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Abstract. In different fields like decision making, psychology, game the-
ory and biology, it has been observed that paired-comparison data like
preference relations defined by humans and animals can be intransitive.
The relations may resemble the well-known game of rock-paper-scissors.
In the game, rock defeats scissors and scissors defeat paper, but rock
loses to paper. Intransitive relations cannot be modelled with existing
machine learning methods like ranking models, because these models
exhibit strong transitivity properties. More specifically, in a stochastic
context, where often the reciprocity property characterizes probabilistic
relations such as choice probabilities, it has been formally shown that
ranking models always satisfy the well-known strong stochastic tran-
sitivity property. Given this limitation of ranking models, we present a
new kernel function that together with the regularized least-squares algo-
rithm is capable of inferring intransitive reciprocal relations in problems
where transitivity violations cannot be considered as noise. In this ap-
proach it is the kernel function that defines the transition from learning
transitive to learning intransitive relations, and the Kronecker-product
is introduced for representing the latter type of relations. In addition, we
empirically demonstrate on two benchmark problems in game theory and
biology that our algorithm outperforms methods not capable of learning
intransitive reciprocal relations.

1 Introduction

We start with an introductory example in the field of sports games in order to
describe the purpose of this paper. Let us assume that an online betting com-
pany for tennis games wants to build statistical models to predict the probability
that a given tennis player will defeat his/her opponent in the next Grand Slam



competition. The company could be interested in building such models to maxi-
mize its profit when defining the amount of money that a client gets if he/she is
able to predict the outcome of the game correctly. To this end, different types of
data could be collected in order to construct the model, such as previous game
outcomes, strong and weak points of players, current physical and mental condi-
tions of players, etc. Yet, which type of machinery is required to obtain accurate
predictions in this type of data mining problems? Firstly, as we will discuss in
more detail below, we are for this example looking for an algorithm capable of
predicting reciprocal relations from data, i.e., a relation between couples of play-
ers leading to a probability estimate of the outcome of a game. Secondly, we are
also looking for a model that can predict intransitive relations, since commonly
in sports games it turns out that game outcomes manifest cycles such as player A
defeating player B, B defeating a third player C, and simultaneously C winning
from A.

So, this paper in general considers learning problems where intransitive re-
ciprocal relations need to be learned. As mathematical and statistical properties
of human preference judgments, reciprocity and transitivity have been a subject
of study for researchers in different fields like mathematical psychology, decision
theory, social choice theory, and fuzzy modeling. Historically, this kind of re-
search has been motivated by the quest for a rational characterization of human
judgments, and to this end, transitivity is often assumed as a crucial property
[1]. This property basically says that a preference of an object xi over another
object xj and a similar preference of xj over a third object xk should always
result in a preference of xi over xk, if preference judgments are made in a ratio-
nal way. Nevertheless, it has been observed in several psychological experiments
that human preference judgments often violate this transitivity property (see
e.g. [2, 3]), especially in a context where preference judgments are considered as
uncertain, resulting in non-crisp preference relations between objects.

To express uncertainty, we adopt a probabilistic framework in which it can be
assumed that a preference relation defined on a space X satisfies the reciprocity
property.

Definition 1. A function Q : X 2 → [0, 1] is called a reciprocal relation if for
any (x,x′) ∈ X 2 it holds that

Q(x,x′) +Q(x′,x) = 1 .

While taking into consideration this reciprocity property, [4] introduced several
stochastic transitivity properties like weak, moderate and strong stochastic tran-
sitivity to characterize rational preference judgments in a probabilistic sense. We
here recall the definition of weak stochastic transitivity.

Definition 2. A reciprocal relation Q : X 2 → [0, 1] is called weakly stochasti-
cally transitive if for any (xi,xj ,xk) ∈ X 3 it holds that

Q(xi,xj) ≥ 1/2 ∧Q(xj ,xk) ≥ 1/2⇒ Q(xi,xk) ≥ 1/2 . (1)



This definition of transitivity for reciprocal relations naturally extends the basic
definition of transitivity for crisp relations. Below, when we speak about in-
transitive relations, we specifically allude to relations violating weak stochastic
transitivity. In addition, we will also utilize strong stochastic transitivity a few
times in this paper. This stronger condition is defined as follows.

