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Abstract

We construct a homogeneous full projective embedding of the dual polar space
DW (2n−1, 2) from the hyperplane intersections of hyperbolic type of the parabolic
quadric Q(2n, 2). We believe that this embedding is universal, but have not suc-
ceeded in proving that. As a by-product of our investigations, we have obtained
necessary and sufficient conditions for this to be the case and came across two
other homogeneous full projective embeddings of DW (2n − 1, 2), one with vector

dimension 22n−1+3·2n−1−2
3 and another one with vector dimension 22n−1+3·2n−1−2−6n

3 .
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1 Introduction

The study of projective embeddings of point-line geometries is motivated by the fact that such
embeddings often offer extra insight in certain aspects or properties of the geometries under con-
sideration. Projective spaces are the natural habitat for certain embeddable geometries and for
certain applications (like Tits’ classification of polar spaces), it is often necessary as a first step
to show that the studied geometries admit projective embeddings. Among all projective embed-
dings, the most interesting and symmetric ones are those that are homogeneous. An interesting
feature of these embeddings is that they give rise to (ordinary or projective) representations of
the automorphism groups of the geometries. In this paper, we construct and investigate three
homogeneous full projective embeddings of the dual polar space DW (2n− 1, 2).

Let ζ be a symplectic polarity of the projective space PG(2n − 1, 2), n ≥ 2. A subspace π
of PG(2n− 1, 2) is said to be totally isotropic (with respect to ζ) if π ⊆ πζ . Associated with ζ,
there is a symplectic dual polar space DW (2n− 1, 2) of rank n. This is the point-line geometry
whose points are the (n − 1)-dimensional totally isotropic subspaces and whose lines are the
(n− 2)-dimensional totally isotropic subspaces, with incidence being reverse containment.

A full projective embedding of DW (2n − 1, 2) is an injective mapping ε from the point set
P of DW (2n − 1, 2) to the set of points of a projective space PG(V ) mapping every line of
DW (2n − 1, 2) to a full line of PG(V ) such that the image Im(ε) of ε generates the whole
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projective space PG(V ). As every line of DW (2n− 1, 2) is incident with precisely three points,
the vector space V should then be defined over the field F2. A full projective embedding ε of
DW (2n − 1, 2) into a projective space PG(V ) will shortly be denoted by ε : DW (2n − 1, 2) →
PG(V ). The dimension dim(V ) of V is called the vector dimension of ε.

Suppose ε : DW (2n − 1, 2) → PG(V ) is a full projective embedding and α is a subspace of
PG(V ) disjoint from any line containing at least two points of Im(ε). Then a new projective
embedding ε/α : DW (2n − 1, 2) → PG(V )/α can be defined which maps each point x of
DW (2n − 1, 2) to the point 〈α, ε(x)〉 of the quotient space PG(V )/α. The embedding ε/α is
called a quotient of ε.

Two full projective embeddings ε1 : DW (2n − 1, 2) → PG(V1) and ε2 : DW (2n − 1, 2) →
PG(V2) are called isomorphic, denoted by ε1 ∼= ε2, if there exists an isomorphism φ : PG(V1)→
PG(V2) such that ε2 = φ ◦ ε1. We say that ε1 ≥ ε2 if ε2 is isomorphic to a quotient of ε1. A
full projective embedding ε of DW (2n− 1, 2) is called universal if ε ≥ ε′ for any full projective
embedding ε′ of DW (2n − 1, 2). Up to isomorphism, DW (2n − 1, 2) has a unique universal
embedding which we will denote by ε̃0 : DW (2n − 1, 2) → PG(Ṽ0). The vector dimension
dim(Ṽ0) of ε̃0 is also called the embedding rank of DW (2n− 1, 2). The structure of the universal
embedding of DW (2n− 1, 2) is not so well understood, but its vector dimension is known to be

equal to (2n+1)(2n−1+1)
3 , as was proved by Yoshiara [21, Proposition 6.4] for n = 3, by Cooperstein

[8] for n ∈ {4, 5} and for general n independently by Blokhuis & Brouwer [2] and Li [15].
A full projective embedding ε : DW (2n− 1, 2)→ PG(V ) is called homogeneous if for every

automorphism θ of DW (2n−1, 2), there exists a (necessarily unique) automorphism θ of PG(V )
such that ε ◦ θ = θ ◦ ε. The universal embedding is homogeneous. In this case, we denote θ also
by θ̃ and we put G̃ := {θ̃ | θ ∈ G}, where G is the full automorphism group of DW (2n− 1, 2).

Suppose ε̃0 : DW (2n− 1, 2)→ PG(Ṽ0) is the universal embedding of DW (2n− 1, 2), n ≥ 3.
Then we will show that there exist G̃-invariant subspaces α̃1 and α̃2 of PG(Ṽ0) of respective
projective dimensions 0 and 2n. This implies (see Lemma 2.3) that the quotient embeddings
ε̃1 ∼= ε̃0/α̃1 and ε̃2 ∼= ε̃0/α̃2 are homogeneous projective embeddings. So, we have:

Theorem 1.1 There exist homogeneous full projective embeddings ε̃1 and ε̃2 of DW (2n− 1, 2),

n ≥ 3, whose vector dimensions are respectively equal to 22n−1+3·2n−1−2
3 and 22n−1+3·2n−1−2−6n

3 .

The dual polar space DW (2n − 1, 2) is isomorphic to the dual polar space DQ(2n, 2) whose
points are the (n− 1)-dimensional subspaces (or generators) of a parabolic quadric Q(2n, 2) of
PG(2n, 2) and whose lines are the (n − 2)-dimensional subspaces of Q(2n, 2), with incidence
being reverse containment. Let Q+ denote the set of all hyperplanes of PG(2n, 2) that intersect
Q(2n, 2) in a hyperbolic quadric of type Q+(2n − 1, 2). Consider then a vector space Wh of
dimension |Q+| having a basis {v̄q | q ∈ Q+} whose elements are indexed by the elements of Q+.
For every point α of DQ(2n, 2), put

εh(α) := 〈
∑

α⊂q∈Q+

v̄q〉 ∈ PG(Wh).

We will show the following.

Theorem 1.2 The map εh defines a homogeneous full projective embedding of DQ(2n, 2) into
the subspace PG(Vh) of PG(Wh) generated by the image of εh.
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We refer to the embedding εh as the hyperbolic embedding of DQ(2n, 2) ∼= DW (2n − 1, 2). We
conjecture that this embedding is universal, but were not successful in proving that. Instead, we
have determined necessary and sufficient conditions for this to be the case, see Propositions 3.5,
7.7(d), 7.9 and Corollary 7.10. The conjecture that the embedding εh is universal is supported by
some computer computations of Peter Vandendriessche which show the validity of this conjecture
for n ≤ 7.

2 Preliminaries

With the symplectic polarity ζ of PG(2n − 1, 2), n ≥ 2, there is also associated a polar space
W (2n− 1, 2) in the sense of Tits [20, Chapter 7]. The points of W (2n− 1, 2) are the points of
PG(2n − 1, 2) and the singular subspaces of W (2n − 1, 2) are the subspaces of PG(2n − 1, 2)
that are totally isotropic with respect to ζ.

Let Q(2n, 2) with n ≥ 2 be a parabolic quadric of PG(2n, 2), i.e. a set of points having
equation X2

0 +X1X2+· · ·+X2n−1X2n = 0 with respect to a suitable reference system. Denote by
k the kernel of Q(2n, 2), i.e. the intersection of all tangent hyperplanes. Note that a hyperplane
of PG(2n, 2) is tangent to Q(2n, 2) if and only if it contains k. With Q(2n, 2), there is associated
a polar space, which we also denote by Q(2n, 2). The points of this polar space are the points
of Q(2n, 2) and the singular subspaces are the subspaces of PG(n, 2) contained in Q(2n, 2). The
polar spaces Q(2n, 2) and W (2n − 1, 2) are isomorphic: the projection from the kernel k on a
hyperplane not containing k defines an isomorphism. With Q(2n, 2), there is also associated a
dual polar space DQ(2n, 2), whose points and lines are the (n − 1)-dimensional and (n − 2)-
dimensional subspaces of Q(2n, 2), with incidence being reverse containment. As Q(2n, 2) ∼=
W (2n− 1, 2), we also have DQ(2n, 2) ∼= DW (2n− 1, 2).

Consider again the symplectic dual polar space DW (2n− 1, 2), n ≥ 2, and denote by P its
point set. If x and y are two points of DW (2n−1, 2), then d(x, y) denotes the distance between
x and y in the collinearity graph Γ of DW (2n− 1, 2). If x ∈ P, then Γi(x) with i ∈ N denotes
the set of points at distance i from x and Γ≤i(x) denotes the set of points at distance at most
i from x. For every point x of DW (2n − 1, 2), we define x⊥ := {x} ∪ Γ1(x). The graph Γ is
distance-regular [3] with diameter n and valency 2n+1 − 2. If x and y are two vertices of Γ at
distance i from each other, then there are ci = 2i − 1 points collinear with x at distance i − 1
from y.

If X1 and X2 are two sets of points of DW (2n− 1, 2), then X1 ∗X2 denotes the complement
P \ (X1∆X2) of the symmetric difference X1∆X2 of X1 and X2. The operator ∗ is commutative
and associative. We moreover have that X ∗ P = X and X ∗X = P for every set X of points.

A hyperplane of DW (2n−1, 2) is a proper subset of P that meets each line of DW (2n−1, 2) in
either a singleton or the whole line. If H1 and H2 are two distinct hyperplanes of DW (2n−1, 2),
then H1∗H2 is again a hyperplane. We denote by Ṽ ∗0 the set of all hyperplanes of DW (2n−1, 2)

together with the whole point set P. The set Ṽ ∗0 can be given the structure of an F2-vector

space by defining X1 +X2 := X1 ∗X2, 0 ·X := P and 1 ·X := X for all X,X1, X2 ∈ Ṽ ∗0 . If H is
a nonempty set of hyperplanes of DW (2n − 1, 2), then H denotes the set of all hyperplanes of
the form H1 ∗H2 ∗ · · · ∗Hk, where all Hi’s belong to H, i.e. H = 〈H〉 \ {P}, where 〈H〉 is the
subspace of Ṽ ∗0 generated by H.

