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Abstract

During ageing, the secretory patterns of the hormones produced by the hypothalamic–pituitary 

axis change, as does the sensitivity of the axis to negative feedback by end hormones. 

Additionally, glucose homoeostasis tends towards disequilibrium with increasing age. Along with 

these endocrine alterations, a loss of bone and muscle mass and strength occurs, coupled with an 

increase in fat mass. In addition, ageing-induced effects are difficult to disentangle from the 

influence of other factors that are common in older people, such as chronic diseases, 

inflammation, and low nutritional status, all of which can also affect endocrine systems. 

Traditionally, the decrease in hormone activity during the ageing process has been considered to 

be detrimental because of the related decline in bodily functions. The concept of hormone 

replacement therapy was suggested as a therapeutic intervention to stop or reverse this decline. 

However, clearly some of these changes are a beneficial adaptation to ageing, whereas hormonal 
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intervention often causes important adverse effects. In this paper, we discuss the effects of age on 

the different hypothalamic–pituitary–hormonal organ axes, as well as age-related changes in 

calcium and bone metabolism and glucose homoeostasis.

Introduction

Throughout adult life, all physiological functions begin to gradually decline. Ageing is 

characterised by changes in virtually all biological systems. Major changes to the endocrine 

system, as described in this Series paper, result in healthy ageing individuals with well 

recognised phenotypes. However, other factors, such as inflammation and calorie intake, 

also affect the ageing process, and are often associated with age-related chronic diseases. 

These factors make the role of changes in hormonal activity difficult to disentangle and 

clarify in clinical practice.1 During ageing, the secretory patterns of hormones produced by 

the hypothalamic–pituitary axis change, as does its sensitivity to negative feedback by end 

hormones. The triggers that determine the ageing process in the hypothalamus and pituitary 

have previously been reviewed.2 In this paper, we review the response of the different 

components of the human endocrine system to the ageing process, including the response of 

the thyrotropic, somatotropic, adrenal, and gonadal axes, including bone growth, calcium, 

and glucose homoeostasis (figure 1).

Hypothalamic–pituitary–peripheral organ axes

Thyrotropic axis

Changes in thyroid function during ageing—Several population studies,3–6 but not 

all,7,8 show that after the exclusion of people with thyroid disease and people with positive 

anti-thyroid antibodies, normal ageing is accompanied by an increase in the concentration of 

serum thyroid-stimulating hormone (TSH). However, changes in TSH concentration seem to 

be dependent on the regional iodine status, and could reflect a survival bias.9 Free thyroxine 

(FT4) concentrations remain stable with increasing age,4 although a study reported a rise in 

FT4 concentration with age,7 whereas free tri-iodothy-ronine (FT3) concentrations decrease 

over the course of a lifespan.10 The magnitude and pattern of changes in thyroid function 

during ageing are highly variable amongst individuals. For instance, some people have rising 

TSH and FT4 concentrations, whereas others have rising TSH accompanied by falling FT4 

concentrations.9 Additionally, individuals can have low T3 concentrations accompanied by 

high reverse T3 concentrations, reminiscent of non-thyroidal illness, whereas others have 

low T3 concentrations and low reverse T3 concentrations (figure 2).11 These different 

patterns might result from altered hormone metabolism due to disease, low-grade 

inflammation, or energy restriction.4,10,12 Additionally, changes can occur in TSH 

bioactivity with increasing age, making TSH less effective, or in the setpoint of the TSH 

receptor, making the receptor less functional.13 Finally, the increased prevalence of thyroid 

autoimmunity and autonomous nodules with increasing age can lead to altered thyroid 

hormone concentrations.3

Clinical relevance of changes in thyroid hormone concentrations during 
ageing—Whether the increased prevalence of subclinical hypothyroidism and 
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hyperthyroidism at an older age14 and the increase in TSH within the normal reference range 

during ageing is of clinical relevance remains a matter of debate. Pooled data show that 

subclinical hyperthyroidism is associated with an increased risk of overall and 

cardiovascular-related mortality, especially in older people and patients with comorbidities.
15 However, a subsequent study showed that individuals aged 85 years with subclinical 

hyperthyroidism did not have a significantly worse 9-year survival than their euthyroid 

peers.16 Further, subclinical hyperthyroidism is associated with an increased risk of atrial 

fibrillation,17 hip and other fractures,18 and dementia,19 particularly among people with 

TSH concentrations that are lower than 0·10 mIU/L, and those with endogenous thyroid 

disease. In contrast, older individuals with subclinical hypothyroidism or higher TSH 

concentrations within the normal range have a lower mortality than do euthyroid individuals 

or people with lower TSH concentrations.20–22 Although subclinical hypothyroidism in 

younger individuals (aged <65 years) is associated with increased risk of atherosclerosis, in 

older patients with TSH concentrations of up to 10 mIU/L such an association is not present.
23 However, data from another meta-analysis showed that individuals aged 65–79 years with 

a TSH concentration above 10 mIU/L also have a greater risk of coronary heart disease, 

whereas this risk was not increased for those older than 80 years.24 Therefore, the higher 

risks found in younger individuals seem to attenuate with advancing age. Higher TSH 

concentrations within the reference range appear to even decrease the risk of stroke.25