Definition 3. A reciprocal relation Q : X 2 → [0, 1] is called strongly stochasti-
cally transitive if for any (xi,xj ,xk) ∈ X 3 it holds that

Q(xi,xj) ≥ 1/2 ∧Q(xj ,xk) ≥ 1/2⇒ Q(xi,xk) ≥ max(Q(xi,xj), Q(xj ,xk)) .

Many other transitivity properties for reciprocal relations have been put forward
in recent years, but these properties will not be discussed here. Moreover, many
of these properties can be elegantly expressed in the cycle-transitivity framework.
We refer to [5] for an overview of this framework and the various transitivity
properties it covers.

The motivation for building intransitive reciprocal preference relations might
be debatable in a traditional (decision-theoretic) context, but the existence of
rational transitivity violations becomes more appealing when the notion of a re-
ciprocal preference relation is defined in a broader sense, like in the introductory
example, or generally as any binary relation satisfying the reciprocity property.
For example, reciprocal relations in game theory violate weak stochastic transi-
tivity, in situations where the best strategy of a player depends on the strategy
of his/her opponent — see e.g. the well-known rock-scissors-paper game [6], dice
games [7–9]), and quantum games in physics [10]. Furthermore, in biology many
examples of intransitive reciprocal relations have been encountered in competi-
tion between bacteria [11–15], and fungi [16], mating choice of lizards [17] and
food choice of birds [18].

Generally speaking, we believe that enough examples exist to justify the need
for models that can represent intransitive reciprocal relations. In this article we
will address the topic of constructing such models based on any type of paired-
comparison data. Basically, one can interpret these models as a mathematical
representation of a reciprocal preference relation, having parameters that need
to be statistically inferred. As a solution, we will extend an existing kernel-based
ranking algorithm that has been proposed recently by some of the present au-
thors [19]. This algorithm has been called RankRLS, as it optimizes a regularized
least-squares objective function on paired-comparison data that is represented
as a graph.

2 From transitive to intransitive preference models

In order to model preference judgments one can distinguish two main types of
models in decision making [20, 21]:

1. Scoring methods: these methods typically construct a continuous function of
the form f : X → R such that:

x � x′ ⇔ f(x) ≥ f(x′) ,



which means that alternative x is preferred to alternative x′ if the highest
value was assigned to x. In decision making, f is usually referred to as a
utility function, while it is called a ranking function in machine learning.

2. Pairwise preference models: here the preference judgments are modeled by
one (or more) valued relations Q : X 2 → [0, 1] that express whether x should
be preferred over x′. One can distinguish different kinds of relations such as
crisp relations, fuzzy relations or reciprocal relations.

The former approach has been especially popular in machine learning for scala-
bility reasons. The latter approach allows a flexible and interpretable description
of preference judgments and has therefore been popular in decision theory and
the fuzzy set community.

The semantics underlying reciprocal preference relations is often probabilis-
tic: Q(x,x′) expresses the probability that object x is preferred to x′. One can
in general construct such a reciprocal or probabilistic preference relation from a
utility model in the following way:

Q(x,x′) = g(f(x), f(x′)) , (2)

with g : R2 → [0, 1] usually increasing in its first argument and decreasing in
its second argument [22]. Models based on reciprocal preference relations have
been applied in a machine learning learning context by, for example, [23].

The representability of reciprocal and fuzzy preference relations in terms of
a single ranking or utility function has been extensively studied in domains like
utility theory [24]. It has been shown that the notions of transitivity and ranking
representability play a crucial role in this context.

Definition 4. A reciprocal relation Q : X 2 → [0, 1] is called weakly ranking
representable if there exists a ranking function f : X → R such that for any
(x,x′) ∈ X 2 it holds that

Q(x,x′) ≤ 1
2
⇔ f(x) ≤ f(x′) .