An isomorphism class H of hyperplanes of DW (2n − 1, 2) is called universal if every hy-
perplane belongs to H. A hyperplane of DW (2n − 1, 2) is called universal if the isomorphism
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class of hyperplanes to which it belongs is universal. Universal hyperplanes are interesting from
a computational point of view. Such hyperplanes have already successfully been used to enu-
merate all hyperplanes of certain point-line geometries by means of successively applying the
∗-operator.

If x is a point of DW (2n − 1, 2), then the set Γ≤n−1(x) is a hyperplane of DW (2n − 1, 2),
the so-called singular hyperplane with center x. If Π is a hyperplane of PG(2n, 2) intersecting
Q(2n, 2) in a hyperbolic quadric Q+(2n− 1, 2), then by Pasini and Shpectorov [17, Section 1.2]
the set of generators of Q(2n, 2) not contained in Q+(2n − 1, 2) is a hyperplane of DQ(2n, 2).
Any such hyperplane will be called a hyperbolic hyperplane of DQ(2n, 2) ∼= DW (2n− 1, 2).

Suppose ε : DW (2n− 1, 2)→ PG(V ) is a full projective embedding of DW (2n− 1, 2). Then
Im(ε) denotes the set of all points of PG(V ) that are on a line containing two points of Im(ε).
We denote by Hε the set of all sets of the form ε−1(ε(P) ∩ Π), where Π is some hyperplane of
PG(V ). Then every element of Hε is a hyperplane of DW (2n− 1, 2). By Ronan [19, Corollary
2, page 180], we know the following.

Lemma 2.1 ([19]) A full projective embedding ε of DW (2n − 1, 2) is universal if and only if
Hε coincides with the set of all hyperplanes of DW (2n− 1, 2).

So, we have Ṽ ∗0 = Hε̃0 ∪ {P} and the map Π 7→ ε̃−1
0 (ε̃0(P) ∩ Π) defines a bijection between the

hyperplanes of PG(Ṽ0) and the elements of Hε̃0 = Ṽ ∗0 \ {P}.
The following two lemmas will be useful. For a proof of the first lemma, see e.g. [12,

Corollary 2.7]. For the second lemma, see Proposition 2.4 and Lemma 4.3 of [1] (see also [18,
Lemma 12]).

Lemma 2.2 ([12]) A full projective embedding ε of DW (2n− 1, 2) is homogeneous if and only
if Hθ ∈ Hε for every H ∈ Hε and every automorphism θ of DW (2n− 1, 2).

Lemma 2.3 ([1]) Suppose ε : DW (2n − 1, 2) → PG(V ) is a homogeneous full projective em-
bedding of DW (2n−1, 2) and α is a proper subspace of PG(V ). Let G denote the induced action
of Aut(DW (2n− 1, 2)) on PG(V ). Then:

(1) If α is stabilized by G, then α is disjoint from Im(ε).

(2) If α is disjoint from Im(ε), then ε/α is homogeneous if and only if α is stabilized by G.

The dual polar space DW (2n− 1, 2) has two nice homogeneous full projective embeddings: the
Grassmann embedding as described in Cooperstein [9, Proposition 5.1] has vector dimension(

2n
n

)
−
(

2n
n−2

)
, and the spin-embedding of DQ(2n, 2) ∼= DW (2n−1, 2) as described in Buekenhout

and Cameron [5, Section 7] has vector dimension 2n.
Suppose ε̃0 : DW (2n− 1, 2)→ PG(Ṽ0) is the universal embedding of DW (2n− 1, 2). Let A

denote the set of all subspaces α of PG(Ṽ0) which are disjoint from Im(ε̃0). With respect to set
inclusion, A is a poset. We define E := {ε̃0/α |α ∈ A}. As ε̃0 is universal, every full projective
embedding of DW (2n − 1, 2) is isomorphic to an element of E . This element is unique: if
α, β ∈ A, then ε̃0/α and ε̃0/β are isomorphic if and only if α = β. The pair (E ,≥) defines a
poset isomorphic to (A,⊆): if α, β ∈ A, then α ⊆ β if and only if ε̃0/α ≥ ε̃0/β.
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Lemma 2.4 If ε1 and ε2 are two full projective embeddings of DW (2n− 1, 2), then Hε1 ⊆ Hε2
if and only if ε1 ≤ ε2. As a consequence, the embeddings ε1 and ε2 are isomorphic if and only if
Hε1 = Hε2.

Proof. Consider the universal embedding ε̃0 : DW (2n− 1, 2)→ PG(Ṽ0). For every hyperplane
H of DW (2n−1, 2), let ΠH denote the unique hyperplane of PG(Ṽ0) such that H = ε̃−1

0 (ε̃0(P)∩
ΠH). If αi with i ∈ {1, 2} is the unique element of A for which εi ∼= ε̃0/αi, then αi is the
intersection of all hyperplanes ΠH , where H ∈ Hεi . So, Hε1 ⊆ Hε2 if and only if α2 ⊆ α1. The
latter happens precisely when ε̃0/α1 ≤ ε̃0/α2, i.e. ε1 ≤ ε2. �

Lemma 2.5 If ε is a full projective embedding of DW (2n − 1, 2), then H1 ∗ H2 ∈ Hε for any
two distinct elements H1, H2 ∈ Hε.

Proof. Put ε : DW (2n − 1, 2) → PG(V ). Let Πi with i ∈ {1, 2} be the unique hyperplane of
PG(V ) for which ε−1(ε(P)∩Πi) = Hi, and let Π3 denote the third hyperplane through Π1 ∩Π2.
Then ε−1(ε(P) ∩Π3) = H1 ∗H2 and so H1 ∗H2 ∈ Hε. �

A subspace of DW (2n− 1, 2) is a set of points having the property that every line containing at
least two points of X has all its points in X. If X is a nonempty subspace, then we denote by X̃
the subgeometry of DW (2n−1, 2) determined by the points of X and the lines of DW (2n−1, 2)
that have all their points in X. A subspace X is called convex if every shortest path between
two points of X is again a point of X. If X is a nonempty convex subspace of diameter m ≥ 2,
then X̃ ∼= DW (2m− 1, 2).

If F is a nonempty convex subspace of DW (2n− 1, 2), then every full projective embedding
ε : DW (2n− 1, 2)→ PG(V ) of DW (2n− 1, 2) will induce a full projective embedding εF of F̃ .
The following is a special case of [11, Theorem 1.4].

Lemma 2.6 ([11]) Suppose F is a convex subspace of diameter at least 2 of DW (2n − 1, 2).
Then the full projective embedding of F̃ induced by the universal embedding of DW (2n− 1, 2) is
isomorphic to the universal embedding of F̃ .

For every singular subspace α of dimension n − 1 − δ, δ ∈ {0, 1, . . . , n}, of W (2n − 1, 2), we
denote by Fα the set of all (n − 1)-dimensional singular subspaces of W (2n − 1, 2) containing
α. Then Fα is a convex subspace of diameter δ of DW (2n − 1, 2), and every convex subspace
of diameter δ can be obtained this way. This correspondence between singular subspaces of
W (2n − 1, 2) and convex subspaces of DW (2n − 1, 2) is bijective, and we will say that Fα is
the convex subspace of DW (2n− 1, 2) corresponding to α, or that α is the singular subspace of
W (2n− 1, 2) corresponding to Fα.

Every two points of DW (2n− 1, 2) at distance δ from each other are contained in a unique
convex subspace of diameter δ. Such a convex subspace is a singleton if δ = 0, a line if δ = 1
and the whole point set P if δ is equal to n. Convex subspaces of diameter 2 are called quads
and those of diameter n − 1 are called maxes. The maxes are thus the convex subspaces that
correspond to the points of W (2n− 1, 2). Every two distinct intersecting lines are contained in
a unique quad.

If x is a point and F a nonempty convex subspace, then F contains a unique point x′ nearest
to x and d(x, y) = d(x, x′) + d(x′, y) for every y ∈ F . The point x′ is also denoted by πF (x) and
called the projection of x on F . In the particular case that F is a line L, we thus have that for
every point x, there exists a unique point on L nearest to x. That means that DW (2n − 1, 2)
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is a so-called near polygon. The maximal distance from a point of DW (2n − 1, 2) to a convex
subspace of diameter δ is equal to n− δ. In particular, every point has distance at most 1 from
a max.

Suppose F is a convex subspace of diameter δ and let G be a hyperplane of F̃ . Then the
points of DW (2n − 1, 2) at distance at most n − δ − 1 from F together with the points x at
distance n−δ from F for which πF (x) ∈ G is a hyperplane of DW (2n−1, 2), called the extension
of G.

If M1 and M2 are two disjoint maxes, then every point x1 ∈ M1 is collinear with a unique
point of M2, namely πM2(x1), and the map x1 7→ πM2(x1) defines an isomorphism between M̃1

and M̃2. If two maxes M1 and M2 meet, then M1 ∩M2 is a convex subspace of diameter n− 2.
Suppose {x1, x2, x3} is a line of the ambient projective space PG(2n − 1, 2) of W (2n − 1, 2),
and denote by Mx1 , Mx2 and Mx3 the maxes corresponding to respectively x1, x2 and x3. If
{x1, x2, x3} is a singular line of W (2n − 1, 2), then Mx1 , Mx2 and Mx3 are the three maxes
through the convex subspace of diameter n− 2 of DW (2n− 1, 2) corresponding to the singular
line {x1, x2, x3}. If {x1, x2, x3} is not a singular line, then it is called a hyperbolic line. In this
case, we call {Mx1 ,Mx2 ,Mx3} a hyperbolic set of maxes. The maxes Mx1 , Mx2 and Mx3 are
mutually disjoint and every line meeting two of them also meets the third.

We denote by W̃ (2n − 1, 2) the point-line geometry whose points and lines are the points

and hyperbolic lines of W (2n− 1, 2), with incidence being containment. W̃ (2n− 1, 2) is called
the geometry of the hyperbolic lines of W (2n − 1, 2). Up to isomorphism, there are two full

projective embeddings of W̃ (2n− 1, 2), see Hall [14, Theorem 3].