These findings suggest that slightly lower hypothalamic-pituitary-thyroid axis activity is 

beneficial during the ageing process. This hypothesis is also supported by a series of studies 

that link low thyroid hormone concentrations to reduced frailty.26,27 Among older 

populations, lower FT4 concentrations were associated with higher physical function,11,28 

whereas lower TSH concentrations predict future disability.16 This potential adaptive 

mechanism could also be a hereditary phenotype that contributes to longevity, since the 

nonagenarian offspring of centenarians were shown to have higher circulating TSH and 

lower thyroid hormone concentrations than did the offspring of parents who died at younger 

ages.29

In conclusion, the ageing process modulates the concentration of thyroid hormones. These 

alterations are highly variable among individuals, but overall thyroid hormone axis activity 

seems to decline with age, and this decline in activity is reflected by an increase in TSH and 

a decrease in T3 concentrations. However, these age-associated changes are not related to a 

detrimental ageing process, and might even be beneficial. Therefore, age-specific hormone 

reference ranges are useful to avoid misclassifying and overtreating older people, although 

so far, these age-specific thyroid function reference ranges are still lacking.

Somatotropic axis

The hypothalamic–pituitary–somatotropic axis is a hypothalamic–pituitary axis that includes 

the secretion of growth hormone (somatotropin) from the somatotropes of the pituitary gland 

into the circulation, and the subsequent stimulation of insulin-like growth factor-1 (IGF-1). 

The somatopause is a gradual and progressive decrease in growth hormone secretion that 

occurs normally with increasing age during adult life, and is associated with an increase in 

adipose tissue. This decline in growth hormone after puberty continues during adult life and 
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ageing, and consequently plasma growth hormone concentrations, and therefore IGF-1 

concentrations, in older individuals are lower than in young adults. Age-related decline in 

growth hormone concentrations is well documented, consistent across different mammalian 

species, and primarily due to the reduced hypothalamic secretion of growth hormone-

releasing hormone, causing the decline of growth hormone biosynthesis and release by the 

anterior pituitary.30,31 Overall, the age-dependent decrease in IGF-1 concentrations are not 

accompanied by elevated growth hormone concentrations, which suggests that the changes 

are not caused by age-dependent growth hormone resistance in the liver.32 Although the age-

related decline in the activity of the growth hormone-IGF-1 axis is considered to contribute 

to age-related changes that are similar to those observed in growth hormone-deficient adults, 

growth hormone–IGF-1 deficiency or resistance is also known to result in prolonged life 

expectancy, at least in animals.33–35 These data raise the question of whether or not growth 

hormone deficiency constitutes a beneficial adaptation to ageing, and therefore requires no 

therapy. Moreover, although growth hormone therapy has been shown to exert positive 

effects on growth hormone-deficient patients, its safety, efficacy, and role in healthy older 

individuals is highly controversial.32 Several mutations that decrease growth hormone–

IGF-1 signalling are associated with extended longevity in mice.35 In human beings, 

corresponding or similar mutations have been identified, but whether these mutations alter 

longevity has not been established.35

Research focused on investigating brain structure and function in patients with Laron 

syndrome, the best characterised congenital IGF-1 deficiency, suggests that, compared with 

controls, older patients with Laron syndrome have brain structure and function that are 

consistent with those of younger adults.33 Further investigation could lead to an improved 

understanding of the mechanisms underlying these differences in brain structure and 

function, and could contribute to the identification of treatments for age-related cognitive 

deficits. This observation raises the possibility that growth hormone receptor inhibition has 

the potential to protect against age-dependent cognitive decline.33

In conclusion, ageing and the so-called somatopause are accompanied by a decrease in the 

concentrations of growth hormone and IGF-1, but no single intervention has been proven to 

be effective at halting or reversing somatopause.

Control of appetite and food intake

Appetite and food intake decrease with normal ageing, predisposing older individuals to 

become undernourished. Undernutrition is common in older people (aged >65 years), and 

has been implicated in the progression of chronic diseases commonly affecting older people, 

as well as increasing mortality.36 Understanding the factors that contribute to the decline in 

food intake in older people might result in effective prevention and treatment.37 Ageing 

affects many of the endocrine factors involved in the control of appetite and feeding, but few 

studies have been done in human beings to clarify these changes. Possible hormonal causes 

of the anorexia of ageing include increased activity of cholecystokinin, leptin, and various 

cytokines, and reduced activity of ghrelin.37

As early as 1999, MacIntosh and co-workers38 reported that human ageing is associated 

with increased cholecystokinin concentrations. Intravenous cholecystokinin-8 infusion 
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produces greater suppression of food intake in older adults than in younger individuals, 

indicating that sensitivity to the satiating effects of cholecystokinin is at least maintained 

with age, and might even increase. These results raise the possibility of using 

cholecystokinin antagonists as stimulants of appetite and food intake in malnourished older 

people.37 Central leptin resistance can increase with age, and low concentrations of 

circulating leptin have been observed among frail older people.39

In conclusion, ageing is accompanied by changes in ghrelin, cholecystokinin, and leptin 

physiology. All these changes seem to result in a significant and clinically relevant decrease 

in appetite. Future research will determine whether these changes can be corrected by 

pharmacological interventions.

