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Summary  

● Subcellular compartmentation of plant biosynthetic pathways in the mitochondria and 

plastids requires coordinated regulation of nuclear encoded genes, and the role of these 

genes has been largely ignored by wood researchers.  

● In this study, we constructed a targeted systems genetics coexpression network of 

xylogenesis in Eucalyptus using plastid and mitochondrial carbon metabolic genes and 

compared the resulting clusters to the aspen xylem developmental series. 

● The constructed network clusters reveal the organization of transcriptional modules 

regulating subcellular metabolic functions in plastids and mitochondria. Overlapping genes 

between the plastid and mitochondrial networks implicate the common transcriptional 

regulation of carbon metabolism during xylem secondary growth.  

● We show that the central processes of organellar carbon metabolism are distinctly 

coordinated across the developmental stages of wood formation, and are specifically 

associated with primary growth and secondary cell wall deposition. We also demonstrate 

that during xylogenesis, plastid targeted carbon metabolism is partially regulated by the 

central clock for carbon allocation towards primary and secondary xylem growth, and 

discuss these networks in the context of previously established associations with wood-

related complex traits. This study provides a new resolution into the integration and 

transcriptional regulation of plastid and mitochondrial localized carbon metabolism during 

xylogenesis. 
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Introduction 

An aspect of wood formation in trees, and secondary xylem growth in general that has not received 

much attention is the role of plastids and mitochondria, and the subcellular coordination of 

metabolism in these genome-containing organelles. The majority of plastid and mitochondrial 

protein coding genes are encoded by the nuclear genome, and are targeted to the organelles after 

translation, where they are imported by translocase complexes (Wiedemann & Pfanner, 2017; Ling 

& Jarvis, 2015). During cambial differentiation and primary growth, plastidial de novo fatty acid 

synthesis contributes to cell division and elongation through the supply of phospholipid membrane 

precursors (Ohlrogge & Browse, 1995). The plastid localized methylerythritol phosphate (MEP) 

pathway provides precursors for plant hormones gibberellic acid, abscisic acid, cytokinins, 

brassinosteroids and strigolactones, many of which are involved in cambial differentiation to xylem 

and phloem, and secondary growth (Banerjee & Sharkey, 2014; Mellerowicz et al., 2001). The 

plastidial shikimate pathway produces tryptophan for the synthesis of auxin (indole-3-acetic acid), 

which is a primary hormonal regulator of xylem development (Ursache et al., 2014). Phenylalanine, 

also synthesized via the plastidial shikimate pathway, is transported to the cytoplasm/endoplasmic 

reticulum to be metabolized to cinnamic acid for large-scale monolignol synthesis during secondary 

growth (Herrmann, 1995), accounting for up to 40% of plant biomass (Tohge et al., 2013). The 

shikimate pathway precursors phosphoenolpyruvate (PEP), and erythrose-4-phosphate (E4P) are 

derived from sugars that can be used for the synthesis of glucose-6-phosphate (Jensen, 1986), the 

main sugar phosphate of cellulose synthesis (Taylor, 2008). The shikimate pathway thus represents a 

central and irreversible carbon flux point between polysaccharide and phenolic biopolymer synthesis 

during secondary cell wall formation of xylogenesis. Similarly, mitochondrial localized energy 

metabolism is crucial to xylogenesis (Jacoby et al., 2012), as is their involvement in programmed cell 

death (Van Aken and Van Breusegem 2015; Yu et al., 2002), highlighting the importance of these 

organelles to the process of wood formation.  

 

Currently, state of the art co-expression studies in wood development in trees are those 

representing expression variation across the spatial development of xylogenesis in aspen (Populus 

tremula) and Picea abies. These studies have highlighted the conserved regulation of cambial 

differentiation into xylem and phloem, secondary cell wall (SCW) deposition, and programmed cell 

death (Sundell et al., 2017; Jokipii-Lukkari et al., 2017). With regards to co-expression studies looking 

at organellar-targeted biology, previous studies have used global, condition independent co-

expression networks (Serin et al.,  2016) to show that plastid genes related to photosynthesis, 
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abiotic and biotic stress, and circadian rhythm in Arabidopsis are coregulated, while mitochondrial-

targeted genes are regulated with diverse processes in the cell (Mentzen & Wurtele 2008; Lundquist 

et al., 2012; Majsec et al., 2017). These studies have been predominantly performed in 

photosynthetic Arabidopsis tissues containing differentiated chloroplasts. Further, condition 

independent co-expression analyses are known to miss tissue or condition specific interactions 

(Serin et al., 2016). Therefore, given the importance of plastid and mitochondrial-targeted primary 

carbon metabolism to xylogenesis, a targeted co-expression network approach would give deeper 

insight into the roles of plastids and mitochondria during xylogenesis. 

 

A systems genetics analysis of a Eucalyptus grandis × E. urophylla F2 (GUxU) interspecific backcross 

population has shown that variation in expression of primary carbon metabolism genes is 

significantly associated with wood development and secondary cell wall trait variation (Mizrachi et 

al., 2017). Here, we constructed xylem-specific gene co-expression modules of plastid and 

mitochondrial carbon metabolism using transcriptomes from this population (Mizrachi et al., 2017). 

Specifically, we asked how wood-forming cells regulate subcellular carbon partitioning in these 

organelles; to what extent is organellar regulation shared between plastids and mitochondria; and 

what important biological and biochemical pathways are organelle-specific carbon metabolism 

linked to? We find that circadian, developmental, and epigenetic regulation of xylogenesis is linked 

to plastidial carbon metabolism, and that mitochondrial and plastid networks integrate primary 

metabolism and cellular homeostasis to secondary cell wall formation. Given the importance of 

these organelles in carbon metabolism for wood development, and the dearth of specific knowledge 

of organellar biology during xylogenesis, this study provides new insight into the subcellular and 

temporal regulation of carbon allocation in trees. An understanding of the role of organelles in 

carbon allocation during secondary growth, and the genetically permissible expression variation of 

carbon metabolism is of value to tree, wood, and secondary cell wall researchers. 
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Materials and Methods 

Subcellular localization and KEGG pathway prediction 

 Eucalyptus grandis v.2.0. annotation homologs of Arabidopsis thaliana (TAIR10) genes were 

downloaded from Phytozome v10 (http://phytozome.jgi.doe.gov/pz/portal.html) to infer subcellular 

localization and KEGG metabolic pathways of E. grandis genes. The KEGG database (Kanehisa et al., 

2008) was used to identify Eucalyptus gene identifiers (IDs) from their A. thaliana best hits involved 

in 17 selected carbon metabolic KEGG pathways (Note S1). The SUBA database (Tanz et al., 2013) of 

Arabidopsis consensus gene localizations (SUBAcon) was used to assign Eucalyptus genes to eleven 

different subcellular localizations, with an added category of “multiple” targeted genes, if genes 

were predicted to be localized in more than one location. The number of genes per subcellular 

compartment was counted for all genes, xylem-expressed genes (FPKM >1 in at least 75% of 

individuals), and KEGG carbon metabolic genes (Notes S1). 