Reciprocal preference relations for which this condition is satisfied have also
been called weak utility models. [4] proved that a reciprocal preference relation
is a weak utility model if and only if it satisfies weak stochastic transitivity, as
defined by (1). As pointed out by [22], a weakly ranking representable reciprocal
relation can be characterized in terms of (2) such that for any (a, b) ∈ R2 the
function g : R2 → R satisfies g(a, b) > 1/2 ⇔ a > b , g(a, b) = 1

2 ⇔ a = b.
Analogous to weak ranking representability or weak utility models, one can de-
fine other conditions on the relationship between Q and f , leading to (stronger)
transitivity conditions like moderate and strong stochastic transitivity. These
properties are satisfied respectively by moderately and strongly ranking rep-
resentable reciprocal preference relations. For such relations one imposes addi-
tional conditions on g, for example the following type of relations satisfies strong
stochastic transitivity [4].



Definition 5. A reciprocal relation Q : X 2 → [0, 1] is called strongly ranking
representable if it can be written in the form of (2) with g given by

g(f(x), f(x′)) = G(f(x)− f(x′)) , (3)

where G : R→ [0, 1] is a cumulative distribution function satisfying G(0) = 1
2 .

In addition, other transitivity conditions and corresponding conditions on G
have been defined, such as strict ranking representability. A further discussion
on ranking representability is however beyond the scope of this paper.

3 Learning intransitive reciprocal relations

In this section we will show how intransitive reciprocal relations can be learned
from data with kernel methods. During the last decade, a lot of interesting
papers on preference learning have appeared in the machine learning community,
see e.g. [25–28]. Many of these authors use kernel methods to design learning
algorithms. The majority of them also considers utility approaches to represent
the preferences. Only a few authors such as [29, 30] talk about pairwise preference
relations, assuming weak stochastic transitivity so that an underlying ranking
function exists.

We first explain the basic ideas behind kernel methods, followed by a discus-
sion of a general framework for learning intransitive reciprocal relations. In this
framework ranking can be seen as a special case, with a particular choice of the
kernel function. To learn intransitive reciprocal relations, we then define a new
type of kernel over pairs of data objects. Our analysis indicates that by using this
kernel, we always learn relations that are reciprocal, but do not necessarily fulfill
weak stochastic transitivity. This new kernel can be seen as a general concept
that can be plugged into other kernel-based ranking methods as well, but in this
paper we will illustrate its usefulness with the RLS algorithm. As this method
optimizes a least-squares loss function, it is very suitable for learning reciprocal
relations if the mean squared error measures the performance of the algorithm.

3.1 A brief introduction to kernels

This section is primarily based on [31, 32]. A better and much more detailed
introduction to kernel methods can be found in these works. Given a not further
specified input space E that shows at this moment no correspondence with the
space X defined in the previous section, let us consider mappings of the following
form: Φ : E → H, e → Φ(e). The function Φ represents a so-called feature
mapping from E to H and H is called the associated feature space. Initially,
kernels were introduced to compute the dot-product 〈·, ·〉 in this feature space
efficiently. Such a compact representation of the dot-products in a certain feature
space H will in general be called a kernel with the notation 〈Φ(e1), Φ(e2)〉 =
K(e1, e2) .



Following the standard notations for kernel methods, we formulate our learn-
ing problem as the selection of a suitable function h ∈ F , with F a certain
hypothesis space, in particular a kernel reproducing Hilbert space (RKHS). Hy-
potheses h : E → R are usually denoted as h(e) = 〈w, e〉 with w a vector of
parameters that needs to be estimated based on training data. Let us denote a
training dataset as a sequence

E = (ei, yi)Ni=1 , (4)

of input-label pairs, then we formally consider the following variational problem
in which we select an appropriate hypothesis h from F for training data E.
Namely, we consider an algorithm

A(E) = argmin
h∈F

1
N

N∑
i=1

L(h(ei), yi) + λ‖h‖2F (5)

with L a given loss function and λ > 0 a regularization parameter. The first
term measures the performance of a candidate hypothesis on the training data
and the second term, called the regularizer, measures the complexity of the
hypothesis with the RKHS norm. In our framework below, a least-squares loss
L(h(e), y) = (h(e)−y)2 is optimized in (5). Optimizing this loss function instead
of the more conventional hinge loss has the advantage that the solution can be
found by simply solving a system of linear equations. Due to lack of space we
do not describe in details the mathematical properties and advantages of this
approach compared to more traditional algorithms, but more details can be
found for example in [33].