Adrenal axis

Glucocorticoids—Ageing of the hypothalamic–pituitary–adrenal axis is generally 

associated with late-day and evening increases in cortisol concentrations, an earlier morning 

cortisol concentration peak, lower circadian cortisol amplitudes, and more irregular cortisol 

secretion patterns.40–43 Most studies, but not all, show that glucocorticoid feedback 

inhibition after intravenous or oral administration of glucocorticoids is reduced in older 

individuals.40 Similarly to the other hypothalamic–pituitary axes, whether these changes in 

cortisol secretion patterns are due to ageing per se, or whether these instead reflect other 

effects such as the presence of low-grade inflammation, impaired sleep, or changes in social 

or emotional status associated with ageing, remains unclear.

The changes in the hypothalamic–pituitary–adrenal axis that occur during ageing can have 

clinical implications. Previous studies have shown that a more dynamic activity of the axis 

(ie, a greater diurnal decline) relates to better physical performance44 and cognitive function 

in older adults than does a lower activity.45 Additionally, urinary free cortisol concentrations 

in the high-to-normal range are associated with an increased risk of Alzheimer’s disease.46 

Further, independent of disease, higher morning salivary cortisol concentrations in men and 

higher night salivary cortisol concentrations in women are associated with increased all-

cause 6 to 7·5-year mortality.47

Ageing can also influence tissue cortisol availability, since 11-β hydroxysteroid 

dehydrogenase activity, which transforms inactive cortisone into active cortisol, increases 

during ageing (eg, in the skin).48 This increase in cortisol availability leads to increased local 

glucocorticoid generation, which can cause adverse changes in older people. In muscle, for 

example, higher 11-β hydroxysteroid dehydrogenase activity is associated with reduced 

muscle strength.49

Dehydroepiandrosterone and its sulphate—Not only does cortisol homoeostasis 

change with age, but also adrenal secretion of the steroid precursor dehydroepiandrosterone 

(DHEA) and its sulphate (DHEAS) gradually decrease over time.50,51 By the time a person 

reaches age 70–80 years, concentrations of DHEAS are approximately 20% of peak values 

in men, and 30% of peak values in women, compared with people who are younger than 40 

years.52 DHEA and DHEAS are inactive precursors that are converted into androgens and 

oestrogens in peripheral tissue. In older men, this source of androgens is important since less 
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than 50% of these hormones are of testicular origin. Higher concentrations of DHEA and 

DHEAS have been associated with psychological wellbeing and improved physical 

functioning, including muscle strength and bone density, and with anti-inflammatory and 

immunoregulatory actions.53 Lower DHEAS concentrations have been associated with an 

increased risk of cardiovascular events and cardiovascular related mortality in people older 

than 50 years.53 Although the administration of 50 mg of prasterone (ie, DHEA) per day to 

older individuals increases DHEAS, free and total testosterone, oestrone, oestradiol, and 

IGF-1 concentrations,54 this treatment has little reproducible beneficial effects on measures 

such as sexual function, bone density, serum lipids, or glucose concentrations.55

In conclusion, changes occur in cortisol secretion patterns during ageing. The question 

remains whether these alterations reflect or cause ageing-associated changes in functional 

ability, cognition, and mood. DHEA concentrations decrease substantially during ageing, but 

few data point to a clinical significance of this decrease.

Gonadal axis

Ageing of the female reproductive system—Ageing of the reproductive system in 

women and the accompanying hormonal changes are driven by the accelerated depletion of 

the ovarian pool of primordial follicles, with lower oocyte quality in the remaining follicles 

contributing to decreased fertility from the fourth decade of life onwards.56 The decreasing 

number of follicle-stimulating hormone (FSH)-sensitive antral follicles, which is 

proportional to the reduced reserve of primordial follicles, is reflected in the declining serum 

concentrations of granulosa cell-secreted anti-Müllerian hormone (a marker of ovarian 

reserve produced in primary, secondary, and early antral follicles), and inhibin B (a marker 

of ovarian activity, produced predominantly in developing antral follicles during the 

follicular phase of the menstrual cycle).57–59 The rapid shrinking of the ovarian reserve 

during reproductive life remains long unnoticed with the preservation of regular, mostly 

ovulatory cycles. Finally, when follicle availability becomes insufficient, cycle irregularity 

