symmetric
group on 2n+1 − 1 letters. It is then easily seen that there are up to isomorphism three
homogeneous pseudo-embeddings, the universal one whose image is a basis in a projective
space of dimension 2n+1−2, the pseudo-embedding whose image is a frame in a projective
space of dimension 2n+1 − 3, and an unfaithful pseudo-embedding where all points have
the same image. In the sequel, we suppose that k ≤ n.

Lemma 6.1 If f1 and f2 are two elements of Fk, then Xf1+f2 = Xf1 ∗Xf2.

Proof. If p = (X0, X1, . . . , Xn) is a point of PG(n, 2), then (f1+f2)(X0, X1, . . . , Xn) = 0 if
and only if f1(X0, X1, . . . , Xn) = f2(X0, X1, . . . , Xn), i.e. if and only if either p ∈ Xf1∩Xf2

or p 6∈ Xf1 ∪Xf2 . This happens precisely when p ∈ Xf1 ∗Xf2 . �

Lemma 6.2 Let A be a nonsingular (n + 1) × (n + 1) matrix over F2 and let f ∈ Fk \
{0}. Put g = fφ

′
A and let η be the projectivity of PG(n, 2) mapping (X0, X1, . . . , Xn) to

(Y0, Y1, . . . , Yn), where [Y0 Y1 · · · Yn]T = A−1 · [X0 X1 · · · Xn]T . Then Xg = Xη
f .

Proof. Let g̃ denote the polynomial obtained from f by performing the substitu-
tions [X0, X1, · · · , Xn]T 7→ A · [X0, X1, · · · , Xn]T . By definition of φ′A, we know that
g − g̃ ∈ I. So, the set Xg̃ consisting of all points (X0, X1, . . . , Xn) of PG(n, 2) sat-
isfying g̃(X0, X1, . . . , Xn) coincides with Xg. Suppose Y0, Y1, . . . , Yn, X0, X1, . . . , Xn are
variables related by the equation [Y0, Y1, · · · , Yn]T = A−1 · [X0, X1, · · · , Xn]T , then A ·
[Y0, Y1, · · · , Yn]T = [X0, X1, · · · , Xn]T and f(X0, X1, . . . , Xn) = g̃(Y0, Y1, . . . , Yn), from
which it follows that Xg̃ = Xη

f . �

Now, suppose ε : Sn,k → Σ is a homogeneous pseudo-embedding of Sn,k. Let Fε denote
the set of all polynomials f ∈ Fk such that either f 6= 0 and Xf ∈ Hε, or f = 0, see
Theorem 5.2. By Proposition 2.3(a)+(b) and Lemmas 6.1, 6.2, the following properties
hold:

(1) If f1, f2 ∈ Fε, then f1 + f2 ∈ Fε.

(2) If f ∈ Fε and A ∈ GL(n+ 1, 2), then fφ
′
A ∈ Fε.

We conclude that Fε is a submodule of the GL(n+1, 2)-module Fk. From the classification
of the submodules of the GL(n + 1, 2)-module F , see Theorem 4.3, it then follows that
Fε = Fl for some l ∈ {1, 2, . . . , k}.

We show that l = k. Suppose to the contrary that l < k. Consider the k-dimensional
subspace α of PG(n, 2) with equations Xk+1 = Xk+2 = · · · = Xn = 0, and consider the
following points of α:

p1 = (1, 1, . . . , 1, 0, 0, . . . , 0), p2 = (1, 1, . . . , 1, 1, 0, . . . , 0),
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where p1 has weight k and p2 has weight k + 1. By Proposition 2.2, there exists an
f ∈ Fε \ {0} such that Xf contains all points of α, except for p1 and p2.

Put f =
∑

M∈M′ kM ·M , whereM′ is the set of all monomials of degree at most k ofM
and kM ∈ F2 for all M ∈M′. As all points of α with weight w ∈ {1, 2, . . . , k−1} belong to
Xf , an inductive argument easily shows that kM = 0 for all M ∈M′∩F2[X0, X1, . . . , Xk]
for which deg(M) ∈ {1, 2, . . . , k − 1}. Since the point p1 = (1, 1, . . . , 1, 0, . . . , 0) does not
belong to Xf , this then implies that kM = 1 if M = X0X1 . . . , Xk−1. As f ∈ Fl, this
implies that l ≥ k, i.e. l = k.