According to the representer theorem [31], any minimizer h ∈ F of (5) admits
a dual representation of the following form:

h(e) =
N∑
i=1

aiK(e, ei) = 〈Φ(e),w〉,

where ai ∈ R, K is the kernel function associated with the RKHS mentioned
above, Φ is the feature mapping corresponding to K, and w =

∑N
i=1 aiΦ(ei).

3.2 Learning reciprocal relations

We will use the above framework in order to learn intransitive reciprocal rela-
tions. To this end, we associate in a preference learning setting with each input
a couple of data objects, i.e. ei = (xi,x′i), where xi,x′i ∈ X and X can be any
set. Consequently, we have an i.i.d. dataset E = (xi,x′i, yi)

N
i=1 so that for each

couple in the training dataset a label is known. These labels will represent re-
ciprocal relations observed on training data, but rescaled to the interval [−1, 1].
This means that the following correspondence holds

y = 2Q(x,x′)− 1 , ∀(x,x′) ∈ X 2 .



Such a conversion is primarily made for ease of implementation. This implies
that we will minimize the regularized squared error so that a model of type
h : X 2 → R is obtained. For the squared loss we can simply choose a function
G(a), whose value would be 0, (a + 1)/2, and 1, in case a < −1, −1 ≤ a ≤ 1,
and a > 1, respectively, so that [0, 1]-valued relations are predicted as Q(x,x′) =
G(h(x,x′)). To guarantee that reciprocal relations are learned, let us suggest the
following type of feature mapping:

Φ(ei) = Φ(xi,x′i) = Ψ(xi,x′i)− Ψ(x′i,xi),

where Φ is just the same feature mapping as before but now written in terms
of couples and Ψ is a new (not further specified) feature mapping from X 2 to
a feature space. As shown below, this construction will result in a reciprocal
representation of the corresponding [0, 1]-valued relation. By means of the rep-
resenter theorem, the above model can be rewritten in terms of kernels, such that
two different kernels pop up, one for Φ and one for Ψ . Both kernels express a
similarity measure between two couples of objects and the following relationship
holds:

KΦ(ei, ej) = KΦ(xi,x′i,xj ,x
′
j)

= 〈Ψ(xi,x′i)− Ψ(x′i,xi), Ψ(xj ,x′j)− Ψ(x′j ,xj)〉
= 〈Ψ(xi,x′i), Ψ(xj ,x′j)〉+ 〈Ψ(x′i,xi), Ψ(x′j ,xj)〉
−〈Ψ(xi,x′i), Ψ(x′j ,xj)〉 − 〈Ψ(x′i,xi), Ψ(xj ,x′j)〉

= KΨ (xi,x′i,xj ,x
′
j) +KΨ (x′i,xi,x

′
j ,xj)

−KΨ (x′i,xi,xj ,x
′
j)−KΨ (xi,x′i,x

′
j ,xj) .

Using this notation, the prediction function given by the representer theorem
can be expressed as:

h(x,x′) = 〈w, Ψ(x,x′)− Ψ(x′,x)〉 =
N∑
i=1

aiK
Φ(xi,x′i,x,x

′) .

For this prediction function, we can easily show that it forms the basis of a
reciprocal relation.

Proposition 1. Let G : R → [0, 1] be a cumulative distribution function sat-
isfying G(0) = 0.5 and G(−a) = 1 − G(a), then the function Q : X 2 → [0, 1]
defined by

Q(x,x′) = G(h(x,x′)) , (6)

with h : X 2 → R given by (6), is a reciprocal relation.

3.3 Ranking: learning transitive reciprocal relations

Using the above notation, utility or ranking functions are usually written as

f(x) = 〈w, φ(x)〉 .



They can be elegantly expressed in our framework by defining a specific feature
mapping and corresponding kernel function.