(1) Let Q(2n, 2) be a nonsingular parabolic quadric of PG(2n, 2) with kernel k. Then the
points of PG(2n, 2) not contained in Q(2n, 2) ∪ {k} together with the lines of PG(2n, 2)

disjoint from Q(2n, 2) define a point-line geometry isomorphic to W̃ (2n − 1, 2). This

defines the universal embedding of W̃ (2n− 1, 2).

(2) The projection from the kernel k on a hyperplane of PG(2n, 2) disjoint from k gives rise

to the natural embedding of W̃ (2n− 1, 2), which is the embedding induced by the natural
embedding of W (2n− 1, 2) in PG(2n− 1, 2).

Let f be a nondegenerate alternating bilinear form on V (2n, 2) defining the symplectic polar
space W (2n− 1, 2). For every nonzero vector v̄ ∈ V (2n, 2), we can define the following element
of GL(V (2n, 2)): w̄ 7→ w̄ + f(v̄, w̄) · v̄. Such a linear transformation is called a symplectic
transvection and leaves the form f invariant. It thus determines an automorphism of W (2n−1, 2)
and an automorphism θv̄ of DW (2n − 1, 2). Such an automorphism of DW (2n − 1, 2) is a
reflection: if M denotes the max of DW (2n−1, 2) corresponding to the point 〈v̄〉, then θv̄ = RM ,
with RM the reflection about M which fixes each point x ∈M and maps each point y 6∈M to the
unique point of the line yπM (y) distinct from y and πM (y). The symplectic group Sp(V (2n, 2), f)
is generated by all symplectic transvections, see e.g. [7, Theorem 3.6.3]. This implies that the
reflections about the maxes generate the full automorphism group of DW (2n− 1, 2).

3 The hyperbolic embedding εh of DW (2n− 1, 2)

The following proposition allows to construct (homogeneous) full projective embeddings of
DW (2n− 1, 2). It is basically contained in the unpublished manuscript [4].
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Proposition 3.1 Let H be a set of hyperplanes of DW (2n − 1, 2) satisfying the property that
for every two distinct points x and y, there exists a hyperplane of H containing x, but not y.
Let WH denote the vector space of dimension |H| having a basis {ēh |h ∈ H} indexed by the
elements of H. For every point x of DW (2n− 1, 2), we define

εH(x) := 〈
∑

x 6∈h∈H
ēh〉.

Then εH defines a full projective embedding of DW (2n − 1, 2) into a subspace PG(VH) of
PG(WH).

Proof. The condition on the set H of hyperplanes implies that εH is injective. We thus only
need to show that εH maps lines of DW (2n − 1, 2) to lines of PG(WH). Let {x1, x2, x3} be a
line of DW (2n− 1, 2). Put

εH(xi) := 〈
∑
h∈H

a
(i)
h ēh〉, i ∈ {1, 2, 3},

where each a
(i)
h is either 0 or 1. If {x1, x2, x3} ⊆ h ∈ H, then a

(1)
h = a

(2)
h = a

(3)
h = 0. If

{x1, x2, x3} ∩ h is a singleton, then two of a
(1)
h , a

(2)
h , a

(3)
h are equal to 1 and the third is equal to

0. In any case, we thus have a
(1)
h + a

(2)
h + a

(3)
h = 0, implying that {εH(x1), εH(x2), εH(x3)} is a

line of PG(WH). �

Suitable sets of hyperplanes for which Proposition 3.1 can be applied are the isomorphism classes
of hyperplanes as the following proposition shows.

Proposition 3.2 If H is an isomorphism class of hyperplanes of DW (2n−1, 2), then for every
two distinct points x and y, there exists a hyperplane of H containing x, but not y. As a
consequence, the full projective embedding εH is well-defined.

Proof. Suppose x and y are two distinct points at distance δ ≥ 1 from each other such that
any hyperplane of H containing x also contains y. As the collinearity graph Γ of DW (2n− 1, 2)
is distance-transitive, this implies that every hyperplane containing x also contains Γδ(x) and
hence also the smallest subspace Γ≤δ(x) of DW (2n−1, 2) containing Γδ(x). In particular, every
hyperplane of H containing x also contains Γ1(x). By the vertex-transitivity of Γ, we then
see that if a hyperplane of H contains a point z, then it also contains every point of Γ1(z),
in contradiction with the fact that every hyperplane is a proper subset of the point set P of
DW (2n− 1, 2). �

The importance of Proposition 3.1 increases when the description of the hyperplanes of (the
isomorphism class) H is more simple or when |H| is small, for instance close to the embedding

rank (2n+1)(2n−1+1)
3 of DW (2n − 1, 2). If H is the class of singular hyperplanes, then εH is the

so-called minimal full polarized embedding of DW (2n − 1, 2) [6] (also called the near polygon
embedding in [4]), which is isomorphic to the spin-embedding of DW (2n− 1, 2). In this case, we
have |H| = |P| = (2 + 1)(22 + 1) · · · (2n + 1). The smallest isomorphism class of hyperplanes of
DW (2n− 1, 2) that the author is aware of is the class of the hyperbolic hyperplanes. This class
only contains 2n−1(2n + 1) hyperplanes, which is smaller than three times the embedding rank!
Note that if H is the set of hyperbolic hyperplanes of DW (2n − 1, 2), then εH is precisely the
hyperbolic embedding of DW (2n− 1, 2) defined in Section 1.
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Proposition 3.3 Let H be a set of hyperplanes of DW (2n − 1, 2) satisfying the property that
for every two distinct points x and y, there exists a hyperplane of H containing x, but not y. If
ε := εH, then Hε = H.

Proof. We continue with the notation of Proposition 3.1. A hyperplane of PG(WH) is described
by an equation of the form

∑
h∈H ahXh = 0, where ah ∈ {0, 1} for all h ∈ H and 〈

∑
h∈HXhēh〉

denotes a generic point of PG(WH). For every h ∈ H, consider the hyperplane Πh of PG(WH)
with equation Xh = 0. The set of all points of DW (2n− 1, 2) that are mapped by ε into Πh is
precisely h.

Now, consider a generic hyperplane of PG(WH) described by an equation of the form∑
h∈H

ahXh = 0,

and denote by H′ the set of all elements h ∈ H for which ah = 1. If H′ = {h1, h2, . . . , hk} with
h1, h2, . . . , hk mutually distinct, then the set of all points of DW (2n − 1, 2) that are mapped
into Π is precisely h1 ∗ h2 ∗ · · · ∗ hk. This set is either the whole point set or a hyperplane
of DW (2n − 1, 2). The validity of the proposition now follows from the fact that for every
hyperplane π of PG(VH), there exists a hyperplane of PG(WH) intersecting PG(VH) in π. �

Proposition 3.4 If H is an isomorphism class of hyperplanes of DW (2n− 1, 2), then εH is a
homogeneous embedding. In particular, the hyperbolic embedding of DW (2n − 1, 2) is homoge-
neous.

Proof. Put ε := εH and let H be an arbitrary hyperplane of Hε. Then by Proposition 3.3, there
exist hyperplanes H1, H2, . . . ,Hk ∈ H such that H = H1∗H2∗· · ·∗Hk. For every automorphism
θ of DW (2n− 1, 2), we then have Hθ = Hθ

1 ∗Hθ
2 ∗ · · · ∗Hθ

k ∈ H = Hε. By Lemma 2.2, we then
know that ε is homogeneous. �

We can now show the following.

Proposition 3.5 The following are equivalent:

(1) The hyperbolic embedding of DW (2n− 1, 2) is universal.

(2) Every hyperbolic hyperplane of DW (2n− 1, 2) is universal.

(3) Let M be a 0-1 matrix over F2 whose rows are indexed by the generators α of Q(2n, 2) and
whose columns are indexed by the hyperbolic quadrics h of type Q+(2n−1, 2) on Q(2n, 2),

where Mα,h = 1 if and only if α is contained in h. Then M has rank (2n+1)(2n−1+1)
3 .

Proof. The equivalence of (1) and (2) is a consequence of Lemma 2.1, Proposition 3.1 and
Proposition 3.3. The vector dimension of the universal embedding of DW (2n − 1, 2) is equal

to (2n+1)(2n−1+1)
3 , and every full projective embedding of DW (2n − 1, 2) having this vector

dimension necessarily is universal. By definition of the hyperbolic embedding εh, the rank of M
is equal to the vector dimension of εh. We thus also see that also (1) and (3) are equivalent. �

We conjecture that the hyperbolic embedding of DW (2n− 1, 2) is universal, but were not able
to prove that. We were however able to prove the following (see Proposition 7.9):
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Suppose n ≥ 3. Then the hyperbolic embedding of DW (2n−1, 2) is universal if and
only if the hyperbolic embedding of DW (2n− 3, 2) is universal and DW (2n− 1, 2)
has universal hyperplanes.

So, if we are able to show that DW (2n − 1, 2) has universal hyperplanes for every n ≥ 2, then
the hyperbolic embedding of DW (2n− 1, 2) is universal for every n ≥ 2 (Corollary 7.10).

As already mentioned in the introduction, the conjecture that the embedding εh is universal
is supported by computer computations of Peter Vandendriessche which showed the validity of
this conjecture for n ≤ 7.

4 The homogeneous embedding ε̃1 of DW (2n− 1, 2)

The following proposition will allow us to construct two additional homogeneous full projective
embeddings of ∆ = DW (2n− 1, 2).

Proposition 4.1 Let ε : DW (2n− 1, 2)→ PG(V ) be a full projective embedding of DW (2n−
1, 2), n ≥ 2. Let x and y be two opposite points of DW (2n − 1, 2). Let z1, z2, . . . , z2n−1 be the
points contained in Γ1(x) ∩ Γn−1(y), and for every i ∈ {1, 2, . . . , 2n − 1}, let v̄i ∈ V such that
ε(zi) = 〈v̄i〉. Put Ωx,y :=

∑2n−1
i=1 v̄i. Then Ωx,y is independent of the pair (x, y) of opposite points

of DW (2n− 1, 2).