So, Fε = Fk and Hε consists of all pseudo-hyperplanes of Sn,k by Theorem 5.2. Propo-
sition 2.1 then implies that ε is isomorphic to the universal pseudo-embedding of Sn,k.
This finishes the proof of Theorem 1.1(3).

7 Application to homogeneous full projective embed-

dings of DW (2n− 1, 2)

7.1 Proof of Theorem 1.2

Suppose ε : DW (2n − 1, 2) → Σ is a homogeneous full embedding of DW (2n − 1, 2)
in a projective space Σ. Let G ∼= Sp(2n, 2) denote the full automorphism group of
DW (2n − 1, 2). For every point x of DW (2n − 1, 2), Sx ∼= PG(n − 1, 2) and so we may
identify PG(n − 1, 2) with Sx. Every element of the stabilizer Gx of x inside G then
determines an automorphism of Sx = PG(n − 1, 2), and every automorphism of Sx is
induced by an element of Gx. Let L denote the set of all lines through x, and for every
convex subspace F through x, let LF denote the set of lines through x contained in F .
Then ε defines a map εx from the point set L of Sx = PG(n − 1, 2) to the set of points
of the quotient space Σx/ε(x). If the image of L is a collection of linearly independent
points of Σx/ε(x), then εx defines a pseudo-embedding of Sn−1,n into Σx/ε(x) which is
isomorphic to the universal pseudo-embedding εn−1,n. Suppose therefore that the image
of L is not a collection of linearly independent points of Σx/ε(x). Then let δ ≥ 2 be the
smallest positive integer such that there exists a convex subspace F of diameter δ through
x for which the image of LF is not a linearly independent set of points of Σx/ε(x). As δ
is the smallest diameter for which this is possible, we then know that εx(LF ) is a frame
of a subspace of Σx/ε(x). Since ε is homogeneous and Gx acts transitively on the set of
subspaces of dimension δ − 1 of Sx = PG(n − 1, 2), we then see that for every convex
subspace F ′ of diameter δ through x, the set εx(LF ′) is a frame of a subspace Σx/ε(x). So,
εx defines a pseudo-embedding of the geometry Sx,δ−1. Since Gx induces the full group of
automorphisms of Sx = PG(n− 1, 2) and ε is homogeneous, the pseudo-embedding εx of
Sx,δ−1 should also be homogeneous, i.e. isomorphic to εn−1,δ−1 by Theorem 1.1(3).

7.2 Homogeneous full projective embeddings of types 1 and n

Proposition 7.1 The universal embedding of DW (2n− 1, 2) has type n.
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Proof. Let x be a point of DW (2n − 1, 2) and ε̃ : DW (2n − 1, 2) → Σ̃ the universal

embedding of DW (2n−1, 2). By McClurg [22] and Li [20], we then know that dim(Σ̃x) =
2n − 1 =

∑n
i=1

(
n
i

)
. This implies by Theorem 1.2 that ε̃ has type n. �

Proposition 7.2 Suppose ε is a homogeneous full projective embedding of DW (2n−1, 2)
of type 1. Then ε is isomorphic to the spin-embedding of DW (2n− 1, 2).

Proof. As ε is homogeneous, we know from Blok et al. [3, Theorem 1.1] that ε is
polarized.

Suppose now that Q is a quad, x a point of Q and L1, L2, L3 three lines of Q through
x. Since ε has type 1, there exists a plane α of the embedding space that contains ε(x)

such that ε(L1), ε(L2), ε(L3) are the three lines of α through ε(x). Note that Q̃ ∼=
DW (3, 2) ∼= Q(4, 2) ∼= W (2). From the classification of the full projective embeddings
of the generalized quadrangle Q(4, 2) ∼= W (2), it then follows that 〈ε(Q)〉 should have
dimension 3. Together with the fact that ε is polarized, it then follows from [11, Theorem
1.6] that ε is isomorphic to the spin-embedding of DW (2n− 1, 2). �

7.3 The existence of homogeneous embeddings for each type
i ∈ {1, 2, . . . , n}

Let x be a point of DW (2n−1, 2). Then Sx ∼= PG(n−1, 2) and as before we may identify
PG(n−1, 2) with Sx. The points of PG(n−1, 2) are then the lines ofDW (2n−1, 2) through
x. For every hyperplane H containing x, let LH denote the set of lines through x contained
in H. The hyperplane H arises from the universal embedding ẽ : DW (2n − 1, 2) → Σ̃
of DW (2n − 1, 2), implying by Proposition 7.1 and Theorem 1.2 that LH is either the
whole set of lines through x or a pseudo-hyperplane of Sn−1,n arising from its universal
pseudo-embedding ε̃n−1,n. Let fH be the unique element of Fn such that LH = XfH (see
Theorem 5.2). We say that H has type i ∈ {−∞, 1, 2, . . . , n} with respect to x if i is
the degree of fH . A collection H of hyperplanes of DW (2n − 1, 2) is said to be of type
i ∈ {−∞, 1, 2, . . . , n} with respect to x if there exists a hyperplane H of H containing
x and if i is the maximal degree of the polynomials fH , where H is a hyperplane of H
through x. The following is an immediate consequence of Theorems 1.1(2), 1.2, 5.2 and
Proposition 2.1.

Proposition 7.3 A homogeneous full projective embedding ε of DW (2n− 1, 2) has type
i ∈ {1, 2, . . . , n} if and only if Hε has type i with respect to one (and hence all) points of
DW (2n− 1, 2).

We shall use Proposition 7.3 to prove that homogeneous full projective embeddings of
DW (2n− 1, 2) exist for all types i ∈ {1, 2, . . . , n}. To achieve this goal, we shall need the
following notion and invoke the following two lemmas.

A set H of hyperplanes of DW (2n − 1, 2) is called complete if H1 ∗ H2 ∈ H for all
H1, H2 ∈ H with H1 6= H2. For every set H of hyperplanes of DW (2n− 1, 2), we denote
by 〈H〉 the smallest complete set of hyperplanes containing H.
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Lemma 7.4 Let F1 and F2 be two convex subspaces of diameter δ ∈ {1, 2, . . . , n} of

DW (2n− 1, 2). Let Hi with i ∈ {1, 2} be a hyperplane of F̃i and let Hi be the hyperplane
of DW (2n− 1, 2) that arises by extending Hi. If x is a point of DW (2n− 1, 2) contained

in H1 ∗H2 but not in H1 ∪H2, then there exists a hyperplane G1 of F̃1, a hyperplane G2

of F̃2 and points y1, y2, . . . , yk of DW (2n− 1, 2) for some k ∈ N such that

• x ∈ G1 ∩G2, where Gi with i ∈ {1, 2} denotes the extension of Gi;

• d(x, yi) = n− 1 for every i ∈ {1, 2, . . . , k};

• H1 ∗H2 = G1 ∗G2 ∗Hy1 ∗Hy2 ∗ · · · ∗Hyk .

Proof. As x 6∈ Hi, we have d(x, Fi) = n−δ for every i ∈ {1, 2} and so there exists a point

ui ∈ Fi not contained in Hx. As Hx∩Fi is the singular hyperplane of F̃i with center πFi
(x),

and every subspace containing Fi \ (Fi ∩Hx) contains the whole of Fi, we can take ui in
such a way that ui 6∈ Hx∪Hi. Put Gi := Hi ∗′ (H ′ui), where H ′ui is the singular hyperplane

of F̃i with center ui, and the operator ∗′ is defined on the subsets of Fi. As Hi 6= H ′ui , the

set Gi is a hyperplane of F̃i. Moreover, Hi = Gi∗′ (H ′ui). By the definition of extensions of

hyperplanes, we then know that Hi = Gi ∗Hui and Gi = Hi ∗Hui . Hence, H1 ∗H2 = G1 ∗
G2∗Hu1∗Hu2 , x 6∈ Hu1∪Hu2 and x ∈ G1∩G2. If u1 = u2, then H1∗H2 = G1∗G2 and we are
done. We suppose therefore that u1 6= u2. By Shult [25, Lemma 6.1] or Blok and Brouwer
[2, Theorem 7.3], there exists a path u1 = z0, z1, . . . , zk = u2 in the complement of Hx

that connects u1 with u2. For every i ∈ {1, 2, . . . , k}, let yi be the unique point of the line
zi−1zi distinct from zi−1 and zi. Since d(x, zi−1) = d(x, zi) = n, we have d(x, yi) = n− 1.
Also, Hu1 ∗Hu2 = (Hz0 ∗Hz1) ∗ (Hz1 ∗Hz2) ∗ · · · ∗ (Hzk−1

∗Hzk) = Hy1 ∗Hy2 ∗ · · · ∗Hyk and

H1 ∗H2 = G1 ∗G2 ∗Hy1 ∗Hy2 ∗ · · · ∗Hyk . �

Lemma 7.5 Let G be a hyperplane of a convex subspace F of diameter δ ≥ 1 of DW (2n−
1, 2). Let x be a point of DW (2n − 1, 2) at distance n − δ from F such that πF (x) ∈ G.
Then x belongs to the hyperplane G of DW (2n− 1, 2) that extends G, and the type of the
hyperplane G of DW (2n − 1, 2) with respect to x equals the type of the hyperplane G of

F̃ with respect to πF (x).