Proposition 2. If KΨ corresponds to the transitive kernel KΨ
T defined by

KΨ
T (xi,x′i,xj ,x

′
j) = Kφ(xi,xj) = 〈φ(xi), φ(xj)〉 ,

with Kφ any two-dimensional kernel function on X 2, whose value depends only
on the arguments xi and xj and their feature representations φ(xi) and φ(xj),
then the reciprocal relation Q : X 2 → [0, 1] given by (6) is strongly stochastically
transitive.

For this choice of KΨ , our framework is reduced to a popular type of kernel
function that has been introduced by [25]. The insight of the proposition is that
the use of this kernel is equivalent to constructing a ranking for the individual
inputs. This ranking function is in the dual representation given by:

f(x) = 〈w, φ(x)〉 =
N∑
i=1

αi
(
Kφ(xi,x)−Kφ(x′i,x)

)
.

As explained in Section 2, ranking results in a reciprocal relations that satisfies
the weak stochastic transitivity property. Due to the above proposition, we can
even claim that the resulting reciprocal relation satisfies strong stochastic transi-
tivity. Different ranking methods are obtained with different loss functions, such
as RankSVM [34] for the hinge loss and RankRLS [19] for the least-squares loss.

3.4 Learning intransitive reciprocal relations

Since the above choice for Ψ forms the core of all kernel-based ranking methods,
these methods cannot generate intransitive relations, i.e. relations violating weak
stochastic transitivity. In order to derive a model capable of violating weak
stochastic transitivity, we introduce the following feature mapping ΨI for couples
of objects:

ΨI(x,x′) = φ(x)⊗ φ(x′) ,

where φ(x) is again the feature representation of the individual object x and
⊗ denotes the Kronecker-product of matrices (see e.g. [35]). Kernel functions
induced by this type of feature maps have also been considered under the name
tensor product kernels (see e.g.[36]) and the Kronecker product has also been
used to construct kernels based of linear feature transformation (see e.g. [37]).

In the following, we use the following property of the Kronecker product:

(A⊗B)(C ⊗D) = (AC)⊗ (BD),

where A ∈ Ra×b, B ∈ Rc×d, C ∈ Rb×e, and D ∈ Rb×f . The Kronecker-product
establishes joint feature representations ΦI and ΨI that depend on both argu-
ments of Φ and Ψ . Instead of ignoring the second argument of Φ and Ψ , we now



represent all pairwise interactions between individual features of the two data
objects in the joint feature representation. Using the notation KΨ

I , this leads to
the following expression:

KΨ
I (xi,x′i,xj ,x

′
j) = 〈φ(xi)⊗ φ(x′i), φ(xj)⊗ φ(x′j)〉

= 〈φ(xi), φ(xj)〉 ⊗ 〈φ(x′i), φ(x′j)〉
= Kφ(xi,xj)Kφ(x′i,x

′
j),

with again Kφ any kernel function defined over X 2. As a result, using the
Kronecker-product as feature mapping basically leads to a very simple kernel
in the dual representation, consisting of just a regular product between two tra-
ditional kernels Kφ. Remark that Kφ can be any existing kernel, such as the
linear kernel, the RBF-kernel, etc. As a result of the above construction, the
kernel function KΦ becomes:

KΦ
I (xi,x′i,xj ,x

′
j) = 2Kφ(xi,xj)Kφ(x′i,x

′
j)− 2Kφ(x′i,xj)K

φ(xi,x′j).

We further refer to KΦ
I as the intransitive kernel.

Indeed, in the above extension of the ranking framework, two different kernels
KΨ and Kφ must be specified by the data analyst, while the third kernel KΦ

is defined by the choice for KΨ . On the one hand, the choice for KΨ (and
hence KΦ) determines whether the model is allowed to violate weak stochastic
transitivity. On the other hand, the kernel function Kφ acts as the traditional
similarity measure on X , resulting in a linear, polynomial, radial basis function
or any other representation of the data.

We now present a result indicating that the intransitive kernel KΦ
I can be

used to learn arbitrary reciprocal preference relations provided that the feature
representation φ of the individual objects is powerful enough.