Proof. We first show that Ωx,y1 = Ωx,y2 if x, y1, y2 are points of DW (2n − 1, 2) such that
d(x, y1) = d(x, y2) = n and d(y1, y2) = 1. Let y3 be the third point on the line y1y2. Then

d(x, y3) = n − 1, |Γ1(x) ∩ Γn−2(y3)| = 2n−1 − 1 and Γ1(x) ∩ Γn−2(y3) =
(

Γ1(x) ∩ Γn−1(y1)
)
∩(

Γ1(x) ∩ Γn−1(y2)
)

. Put

Γ1(x) ∩ Γn−2(y3) = {z1, z2, . . . , z2n−1−1},
Γ1(x) ∩ Γn−1(y1) = {z1, z2, . . . , z2n−1},
Γ1(x) ∩ Γn−1(y2) = {z′1, z′2, . . . , z′2n−1}

such that z′i = zi for every i ∈ {1, 2, . . . , 2n−1 − 1} and {x, zi, z′i} is a line for every i ∈
{2n−1, 2n−1 + 1, . . . , 2n− 1}. Let v̄ ∈ V such that ε(x) = 〈v̄〉. For every i ∈ {1, 2, . . . , 2n− 1}, let
v̄i, v̄

′
i ∈ V such that ε(zi) = 〈v̄i〉 and ε(z′i) = 〈v̄′i〉. Then v̄i = v̄′i for every i ∈ {1, 2, . . . , 2n−1 − 1}

and v̄ + v̄i = v̄′i for every i ∈ {2n−1, 2n−1 + 1, . . . , 2n − 1}. As 2n−1 is even, we have Ωx,y1 =∑2n−1
i=1 v̄i =

∑2n−1
i=1 v̄′i = Ωx,y2 .

We next prove that Ωx1,y = Ωx2,y if x1, x2, y are points of DW (2n−1, 2) such that d(x1, y) =
d(x2, y) = n and d(x1, x2) = 1. Let x3 denote the third point on the line x1x2. We have(

Γ1(x1) ∩ Γn−1(y)
)
∩
(

Γ1(x2) ∩ Γn−1(y)
)

= {x3}. Every point of
(

Γ1(x1) ∩ Γn−1(y)
)
\ {x3} is

contained in a unique quad through x1x2 as well as every point of
(

Γ1(x2) ∩ Γn−1(y)
)
\ {x3}.

So, it suffices to prove the following.

Suppose Q is a quad through x1x2. Let p1, q1 be the two points of Q ∩ Γ1(x1) ∩
Γn−1(y) distinct from x3, and let p2, q2 be the two points of Q ∩ Γ1(x2) ∩ Γn−1(y)
distinct from x3. Then ū1 + v̄1 = ū2 + v̄2, where ū1, v̄1, ū2, v̄2 are the unique vectors
of V such that 〈ū1〉 = ε(p1), 〈ū2〉 = ε(p2), 〈v̄1〉 = ε(q1) and 〈v̄2〉 = ε(q2).
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Take such a quad Q. Let y′ be the unique point of Q nearest to y, i.e. at distance n − 2 from
y. Then d(x3, y

′) = 1 and d(x1, y
′) = d(x2, y

′) = 2. Through the intersecting lines x1x2 and
x3y
′, there are two (3× 3)-subgrids G and G′ of Q. Without loss of generality, we may suppose

that p1, p2 ∈ G1 and q1, q2 ∈ G2. Then {y′, p1, p2} and {y′, q1, q2} are lines. So, if w̄ is the
unique vector of V such that ε(y′) = 〈w̄〉, then w̄ + ū1 = ū2 and w̄ + v̄1 = v̄2. It follows that
ū1 + v̄1 = ū2 + v̄2, as we needed to prove.

Now, let Γ denote the graph whose vertices are the pairs (x, y) of opposite points of DW (2n−
1, 2), where two distinct pairs (x1, y1) and (x2, y2) are adjacent whenever either (x1 = x2 and
y1 ∼ y2) or (x1 ∼ x2 and y1 = y2). By [10] (part 3 of the proof of Lemma 2.1), we know that
Γ is connected. The validity of the lemma thus follows from its validity in the two special cases
mentioned above. �

The vector Ωx,y in Proposition 4.1 will also be denoted by Ω∆,ε, or shortly by Ωε if no confusion
is possible.

The following are immediate consequences of Lemma 2.3 and Proposition 4.1.

Corollary 4.2 Suppose ε : DW (2n−1, 2)→ PG(V ) is a homogeneous full projective embedding
of DW (2n− 1, 2). Then the subspace 〈Ωε〉 is stabilized by the induced action of Aut(DW (2n−
1, 2)) on PG(V ).

Corollary 4.3 Suppose ε : DW (2n−1, 2)→ PG(V ) is a homogeneous full projective embedding
of DW (2n− 1, 2) for which Ωε 6= ō. Then the point 〈Ωε〉 does not belong to Im(ε) and ε/〈Ωε〉 is
a homogeneous full projective embedding whose vector dimension is equal to dim(V )− 1.

Proposition 4.4 If ε : DW (2n− 1, 2)→ PG(V ) is universal, then Ωε 6= ō.

Proof. Let (x, y) be a pair of opposite points. Put Γ1(x) ∩ Γn−1(y) = {z1, z2, . . . , z2n−1} and
let v̄i with i ∈ {1, 2, . . . , 2n − 1} be the unique vector of V such that ε(zi) = 〈v̄i〉. By McClurgh
[16] and Li [15], 〈ε(x⊥)〉 has dimension 2n − 1. Hence, ε(x), ε(z1), ε(z2), . . . , ε(z2n−1) are linearly
independent points of PG(V ) and Ωε = Ωx,y = v̄1 + v̄2 + · · ·+ v̄2n−1 6= ō. �

In the case ε is the universal embedding of DW (2n−1, 2), we denote the homogeneous embedding
ε/〈Ωε〉 also by ε̃1. By Corollary 4.3, we then know the following.

Corollary 4.5 The homogeneous full projective embedding ε̃1 has vector dimension 22n−1+3·2n−1−2
3 .

If ε : DW (2n − 1, 2) → PG(V ) is a full projective embedding of DW (2n − 1, 2) and F is a
nonempty convex subspace of DW (2n− 1, 2), then ε induces a full projective embedding εF of
F̃ in a subspace PG(VF ) of PG(V ). If the diameter of F is at least 2, then by Proposition 4.1
we can define a vector Ω

F̃ ,εF
, which we will also denote by ΩF,ε. The following is an immediate

consequence of Lemma 2.6 and Proposition 4.4.

Corollary 4.6 If ε is the universal embedding of DW (2n−1, 2), then ΩF,ε is nonzero for every
convex subspace F of diameter at least 2 of DW (2n− 1, 2).
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Lemma 4.7 (1) Let n ∈ N∗\{0} and m ∈ {−1, 0, . . . , n}. Then the number of m-dimensional
subspaces of PG(n, 2) is odd.

(2) Let n ∈ N∗ \ {0} and m1,m2 ∈ {−1, 0, . . . , n} with m1 ≤ m2. Then the number of m2-
dimensional subspaces of PG(n, 2) containing a given m1-dimensional subspace of PG(n, 2)
is odd.

Proof. Part (1) follows from the fact that the Gaussian binomial coefficient
[
n+1
m+1

]
2

is odd. As

for the second claim, this number is equal to the number of (m2−m1−1)-dimensional subspaces
of PG(n−m1 − 1, 2) which is odd by (1). �

The following can be derived from Lemma 4.7

Lemma 4.8 Let F1 and F2 be two convex subspaces of respective diameters δ1 and δ2 such that
F1 ⊆ F2. Let δ3 ∈ N such that δ1 ≤ δ3 ≤ δ2. Then the number of convex subspaces F3 of
diameter δ3 satisfying F1 ⊆ F3 ⊆ F2 is odd.

Proof. Let α1 and α2 be the singular subspaces of W (2n − 1, 2) corresponding to F1 and F2,
respectively. Then dim(α1) = n − 1 − δ1, dim(α2) = n − 1 − δ2 and α2 ⊆ α1. The convex
subspaces F3 of diameter δ3 satisfying F1 ⊆ F3 ⊆ F2 correspond to the singular subspaces α3 of
dimension n− 1− δ3 of W (2n− 1, 2) satisfying α2 ⊆ α3 ⊆ α1, and by Lemma 4.7(2), we know
that the number of such singular subspaces is odd. �

Proposition 4.9 Suppose ε : DW (2n− 1, 2)→ PG(V ) is a homogeneous full projective embed-
ding of DW (2n− 1, 2). If F is a convex subspace of diameter δ ≥ 2 of DW (2n− 1, 2) such that
ΩF,ε = ō, then ΩF ′,ε = ō for every convex subspace F ′ of diameter at least δ of DW (2n− 1, 2).

Proof. Denote by δ′ the diameter of F ′ and let x, y be two points of F ′ at distance δ′ from
each other. Let F denote the set of convex subspaces of diameter δ of F̃ ′ that contain the point
x. For every G ∈ F , let zG denote the unique point of G nearest to y. Then zG is on a shortest
path from y to x and lies at distance δ from x.

Let L denote the set of lines through x contained in F ′. For every L ∈ L, let xL denote the
unique point on L nearest to y, and let v̄L denote the unique vector of V such that ε(xL) = 〈v̄L〉.
As d(zG, x) = δ and zG is on a shortest path from y to x, we also know that if L ⊆ G ∈ F , then
xL is also the unique point on L nearest to zG.

As ε is homogeneous, the fact that ΩF,ε = ō implies that ΩG,ε =
∑

L∈L,L⊆G v̄L = ō for every
G ∈ F . By Lemma 4.8, we know that the number of elements of F through a given line of L is
odd. This implies that

∑
G∈F ΩG,ε =

∑
L∈L v̄L. By the above, the left hand side equals ō. The

right hand side is precisely ΩF ′,ε. �

Suppose ε is a homogeneous full embedding of DW (2n − 1, 2) into a projective space PG(V ).
Let δ ∈ {1, 2, . . . , n} be the smallest number having the property that ΩF,ε = ō for every convex
subspace F of diameter at least δ+ 1. Then ε is called a homogeneous embedding of type δ. This
notion is equivalent with the one introduced in [13]. The following proposition provides some
alternative proofs for some results in [13].

Proposition 4.10 (1) The universal embedding of DW (2n− 1, 2) has type n.