 

Query-based co-expression network construction and graph-based clustering 

 The data generation of the population-wide transcriptomes used in this study is well described in 

(Mizrachi et al., 2017). Briefly, immature xylem was collected from 156 GUxU F2 interspecific 

backcross 3-year-old individuals between 09:00 and 16:30 by bark removal and scraping of the inner 

glutinous layer. The samples were flash frozen in liquid nitrogen and stored at -80�. The samples 

were then finely ground using a mortar and pestle before shipping to the Beijing Genomics Institute 

(BGI) for polyA selected mRNA sequencing. Data analysis was performed using the Tuxedo suite, 

resulting in transcript abundance measurements (Fragments Per Kilobase of transcript per Million - 

FPKM) for all 36 349 E. grandis genes.  

 

To identify the co-expression network of carbon metabolism localized to the plastid and 

mitochondria during xylogenesis, 152 plastid-targeted genes and 65 mitochondrial-targeted genes 

from 17 KEGG primary carbon metabolic pathways (defined above) were used as query lists for 

network generation. First, the query gene to all gene Pearson correlation matrix was constructed 

and was then filtered by joint likelihood score to ensure reciprocal co-expression between a query 

gene and its associated network genes. A joint likelihood score for a query gene and a selected 

cluster gene depends on the distribution of correlation values for a query gene, and on the 

distribution of correlation values for the selected gene against all other genes. Thus, the joint 
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likelihood score is  , where Zi and Zj are the z-scores of the correlation from the 

marginal distributions for query gene i and selected gene j (Faith et al., 2007). To avoid clusters of 

genes that are specific to only one query, the co-expression network was filtered to keep genes 

correlated to at least two query genes, and query genes were retained if they were correlated to at 

least fifty other genes. Secondly, a weighted co-expression network was generated in which edges 

represent correlations between queries and their associated network genes. The multilevel 

community detection method was used to sub-divide the network into consensus clusters based on 

the number and weights of shared edges within clusters, where clusters have more shared edges 

with higher weights (Djidjev, 2006). A third network of overlapping query genes that were found in 

the resulting plastid and mitochondrial networks was constructed as above. For more details, see 

Fig. S1. Tissue specific gene expression of E. grandis v2.0 genes was retrieved from previous 

publications (Mizrachi et al., 2010; Myburg et al., 2014; Vining et al., 2015) to analyse the tissue 

specific expression profiles of plastid and mitochondrial cluster genes. 

 

Overlap of E. grandis plastid and mitochondrial cluster genes with the aspen developmental 

transcriptome series and genes significantly associated with lignocellulosic biomass traits 

In order to place the plastid and mitochondrial cluster genes in a developmental context, the 

number of genes which overlap with the defined developmental phases (a to h) in aspen (Populus 

tremula) were counted (Sundell et al., 2017). First, the E. grandis orthologs of Populus trichocarpa 

genes were identified using the PLAZA database by downloading all orthologous gene families 

(PLAZA file = genefamily_data.orth.csv) and cross-referencing the gene family IDs between E. grandis 

and P. trichocarpa using the merge function in R (version 3.2.2) (Proost et al., 2014). Then, 

overlapping genes per plastid network cluster based on E. grandis gene IDs were identified using the 

merge function in R (version 3.2.2). For the final visualization and counting of the number of 

overlaps in each cluster and developmental series, any genes that had duplicated E. grandis gene IDs 

within the same overlap were filtered. This was done to standardize the number of genes for the 

next analysis, GO biological process (GO-BP) enrichment. Additionally, to identify more distantly 

related homologs, the procedure for identifying orthologs was repeated using the broader homolog 

gene families (PLAZA file = genefamily_data.hom.csv). In order to reduce the complexity of the 

comparisons stemming from large duplicated homologous gene families in E. grandis and P. 

trichocarpa, only orthologs were used in the overlap and developmental series analysis. The 

overlapping genes were visualized in Tableau (Tableau Software). The developmental series 
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expression profiles for clusters with large overlaps were visualized using ggplot2 (version 3.1.0 

(Wickham, 2009)) in R (version 3.2.2) using the expression values of the aspen developmental series 

taken from Sundell et al., 2017. 

 

Plastid cluster genes that were significantly associated with 13 lignocellulosic biomass traits were 

identified by downloading the curated list of 1 597 E. grandis genes and cross-referencing the list 

with the plastid cluster genes (Mizrachi et al., 2017). The number of plastid cluster genes associated 

with each trait was visualized using Tableau (Tableau Software). 

 

Functional enrichment analysis 

 Functional annotation of consensus clusters was done using GO and pathway enrichment (). Gene 

annotation for GO-BPs were obtained from TAIR10 (www.arabidopsis.org). The GO gene annotation 

was transferred from Arabidopsis to their corresponding E. grandis genes as determined above 

(Myburg et al., 2014). Functional enrichment of was calculated using Fisher’s exact test, and P-values 

were corrected for multiple testing using the Benjamini and Hochberg method (Benjamini & 

Hochberg, 1995). A corrected P-value of < 0.05 was used as a threshold to select enriched terms or 

pathways. The enrichment analysis was repeated without the query genes to determine which GO-

BP terms were enriched due to the presence of the query genes. This was done to ensure that the 

query genes were not biasing the GO-BP term enrichment for the clusters. GO-BP terms that are not 

enriched without the query genes are indicated with * in Notes S2. Shared plastid and mitochondrial 

genes were used for an additional enrichment per overlapping gene set (Fig. 2 (see later) ; Notes S2). 

GO-BP enrichment of plastid clusters with the P. tremula developmental phases was done as above, 

using E. grandis gene IDs, and E. grandis as the background genome for enrichment.  