(>7 days longer than their previous cycles) occurs, which signals the onset of the early phase 

of menopausal transition, at a mean age of 46 years (range 34–54). The lengthening of cycle 

duration (ie, delayed dominant follicle growth or anovulatory bleeding), missed periods, and 

prolonged (≥60 days) intervals of amenorrhoea signal the passage to the late menopausal 

transition phase, ending with near total exhaustion of the ovarian follicles and the final 

menstrual period (after 12 months of amenorrhoea retrospectively identified as menopause) 

around age 51 years (range 40–60). The age at which these successive events occur varies 

considerably, and is influenced by body composition, ethnicity, genetics, and lifestyle-

related factors.56

As menopausal transition progresses, cycles are more often anovulatory. Conversely, in 

ovulatory cycles, luteal phase duration and hormone concentrations remain stable 

throughout reproductive life and menopausal transition, with the exception of slowly 

declining mean progesterone concentrations. Changes in gonadotropin secretion throughout 

menopausal transition and after menopause, characterised by increased luteinising hormone 

(LH) and FSH pulse amplitude and loss of pre-ovulatory gonadotropin surges, are caused by 

altered feedback resulting from the intrinsically determined ovarian decline in sex steroids, 
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inhibin A, and inhibin B production.57,58,60 The existence of direct age-related 

neuroendocrine changes, as revealed by the progressive decline of gonadotropin 

concentrations with advancing age after menopause, appears to be less physiologically 

relevant than the intrinsic ovarian changes.56,61 Throughout reproductive life and 

menopausal transition, there is an age-related decreasing trend of adrenal production of 

DHEA and DHEAS, and of mixed adrenal and ovarian production of testosterone and 

androstenedione. However, the LH-stimulated theca cells in the postmenopausal ovaries still 

contribute to circulating testosterone concentrations for up to 10 years.62,63 The multi-organ 

clinical consequences of the hormonal changes that occur during menopausal transition and 

after menopause, such as altered vasomotor regulation, bone metabolism, or urogenital 

status, result primarily from changes in oestrogen production. In this regard, the 

concentration of late postmenopausal oestrogens originating from androgen aromatisation in 

the peripheral tissues, although generally low compared with their concentration during the 

reproductive period, is still of clinical significance, as illustrated by their association with 

clinical correlates such as bone fractures and breast cancer, and by the occurrence of 

vasomotor and articular symptoms, and the increased fracture risk during pharmacological 

aromatase inhibition in postmenopausal women.64

Oestrogen replacement therapy can effectively inhibit the undesirable effects of menopause, 

such as hot flushes, accelerated bone loss, and vaginal dryness. However, the long-term risk–

benefit balance remains to be determined.65

Ageing of the male reproductive system—Since many men have a well preserved sex 

hormone production and fertility until old age, men do not undergo an equivalent of the 

menopause. Nevertheless, ageing does affect the male reproductive system.66,67 Testicular 

volume in men older than 75 years is decreased by 30%, and the number of Sertoli cells is 

reduced, as reflected by a modest increase in FSH concentrations and a decrease in the ratio 

of serum inhibin B to FSH.68 Changes in sperm quality are limited to a modest decrease in 

ejaculate volume and suboptimal spermatozoa motility and morphology; an increase in DNA 

damage also contributes to the age-related decrease in fertility.67,69 However, although these 

changes are attributed to ageing, they might be confounded by other factors, including 

increased intervals between ejaculations and health-related factors, such as obesity.

In healthy ageing men, a slow and progressive decline in morning serum testosterone 

concentrations of 25% takes place between age 25 and 75 years, and this is a net effect of a 

decreased testosterone production that is not fully compensated by reduced metabolic 

clearance. Additionally, sex hormone-binding globulin (SHBG) concentrations increase by 

about 1% per year, which causes the concentration of testosterone that is not bound to 

SHBG, in particular the approximately 2% of biologically active free testosterone, to more 

rapidly decline than total testosterone serum concentrations by approximately 50% between 

the ages of 25 and 75 years (figure 3).67,70 Normal serum (free) testosterone circadian 

rhythmicity, which includes higher concentrations of testosterone in the morning, is blunted. 