Proof. Let F ′′ be the convex subspace 〈x, πF (x)〉 of diameter n − δ, and let F ′ be a
convex subspace of diameter δ through x such that F ′ ∩F ′′ = {x}. In Sx = PG(n− 1, 2),
let α′ and α′′ be the complementary subspaces corresponding to respectively F ′ and F ′′.
Let L denote the set of lines through x contained in G, and let L′ denote the set of
lines through x contained in F ′ ∩ G. Let X, respectively X ′, denote the set of points of
Sx = PG(n − 1, 2) corresponding to L, respectively L′. Then L is the cone with vertex
α′′ and basis X ′ ⊆ α′. With respect to a suitable basis of Sx = PG(n − 1, 2), we thus
have fG = fG∩F ′ . So, the type of the hyperplane G of DW (2n − 1, 2) with respect to x

coincides with the type of the hyperplane G ∩ F ′ of F̃ ′ with respect to x. Now, every
point of F ′ has distance n − δ from F and the map y 7→ πF (y) defines an isomorphism

between F̃ ′ and F̃ mapping G∩F ′ to G. So, the type of the hyperplane G∩F ′ of F̃ ′ with
respect to x coincides with the type of the hyperplane G of F̃ with respect to πF (x). �
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Now, for every i ∈ {1, 2, . . . , n}, letHi denote the set of hyperplanes of DW (2n−1, 2) that
arise by extending a hyperplane of a convex subspace of diameter i of DW (2n − 1, 2).
Then Hi contains all singular hyperplanes (as extensions of singular hyperplanes are
again singular hyperplanes). The set 〈Hi〉 of hyperplanes of DW (2n − 1, 2) satisfies the
properties (a) and (b) mentioned in Proposition 2.3. It also satisfies Property (c): for
every flag (x, L) of DW (2n−1, 2), there exists a point y at distance n−1 from L such that
x is the unique point of L nearest to y, and for each such point y, the singular hyperplane
Hy ∈ Hi ⊆ 〈Hi〉 intersects L in the singleton {x}. Proposition 2.3 tells us now that
there exists a unique homogeneous full projective embedding ε of DW (2n−1, 2) for which
〈Hi〉 = Hε. If i = n, then 〈Hi〉 = Hi consists of all hyperplanes of DW (2n−1, 2), implying
by Proposition 2.1 that ε is isomorphic to the universal embedding of DW (2n−1, 2) which
has type n by Proposition 7.1.

Theorem 7.6 ε is a homogeneous full projective embedding of DW (2n− 1, 2) of type i.

Proof. We will rely on Proposition 7.3. Let x be an arbitrary point of DW (2n − 1, 2).
We need to prove the following two facts:

(1) There exists a hyperplane H ∈ Hε through x that has type i with respect to x.

(2) The type with respect to x of any hyperplane H ∈ Hε through x is at most i.

We first prove (1). Let F be a convex subspace of diameter i for which d(x, F ) = n − i.
Let G be a hyperplane of F̃ through πF (x) such that G has maximal possible type i with
respect to x. By Propositions 7.1 and 7.3, such a hyperplane can be taken in the set Hε̃

where ε̃ is the universal embedding of F̃ . Let H be the hyperplane of DW (2n− 1, 2) that
extends G. By Lemma 7.5, the hyperplane H through x has type i with respect to x.

We next prove (2). We first deal with the case where H is the extension of a hyperplane
G of a convex subspace F of diameter i. If d(x, F ) ≤ n − i − 2 or (d(x, F ) = n − i − 1
and πF (x) ∈ G), then x⊥ ⊆ H and so fH = 0 has degree −∞. If d(x, F ) = n − i − 1
and πF (x) 6∈ G, then LH consists of all lines through x contained in the convex subspace
〈x, F 〉 of diameter n− 1, implying that LH is a hyperplane of Sx and that fH has degree
1. (Note that every line of LH can only contain points at distance at most n− i− 1 from
F .) Finally, suppose that d(x, F ) = n − i. Then πF (x) ∈ G, and the degree of G with
respect to πF (x) is at most i. By Lemma 7.5, it then follows that H has degree at most
i with respect to x.