  

Genes that were present in both plastid and mitochondrial clusters were identified, and the results 

were visualized using a Sankey diagram generated with Google Developers charts (Zhu, 2012). The 

MapMan annotation for each gene in the networks were sourced from the PLAZA database for plant 

comparative genomics (Proost et al., 2014), along with the subcellular localization of cluster genes 

previously retrieved from SUBAcon (Tanz et al., 2013). MapMan was used to assess the known 

functions of the genes within each cluster in order to interpret the biological relevance of the 

networks (Usadel et al., 2009). Network properties and architecture were evaluated using Cytoscape 
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and NetworkAnalyzer (Shannon et al., 2003), after exporting the network adjacency matrix using the 

igraph package (Csardi & Nepusz, 2006). Unless otherwise stated, all data processing and analysis 

was done using R (version 3.2.2). 

 

Results 

Subcellular localization and expression of plastid and mitochondrial-targeted genes in Eucalyptus 

 To obtain a baseline understanding of the subcellular localization of primary carbon metabolism in 

Eucalyptus, the predicted subcellular localization (SUBAcon) and biochemical functions (KEGG) of 

annotated Arabidopsis homologs for all E. grandis v2 proteins were examined (Myburg et al. 2014; 

Tanz et al., 2013). Of the 36 349 annotated E. grandis proteins, 7,6% and 5,5% are predicted to be 

targeted to the plastid and mitochondria, respectively (Table 1). 747 genes in 17 KEGG metabolic 

pathways representing primary carbon metabolism (Aharoni & Galili, 2011) are expressed in the 

immature xylem of the GUxU interspecific backcross population (FPKM > 1 in > 75% of individuals) 

(Table 1). The predicted localization of these genes shows that the majority of primary carbon 

metabolism in xylem is attributed to cytosolic proteins (33%), with ~20% localizing to the plastid and 

~8% to the mitochondria (Table 1). Thus, almost a third of all KEGG annotated enzymatic reactions 

relating to primary carbon metabolism are predicted to occur in the plastid and mitochondria during 

xylogenesis.  

 

Co-expression networks of plastid and mitochondrial carbon metabolic genes 

 The immature xylem RNA-sequencing data generated in Mizrachi et al., 2017 was sampled by 

removing the bark and scraping the xylem tissue, a method which inherently samples all cell types 

and the spectrum of development from the cambial layer to the later stages of xylem before 

programmed cell death (PCD). This outer glutinous layer comprises of developing xylem compared to 

mature xylem tissue, which predominantly consists of cells that have already undergone PCD (see 

(Mizrachi et al., 2010) for more detail on sampling). In order to determine the biological pathways 

that are coordinated with carbon metabolism in plastids and mitochondria during xylogenesis in 

these samples, the identified organelle-targeted carbon metabolic genes were used as query genes 

for co-expression network construction (Magwene & Kim, 2004). Briefly, all genes that were 

expressed in at least 75% of the individuals in the population were correlated to the plastid and 
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mitochondrial query genes. Genes that had a Pearson correlation of > 0.6 to at least two query genes 

were retained. In order to minimize biological noise stemming from unconnected or lowly expressed 

genes, query genes were retained if they were correlated to at least fifty other genes, and had a 

joint likelihood of reciprocal correlation threshold of 3.8 based on row Z-score for the final network 

construction (See Materials and methods and Fig. S1). The multilevel community detection algorithm 

was used to define co-expression clusters, using weighted shared edges to identify clusters (Djidjev, 

2006). The constructed plastid query gene network for the population contained 47 query genes, 

and 2,500 co-expressed genes (hereafter referred to as cluster genes) in seven clusters, representing 

11.8% of all xylem-expressed genes (Fig. 1a, b). The mitochondrial query gene network contained 23 

query genes, and 2,194 cluster genes in five clusters, representing 10.3% of all xylem-expressed 

genes (Fig. 1 c, d).  

  

For the seven Plastid Clusters (PC1 to PC7) and five Mitochondrial Clusters (MC1 to MC5), GO 

biological process (GO-BP) term enrichment analysis was used to identify the distinct biological 

processes associated with carbon metabolism targeted to plastids and mitochondria during 

Eucalyptus xylogenesis (Fig. 1b, d; Notes S1). Between these two networks, there is a 36% overlap of 

shared genes (Fig. 2a, b), and clusters with large overlaps were assigned the same colour for 

comparison. The majority of the overlapping genes were between PC1 and MC4 (red) (126 genes), 

PC3 (green) and MC3 (dark green) and MC5 (light green) (265 and 358 genes, respectively), and PC7 

and MC2 (138 genes) (Fig. 2a). The clusters with little to no overlap are potential plastid and 

mitochondria specific clusters, and those with large overlaps and GO enriched terms in common 

represent biological processes that are transcriptionally coordinated between organelles (Fig. 2c). A 

network of the shared query genes between the plastid and mitochondrial networks showed that 

the overlap of PC3 - MC3 and MC5 and PC7 - MC2 is highly coordinated in the population, while the 

overlap of PC1 - MC4 is likely due to organelle specific regulation (discussed below) (Figure S2). All 

genes and cluster membership can be found in Notes S3.  

 

Distinct regulatory modules of early and late xylem development in plastid network clusters 

 Transcription during xylem formation is marked by three main developmental phase transitions: 

cambial meristem differentiation and primary growth, followed by the later stage of secondary cell 

wall biosynthesis and deposition, and finally programmed cell death to form fully functional xylem 

fiber cells. In the plastid network, primary growth and secondary cell wall synthesis are separated 
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into two distinct clusters, PC1 (early) and PC3 (late). PC3 and mitochondrial clusters MC3 and MC5 

have the largest overlap of 687 shared genes between plastid and mitochondrial clusters, with 

shared enriched GO-BP terms for xylem development and secondary cell wall biopolymer synthesis, 

and no unique GO-BP terms (Fig. 2c; Notes S2). Further, the shared secondary cell wall genes are 

highly and specifically expressed in immature xylem compared to five other E. grandis tissue specific 

transcriptomic datasets (Fig. 2b) (Vining et al., 2015; Mizrachi et al., 2010). The large overlap of 

xylem specific genes between the plastid and mitochondrial networks highlight the strength of xylem 

as a carbon sink during wood formation, where the utilization of metabolite precursors must be 

shared between cellular compartments to ensure efficient SCW biosynthesis. 