(2) The spin-embedding of DW (2n− 1, 2) has type 1.
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(3) The Grassmann embedding of DW (2n− 1, 2) has type 2.

Proof. (1) This is a consequence of Proposition 4.4.

(2) If Q is a quad of DW (2n − 1, 2), then the full projective embedding of Q̃ induced by the
spin-embedding of DW (2n− 1, 2) is isomorphic to the spin-embedding of Q̃ ∼= DW (3, 2). So, it
suffices to prove the claim in the case n = 2.

The spin-embedding of DW (3, 2) ∼= W (2) corresponds to the natural embedding ε of W (2)
in PG(3, 2). This embedding has the property that if x and y are two noncollinear points of
W (2) and x⊥∩y⊥ = {z1, z2, z3}, then {ε(z1), ε(z2), ε(z3)} is a line of PG(3, 2). This implies that
the type of ε is equal to 1.

(3) If n = 2, then the Grassmann embedding is isomorphic to the universal embedding and thus
has type 2. In the sequel, we suppose that n ≥ 3.

If F is a convex subspace of diameter 3 of DW (2n−1, 2), then the full projective embedding
of F̃ induced by the Grassmann embedding of DW (2n − 1, 2) is isomorphic to the Grassmann
embedding of F̃ . So, it suffices to prove the claim in the case n = 3.

Let f be the nondegenerate alternating bilinear form on V = V (6, 2) defining W (5, 2) and
DW (5, 2). Let (ē1, f̄1, ē2, f̄2, ē3, f̄3) be a hyperbolic basis of (V, f), i.e. an ordered basis satisfying
f(ēi, f̄i) = 1 and f(ēi, ēj) = f(f̄i, f̄j) = f(ēi, f̄j) = 0 for all i, j ∈ {1, 2, 3} with i 6= j. Then
x = 〈ē1, ē2, ē3〉 and y = 〈f̄1, f̄2, f̄3〉 are two opposite points of DW (5, 2). Put Γ1(x) ∩ Γ2(y) =
{z1, z2, . . . , z7}, where

z1 = 〈ē1, ē2, f̄3〉, z2 = 〈ē1, f̄2, ē3〉, z3 = 〈f̄1, ē2, ē3〉, z4 = 〈ē1, ē2 + ē3, f̄2 + f̄3〉,

z5 = 〈ē2, ē1 + ē3, f̄1 + f̄3〉, z6 = 〈ē3, ē1 + ē2, f̄1 + f̄2〉, z7 = 〈ē1 + ē2, ē2 + ē3, f̄1 + f̄2 + f̄3〉.

The Grassmann embedding ε of DW (5, 2) sends a point 〈v̄1, v̄2, v̄3〉 of DW (5, 2) to the point
〈v̄1 ∧ v̄2 ∧ v̄3〉 of PG(

∧3 V ). The points z1, z2 and z4 of DW (5, 2) are contained in the quad
corresponding to the point 〈ē1〉 of W (5, 2). The fact that ē1 ∧ ē2 ∧ f̄3 + ē1 ∧ f̄2 ∧ ē3 + ē1 ∧ (ē2 +
ē3) ∧ (f̄2 + f̄3) 6= ō implies that ε does not have type 1. The fact that ē1 ∧ ē2 ∧ f̄3 + ē1 ∧ f̄2 ∧
ē3 + f̄1 ∧ ē2 ∧ ē3 + ē1 ∧ (ē2 + ē3) ∧ (f̄2 + f̄3) + ē2 ∧ (ē1 + ē3) ∧ (f̄1 + f̄3) + ē3 ∧ (ē1 + ē2) ∧ (f̄1 +
f̄2) + (ē1 + ē2) ∧ (ē2 + ē3) ∧ (f̄1 + f̄2 + f̄3) = ō then implies that ε has type 2. �

In Section 7 (Proposition 7.2), we show that the hyperbolic embedding εh has type n.

Proposition 4.11 Suppose ε and ε′ are two homogeneous full projective embeddings of DW (2n−
1, 2) such that ε ≤ ε′ and ε has type at most n− 1. Then ε ≤ ε′/〈Ωε′〉.

Proof. Suppose ε : DW (2n− 1, 2)→ PG(V ) and ε′ : DW (2n− 1, 2)→ PG(V ′). Let α be the
unique subspace of PG(V ′) disjoint from Im(ε′) such that ε is isomorphic to ε′/α. Since ε has
type at most n− 1, we have Ωε = ō. This implies that 〈Ωε′〉 ⊆ α. So, ε′/α ∼= ε is isomorphic to
a quotient of ε′/〈Ωε′〉. �

The following is an immediate consequence of Proposition 4.11.

Corollary 4.12 Suppose ε is a homogeneous full projective embedding of DW (2n−1, 2) of type
at most n− 1. Then ε is isomorphic to a quotient of ε̃1.
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Proposition 4.13 (1) If n = 2, then ε̃1 is isomorphic to the natural embedding of DW (3, 2) ∼=
W (2) in PG(3, 2).

(2) If n = 3, then ε̃1 is isomorphic to the Grassmann embedding of DW (5, 2).

Proof. If n = 2, then by Corollary 4.5, ε̃1 has vector dimension 4 and so is isomorphic to the
natural embedding of DW (3, 2) ∼= W (2) in PG(3, 2). If n = 3, then ε̃1 has vector dimension
14 by Corollary 4.5. By Proposition 4.10(3) and Corollary 4.12, the Grassmann embedding is
isomorphic to a quotient of ε̃1. The Grassmann embedding, which also has vector dimension 14,
must therefore be isomorphic to ε̃1. �

5 The homogeneous embedding ε̃2 of DW (2n− 1, 2)

Lemma 5.1 Suppose {F1, F2, F3} is a hyperbolic set of maxes of DW (2n− 1, 2), n ≥ 3. Then
for every full projective embedding ε : DW (2n−1, 2)→ PG(V ), we have ΩF1,ε+ΩF2,ε+ΩF3,ε = ō.

Proof. Let x1 and y1 be two points of F1 at maximal distance n−1 from each other. For every
i ∈ {2, 3}, let xi and yi be the unique points of Fi collinear with respectively x1 and y1. Then
xi and yi are two opposite points of Fi. Moreover, {x1, x2, x3} and {y1, y2, y3} are two lines of
DW (2n− 1, 2).

For every i ∈ {2, 3}, let πi be the projection map from F̃1 to F̃i. Then π1 and π2 are
isomorphisms. So, the map πi defines a bijection between the sets Γ1(x1)∩Γn−2(y1) and Γ1(xi)∩
Γn−2(yi).

Now, take a z1 ∈ Γ1(x1) ∩ Γn−2(y1). Put z2 := π2(z1) and z3 := π3(z1), and let v̄i with
i ∈ {1, 2, 3} be the unique vector of V such that ε(zi) = 〈v̄i〉. Since {z1, z2, z3} is a line
of DW (2n − 1, 2), we have that A(z1) := v̄1 + v̄2 + v̄3 = ō. Taking the sum over all z1 ∈
Γ1(x1) ∩ Γn−2(y1), we find that ō =

∑
A(z1) = ΩF1,ε + ΩF2,ε + ΩF3,ε. �

Lemma 5.2 Let F be a convex subspace of diameter n − 2 of DW (2n − 1, 2), n ≥ 3, and let
F1, F2, F3 denote the three maxes through F . If ε is a full projective embedding of DW (2n−1, 2),
then ΩF1,ε + ΩF2,ε + ΩF2,ε = Ωε.

Proof. Let x ∈ F , let y be a point opposite to x, let yi with i ∈ {1, 2, 3} denote the unique point
of Fi collinear with y, and let z denote the unique point of F at distance 2 from y. Then d(y, ui) =
d(y, yi) + d(yi, ui) = 1 + d(yi, ui) for every ui ∈ Fi and d(y, u) = d(y, z) + d(z, u) = 2 + d(z, u)
for every u ∈ F . This implies that d(x, y1) = d(x, y2) = d(x, y3) = n−1, d(x, z) = n−2 and z ∈
Γ1(y1)∩Γ1(y2)∩Γ1(y3). Moreover, each of the sets Γn−2(y1)∩Γ1(x) ⊆ F1, Γn−2(y2)∩Γ1(x) ⊆ F2,
Γn−2(y3) ∩ Γ1(x) ⊆ F3, Γn−3(z) ∩ Γ1(x) ⊆ F is contained in Γn−1(y) ∩ Γ1(x). As every point of

Γ1(x) is contained in F1∪F2∪F3, we have Γn−1(y)∩Γ1(x) =
(

Γn−1(y)∩F1∩Γ1(x)
)
∪
(

Γn−1(y)∩

F2 ∩Γ1(x)
)
∪
(

Γn−1(y)∩F3 ∩Γ1(x)
)

=
(

Γn−2(y1)∩Γ1(x)
)
∪
(

Γn−2(y2)∩Γ1(x)
)
∪
(

Γn−2(y3)∩

Γ1(x)
)

. Also, as Γn−2(y1) ∩ Γ1(x) ⊆ F1, Γn−2(y2) ∩ Γ1(x) ⊆ F2, Γn−2(y3) ∩ Γ1(x) ⊆ F3,

F1 ∩ F2 = F1 ∩ F3 = F2 ∩ F3 = F and Γn−2(yi) ∩ Γ1(x) ∩ F = Γn−3(z) ∩ Γ1(x) for every
i ∈ {1, 2, 3}, the sets Γn−2(y1)∩Γ1(x), Γn−2(y2)∩Γ1(x), Γn−2(y3)∩Γ1(x) mutually intersect in

Γn−3(z)∩Γ1(x). The latter fact in combination with
(

Γn−2(y1)∩Γ1(x)
)
∪
(

Γn−2(y2)∩Γ1(x)
)
∪(

Γn−2(y3) ∩ Γ1(x)
)

= Γn−1(y) ∩ Γ1(x) implies that ΩF1,ε + ΩF2,ε + ΩF3,ε = Ωε. �
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Lemma 5.3 Suppose ε : DW (2n − 1, 2) → PG(V ) is a homogeneous full projective embedding
of DW (2n − 1, 2), n ≥ 3, of type at least n − 1. Then ΩM1,ε 6= ΩM2,ε for every two distinct
maxes M1 and M2 of DW (2n− 1, 2).