The concentration of free and total testosterone varies greatly between individuals, although 

approximately 20% of men aged 65 years or older have testosterone concentrations below 

the normal range for young men; this proportion increases with advancing age, and is greater 

for free testosterone than for total testosterone.66,67
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Other male hormone concentrations also decrease with age, including total and free serum 

dihydrotestosterone concentrations (20% of which is produced in the testes, and 80% of 

which is converted from testosterone by 5α-reductase type 2 in the peripheral tissues), and 

serum testosterone precursor androstenedione (produced both in the testes and adrenal 

glands).66 Further, excretion of the urinary metabolite androstanediol glucuronide (70% of 

which is converted from testosterone, and 30% of which is converted from DHEAS) is also 

decreased. However, serum concentrations of oestradiol, produced by the aromatisation of 

testosterone and androstenedione in peripheral tissues such as fat and striated muscles, do 

not decrease with ageing, although serum free oestradiol concentrations might decrease.66,71

Different mechanisms contribute to the decline in serum free and total testosterone 

concentrations, including a progressive, although small, increase in LH and FSH 

concentrations, a diminished testosterone response to exogenous LH and human chorionic 

gonadotropin, and a reduced number of Leydig cells, all of which point towards primary 

testicular changes. The inadequate increase in LH concentrations in response to the 

reduction in free and total testosterone in many older men reveals additional changes in 

gonadotropin secretion, characterised by the decreased frequency of larger amplitude LH 

pulses, presumably resulting from the decreased hypothalamic secretion of gonadotropin-

releasing hormone, since the pituitary response to exogenous gonadotropin-releasing 

hormone is preserved. The independent increase of hepatic SHBG production is a third 

factor, and is possibly the consequence of declining somatotropic axis activity.66,67 

Additionally, adiposity has major confounding effects, because being overweight (BMI 25–

29 kg/m2) is associated primarily with lower SHBG and total serum testosterone 

concentrations than is being a healthy weight, and in obesity (BMI ≥30 kg/m2) both total 

and free testosterone concentrations are decreased as a result of additional hypothalamic 

dysfunction.70

The relative contribution of ageing and both clinical and subclinical comorbidities to the 

changes in reproductive hormones in older men remains a matter of debate.66,70 Although 

many clinical features of ageing in older men are reminiscent of hypogonadism in young 

men, their association with sex steroid concentrations are mostly weak, with causality being 

difficult to demonstrate. Moreover, clinical changes may in part be the cause rather than the 

consequence of changed sex steroid levels;66,67 low testosterone in older people is a marker 

of poor health, and has been linked to an increased risk of death.70,72 Sexual dysfunction is 

consistently associated with low serum testosterone, and even more closely associated with 

low serum free testosterone. The cutoff levels for the occurrence of symptoms, such as 

decreased libido and erectile dysfunction, are located at the lower limit of the normal range 

of young men—ie, total testosterone concentrations below 320 ng/dL (11 nmol/L), and free 

testosterone concentrations below 6·4 ng/dL (0·22 nmol/L).66,73 Of increasingly recognised 

importance is the role of testosterone as a precursor for oestradiol, which has important 

physiological effects in men, such as effects on bone homoeostasis.74 The reported 

beneficial effects of testosterone treatment on muscle, bone, sexual function, and wellbeing 

are essentially limited to older men who initially had low testosterone concentrations. 

However, these benefits appear to be modest, and long-term data on issues of concern such 

as prostate and cardiovascular safety are scarce. Therefore, testosterone administration to 
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older men is controversial outside the context of an established organic cause of hypo-

gonadism.73,75

Calcium and bone homoeostasis

Advancing age represents a major risk factor for low bone mass and strength and a decline 

in muscle mass and function, leading to an increased risk of falls and fractures. Osteoporosis 

is caused by an imbalance between bone-forming osteoblasts and bone-resorbing 

osteoclasts, the processes of which are normally coupled and influenced by signals from 

osteocytes, which are embedded in mineralised bone and function as sensors of mechanical 

loading.76 Traditionally, oestrogen deficiency at menopause or loss of both oestrogens and 

androgens in older men are considered to be the main endocrine factors contributing to the 

development of osteoporosis. Increasing evidence now suggests, especially from studies in 

rodents, that fundamental intracellular processes in the bone, such as increased oxidative 

stress, cell senescence, inflammation, osteocyte apoptosis, DNA damage, formation of 

advanced glycation end products, and a decrease in autophagy, mitochondria biogenesis, 

vascularity, hydration of bone, and alterations in musculoskeletal progenitor cells also play 

important roles in the development of osteoporosis and fragility fractures with ageing.77–79

These age-related intrinsic mechanisms are coupled with changes in endocrine systems 

during ageing, and a higher incidence of endocrine diseases with age, including type 2 

diabetes. We focus here on the major endocrine changes influencing bone.

Sex steroids

Oestrogens and androgens play important roles in the growth and maintenance of tissue 

mass and function in bones and muscles. Their actions on the bone result predominantly 

from the binding of ligands to classic sex steroid receptors, including the oestrogen receptor 