In the general case, we know thatH = H ′1∗H ′2∗· · ·∗H ′h for suitableH ′1, H
′
2, . . . , H

′
h ∈ Hi

(as H ∈ Hε = 〈Hi〉). Since x ∈ H, an even number of the hyperplanes H ′1, H
′
2, . . . , H

′
h

do not contain x. If two of these hyperplanes do not contain x, then Lemma 7.4 implies
that they can be replaced by a number of others that do contain x. We conclude that H
can be written in the form H1 ∗H2 ∗ · · · ∗Hk, where each Hj, j ∈ {1, 2, . . . , k}, contains x
and is the extension of a hyperplane Gj of a convex subspace Fj of diameter i. We have
fH = fH1 + fH2 + · · · + fHk

by Lemma 6.1. Since each polynomial fHj
, j ∈ {1, 2, . . . , k},

has degree at most i, we see that fH should also have degree at most i. �
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7.4 Embeddings induced by full projective embeddings of DH(2n−
1, 4)

Throughout this subsection, δ denotes an arbitrary element of F4\{0, 1}. Then δ2+δ = 1.
In the following two propositions, we construct two homogeneous pseudo-embeddings of
PG(n, 4), n ≥ 1. Note that these two pseudo-embeddings coincide when n = 1.

Proposition 7.7 ([15, Proposition 4.2]) The map e which maps every point (X0, X1,
. . . , Xn) of PG(n, 4) to the point (X3

0 , X
3
1 , . . . , X

3
n, XiX

2
j + XjX

2
i , δXiX

2
j + δ2XjX

2
i | 0 ≤

i < j ≤ n) of PG(n2 + 2n, 2) is a homogeneous pseudo-embedding of PG(n, 4).

Proposition 7.8 ([14, Theorem 1.1]) Let ẽ be a map from PG(n, 4) to PG(k, 2), k =
n3+3n2+5n

3
, mapping the point p = (X0, X1, . . . , Xn) of PG(n, 4) to the point ẽ(p) =

(Y0, Y1, . . . , Yk) of PG(k, 2), where
• n+ 1 coordinates of ẽ(p) are of the form X3

i , where i ∈ {0, 1, . . . , n};
•
(
n+1
2

)
coordinates of ẽ(p) are of the form XiX

2
j + X2

iXj, where i, j ∈ {0, 1, . . . , n}
and i < j;
•
(
n+1
2

)
coordinates of ẽ(p) are of the form δXiX

2
j + δ2X2

iXj, where i, j ∈ {0, 1, . . . , n}
and i < j;
•
(
n+1
3

)
coordinates of ẽ(p) are of the form XiXjXk+X

2
iX

2
jX

2
k , where i, j, k ∈ {0, 1, . . . ,

n} and i < j < k;
•
(
n+1
3

)
coordinates of ẽ(p) are of the form δXiXjXk + δ2X2

iX
2
jX

2
k , where i, j, k ∈

{0, 1, . . . , n} and i < j < k.

Then ẽ is a pseudo-embedding of PG(n, 4) which is isomorphic to the universal pseudo-
embedding of PG(n, 4).

The pseudo-embedding e of PG(n, 4) constructed in Proposition 7.7 is called the Hermitian
Veronese embedding of PG(n, 4). The determination of the universal pseudo-embedding of
PG(n, 4) obtained in [14] relied on the classification of the pseudo-hyperplanes of PG(n, 4)
which itself was realized in the papers [26, 27] (for n = 2), [18] (for n = 3) and [24]
(for general n). In [14, Theorem 1.4], we also obtained a complete classification of all
homogeneous pseudo-embeddings of PG(n, 4).

Proposition 7.9 Every homogeneous pseudo-embedding of PG(n, 4) is isomorphic to the
Hermitian Veronese embedding or to the universal pseudo-embedding of PG(n, 4).