Proposition 3. Let E be a training dataset of type (4), L be a loss function,
and FR : X × X → R be the set of all hypotheses inducing a reciprocal relation
on X . Moreover, let

h∗ = argmin
h∈FR

N∑
i=1

L(yi, h(xi,x′i)) (7)

be the set of hypotheses inducing a reciprocal relation on X that have minimal
empirical loss on E. Further, let

h(x,x′) =
N∑
i=1

αiK
Φ
I (xi,x′i,x,x

′)

=
N∑
i=1

αi2
(
Kφ(xi,x)Kφ(x′i,x

′)− 2Kφ(x′i,x)Kφ(xi,x′)
)

(8)

be the set of hypotheses we can construct using the intransitive kernel KΦ
I and a

given feature representation φ of a base kernel Kφ.



There exists such a feature representation φ and such coefficients aNi=1 that
the corresponding hypothesis (8) is one of the minimizers of (7).

The proof of the proposition is based on first calculating the minimal empirical
loss one can obtain with a hypothesis inducing a reciprocal relation and then
providing an example of a feature map φ that can be used to achieve this error.
The complete proof is presented in [38]. The above result indicates that this type
of model is flexible enough to obtain as low empirical error on training data as
it is possible to get while maintaining the reciprocity property, and hence it can
also learn intransitive reciprocal relations.

4 Experiments

4.1 Rock-Paper-Scissors

In order to test our approach, we consider a semi-synthetic benchmark prob-
lems in game theory, a domain in which intransitive reciprocal relations between
players is often observed. In such a context, a pure strategy provides a complete
description of how a player will play a game. In particular, it determines the
move a player will make for any situation (s)he could face. A player’s strategy
set is the set of pure strategies available to that player. A mixed strategy is
an assignment of a probability to each pure strategy. This allows for a player
to randomly select a pure strategy. Since probabilities are continuous, there are
infinite mixed strategies available to a player, even if the strategy set is finite.

We consider learning the reciprocal relation of the probability that one player
wins from another in the well-known rock-paper-scissors game. To test the per-
formance of the learning algorithm in such a nonlinear task, we generated the
following synthetic data. First, we generate 100 individual objects for training
and 100 for testing. The data objects are three-dimensional vectors represent-
ing players of the rock-paper-scissors game. The three attributes of the players
are the probabilities that the player will choose ‘rock’, ‘paper’, or ‘scissors’, re-
spectively. The probability P (r | x) of player x choosing rock is determined by
P (r | x) = exp(wu)/z, where u is a random number between 0 and 1, w is a
steepness parameter, and z is a normalization constant ensuring that the three
probabilities sum up to one. The probabilities for ‘paper’ and ‘scissors’ are de-
termined analogously. By varying the width w of the exponential function, we
can generate players tending to favor one of the three choices over the others or
to play each choice almost equally likely.

We generate 1000 player couples for training by randomly selecting the first
and the second player from the set of training players. Each couple represents
a game of rock-paper-scissors and the outcome of this game can be considered
as stochastic in nature, because the strategy of a player is chosen in accordance
with the probabilities of picking a particular fixed strategy from that player’s
set of mixed strategies. For example, when a fixed rock player plays against a
mixed strategy player that plays scissors with probability 0.8 and paper with
probability 0.2, then we have a higher chance of observing a game outcome for



which the fixed rock player wins from the second player. Yet, the same couple of
players with different outcomes can simultaneously occur in the training data.
During training and testing, the outcome of a game is −1, 0, or 1 depending
on whether the first player loses the game, the game ends in a tie, or the first
player wins the game, respectively. We use the game outcomes as the labels of
the training couples.

For testing purposes, we use each possible couple of test players once, that
is, we have a test set of 10000 games. However, instead of using the outcome of
a single simulated game as label, we assign for each test couple the element of
the reciprocal relation that corresponds to the probability that the first player
wins:

Q(x,x′) = P (p | x)P (r | x′) +
1
2
P (p | x)P (p | x′) + P (r | x)P (s | x′)

+
1
2
P (r | x)P (r | x′) + P (s | x)P (p | x′) +

1
2
P (s | x)P (s | x′) .

The task is to learn to predict this reciprocal relation. The algorithm estimates
the relation by rescaling the predicted outputs that lie in the interval [−1, 1], as
discussed above.