Proof. We first prove this in the case when M1 and M2 are disjoint. Then M1 and M2 are
contained in a hyperbolic set {M1,M2,M3} of maxes. From Lemma 5.1, we have ΩM1,ε+ΩM2,ε+
ΩM3,ε = ō. Since ΩM3,ε 6= ō, we have ΩM1,ε 6= ΩM2,ε.

We next prove this in the case where M1 and M2 meet (necessarily in a convex subspace
of diameter n − 2). Suppose that ΩM1,ε = ΩM2,ε. Let M3 denote a max disjoint from M1 that
intersects M2 in a convex subspace of diameter n − 2. Then there exists an automorphism of
DW (2n− 1, 2) fixing M2 and mapping M1 to M3. So, there exists an automorphism of PG(V )
fixing ΩM2,ε and mapping ΩM1,ε to ΩM3,ε. As ΩM1,ε = ΩM2,ε, we have ΩM3,ε = ΩM2,ε, i.e.
ΩM1,ε = ΩM3,ε. This is in contradiction with the first part of the proof. So, also in this case, we
have ΩM1,ε 6= ΩM2,ε. �

Proposition 5.4 Suppose ε : DW (2n− 1, 2)→ PG(V ) is a homogeneous full projective embed-
ding of DW (2n − 1, 2), n ≥ 3, of type at least n − 1. For every point x of W (2n − 1, 2), put
η(x) := 〈ΩMx,ε〉, where Mx is the max of DW (2n − 1, 2) corresponding to x. Then η defines a

full embedding of W̃ (2n− 1, 2) into a subspace of PG(V ). If the type of ε is equal to n, then η

is isomorphic to the universal embedding of W̃ (2n − 1, 2). If the type of ε is n − 1, then η is

isomorphic to the natural embedding of W̃ (2n− 1, 2).

Proof. The fact that η defines a full projective embedding is a consequence of Lemmas 5.1
and 5.3, taking into account that if {x1, x2, x3} is a hyperbolic line, then {Mx1 ,Mx2 ,Mx3} is a
hyperbolic set of maxes. We have that ε has type n− 1 if and only if Ωε = ō. Lemmas 5.1, 5.2
imply that η is the natural embedding of W̃ (2n − 1, 2) if and only if Ωε = ō. All claims of the
proposition are now clear. �

Suppose ε : DW (2n− 1, 2)→ PG(V ) is a homogeneous full projective embedding of DW (2n−
1, 2), n ≥ 3. If the type of ε is at least n − 1, then we denote by Σε the subspace of PG(V )
generated by all points 〈ΩM,ε〉, where M is a max of DW (2n− 1, 2). If the type of ε is at most
n− 2, then we define Σε := ∅. The following is an immediate consequence of Proposition 5.4.

Corollary 5.5 Suppose ε is a homogeneous full projective embedding of DW (2n− 1, 2), n ≥ 3.
Then the projective dimension of Σε is equal to 2n if ε has type n, equal to 2n− 1 if ε has type
n− 1 and equal to −1 otherwise.

Proposition 5.6 Suppose ε : DW (2n− 1, 2)→ PG(V ) is a homogeneous full projective embed-
ding of DW (2n− 1, 2), n ≥ 3. Then Σε is disjoint from Im(ε) and the quotient embedding ε/Σε

is also homogeneous.

Proof. As the number of points of Σε is smaller than the total number (2+1)(22 +1) · · · (2n+1)
of points of DW (2n − 1, 2), Σε must be a proper subspace of PG(V ). By definition of Σε, this
subspace must be stabilized by the induced action of the automorphism group of DW (2n −
1, 2) on PG(V ). Lemma 2.3 then implies that Σε is disjoint from Im(ε) and that the quotient
embedding ε/Σε is homogeneous. �
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In the case ε is the universal embedding of DW (2n− 1, 2), n ≥ 3, we denote the homogeneous
embedding ε/Σε also by ε̃2. As the universal embedding of DW (2n− 1, 2) has vector dimension
(2n+1)(2n−1+1)

3 , Proposition 4.10(1) and Corollary 5.5 imply the following.

Corollary 5.7 The vector dimension of the homogeneous full projective embedding ε̃2 is equal
to 22n−1+3·2n−1−2−6n

3 .

Proposition 5.8 Suppose ε and ε′ are two homogeneous full projective embeddings of DW (2n−
1, 2), n ≥ 3, such that ε ≤ ε′ and ε has type at most n− 2. Then ε ≤ ε′/Σε′.

Proof. Suppose ε : DW (2n− 1, 2)→ PG(V ) and ε′ : DW (2n− 1, 2)→ PG(V ′). Let α be the
unique subspace of PG(V ′) disjoint from Im(ε′) such that ε is isomorphic to ε′/α. Since ε has
type at most n− 2, we have ΩM,ε = ō for every max M . This implies that 〈ΩM,ε′〉 ⊆ α for every
max M , or equivalently that Σε′ is contained in α. So, ε′/α ∼= ε is isomorphic to a quotient of
ε′/Σε′ . �

The following is an immediate consequence of Proposition 5.8.

Corollary 5.9 Suppose ε is a homogeneous full projective embedding of DW (2n− 1, 2), n ≥ 3,
of type at most n− 2. Then ε is isomorphic to a quotient of ε̃2.

Proposition 5.10 (1) If n = 3, then ε̃2 is isomorphic to the spin-embedding of DW (5, 2).

(2) If n = 4, then ε̃2 is isomorphic to the Grassmann embedding of DW (7, 2).

Proof. (1) By Proposition 4.10(2) and Corollary 5.9, we know that the spin-embedding of
DW (5, 2) is isomorphic to a quotient of ε̃2. But by Corollary 5.7, we know that both embeddings
have the same vector dimension, namely 8. So, they must be isomorphic.

(2) A similar argument applies to the second claim of the proposition. By Proposition
4.10(3) and Corollary 5.9, we know that the Grassmann embedding of DW (7, 2) is isomorphic
to a quotient of ε̃2, and again both embeddings have the same dimension by Corollary 5.7. �

Proposition 5.11 Suppose ε : DW (2n − 1, 2) → PG(V ) is a homogeneous full embedding of
type n of DW (2n− 1, 2), n ≥ 3, and put ε′ := ε/〈Ωε〉. Then the embeddings ε/Σε and ε′/Σε′ are
isomorphic.

Proof. The type of the homogeneous embedding ε/Σε is smaller that n and so ε/Σε is isomorphic
to a quotient of ε′ by Proposition 4.11. As ε/Σε has type at most n − 2, it is isomorphic to a
quotient of ε′/Σε′ by Proposition 5.8.

As ε′/Σε′ is a quotient of ε′, which itself is a quotient if ε, we see that ε′/Σε′ is isomorphic to
a quotient of ε. As ε′/Σε′ has type at most n− 2, we see that ε′/Σε′ is isomorphic to a quotient
of ε/Σε by Proposition 5.8.

Combining the above two paragraphs, we thus see that the embeddings ε/Σε and ε′/Σε′ are
isomorphic. �

Proposition 5.12 (1) The embedding ε̃1 has type n− 1.

(2) If n ≥ 3, then the embedding ε̃2 has type n− 2.
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Proof. (1) The embedding ε̃1 has type at most n − 1. If ε̃1 would have type at most n − 2,
then ε̃1 would be isomorphic to a quotient of ε̃2 by Corollary 5.9. But that is impossible as the
vector dimension of ε̃1 is bigger than the one of ε̃2.

(2) By Proposition 5.11 applied to ε = ε̃0, we know that ε̃2 is isomorphic to ε̃1/Σε̃1 . As ε̃1
has type n− 1, we know from Proposition 5.4 that every point of Σε̃1 is of the form 〈ΩM,ε̃1〉 for
some max M of DW (2n− 1, 2).

The embedding ε̃2 has type at most n − 2. Suppose ε̃2 has type at most n − 3. Then
n ≥ 4 and as ε̃2 ∼= ε̃1/Σε̃1 , there exists a convex subspace F of diameter n− 2 and a max M of
DW (2n− 1, 2) such that 〈ΩF,ε̃1〉 = 〈ΩM,ε̃1〉.

We prove that there exist maxes M ′ and M ′′ and a hyperbolic set {F, F ′, F ′′} of maxes of

M̃ ′ such that RM ′′(M) = M and RM ′′(F ) = F ′. We distinguish three cases.

(i) If F ⊆ M , then M ′ := M , {F, F ′, F ′′} is an arbitrary hyperbolic set of maxes of M̃
containing F and M ′′ is any max through F ′′ distinct from M .

(ii) If F is disjoint from M , then F ′ := RM (F ), F ′′ := πM (F ), M ′ is the unique max
containing F ∪ πM (F ) and M ′′ := M .

(iii) Suppose F meets M in a convex subspace of diameter n − 3. Let M ′′ denote a max
intersecting M in a convex subspace of diameter n − 2 disjoint from F ∩M , put F ′ :=
RM ′′(F ), F ′′ := πM ′′(F ) and let M ′ denote the unique max containing F , F ′ and F ′′.

So, let M ′, M ′′, F ′ and F ′′ as above. As ε̃1 is homogeneous, 〈ΩF,ε̃1〉 = 〈ΩM,ε̃1〉, RM ′′(M) = M
and RM ′′(F ) = F ′, we should have 〈ΩF ′,ε̃1〉 = 〈ΩM,ε̃1〉, i.e. 〈ΩF ′,ε̃1〉 = 〈ΩF,ε̃1〉. By Lemma 5.1

applied to the dual polar space M̃ ′, we would then have ΩF ′′,ε̃1 = ō, in contradiction with the
fact that ε̃1 has type n− 1.

So, ε̃2 should have type n− 2. �

Remark. In Section 7.5 of [13], it was shown that for every i ∈ {1, 2, . . . , n}, there exists
a universal homogeneous projective embedding of type i of DW (2n − 1, 2). By Corollaries
4.12, 5.9 and Proposition 5.12, we know that ε̃1 (respectively, ε̃2) is isomorphic to the universal
homogeneous embedding of type n− 1 (respectively, type n− 2).