α and β and the androgen receptor.74 For detailed information about the molecular and 

cellular mechanisms of action of oestrogens and androgens on bone and the contribution of 

oestrogen or androgen deficiency, we refer to a comprehensive review.80 The imbalance 

between bone formation and resorption with oestrogen deficiency affects both trabecular 

bone, with loss of connectivity, and cortical bone, with cortical thinning and porosity. An 

increase in osteocyte apoptosis occurs following the loss of ovarian or testicular function, 

which is mainly due to an increase in oxidative stress.77 Sex steroid deficiency could 

contribute to age-related bone loss, at least in part, by increasing oxidative stress and 

influencing the immune system. Additionally, hypogonadism is associated with the 

increased formation of advanced glycation end products and inflammation, thus contributing 

to intrinsic causes of osteoporosis that occur with ageing. In women, the potential roles of 

changes in progesterone, androgen, inhibins, and FSH concentrations in enhancing the 

effects of oestrogen deficiency on bone loss during the perimenopausal period remain to be 

further defined.81 In older men, oestrogen is the dominant sex steroid regulating bone 

resorption, and both oestrogen and testosterone are important for the maintenance of bone 

formation.82 In men, low serum oestradiol predicted incident fractures, but the highest risk 

occurred in men with additionally low testosterone and high SHBG concentrations.83
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Sex steroids are also considered to be important in the changes in calcium and phosphate 

homoeostasis that occur with ageing. Postmenopausal women have higher serum phosphate 

concentrations than men of similar ages, and some studies have found higher serum calcium 

concentrations in older women than in older men, suggesting a sexual dimorphism in 

calcium and phosphate homoeostasis after menopause, and a potential association with sex 

hormone concentrations. Oestrogen has been shown to induce renal phosphate wasting and 

hypophosphataemia,84 to reduce renal calcium excretion, and to increase intestinal calcium 

absorption.85

Glucocorticoids

Osteoporosis and fractures are important side-effects of the use or an excess of 

glucocorticoids, and are caused by effects of glucocorticoids on bone and muscle strength.86 

The generation of systemic and locally produced glucocorticoids and the sensitivity of bone 

cells to glucocorticoids increase with age.87 Glucocorticoids are strong inhibitors of bone 

formation that function, at least in part, by stimulating osteoblast and osteocyte apoptosis,88 

and by suppressing the generation of new osteoblasts through the attenuation of Wnt 

signalling. They also increase bone resorption by promoting osteoclast survival. These 

combined effects can contribute to the age-related decline in bone mineral density, cortical 

porosity, and bone strength, and the increase in fractures.87

Vitamin D, parathyroid hormone, fibroblast growth factor 23, and Klotho

Vitamin D and its metabolites and parathyroid hormone are crucial parts of the endocrine 

system that control whole body calcium and phosphate homoeostasis.89 Serum vitamin D 

concentrations are well known to decrease with age, which can result in decreased intestinal 

calcium absorption and the development of secondary hyperparathyroidism.90 Circulating 

parathyroid hormone concentrations also appear to increase with age, independent of 25-

hydroxyvitamin D, ionised calcium, phosphate, and renal function.91 Primary 

hyperparathyroidism, a disease most prevalent in postmenopausal women, is a well known 

cause of decreased bone mineral density and fractures, and is more prominent at sites with 

cortical bone. Secondary hyperparathyroidism can also increase fracture risk,90 as does the 

decline in kidney function that occurs with ageing. A previous study showed that older men 

and women, even without overt kidney disease, have an increased fracture risk with 

increasing serum phosphate concentrations, even when these are within the normal range, 

and independently of bone mineral density.92 Whether this increased fracture risk is directly 

related to serum phosphate concentration or to underlying changes in phosphate-regulating 

hormones, such as osteocyte-derived FGF23, α-Klotho, parathyroid hormone, or 1,25-

hydroxyvitamin D, remains unknown. FGF23 is a hormone secreted by osteocytes in the 

bone, which together with its co-factor α-Klotho inhibits phosphate reabsorption and 1,25-

hydroxyvitamin D production in the kidney. Defects in either α-Klotho or FGF23 gene 

expression cause phosphate retention and premature ageing syndrome in mice. FGF23 

already begins to increase during the early stages of chronic kidney disease in response to 

decreased phosphate excretion, but other age-related changes in this bone–kidney endocrine 

system have not been well studied in human beings.93
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Growth hormone and IGF-1

Growth hormone and its downstream mediator, IGF-1, are major determinants of peak bone 

mass. Declining concentrations of growth hormone and IGF-1 during ageing are associated 

with bone loss. Between the ages of 20 and 60 years, the IGF-1 content in human bones 

declines by 60%.94 A decline in IGF-1 and IGF-binding protein-3 content in the bone matrix 

is associated with an age-related decrease in bone mineral density, and a risk of hip 

fractures.95

Hormone replacement therapy has been shown to decrease bone loss and fracture risk in 

women, but the increased risk of breast cancer and cardiovascular disease reported in the 

Women’s Health Initiative study96 has resulted in a substantial decrease in its use. The risks 

of side-effects appear to depend on many factors, such as type, dose, duration of use, route 

of administration, timing of initiation, and whether a progestogen is used, which has led to 

recommendations on individualised therapy.97 No large randomised controlled trials have 

been done to investigate the effect of growth hormone-increasing therapies or testosterone 

supplementation on fracture rates in men.