Regard now PG(n, 2) as a Baer subgeometry of PG(n, 4). Then any map ε : PG(n, 4)→ Σ
from the point set of PG(n, 4) to the point set of a projective space Σ will induce a map
ε′ : PG(n, 2) → Σ′ from PG(n, 2) to the subspace Σ′ of Σ generated by the image of
PG(n, 2). Using the fact that δ2 + δ = 1 and X2 = X for every X ∈ F2, the following is
then easily seen to be true.

Proposition 7.10 (1) If ε : PG(n, 4) → Σ is the Hermitian Veronese embedding of
PG(n, 4), then the induced map ε′ : PG(n, 2)→ Σ′ is isomorphic to εn,2.
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(2) If ε : PG(n, 4)→ Σ is the universal pseudo-embedding of PG(n, 4) with n ≥ 2, then
the induced map ε′ : PG(n, 2)→ Σ′ is isomorphic to εn,3.

We now discuss some applications of the above to homogeneous full projective em-
beddings of DH(2n − 1, 4), n ≥ 2. Recall that DH(2n − 1, 4) is the dual polar space
associated with a unitary polarity of PG(2n− 1, 4). For every point x of DH(2n− 1, 4),
let Sx denote the point-line geometry whose points and lines are the lines and quads of
DH(2n− 1, 4) through x, with incidence being containment. Then Sx ∼= PG(n− 1, 4). If
ε is a full embedding of DH(2n − 1, 4) into a projective space Σ, then the image of x⊥

generates a subspace Σx of Σ. The embedding ε induces a map εx : Sx → Σx/ε(x) of the
point set of Sx to the set of points of the quotient space Σx/ε(x).

Proposition 7.11 Suppose ε is a homogeneous full embedding of DH(2n − 1, 4) in a
projective space Σ. Then εx is isomorphic to the Hermitian Veronese embedding or to the
universal pseudo-embedding of Sx ∼= PG(n− 1, 4).

Proof. We first show that εx is a pseudo-embedding of Sx. Let Q be a quad through x
and let L1, L2, L3, L4, L5 denote the five lines through x contained in Q. The embedding
ε induces a full projective embedding of Q̃ ∼= DH(3, 4) ∼= Q−(5, 2), which is isomorphic
to the standard embedding of that generalized quadrangle in PG(5, 2). By a known
property of this standard embedding, the set {ε(L1), ε(L2), ε(L3), ε(L4), ε(L5)} defines a
frame of a 3-dimensional subspace of the quotient space Σx/ε(x). This implies that εx is
a pseudo-embedding of Sx.

In view of Proposition 7.9, it suffices to show that the pseudo-embedding εx is homoge-
neous. But similarly as in the case of the dual polar space DW (2n−1, 2), this follows from
the fact that ε is homogeneous and that the stabilizer of x inside the full automorphism
group of DH(2n− 1, 4) induces the full group of automorphisms of Sx ∼= PG(n− 1, 4). �

If ε is a homogeneous full projective embedding of DH(2n−1, 4), then ε is said to be of type
1 if εx is isomorphic to the Hermitian Veronese embedding of Sx ∼= PG(n−1, 4), and of type
2 if n ≥ 3 and εx is isomorphic to the universal pseudo-embedding of Sx ∼= PG(n− 1, 4).
As ε is homogeneous, these definitions do not depend on the considered point x. By [6,
Corollary 1.5] (see also [23, Theorem 9.3]), the Grassmann-embedding of DH(2n − 1, 4)
has type 1, and by [13, Theorem 1.4], the universal embedding of DH(2n− 1, 4) has type
2 if n ≥ 3. Note that the universal embedding of DH(3, 4) ∼= Q−(5, 2) has type 1 as this
embedding is isomorphic to the Grassmann embedding.

Proposition 7.12 Suppose DW (2n−1, 2) is fully and isometrically embedded in DH(2n−
1, 4). Let ε be a homogeneous full projective embedding of DH(2n− 1, 4) and let ε′ be the
homogeneous full projective embedding of DW (2n−1, 2) induced by ε. Then the following
hold:

• If ε has type 1, then ε′ has type 2. In particular, this holds if ε is isomorphic to the
Grassmann embedding of DH(2n− 1, 4).
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• If ε has type 2, then ε′ has type 3. In particular, this holds if n ≥ 3 and ε is
isomorphic to the universal embedding of DH(2n− 1, 4).