6 Another description of ε̃1 in case universal hyper-

planes exist

Lemma 6.1 Let H be a hyperplane and M a max of DW (2n − 1, 2), n ≥ 2. If M ⊆ H, then
H ∗ RM (H) is the whole point set P. If M is not contained in H, then H ∗ RM (H) is the

extension of the hyperplane H ∩M of M̃ .

Proof. Put R := RM . Let L = {x, y, z} be a line intersecting M in a point x. We distinguish
three cases.

(1) x 6∈ H. Then without loss of generality we may suppose that y is the unique point of
L ∩H. Then z is the unique point of L ∩R(H) and it follows that x is the unique point
of L contained in H ∗ R(H).
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(2) L ⊆ H. Then L ⊆ R(H) and hence L is contained in H ∗ R(H).

(3) L ∩H = {x}. Then L ∩R(H) = {x} and again it follows that L ⊆ H ∗ R(H).

Note that every point u of DW (2n − 1, 2) not contained in M is incident with a unique line
meeting M (in the point πM (u)). So, if M ⊆ H, then (2) and (3) imply that H ∗RM (H) is the
whole point set. If M is not contained in H, then (1), (2) and (3) imply that H ∗RM (H) is the

extension of the hyperplane H ∩M of M̃ . �

Lemma 6.2 Suppose ε : DW (2n − 1, 2) → PG(V ) is a homogeneous full projective embedding
of DW (2n − 1, 2), n ≥ 2. Suppose H ∈ Hε and M is a max not contained in H. Then the

extension of the hyperplane H ∩M of M̃ also belongs to Hε.

Proof. Let R denote the reflection about M . By Lemma 6.1, H ∗R(H) is the extension of the

hyperplane H ∩M of M̃ (and so H 6= R(H)). Since ε is homogeneous and H ∈ Hε, we have
R(H) ∈ Hε by Lemma 2.2. By Lemma 2.5, we then know that also H ∗ R(H) ∈ Hε. �

Proposition 6.3 Let H be a hyperplane that arises by extending a hyperplane of a max of
DW (2n− 1, 2), n ≥ 2. Then H ∈ Hε̃1.

Proof. Suppose H is the extension of a hyperplane G of a max M of DW (2n− 1, 2). Let M ′

be a max disjoint from M and put H1 := RM ′(H). If {M,M ′,M ′′} is the hyperbolic set of

maxes containing M and M ′, then H1 is the extension of the hyperplane πM ′′(G) of M̃ ′′ and
H1 ∩M = G. By Lemma 6.1, H = H1 ∗ RM (H1).

Now, as the embedding ε̃1 has vector dimension one less that the embedding rank ofDW (2n−
1, 2), Hε̃1 ∪ {P} is a hyperplane of Ṽ ∗0 . By Lemma 2.2, H1 and RM (H1) belong both to Hε̃1 or
both to Hε̃0 \ Hε̃1 . In any case, we have that H = H1 ∗ RM (H1) belongs to Hε̃1 . �

The following is a consequence of Lemmas 2.4, 2.5 and Propositions 3.1, 3.3, 6.3.

Corollary 6.4 Let H be the set1 of hyperplanes of DW (2n−1, 2), n ≥ 2, that arise by extending
a hyperplane of a max of DW (2n− 1, 2). Then εH is isomorphic to a quotient of ε̃1.

Lemma 6.5 Suppose H is a hyperplane of DW (2n − 1, 2), n ≥ 2, let H1 be the isomorphism
class of hyperplanes containing H and let H2 be the smallest set of hyperplanes of DW (2n−1, 2)
that satisfies the following:

• if M is a max not contained in H, then the extension of the hyperplane H ∩M of M̃
belongs to H2;

• if H ∈ H2, then also Hθ ∈ H2 for every θ ∈ Aut(DW (2n− 1, 2)).

Then the subspace 〈H2, H〉 of Ṽ ∗0 generated by H2 and H coincides with 〈H1〉 = H1 ∪ {P}.

Proof. By Lemma 6.1, H2 ⊆ H1 and hence 〈H2, H〉 ⊆ H1 ∪ {P}. In order to show that
H1 ∪ {P} ⊆ 〈H2, H〉, it suffices to prove that H ∗ Hθ ∈ 〈H2〉 for every automorphism θ of
DW (2n− 1, 2). We can put θ = θ1θ2 · · · θk, where each θi is a reflection about a max. But then

H ∗Hθ = (H ∗Hθ1) ∗ (Hθ1 ∗Hθ1θ2) ∗ · · · ∗ (Hθ1θ2···θk−1 ∗Hθ1θ2···θk)

1This set of hyperplanes is easily seen to satisfy the property mentioned in Proposition 3.1.
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By Lemma 6.1, each term Hθ1···θi−1 ∗ Hθ1···θi , i ∈ {1, 2, . . . , k}, belongs to H2 ∪ {P}, implying
that H ∗Hθ belongs to 〈H2〉. �

Proposition 6.6 Let H be the set of hyperplanes of DW (2n − 1, 2), n ≥ 2, that arises by
extending a hyperplane of a max of DW (2n−1, 2). If DW (2n−1, 2) has universal hyperplanes,
then ε̃1 is isomorphic to εH.

Proof. Let H be a universal hyperplane of DW (2n − 1, 2) and let H2 denote the set of
hyperplanes of DW (2n− 1, 2) as defined in Lemma 6.5. By Proposition 6.3, H2 ⊆ Hε̃1 . Let H1

be the isomorphism class of hyperplanes containing H. Then H1 = Hε̃0 as H is universal. If
H ∈ Hε̃1 , then Lemmas 2.2 and 2.5 imply that H1 ⊆ Hε̃1 , a contradiction. Hence, H 6∈ Hε̃1 . By

Lemma 6.5, H1 ∪ {P} = Hε̃0 ∪ {P} = Ṽ ∗0 is generated by H and H2 ⊆ Hε̃1 . As Hε̃1 ∪ {P} is
a hyperplane of Hε̃0 ∪ {P} we thus have that H2 = Hε̃1 . We also know that H2 ⊆ H and by
Lemma 2.5 and Proposition 6.3, we know that H ⊆ Hε̃1 . It follows that H = Hε̃1 . Proposition
3.3 then implies that HεH = Hε̃1 . Hence, εH ∼= ε̃1 by Lemma 2.4. �

7 Necessary and sufficient conditions for the hyper-

bolic embedding εh to be universal

Proposition 7.1 A hyperbolic hyperplane of DW (2n− 1, 2), n ≥ 2, cannot belong to Hε̃1.

Proof. Suppose H is a hyperbolic hyperplane of DQ(2n, 2) ∼= DW (2n − 1, 2). Then H arises
from a hyperbolic quadric Q+(2n − 1, 2) ⊆ Q(2n, 2). Let x ∈ H and let α be the generator
of Q(2n, 2) corresponding to x. As x ∈ H, the generator α is not contained in Q+(2n − 1, 2).
The lines through x correspond to the hyperplanes of α, and we see that there is only one line
through x not contained in H, namely the line corresponding to the hyperplane α∩Q+(2n−1, 2)
of α.

Suppose now that H ∈ Hε̃1 . Then there exists a unique hyperplane PG(W ) of PG(Ṽ0)
containing 〈Ωε̃0〉 such thatH = ε̃−1

0 (ε̃0(P)∩PG(W )). Let x and y be opposite points ofDQ(2n, 2)
with x ∈ H, put Γ1(x)∩Γn−1(y) = {z1, z2, . . . , z2n−1}, and let v̄i with i ∈ {1, 2, . . . , 2n−1} be the
unique vector of Ṽ0 such that ε̃0(zi) = 〈v̄i〉. Without loss of generality, we may suppose that the
lines xzi, i ∈ {1, 2, . . . , 2n−2}, are contained in H, while xz2n−1 is not. Then v̄1, v̄2, . . . , v̄2n−2 ∈
W . As also Ωε̃0 = v̄1 + v̄2 + · · · + v̄2n−1 ∈ W , we must have v̄2n−1 ∈ W , i.e. xz2n−1 ⊆ H, a
contradiction. �

Proposition 7.2 The hyperbolic embedding εh of DW (2n− 1, 2), n ≥ 2, has type n.

Proof. Suppose the hyperbolic embedding εh has type at most n − 1. Then εh ≤ ε̃1 by
Corollary 4.12. Hence, Hεh ⊆ Hε̃1 by Lemma 2.4. But this is impossible as no hyperbolic
hyperplane belongs to Hε̃1 . �

Proposition 7.3 Let H be a hyperbolic hyperplane and M a max of DW (2n − 1, 2), n ≥ 3.

Then either M ⊆ H or M ∩H is a hyperbolic hyperplane of M̃ .

Proof. Suppose H is defined by a hyperbolic quadric Q+(2n − 1, 2) ⊆ Q(2n, 2). Let x be the
point of Q(2n, 2) corresponding to M . If x 6∈ Q+(2n−1, 2), then no generator of Q(2n, 2) through
x is contained in Q+(2n− 1, 2) and we have M ⊆ H. Suppose therefore that x ∈ Q+(2n− 1, 2).
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The tangent hyperplane Tx at the point x ∈ Q(2n, 2) intersects Q(2n, 2) in a cone xQ(2n− 2, 2)
and Q+(2n − 1, 2) in a cone xQ+(2n − 3, 2). The points of M correspond to the generators
through x and the points of M ∩ H correspond to the generators through x not contained in
Q+(2n − 1, 2), i.e. with the maximal subspaces of xQ(2n − 2, 2) through x not contained in

xQ+(2n− 3, 2). We thus see that M ∩H must be a hyperbolic hyperplane of M̃ . �

Proposition 7.4 Suppose ε is the hyperbolic embedding of DW (2n−1, 2), n ≥ 2. Then for every
convex subspace F of DW (2n − 1, 2) of diameter at least 2, εF is isomorphic to the hyperbolic
embedding of F̃ .

Proof. It suffices to prove the proposition in the case where F is a max (then induction shows
the validity of the proposition for all convex subspaces of diameter at least 2.)