 

In PC3, nine out of 18 query genes are aromatic amino acid (AAA) synthesis genes, and eight out of 

nine query genes for MC3 and MC5 are serine/glycine metabolic genes, showing that amino acid 

metabolism, and specifically AAA synthesis is highly co-regulated with SCW biosynthesis. In addition 

to all known E. grandis SCW CELLULOSE SYNTHASE (CESA) genes and all but one of the monolignol 

biosynthetic genes, PC3, MC3, and MC5 include known SCW formation regulators in the MYB and 

NAC families (Hussey et al., 2013) (Notes S3; Table S1). Out of 174 putative monolignol genes in the 

E. grandis genome, 18 directly involved with SCW formation are included in the networks, showing 

the specificity of the analysis (Carocha et al., 2015). The shikimate pathway for monolignol precursor 

phenylalanine is almost completely represented in PC3, highlighting the intercellular coordination of 

monolignol synthesis between the plastid and cytosol (Table S1). Additionally, the mitochondrial 

genes involved in the metabolism of glycine in MC3 and MC5 are proposed to modulate S-

adenosylmethionine levels for lignin accumulation during SCW formation, showing that lignin 

synthesis is a major driver of plastid and mitochondrial inter-organellar coordination in xylem 

(Villalobos et al., 2012).  

  

A key element in the coordination of cellular metabolism during xylogenesis is the inter- and intra-

cellular transport of metabolites (Linka & Weber, 2010). In PC3, we identified 52 predicted 

transporters, of which 33 are predicted to be localized to the plasma membrane, including SUCROSE 

TRANSPORTER (SUT) 1 and 3 genes, linking sucrose transport from the leaves via phloem tissue to 

SCW formation in xylem (Kühn & Grof, 2010) (Notes S3). Also present in PC3, are two known plastid 

localized transporters: PPT/CUE1, which transports shikimate pathway precursor 

phosphoenolpyruvate (PEP) or triose phosphate (TP) into the plastid in heterotrophic tissues; and 
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inorganic phosphate transporter PHT4;2 (Staehr et al., 2014; Streatfield et al., 1999; Irigoyen et al., 

2011) (Notes S3). These plastid localized transporters may represent key nodes for mediating 

metabolic flux during SCW biosynthesis and deposition.  

  

PC1 (557 genes) and MC4 (219 genes), which have an overlap of 126 genes (Fig. 2a), have enriched 

GO-BP terms related to cell identity, elongation and primary cell wall deposition (red in Fig. 1; Fig. 2), 

with all three E. grandis primary cell wall (PCW) CESA genes present (Notes S2; Notes S3) (Myburg et 

al., 2014). Lipid biosynthetic genes were the primary plastid query genes in this cluster, highlighting 

the requirement for phospholipid membranes in dividing cells (Kwok & Wong, 2005), while MC4 

query genes were a combination of genes from the tricarboxylic acid (TCA) cycle and the 

photorespiratory pathway (Notes S3). In the early phases of xylogenesis, auxin concentration 

gradients in the cambium are known to be a primary signal for xylem fate specification (Milhinhos & 

Miguel, 2013). PC1 contains an Arabidopsis PIN-FORMED1 (PIN1) auxin transporter homolog, AUXIN 

RESPONSE FACTOR (ARF) gene ARF7/ARF19, and SUPPRESSOR OF AUXIN RESISTANCE 1 and 3. 

Related to cambial auxin distribution is SLK2 (PC1, MC4), which has been shown to regulate auxin 

distribution in Arabidopsis shoot apical meristems (Lee et al., 2014). In PC1, HD-ZIPIII transcription 

factor REVOLUTA functions in response to auxin to induce xylem fiber cell formation (Talbert et al., 

1995). Other regulators of xylogenesis found in PC1 include LHW, which regulates procambial cell 

division (reviewed in De Rybel et al., 2015). PC1 and MC4 therefore represent the structural 

metabolic genes and transcription factors regulating the early phases of xylem development in E. 

grandis. 

 

GO-BP terms that are enriched in PC1 but not MC4 are those representing regulatory processes 

associated with epigenetic modifications and non-coding RNA (ncRNA). PC1 contains genes for DNA 

methylation maintenance methyltransferases MET1 and CMT3, which act to maintain CG and CHG 

DNA methylation for transcriptional gene silencing at the DNA level (Cao et al., 2003). The DNA 

methylation small interfering RNA (siRNA) pathway in plants is mediated by RDR proteins, of which 

RDR1 and RDR2 genes are both found in PC1 (Yang et al., 2016). There are multiple chromatin 

remodeling proteins in PC1, such as DDM1, CHR5, CHR11, and CHR42, along with histone 

methyltransferases, particularly for Histone H3 lysine 4 (H3K4) (Lippman et al., 2004; Shen et al., 

2015; Huanca-Mamani et al., 2005; Narlikar et al., 2013). SDG8 histone H3 methyltransferase (PC1) 

regulates the expression of brassinosteroid signaling, light response, carbon metabolic genes (Li et 
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al., 2015). SDG8 has previously been shown to affect flowering time, shoot branching, and 

carotenoid composition in Arabidopsis, and is linked here to the hormonal regulation of early xylem 

development (Wang et al., 2014). Post-transcriptional gene silencing is a widespread regulatory 

mechanism in plants that is mediated by non-coding RNAs. The genes AGO1 and AGO4 in PC1, in 

conjunction with the DICER-LIKE 2, produce 21 nt long tasi-RNAs and 24 nt long siRNAs (Wang et al., 

2011), which have previously been shown to regulate tissue-specific gene expression in plants. The 

overlap between PC1 and MC4 is not conserved in the network of shared genes (Fig. S2) and may 

reflect the specific association of plastid query genes with epigenetic regulation that indirectly 

regulates mitochondrial targeted metabolism. The implication that plastids are more closely 

associated with chromatin architecture, remodeling, and non-coding RNA regulation during 

xylogenesis than mitochondria, makes the 54 genes of unknown function in PC1 particularly 

attractive for further study (Notes S3). 