Glucose homoeostasis

Glucose homoeostasis is maintained by a balance between glucose ingestion, utilisation, and 

production, and is under tight hormonal control by insulin. Glucose homoeostasis tends 

towards disequilibrium with increasing chronological age.98,99 Fasting plasma glucose rises 

by approximately 0·055 mmol/L per decade, beginning as early as the fourth decade of life, 

and glucose concentrations 2 h after a 75 g oral glucose tolerance test also gradually increase 

(Egan JM, unpublished; figure 4). No data have been shown to support alterations in glucose 

ingestion with age. Another important consideration is that impairment of cerebral glucose 

metabolism might precede histological findings in Alzheimer’s disease, and probably 

exacerbates its pathology.

Reduced pulsatility and decreased insulin action

Insulin is secreted in a pulsatile manner comprising two stereotypical pulses: high frequency 

pulses with a pulse interval of about 6 min, and ultradian pulses with a pulse interval of 

approximately 90 min.100–102 Pulsatile secretion accounts for at least 70% of secreted 

insulin.103 Total and pulsatile insulin secretion is abnormal in people with type 2 diabetes, 

being both deficient and chaotic.104 However, even healthy older individuals have disordered 

insulin secretion with a characteristic reduction in both amplitude and number of high 

frequency pulses, and a reduced frequency of ultradian pulses in both the basal and 

stimulated state.105,106

The liver is exposed to insulin pulses from the islets directly through the portal vein. Insulin 

is subject to degradation during first pass, thereby dampening the amplitude of the pulses 

arriving at peripheral tissues. Insulin receptor trafficking upon activation is dynamic, and 

dephosphorylated insulin receptor is recycled to the cell surface, a process that is 

synchronous with the pulsatility of insulin secretion.107 Consequently, insulin is less 

effective in suppressing hepatic glucose production when it is delivered to the liver in a 
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disordered manner than when delivered normally. Additionally, insulin clearance in the liver 

is said to be increased in older people.108

Effect of age on glucose disposal

Whether ageing is responsible for the gradual deterioration in glucose disposal across the 

human lifespan (figure 4B) is a matter of ongoing debate because of confounding physical 

changes that occur in the body over time. In humans beings, the majority of the glucose in 

an oral glucose load is disposed into muscle, glucose concentrations after glucose ingestion 

gradually rise with age (figure 4), and glucose disposal becomes slower over the course of a 

lifetime. Studies using hyperglycaemic clamps show that this slowing in glucose disposal is 

probably not due to diminished total insulin secretion in response to the rising glucose.109 

The progressive decline in insulin action with age can be attributed largely to gradual 

increases in the percentage of total body, especially visceral, fat, and to the changing ratio of 

fat to lean muscle mass. The degree of relative obesity and the site of fat deposition appear 

to be the crucial variables determining the efficacy of insulin action.110,111 These factors are 

in turn influenced by total caloric intake, decreasing physical activity, medications, and 

illnesses.112 However, although exercise improves insulin action and slows the onset of 

diabetes, no evidence shows that exercise reverses age-related changes occurring in β cells.

Diabetes in older people

There is a continuum of risk for the development of diabetes, coupled with underlying 

genetic and environmental factors unique to each individual, although the risk of developing 

diabetes seems to reach a plateau or even decline after age 85 years.113 In older people, β-

cell dysfunction and deficiency play a greater role in the pathophysiology of diabetes than in 

younger adults, and insulin resistance in muscle increases even in the absence of obesity in 

some individuals.114,115 The prevalence of diabetes varies depending on the criteria used. At 

least 25% of people older than 65 years have diabetes,116,117 which can be detected only on 

the basis of a 2 h oral glucose tolerance test (≥11·1 mmol/L) in 58% of people.118,119 

However, an oral glucose tolerance test is not the standard recommendation for diabetes 

screening. HbA1c concentration testing, which is recommended due to ease of testing (12 h 

fasting not required), can detect 14·5% of undiagnosed cases (≥6·5% [48 mmol/mol]),120 but 

the addition of fasting plasma glucose concentration (≥ 7 mmol/L) testing to HbA1c 

increases detection to 42% of undiagnosed cases. Therefore, even when using both HbA1c 

and fasting plasma glucose to diagnose diabetes, the majority of people with diabetes who 

are aged 65 years and older will remain undiagnosed. The low detection in older people with 

these easily available diagnostic tests mean that the prevention of diabetes progression and 

complications due to glucose disequilibrium is often delayed. Additionally, because the 

pathophysiology of diabetes can be different in younger patients compared with those who 

are older—eg, severe insulin resistance with obesity can be a more prominent factor in 

younger patients—increased attention to treatment individualisation is required given the 

heterogeneity of the older population and their underlying conditions. Most clinicians would 

agree that healthy older people, similarly to younger people, should have diabetes screening, 

and if prediabetes is uncovered, lifestyle intervention tailored to the patient could prevent the 

development of diabetes with its accompanying microvascular and macrovascular 

complications, given the presumed increased in life expectancy for all populations.121 
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Similar screening would not apply to someone with severe functional limitations or 

Alzheimer’s disease.