Fig. 1. Illustration of the players in the three data sets generated using the values 1
(top left), 10 (top right), and 100 (bottom) for the parameter w.

w = 1 w = 10 w = 100

I 0.000209 0.000445 0.000076
II 0.000162 0.006804 0.131972
III 0.000001 0.006454 0.125460

Table 1. Mean-squared error obtained with three different algorithms: regularized
least-squares with the kernel KΦ

I (I), regularized least-squares with the kernel KΦ
T (II)

and a naive approach consisting of always predicting 1/2 (III).

We conduct experiments with three data sets generated using the values 1,
10, and 100 for the parameter w. These parameterizations are illustrated in
Figure 1. The value w = 1 corresponds to the situation where each player tends



to play ‘rock’, ‘paper’, or ‘scissors’ almost equally likely, that is, the players are
concentrated in the center of the triangle in the figure. For w = 100 the players
always tend to play only their favorite item, that is, the players’ strategies are
concentrated near the three corners of the triangle. Finally, w = 10 corresponds
to a setting between these two extremes.

The results are presented in Table 1. We report the mean squared-error
obtained by regularized least-squares in a transitive and intransitive setting, re-
spectively by specifying the kernels KΦ

T and KΦ
I . For Kφ a simple linear kernel is

chosen in both cases. We also compare these two approaches with a naive heuris-
tic consisting of always predicting 1/2 (a tie). This heuristic can be interpreted
as quite optimal for w = 1, because in that case all players are located in the cen-
ter of the triangle. This explains why neither the transitive nor the intransitive
regularized least-squares algorithm can outperform this naive approach when
w = 1. We conclude that there is not much to learn in this case. For the other
two values of w, the situation is different, with the regularized least-squares algo-
rithm with the intransitive kernel performing substantially better than the naive
approach, while the performance with the transitive kernel being close to that
of the naive one. Unsurprisingly, learning the intransitive reciprocal relations
is more difficult when the probabilities of the players are close to the uniform
distribution (w = 10) than in case the players tend to always play their favorite
strategy (w = 100). Especially in this last case, regularized least-squares with
an intransitive kernel performs substantially better than its transitive counter-
part. This supports the claim that our approach works well in practice, when
the reciprocal relation to be learned indeed violates weak stochastic transitivity.
The stronger this violation, the more the advantage of an intransitive kernel will
become visible.

4.2 Theoretical Biology

Inspired by the simulations made by [39], we consider the following setting. Sup-
pose we have a number of competing species, each of them having two features.
Namely, a species x has a strong point denoted by s(x) and a weak point de-
noted by w(x), and the values of both features are between 0 and 1. Then, for a
couple of individuals, say (x,x′), we define a label y, whose value equals 1 if x
dominates x′ and −1 in the opposite case. The dominance is determined by the
following formula:

y = sign(u(s(x′), w(x))− u(s(x), w(x′))) (9)

where sign is the signum function and

u(a, b) = min(|a− b|, 1− |a− b|) . (10)

We observe that the species x dominates x′ if and only if the strong point s(x)
of x is closer to the weak point w(x′) of x′ than s(x′) is to w(x), the closeness
being defined by (10).



Fig. 2. The set of 2, 500 species after 900, 000 (left) and 1, 000, 000 (right) confronta-
tions.

We set up an experiment in which we randomly generate an initial population
of 2, 500 species so that their strong and weak points have been drawn from a
uniform distribution between 0 and 1. Then, we select randomly two species x
and x′ from the population for which we compute a label y with (9). In the
confrontation of these two species, we say that x is the winner and x′ is the loser
if y = 1 and vice versa if y = −1. After the confrontation, the winner replaces the
loser with its own descendant x̂. The strong and weak points of the descendant
are obtained from the strong and weak points of the winner by shifting them by
a small amounts whose sizes are drawn from a normal distribution having zero
mean and standard deviation 0.005.