  

Plastid localized carbon metabolism is regulated by the circadian rhythm to ensure efficient 

carbon allocation during xylogenesis 

 The immature xylem samples used in this study were collected from early morning to late 

afternoon, resulting in the time-dependent perturbation of some Eucalyptus genes, which ended up 

in distinct clusters (Table S2). The plastid network clusters revealed the circadian control of gene 

expression and primary metabolite utilization; PC6 (366 genes, dark blue), and PC7 (581 genes, 

purple) (Fig. 1a, b) contain genes of evening/afternoon and morning circadian clock module 

respectively (Fig. 3a; Table S2). These clusters therefore integrate the circadian clock with starch 

metabolism, energy production, fatty acid (FA) biosynthesis, and protein and nucleotide metabolism, 

the primary carbon metabolic processes necessary for xylogenesis (Fig. 1b, Table S2). PC6 contains 

homologs of the evening clock module in Arabidopsis, including the central clock loop gene TOC1, 

and evening loop genes ELF-4a, ELF3 and LUX, and little overlap with any mitochondrial clusters (Fig. 

2a; Table S2) (Müller et al., 2014). TET2 and TET3 genes in PC6 affect many biological processes, and 

have gene family members that interact with TOC1, which are relatively understudied in plants 

(Wang et al., 2014; Reimann et al., 2017). Circadian fluctuations of starch metabolism are well 

studied, and the plastid network identified starch biosynthetic genes associated with the evening 

clock genes in PC6 (ADP-glucose pyrophosphorylase and Starch synthase 3) (Ball et al., 1998). 
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PC7 contains genes associated with the morning module of the circadian clock, along with enriched 

GO-BP terms for central metabolite production, including nucleotides, FAs, UDP-sugars, acetyl-CoA 

and glycolysis, which overlap with MC2 (Fig. 2a, c; Notes S2). The shared network shows that the 

driver of this overlap is glycolysis, translation, and nucleotide synthesis (Notes S3), while the 

circadian genes are specific to PC7. The central morning clock gene LHY (A. thaliana CCA1), and 

several morning clock associated genes from the LNK and RVE gene families are found in PC7 (Table 

S2). PC7 therefore represents morning-associated energy homeostasis linked to the mitochondrial 

TCA cycle and production of primary metabolites, along with the degradation of transitory starch by 

beta amylase-1 (BAM1). There are several potential transcriptional regulators in PC7 that act in 

conjunction with the primary circadian regulators to ensure diel metabolic regulation. Amongst 

these is MYB3, which has been shown to act as a negative regulator of phenylpropanoid biosynthesis 

in Arabidopsis through interaction with LNK1 and LNK2 in PC7 (Zhou et al., 2017). Phenylpropanoid 

biosynthesis is known to peak before dawn (Harmer et al., 2000), and these results show that this 

mechanism of morning repression of phenylpropanoid biosynthesis is conserved in secondary xylem. 

Interestingly, the genes of the plastid localized FA synthesis pathway were split between PC1 and 

PC7, with the majority of the initial synthesis pathway represented in PC7 (Fig. 3b). FA biosynthesis 

and the shikimate pathway share a metabolic intermediate in phosphoenolpyruvate (PEP), which 

can be used to generate pyruvate for FA synthesis by plastidial pyruvate kinase (also in PC7) 

(Nishida, 2004). The distinct cluster membership of the shikimate pathway (PC3), FA synthesis and 

circadian regulators (PC7) suggest that FA biosynthesis and the shikimate pathway are temporally 

regulated to ensure efficient allocation of PEP during xylogenesis for primary growth and lignin 

formation (Fig. 3b). 

 

This significance of the relationship between FA synthesis and the shikimate pathway is illustrated by 

plastid and mitochondrial network genes associated with lignocellulosic biomass traits in the GUxU 

interspecific backcross population (Mizrachi et al., 2017). The network-based data integration 

method (NBDI) used a combined analysis of transcriptome, eQTL, metabolite, and metabolic 

pathway data to identify a highly curated list of Eucalyptus genes that are significantly associated 

with 13 biomass traits (Mizrachi et al., 2017). Of the 1 597 NBDI genes, 35% and 30% are found the 

plastid and mitochondrial networks respectively, with the vast majority of genes associated with 

traits found in PC3 - MC3 and MC5 (Fig. 4). The clear exception is PC7 genes associated with lignin 

content (45 genes), which includes the nuclear encoded plastidial acetyl-CoA carboxylase 1 

(Eucgr.B01425) and PEP carboxykinase 1 (Eucgr.I00628) (Fig. 4; Notes S3). Therefore, despite PC7 
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genes not being as highly or specifically expressed in xylem as PC3 genes (Fig. 2b; Fig. S3a), the 

temporal regulation of carbon allocation plays a significant role in Eucalyptus wood formation.  

 

Plastid and mitochondrial network genes overlap with the Populus tremula secondary xylem 

developmental series 

The Populus tremula (aspen) xylem developmental series provides high resolution transcriptomic 

profiles of the three main transcriptional reprogramming events of wood formation (Fig. S4a). The 

three transcriptomic transitions are further separated into 16 smaller clusters (a - h), based on the 

peak of transcription over the developmental series (see Fig. S4a for representative expression 

profiles across aspen clusters). The plastid network cluster genes can be placed in a developmental 

context using the Aspen xylem developmental series, in addition to the underlying genetic and 

circadian rhythm dependent gene expression variation across the population (Sundell et al., 2017). 

Of the 3 423 E. grandis genes in the plastid and mitochondrial networks, 2 684 had orthologous P. 

trichocarpa gene IDs representing 5 225 unique aspen genes (Notes S3). Of the 739 genes in E. 

grandis clusters with no Aspen cluster overlap, 490 have PLAZA v3 gene family homologs in P. 

trichocarpa, and 20 are unique to E. grandis (Notes S3). All 20 have no annotated PFAM domains, 

and one is highly and specifically expressed in E. grandis immature xylem compared to five other 

tissues and may be a good candidate for experimental analysis in the future (Eucgr.C00653 - PC3 & 

MC5) (Fig. S3).  

 

Overlapping genes between aspen developmental stage clusters and E. grandis plastid networks 

show that the majority of overlap is between PC1, PC3, and PC7 with the corresponding 

developmental clusters in aspen (e1, e2, f, g1, g2) (Fig. 5; Fig. S4). The expression profiles of the 

overlapping genes compared to all other aspen cluster genes shows that the PC genes are 

representative of the average profile per aspen cluster (Fig. 5). To identify the shared biological 

processes between the clusters and developmental stages, GO BP enrichment was performed using 

the overlapping genes with E. grandis as a genomic background, after removing duplicate genes 

within a specific overlap. The results show that xylem and SCW specific terms are enriched between 

PC3 and developmental stages g1 and g2 (Notes S2). In the overlap between PC1 and developmental 

stage f, terms related to meristem initiation and maintenance and epigenetic regulation are found, 

showing that these processes are highly conserved between the two species (Notes S2). 