Conclusions

Changes in the activities of various endocrine systems occur during ageing, including altered 

hormonal secretory patterns and modulation of feedback sensitivity, summarised in figure 1. 

These physiological changes should be considered when interpreting hormone 

concentrations in older individuals with and without endocrine disease. However, the 

magnitude of these changes varies considerably between individuals, and reference values 

for hormone concentrations at older ages should be established. Differentiating whether 

these changes are due to the ageing process, or whether they are related to other processes, 

such as intercurrent chronic diseases, inflammation, nutritional status, or a combination of 

these, is difficult. The effect of these age-related changes on body composition, physical 

function, emotional wellbeing, morbidity, and finally mortality is only partly known. Some 

of the changes could be a beneficial adaptation to ageing, whereas others are not. Future 

studies should aim to explore whether endocrine alterations are maladaptive or adaptive to 

ageing.
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Search strategy and selection criteria

We searched the Cochrane Library, MEDLINE, and Embase from their inception up until 

Nov 14, 2017. We used the search terms “pituitary”, “thyroid”, “adrenal”, “growth 

hormone”, “IGF-I”, “receptor sensitivity”, “testosterone”, “oestradiol”, “glucose”, and 

“insulin” in combination with the term “aging”. Additionally, we used the terms 

“osteoporosis” or “skeletal aging” or “bone-aging” in combination with the terms 

“endocrinology” or “hormones”. The search was restricted to articles that were published 

in English. We largely selected publications from the past 5 years, but also included 

commonly referenced and highly regarded older publications. We also searched the 

reference lists of articles identified by this search strategy and selected those we judged 

relevant. We have cited review articles to provide readers with more details and 

references than this paper has room for. Our reference list was modified on the basis of 

comments from peer reviewers.
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Figure 1: Most-reported changes in circulating hormone concentrations and hormone profiles 
with ageing
ACTH=adrenocorticotropic hormone. DHEA=dehydroepiandrostenedione. DHEAS=DHEA 

sulphate. FGF23=fibroblast growth factor 23. AMH=anti-Müllerian hormone. 

LH=luteinising hormone. FSH=follicle-stimulating hormone. GnRH=gonadotropin-

releasing hormone. SHBG=sex hormone binding globulin. GH=growth hormone. 

IGF-1=insulin-like growth factor 1. TSH=thyroid-stimulating hormone. FT4=free thyroxine 

(T4). FT3=free tri-iodothyronine (T3). PTH=parathyroid hormone.

van den Beld et al. Page 21

Lancet Diabetes Endocrinol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Concentrations of T3 and rT3 within a population of 403 elderly men
Each datapoint represents one of a cohort of 403 men aged 73–94 years living in the 

Netherlands.11 The dotted lines indicate the normal concentrations of T3 and rT3. Number of 

participants, mean age, mean number of diseases, and mean values for various other 

measures of physical performance are provided for each quadrant, with accompanying 95% 

CIs. T3=tri-iodothyronine. rT3=reverse T3. PPS=physical performance score. 

ADL=activities of daily living. LES=leg extensor strength. IGS=isometric grip strength. 

BMD=bone mineral density. kp=kilopond. NM=physical unit measure (maximum strength 

in newtons × the distance of the dynamometer of the knee in m). Reproduced from van den 

Beld and colleagues,11 by permission of Oxford University Press.
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Figure 3: Relationship between age and hormones
Mean hormone concentrations (datapoints) with 95% CIs (shaded area) are presented in 5 

year age bands for a cohort of 3220 men living in Europe.70 Mean hormone concentrations 

with increasing age were interpolated to approximate the age trend. Total testosterone and 

free testosterone were significantly lower (p<0001), and the concentrations of LH and 

SHBG were significantly higher (p<0001) in the older age groups. The concentration of LH 

increased substantially at around age 70 years. Reproduced from Wu and colleagues,70 by 

permission of Oxford University Press. LH=luteinising hormone. SHBG=sex hormone-

binding globulin.
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Figure 4: Concentrations of fasting plasma glucose and plasma glucose after oral glucose 
administration over time in non-diabetic individuals.
The concentrations of fasting plasma glucose (A) and plasma glucose (B) after the 

administration of 75 g oral glucose (oral glucose tolerance test) were measured over time in 

non-diabetic individuals. Data are means from the Baltimore Longitudinal Study of Aging 

(BLSA), from participants aged 20–89 years who were receiving no anti-hyperglycaemic 

medications. Oral glucose tolerance tests were done in all individuals at their first visit to the 

BLSA. The individuals presenting for their first visit were healthy with no known active 

disease, and were therefore not representative of the general population. Josephine M Egan, 

unpublished data.
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