Unlike in the experiments done by [39], we adopt an approach in which we do
not consider any local neighborhood of the species, that is, the two confronting
species are randomly selected from the current population of 2, 500 species. In
addition, for each confrontation of two species, there is always a winner and
a loser, while this was the case in the experiments of [39] only if the value of
(10) for s(x) and w(x′) was smaller than a certain threshold. A next couple was
randomly selected in case of the value being larger than the threshold. Finally,
our closeness function (10) differs from the one used by [39] so that the strong
and the weak points are cyclic in the sense that values 0 and 1 can be considered
to be equal. We adopted the cyclic property of the weak and strong points in
order to eliminate the special case of the values being close to 0 and 1.

We perform altogether 1, 000, 000 subsequent confrontations of two species.
In the beginning, there are no clusters, since the strong and weak points of
the species are uniformly distributed. However, the species start to form small
clusters after a couple of tens of thousands of confrontations and large clusters
when a couple of hundreds of thousands of confrontations has passed. We sample
our training and test sets from the 100, 000 last confrontations, since at this point
the simulation has already formed quite stable clusters. Namely, we randomly
sample without replacement 1, 000 couples for a training set and 10, 000 for a



test set. The clusters formed after 900, 000 and 1, 000, 000 confrontations are
depicted in Figure 2.

I 0.849900
II 0.615200

Table 2. Classification accuracy obtained with two different algorithms: regularized
least-squares with the kernel KΦ

I (I) and regularized least-squares with the kernel KΦ
T

(II).

Fig. 3. Illustration of 100 randomly selected test couples. Left: the dotted lines de-
note the 69 couples classified correctly and the dashed lines denote the 31 incorrectly
classified ones using RLS with the transitive kernel. Right: the dotted lines denote the
89 couples classified correctly and the dashed lines denote the 11 incorrectly classified
ones using RLS with the intransitive kernel.

We train two RLS classifiers with the training set of 1000 confrontations
and use them for predicting the outcomes of the unseen 10000 confrontations
in the test set. The first classifier uses a transitive kernel KΦ

T and the sec-
ond one an intransitive kernel KΦ

I . The base kernel Kφ is chosen to be the
Gaussian radial basis function kernel for both the cases, that is, Kφ(x,x′) =
e−γ((s(x)−s(x′))2+(w(x)−w(x′))2). The value of the regularization parameter and
the width γ of the Gaussian kernel are selected with a grid search and cross-
validation performed on the training set. The classification accuracies for both
classifiers are listed in Table 2. Moreover, a random sample of 100 test couples
and their classifications by the transitive and intransitive RLS classifier are il-
lustrated in Figure 3. From the results, we observe that the classifier using the
transitive kernel can learn the relation to some extent, but the intransitive kernel
is clearly better for this purpose.



5 Conclusion

In this paper the problem of learning intransitive reciprocal relations was tack-
led. To this end, we showed that existing approaches for preference learning
typically exhibit strong stochastic transitivity as property, and we introduced
an extension of the existing RankRLS framework to predict reciprocal relations
that can violate weak stochastic transitivity. In this framework, the choice of
kernel function defines the transition from transitive to intransitive models. By
choosing a feature mapping based on the Kronecker-product, we are able to
predict intransitive reciprocal relations. Experiments on benchmark problems in
game theory and theoretical biology confirmed that our approach substantially
outperforms the ranking approach when intransitive relations are present in the
data. Given the absence of publicly available datasets on learning intransitive
reciprocal relations, we are willing to share our data with other researchers, and
in the future we hope to apply our algorithm in other domains as well.
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23. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning
pairwise preferences. Artificial Intelligence 172 (2008) 1897–1916

24. Fishburn, P.: Utility Theory for Decision Making. Wiley (1970)
25. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for or-

dinal regression. In Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D., eds.:
Advances in Large Margin Classifiers, MIT Press (2000) 115–132

26. Freund, Y., Yier, R., Schapire, R., Singer, Y.: An efficient boosting algorithm for
combining preferences. Journal of Machine Learning Research 4 (2003) 933–969

27. Crammer, K., Singer, Y.: Pranking with ranking. In: Proceedings of the Conference
on Neural Information Processing Systems, Vancouver, Canada. (2001) 641–647

28. Chu, W., Keerthi, S.: Support vector ordinal regression. Neural Computation
19(3) (2007) 792–815
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