Interestingly, there are several genes related to xylem PCD in PC3, such as bifunctional endonuclease 
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(BFN1), and xylem cysteine peptidase 1 (XCP1) and metacaspase 9 (MC9) (Farage-Barhom et al., 

2008; Van Hautegem et al., 2015). In the aspen clusters, these genes peak in late xylogenesis, but are 

expressed at a lower level across the series (clusters d1 and d2 - Fig. S4). This suggests that although 

PCD may occur specifically in mature xylem, the expression of these genes is coordinated in the 

earlier stages of secondary growth. 

 

The aspen wood samples were collected in between 10:00 and 12:00 in the morning (Personal 

communication – T. Hvidsten & N. Street), and accordingly, PC6 (afternoon/evening module) had no 

significant GO BP terms in any of the overlapping genes, while PC7 (morning module) shared 

significant GO BP terms with early developmental phases e1 and f (Fig. 5; Notes S2). These terms are 

related to purine and pyrimidine metabolism, translation, cell wall organization and cell wall 

modification (Notes S2). Together, these results provide further evidence that central metabolism 

for nucleotide synthesis and translation are indeed taking place in the morning, during the initial 

phases of xylogenesis. The clock genes represent the distinct resolution of this biology in the plastid-

network, as the clock genes are found in PC6 and 7 but are spread across the developmental phases 

in the aspen dataset (Table S2). 

 

This comparison further highlights the utility of these networks in understanding primary 

metabolism during wood formation, as well as providing new context to genes whose expression has 

less structure in developmental networks due to temporal variation in gene expression.  

Discussion 

 Although many of the metabolic, hormonal and transcriptional components of xylogenesis have 

been identified (Ruprecht et al., 2011; Mizrachi et al., 2017; Milhinhos & Miguel 2013), their 

integration and system-level regulatory architecture across the bioenergetic organelles (plastids and 

mitochondria) is not very well understood. In this study, xylem transcriptomes from 156 GUxU were 

used to identify co-expression networks and network clusters associated with plastid and 

mitochondrial carbon metabolism. The co-expression networks in this study are a direct result of 

transcript abundance variation due to genetic variation between individuals, and thus represent the 

underlying genetic regulation in xylem tissue (Mizrachi & Myburg 2016). These networks show that 

plastid and mitochondrial carbon metabolic pathway genes are central to, and co-expressed with, 

the distinct developmental processes of xylogenesis (Fig. 1, Fig. 5). The results show that these 
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transcriptional regulatory events are genetically “hard-wired” (Mizrachi & Myburg 2016) and 

correspond well to the spatial developmental phases of xylogenesis (Fig. 5) (Sundell et al., 2017). 

Specifically, the plastid-targeted carbon metabolic network clusters provide insight into the 

subcellular and diurnal coordination of metabolic pathways during xylogenesis (Fig. 3). Genes 

present in both plastid and mitochondrial network clusters highlight the regulation of plastid and 

mitochondrial carbon utilization during secondary cell wall biosynthesis and their impact on 

lignocellulosic biomass traits (Fig. 4). The combined networks represent only ~16% of Eucalyptus 

detectable xylem-expressed genes, making these networks a fine-scale representation of the 

biological processes and genes important for secondary xylem development.  

  

The plastid network clusters clearly discriminate the programs of cell differentiation, expansion and 

elongation during early xylogenesis, and the SCW biosynthetic processes in PC1 and PC3, 

respectively. PC1 is enriched in GO terms related to epigenetic modifications such as non-coding 

RNAs, histone remodeling, and DNA methylation, which are not found in the mitochondrial network. 

Epigenetic regulation during initial xylem development in Eucalyptus is linked to plastidial carbon 

metabolism via histone modifying genes such as SDG8, and its regulation of strigolactone, which in 

conjunction with auxin signaling, regulates secondary cambial growth (Li et al., 2015; Cazzonelli et 

al., 2009; Agusti et al., 2011). Epigenetic modifications and early xylogenesis may also be directly 

connected by plastid localized metabolites such as acetyl-CoA and S-adenosylmethionine (SAM), that 

are involved in primary metabolism, and histone and chromatin modifications (Chen et al., 2016; 

Oliver et al., 2009; Bouvier et al., 2006). Further, plastidial PEP can be used for a variety of metabolic 

pathways, and PEP importer CUE1 has been previously associated with transcriptional gene silencing 

via histone modifications (Shen et al., 2009). The division of fatty acid biosynthesis (PC1, PC7) and 

the shikimate pathway (PC3) may be a regulatory mechanism for ensuring that PEP utilization is 

balanced with the carbon requirements of primary growth and secondary cell wall phenylpropanoids 

during secondary growth (Fig. 3) (Joyard et al. 2010; Staehr et al. 2014). In Arabidopsis seedlings, 

ACCase mutations in the first committed step of fatty acid biosynthesis increased flux towards 

protein synthesis, suggesting a regulatory mechanism balancing the flux of carbon skeletons in 

plastids (Chen et al., 2009). Although plastidial signaling has been shown to affect epigenetic 

modifications and cause widespread changes in nuclear gene regulatory networks in photosynthetic 

tissues (Virdi et al., 2016; Beltrán et al., 2018), these results show that the plastid-specific 

association of epigenetic regulatory mechanisms and primary development of xylogenesis warrant 

further attention.  
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 In photosynthetic tissues, the circadian clock is entrained by light and temperature, resulting in the 

diurnal fluctuation of ~30% of Arabidopsis transcripts (Covington et al., 2008). Tissue-specific 

circadian clocks are present in plants, and these clocks are decentralized, and fluctuate with 

different cues (Shimizu et al., 2015). In non-photosynthetic tissues, the clock is entrained in the 

absence of environmental cues by the availability of sucrose transported from photosynthetically 

active source tissues, also known as “metabolic dawn” (Endo et al., 2014; Haydon et al., 2013). There 

is a strong association between sugar availability and signaling with cell division and expansion (Van 

Dingenen et al., 2016), and in Populus stem tissues cambial differentiation into xylem has shown to 

be associated with the circadian clock (Edwards et al., 2018). Plastid-targeted carbon metabolism in 

xylem is coordinated with the circadian clock, and morning-associated PC7 suggests that primary 

metabolites, such as nucleotides, UDP sugars, and acetyl coA are produced in the morning in 

preparation for SCW deposition (Fig. 3, Notes S2). In line with previous studies, PC6 shows that 

starch metabolism occurs later in the day in association with evening clock components such as LUX, 

ELF3, and PRR5 (Solomon et al., 2010; Wijnen & Young, 2006). The onset of metabolic dawn entrains 

the central circadian clock in xylem via the release of PRR7 repression of CCA1 (LHY - PC7), leading to 

the repression of evening clock gene PRR1 (TOC1 - PC6) (Müller et al., 2014; Haydon et al., 2013). 