Let H denote the set of all hyperbolic hyperplanes of DW (2n− 1, 2) and let H′ denote the
set of all hyperplanes of F̃ of the form H ∩ F , where H ∈ H. By Proposition 7.3, we know
that H′ coincides with the set of all hyperbolic hyperplanes of F̃ . The set HεF consists of all

hyperplanes of F̃ of the form H ∩ F , where H ∈ Hε. As Hε = H, we have HεF = H′ and so εF
is isomorphic to the hyperbolic embedding of F̃ by Lemma 2.4 and Proposition 3.3. �

Lemma 7.5 Let Π1 and Π2 be two distinct hyperplanes of PG(2n, 2), n ≥ 2, intersecting
Q(2n, 2) in quadrics of type Q+(2n − 1, 2). Then Π1 ∩ Π2 intersects Q(2n, 2) in a quadric
of type pQ+(2n − 3, 2) and the hyperplane through Π1 ∩ Π2 distinct from Π1 and Π2 intersects
Q(2n, 2) in a quadric of type pQ(2n− 2, 2).

Proof. As Π1 intersects Q(2n, 2) in a quadric of type Q+(2n − 1, 2), Π1 ∩ Π2 should intersect
Q(2n, 2) in a quadric of type Q(2n− 2, 2) or a quadric of type pQ+(2n− 3, 2).

Suppose Π1∩Π2 intersects Q(2n, 2) in a quadric of type Q(2n−2, 2). As not every hyperplane
through Π1 ∩Π2 is tangent to Q(2n, 2), the kernel k of Q(2n, 2) cannot belong to Π1 ∩Π2. But
then Π1∩Π2 is contained in a unique tangent hyperplane, namely 〈k,Π1∩Π2〉, and we would have
|Q(2n, 2)| = |Q+(2n−1, 2)|+ |Q+(2n−1, 2)|+ |kQ(2n−2, 2)|−2 · |Q(2n−2, 2)|, a contradiction,
since |Q(2n, 2)| = 22n − 1, |Q+(2n− 1, 2)| = (2n − 1)(2n−1 + 1), |kQ(2n− 2, 2)| = 22n−1 − 1 and
|Q(2n− 2, 2)| = 22n−2 − 1.

Therefore Π1 ∩ Π2 intersects Q(2n, 2) in a quadric of type pQ+(2n − 3, 2). As there are
nontangent planes through Π1 ∩Π2, we have k 6∈ Π1 ∩Π2. So, the tangent hyperplane 〈k,Π1 ∩
Π2〉 is the third hyperplane through Π1 ∩ Π2, and it intersects Q(2n, 2) in a quadric of type
pQ(2n− 2, 2). �

Proposition 7.6 Let Π1 and Π2 be two distinct hyperplanes of PG(2n, 2), n ≥ 2, intersecting
Q(2n, 2) in quadrics of type Q+(2n − 1, 2). Then Π1 ∩ Π2 intersects Q(2n, 2) in a quadric
pQ+(2n−3, 2). For every i ∈ {1, 2}, let Hi be the hyperbolic hyperplane of DQ(2n, 2) associated
with the hyperbolic quadric Πi ∩Q(2n, 2). Let M denote the max consisting of all generators of

Q(2n, 2) through p and let G denote the hyperbolic hyperplane of M̃ consisting of all generators
of Q(2n, 2) through p not contained in pQ+(2n− 3, 2). Then H1 ∗H2 equals the extension of the

hyperplane G of M̃ .

Proof. The tangent hyperplane Tp at the point p intersects Q(2n, 2) in pQ(2n − 2, 2). Note
that Tp ∩Π1 = Π1 ∩Π2 = Tp ∩Π2.
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Let α be a point of M , i.e. a generator of Q(2n, 2) through p. If α is contained in pQ+(2n−
3, 2), then α does not belong to H1 nor to H2 and so belongs to H1 ∗ H2. If α ⊆ Tp is not
contained in pQ+(2n− 3, 2), then α belongs to H1 and H2 and hence also to H1 ∗H2.

Let α be a point of DQ(2n, 2) not contained in M , i.e. α is a generator of Q(2n, 2) not con-
taining p. Let β denote the unique generator through p intersecting α in an (n− 2)-dimensional
subspace. We need to show that α ∈ H1 ∗H2 if and only if β is not contained in pQ+(2n− 3, 2).

Suppose β ⊆ Tp is not contained in pQ+(2n− 3, 2). Then α∩ β (and hence also α) contains
points of pQ(2n− 2, 2) \ pQ+(2n− 3, 2). This implies that α ∈ H1 ∩H2 and hence α ∈ H1 ∗H2.

Suppose β is contained in pQ+(2n − 3, 2). The (n − 2)-dimensional subspace α ∩ β is
contained in Q+

i (2n− 1, 2) := Πi ∩Q(2n, 2), i ∈ {1, 2}, and hence is contained in two generators
of Q+

i (2n − 1, 2). So, the (n − 2)-dimensional subspace α ∩ β is contained in three generators,
namely 〈p, α∩β〉 = β, a generator ofQ+

1 (2n−1, 2) distinct from β and a generator ofQ+
2 (2n−1, 2)

distinct from β. Hence, α is contained in precisely one of Q+
1 (2n−1, 2), Q+

2 (2n−1, 2). It follows
that α ∈ H1∆H2, i.e. α 6∈ H1 ∗H2. �

Proposition 7.7 Let H be the set2 of hyperplanes of DW (2n − 1, 2), n ≥ 3, that arise by
extending a hyperbolic hyperplane of a max. Then the following hold:

(a) εH is isomorphic to a quotient of the hyperbolic embedding εh of DW (2n− 1, 2);

(b) the vector dimension of εH is one less than the vector dimension of εh;

(c) εH ≤ ε̃1;

(d) the hyperbolic embedding εh is universal if and only if εH ∼= ε̃1.

Proof. (a) Let H′ denote the set of all hyperbolic hyperplanes of DW (2n − 1, 2). In order to
show that εH is isomorphic to a quotient of εh, it suffices by Lemma 2.4 to prove that HεH ⊆ Hεh .
Taking into account Proposition 3.3, we thus need to prove that H ⊆ H′, or equivalently that
H ⊆ H′. But the inclusion H ⊆ H′ is a consequence of Proposition 7.6.

(c) In order to show that εH ≤ ε̃1, it suffices by Lemma 2.4 to prove that HεH ⊆ Hε̃1 . Taking
into account Proposition 3.3, we thus need to prove that H ⊆ Hε̃1 , or equivalently that H ⊆ Hε̃1 .
But the latter follows from Proposition 6.3.

(b) Every hyperbolic hyperplane belongs to Hεh by Proposition 3.3. By Proposition 7.1, it
cannot belong to Hε̃1 and hence also not to HεH = H by Lemma 2.4 and Part (c). So, εH and
εh cannot be isomorphic, and by (a) we then know that the vector dimension of εH is at least
one less than the one of εh. By Proposition 7.6, we know that the dimension of the subspace
〈H′〉 = H′ ∪ {P} of Ṽ ∗0 is at most one more than the dimension of the subspace 〈H〉 = H∪{P}.
As HεH = H and Hεh = H′, we thus see that the vector dimensions of εH and εh differ at most
1.

(d) Suppose the hyperbolic embedding εh is universal. By Part (b), we then know that the

vector dimension of εH is equal to (2n+1)(2n−1+1)
3 − 1, i.e. equal to the vector dimension of ε̃1 by

Corollary 4.5. By Part (c), we then know that εH and ε̃1 are isomorphic.
Conversely, suppose that εH and ε̃1 are isomorphic. By Part (b) and Corollary 4.5, we then

see that the vector dimension of εh is equal to (2n+1)(2n−1+1)
3 , implying that εh is universal. �

2This set of hyperplanes is easily seen to satisfy the property mentioned in Proposition 3.1.
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Lemma 7.8 Let M be a max of DW (2n− 1, 2), n ≥ 3, and let G1, G2, G3 be three hyperplanes

of M̃ such that G3 = M \ (G1∆G2). For every i ∈ {1, 2, 3}, let Hi be the hyperplane of
DW (2n− 1, 2) that extends Gi. Then H3 = H1 ∗H2.

Proof. Every point x of M belongs to H1, H2 and H3.
If x is a point of DW (2n−1, 2) not contained in M and i ∈ {1, 2, 3}, then x ∈ Hi if and only

if πM (x) ∈ Gi. The equality H3 = H1 ∗H2 then follows from the fact that G3 is the complement
of the symmetric difference of G1 and G2 (regarded as subsets of M). �

Proposition 7.9 Let n ≥ 3. Then the following are equivalent:

(1) the hyperbolic embedding of DW (2n− 1, 2) is universal;

(2) the hyperbolic embedding of DW (2n− 3, 2) is universal and DW (2n− 1, 2) has universal
hyperplanes.

Proof. Suppose the hyperbolic embedding of DW (2n − 1, 2) is universal. By Lemma 2.6 and
Proposition 7.4, we then know that the hyperbolic embedding of DW (2n − 3, 2) is universal.
By Proposition 3.5, we know that DW (2n− 1, 2) has universal hyperplanes (e.g. the hyperbolic
hyperplanes).

Conversely, suppose that the hyperbolic embedding of DW (2n− 3, 2) is universal and that
DW (2n − 1, 2) has universal hyperplanes. Denote by H [resp. H′] the set of hyperplanes of
DW (2n − 1, 2) that arise by extending a hyperplane [resp. hyperbolic hyperplane] of a max
of DW (2n − 1, 2). As the hyperbolic embedding of DW (2n − 3, 2) is universal, all hyperbolic
hyperplanes of DW (2n − 3, 2) are universal by Proposition 3.5 and so H = H′ by Lemma 7.8.
By Propositions 3.3 and 6.6, we also know that H = HεH = Hε̃1 . Hence, HεH′ = H′ = Hε̃1 , i.e.
εH′ ∼= ε̃1 by Lemma 2.4. By Proposition 7.7(d), we then know that the hyperbolic embedding
of DW (2n− 1, 2) is universal. �

The following is a consequence of Propositions 3.5 and 7.9, taking into account that the hyper-
bolic embedding of DW (3, 2) ∼= W (2) (which has type 2) is universal.

Corollary 7.10 The following are equivalent:

(1) The hyperbolic embedding of DW (2n− 1, 2) is universal for every n ≥ 2.

(2) DW (2n− 1, 2) has universal hyperplanes for every n ≥ 2.
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