Proof. Let x be a point of DW (2n−1, 2). The lines and quads of DH(2n−1, 4) through
x define a point-line geometry Sx ∼= PG(n−1, 4), and the lines of DW (2n−1, 2) through x
define a Baer subgeometry of Sx ∼= PG(n− 1, 4). The claim now follows from Proposition
7.10. �

By [12, Theorem 1.1], we know that the full projective embedding of DW (2n − 1, 2)
induced by the Grassmann embedding of DH(2n− 1, 4) is isomorphic to the Grassmann
embedding of DW (2n − 1, 2). So, we see that parts (3) and (4) of Theorem 1.3 are also
valid. The fact that the Grassmann embedding of DW (2n− 1, 2) has type 2 also follows
from [6, Corollary 1.5] and Pasini [23, Theorem 9.3].

7.5 Universal homogeneous projective embeddings of type i

Let ε̃ : DW (2n− 1, 2)→ Σ̃ denote the universal embedding of DW (2n− 1, 2) = (P ,L, I).
Let G ∼= Sp(2n, 2) denote the full automorphism group of DW (2n−1, 2). As ε̃ is homoge-

neous, G lifts to a group G̃ of projectivities of Σ̃. If x is a point ofDW (2n−1, 2), then there

exists a unique hyperplane Πx of Σ̃ such that Hx = ε̃−1(ε̃(P) ∩ Πx). Put I :=
⋂
x∈P Πx.

Let Lx denote the set of lines of DW (2n−1, 2) through x. As Sx ∼= PG(n−1, 2), we may
identify Lx with the point set of PG(n− 1, 2). By Proposition 7.1 and Theorem 1.2, the

full projective embedding ε̃ induces a map ε̃x from Lx to Σ̃x/ε̃(x) which is isomorphic to
the universal embedding εn−1,n of Sn−1,n.

Now, fix a certain i ∈ {1, 2, . . . , n}. Then εn−1,i is also a pseudo-embedding of Sn−1,n
(as there are no lines), and so is isomorphic to a quotient of εn−1,n. Let βi be the unique

subspace of Σ̃x through ε(x) such that the quotient of ε̃x defined by the subspace βi/ε(x)

of Σ̃x/ε(x) is isomorphic to εn−1,i. Now, let πi denote the smallest G̃-invariant subspace

of Σ̃ containing βi ∩ I.

Theorem 7.13 The following hold:

(1) πi is disjoint from the image of ε̃;

(2) ε̃/πi is a homogeneous full projective embedding of type i of DW (2n− 1, 2);

(3) if ε is a homogeneous full projective embedding of type i of DW (2n − 1, 2) then
ε̃/πi ≥ ε.

Proof. Obviously, the subspace I is G̃-invariant. For every point y of DW (2n − 1, 2),
there exists a point z at maximal distance n from y, and for each such point z, we have
y 6∈ Hz and ε̃(y) 6∈ Πz. So, I is disjoint from the image of ε̃. As βi ∩ I ⊆ I and I is

G̃-invariant, we have that πi ⊆ I is disjoint from the image of ε̃. So, ε̃/πi defines a full

projective embedding of DW (2n− 1, 2). As πi is G̃-invariant, ε̃/πi is a homogeneous full
projective embedding of DW (2n− 1, 2).
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Suppose that ε is a homogeneous full projective embedding of type j of DW (2n−1, 2).
Without loss of generality, we may suppose that ε = ε̃/α, where α is some suitable

subspace of Σ̃ disjoint from the image of ε̃. Since ε is homogeneous, we know from Blok
et al. [3, Theorem 1.1] that ε is also polarized, implying that α ⊆ Πy for every y ∈ P ,

i.e. α ⊆ I. As ε is homogeneous, we also know from [3] that α is G̃-invariant. Put

β := 〈ε̃(x), α ∩ Σ̃x〉. As ε is a homogeneous embedding of type j, the quotient of the

map ε̃x defined by the subspace β/ε(x) of Σ̃x/ε̃(x) must be isomorphic to the universal
pseudo-embedding εn−1,j of Sn−1,j. This implies that β = βj. Since α ⊆ I, we have

I∩βj = I∩β = α∩Σ̃x ⊆ α. As α is G̃-invariant, α contains the subspace πj. This implies
that ε = ε̃/α is isomorphic to a quotient of ε̃/πj. The above reasoning in combination
with Theorem 1.2 also shows that if homogeneous full projective embeddings of type j
exist, then the homogeneous full projective embedding ε̃/πj should have type j. But such
homogeneous projective embeddings indeed exist by Theorem 1.3(1). �
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