Although PRR7 (PC6 - evening module) expression peaks in the morning in photosynthetic tissue 

(Farré et al., 2005), it is known to be delayed in roots, and has an evening peak in Populus stems 

(James et al., 2008; Edwards et al., 2018), and this decoupling of clock components is also found in 

developing xylem in Eucalyptus (Table S2). The aspen developmental series show that the morning-

associated genes in PC7 overlap with the initial phases of xylogenesis (aspen developmental phases 

e1, e2, and f) (Fig. 5).  

 

Other than the regulation of starch biosynthesis in plastids, little is known about the circadian 

regulation of plastids in xylem (Solomon et al., 2010). Here, several links between plastid biology and 

the xylem circadian clock are reported. Specifically, GPT2, a glucose-6-phosphate plastid membrane 

transporter which has a positive effect on cell growth in Arabidopsis is found in PC7 and is known to 

be induced by sugar availability (Kunz et al., 2010; Van Dingenen et al., 2016). Perhaps GPT2 is 

induced by metabolic dawn in xylem, leading to the activation of primary growth processes such as 

de novo fatty acid biosynthesis, while phenylpropanoid metabolism is repressed by the interaction of 

LNK1 and LNK2 with MYB3 (Fig. 3) (Zhou et al., 2017). These regulatory mechanisms are further 

validated by the significant trait association of PC7 genes with lignin content in wood (Fig. 4). Taken 

together, these results show that fine-scale regulation of carbon metabolism during xylogenesis acts 
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to spatially and temporally separate metabolite precursors for the major phases of wood formation 

via epigenetic, transcriptional, and metabolite transporter regulation. 

  

The analysis of xylem plastid type and function is complicated by the diversity of cell types present in 

wood and the developmental changes associated with xylogenesis. For instance, xylem tracheary 

element plastids are degraded during programmed cell death, while parenchyma cells contain 

amyloplasts and can live for decades (Spicer & Holbrook, 2007; Bollhöner et al., 2012). Although 

xylem plastids may be amyloplasts producing phenylalanine in addition to starch storage, but 

previous research has shown that starch filled grana in Eucalyptus elaeophora differentiating ray 

parenchyma plastids are replaced by phenolic biopolymers (Wardrop & Cronshaw 1962). 

Amyloplasts in specialized cells of secondary phloem of Populus are established during tension wood 

formation, acting as gravity perceiving statoliths, and were not observed in secondary xylem 

(Gerttula et al., 2015). The discovery of the vanilla fruit cell phenyloplasts, which accumulate phenyl 

glucoside in re-differentiated chloroplasts (Brillouet et al., 2014), shows that plastids previously 

classified as leucoplasts, such as developing xylem plastids (xyloplasts), may be specifically adapted 

to the metabolic needs of a wide array of cell types (Pinard & Mizrachi 2018).  

 

In the effort to improve important biomass crop species, organellar variation and the resulting 

cytonuclear coordination should not be ignored, given the large effect that organellar genome 

variation can have on plant fitness and primary metabolism (Roux et al., 2016; Joseph et al., 2015; 

Langridge & Fleury, 2011; Kersten et al., 2016). Novel insights from this work include the plastid 

specific temporal regulation of carbon allocation, and epigenetic modification during early 

xylogenesis, which is potentially regulated by retrograde signaling. The conservation of regulatory 

networks linked to organellar biology in the developmental stages of xylogenesis between Populus 

and Eucalyptus should encourage future research into the role of organelles in wood formation. The 

research presented here shows that organelle specific biology should be considered when aiming to 

improve carbon flux towards increased biomass production in lignocellulosic biomass-producing 

species.  
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Tables  

Table 1: SUBA predicted subcellular localization of Eucalyptus grandis and Arabidopsis thaliana 

genes. 

Table 1 

Predicted subcellular location of E. grandis genes 

Subcellular localization E. grandis 
genomic 

% GUxU xylem 
expressed 

GUxU xylem KEGG 
carbon expressed 

% KEGG carbon 
expressed 

Cytosol 5 558 17.46% 243 32.53%

Endoplasmic reticulum 928 2.14% 20 2.68%

Extracellular 2 549 4.94% 58 7.76%

Golgi 165 0.73% 11 1.47% 

Mitochondrion 2 023 8.04% 62 8.30%

Multiple 3 443 12.57% 113 15.13%

Nucleus 7 094 27.22% 9 1.20%

Peroxisome 627 1.83% 42 5.62%

Plasma membrane 5 649 12.73% 35 4.69%

Plastid 2 767 11.05% 148 19.81%

Vacuole 494 1.29% 6 0.80%

 

SUBA predicted subcellular localization of Eucalyptus genes. Column one shows the subcellular 

compartment, where “multiple” indicates genes predicted to be targeted to more than one location. 

E. grandis genomic is the predicted location of all genes in the E. grandis v.2.0 genome. The next 

columns show the percentage of genes in the Eucalyptus grandis x E. urophylla x E. urophylla (GUxU) 

backcross population that are expressed in at least 75% of the individuals in immature xylem, 

followed by the number and percentage of expressed genes in 17 KEGG primary carbon metabolic 

pathways (Supporting Information Notes S1). 
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Fig. 1 Eucalyptus grandis × E. urophylla × E. urophylla (GUxU) backcross population plastid and 

mitochondrial network structure and function. (a) Heatmap of network clusters for the GUxU 

backcross population plastid query coexpression network. Rows denote genes in the network, and 

the columns represent each individual within the population clustered according to the dendrogram. 

The bars on the left-hand side of the figure show the cluster assignment of genes in the network. 

Plastid clusters (PC) 1–7 are shown in the sidebar as follows: PC1, red; PC2, orange; PC3, green; PC4, 

turquoise; PC5, light blue; PC6, blue; PC7, purple. Mean centered and rescaled log10 FPKM Z-scores 

are shown from blue (low) to red (high) with the colour key in the top right. (b) Plastid coexpression 

network with clusters and query genes shown. Clusters are colour coded as in the heatmap. (c) 

Heatmap of network clusters of the mitochondrial query coexpression network. Mitochondrial 

clusters (MC) 1 to 5 are shown in the sidebar as follows: MC1, orange; MC2, purple; MC3, dark 

green; MC4, red; MC5, light green. (d) Mitochondrial coexpression network with clusters and query 

genes shown. Clusters are colour coded as in the heatmap. For the networks, selected query genes 

are shown as large yellow diamonds, and additional text is the main functional assignment of 

selected clusters (secondary cell wall, SCW). Network layout is Cytoscape perfuse force directed 

layout, with correlation as distance between nodes. 

Fig. 2 Overlapping gene analysis between the plastid and mitochondrial targeted carbon metabolic 

gene coexpression networks. (a) Sankey diagram showing overlapping genes between the plastid 

(left) and mitochondrial (right) network clusters. (b) Heatmap of tissue specific gene expression of 

overlapping genes in six Eucalyptus grandis tissues in the plastid and mitochondrial clusters (Vining 

et al. 2015, Myburg et al., 2014). The row means centered and scaled log10 FPKM values for each 

gene is shown from blue (low) to red (high) across young leaf (YL), mature leaf (ML), shoot tips (ST), 

flowers (FL), immature xylem (IX), and phloem (PH). The bars on the right-hand side show the cluster 

assignment of genes in the plastid network (PC) and the mitochondrial network (MC). The plot above 

the heatmap shows the average expression level in each tissue after normalization. (c) GO biological 

process term enrichment for genes in the overlaps PC1 - MC4, PC3 - MC3 & MC5, and PC7 - MC2, 

and for PC6 which had little overlap between plastid and mitochondrial clusters. The FDR adjusted P-

values for each term are shown on the x-axis, and points are coloured to match the clusters. 

Fig. 3 (a) Expression profile of Eucalyptus grandis circadian clock genes across 156 individuals in the 

plastid network sorted by time of collection between 09:00 to 16:30 h in log10 fragments per 

kilobase of transcript per million (FPKM). Genes found in plastid cluster (PC) 6 (evening module) are 

blue, and PC7 (morning module) are purple. The smooth lines show the average expression profile of 

all clock genes in each cluster, and the grey shaded area represents the standard deviation of each 
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cluster. (b) Plastid cluster assignment of genes involved in fatty acid synthesis and the shikimate 

pathway which can use phosphoenolpyruvate (PEP) as a substrate. The figure was generated using a 

custom pathway in MapMan (v3.5.1.R2) and shows genes in PC3 (green) and PC7 (purple). See 

Supporting Information Tables S1 and S2 for gene IDs and cluster assignment, and Notes S3 for full 

annotation and tissue specific expression of these genes. ACP, acyl carrier protein; PEP, 

phosphoenolpyruvate; E-4-P, erythrose-4-phosphate; DAHP, 3-deoxy-D-arabino-heptulosonate 7-

phosphate; EPSP, 5-enolpyruvylshikimate 3-phosphate; PHE, phenylalanine. 

Fig. 4 Number of genes in (a) plastid and (b) mitochondrial carbon metabolic network clusters 

significantly associated with lignocellulosic biomass traits in Mizrachi et al. (2017). Significant trait 

association to genes was determined by a network-based data integration approach using the same 

Eucalyptus grandis × E. urophylla × E. urophylla (GUxU) backcross population used to construct the 

plastid and mitochondrial networks. The traits are shown on the x-axis, and the number of genes is 

shown on the y-axis as stacked bars coloured according to plastid and mitochondrial clusters (PC and 

MC). For clarity, only the clusters with large overlaps are shown. DBH (ob), diameter at breast height 

(over bark); DBH (ub), diameter at breast height (under bark); pyMBMS, pyrolysis molecular beam 

mass spectrometry. 

Fig. 5 Aspen developmental phase specific expression profiles of genes with orthologs in plastid 

clusters P1, P3, P6, and P7. The expression of aspen (Populus tremula) genes over the three main 

developmental transitions (cluster sections i–iv) of wood formation representing 25 high spatial 

resolution samples of wood development were taken from Sundell et al. (2017). Eucalyptus grandis 

orthologs of Populus trichocarpa genes were identified using PLAZA v3, and were used to identify 

overlapping genes between plastid network clusters (PC1 to PC7), and aspen developmental clusters 

a–h. The pie charts at the top of the graphs indicate the proportion of unique E. grandis genes that 

overlap aspen clusters e1, e2, f, g1, and g2. The total number of overlapping genes between the two 

datasets are indicated by the size of the pie chart and the number below, and the colour of the 

segments represent the plastid clusters as previously defined. For aspen clusters e1, e2, f, g1, and 

g2, the expression profiles of the genes which do not overlap with plastid clusters are in grey in the 

bottom panel to show that the plastid cluster overlapping genes do not deviate from other genes in 

each aspen cluster. The black lines indicate the smoothed average expression profiles of the genes in 

each panel. For clarity, only overlaps between aspen clusters e1, e2, f, g1, and g2 and plastid clusters 

PC1, PC3, PC6, and PC7 are shown. Overlap between all clusters and details of the aspen clusters and 

developmental transitions can be found in Supporting Information Fig. S4. 
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Supporting information 

Figure S1: Tissue specific gene expression heatmaps of non-overlapping plastid and mitochondrial 

cluster genes. 

Figure S2: Network properties of the network constructed from shared plastid and mitochondrial 

query genes. 

Figure S3: Aspen developmental clusters, overlap with plastid clusters, and gene expression of 

Eucalyptus specific genes. 

Figure S4: Overview of plastid network construction method 

Table S1: Plastid cluster allocation of Eucalyptus grandis phenylalanine and monolignol biosynthetic 

genes. 

Table S2: Plastid cluster allocation of Eucalyptus grandis circadian rhythm genes. 

Notes S1: Word document of 17 KEGG carbon metabolism pathways used to identify plastid and 

mitochondrial carbon metabolism genes in Arabidopsis thaliana. 

Notes S2: GO enrichment of plastid, mitochondrial, and shared network clusters, and the overlap 

between plastid clusters and aspen developmental phases.  

Notes S3: Annotation file of all E. grandis genes that are in the plastid (PC), mitochondrial (MC), and 

shared (SC) networks, and E. grandis network overlaps with the aspen developmental phases, and 

aspen circadian clock genes.  
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