
Acc
ep

te
d 

M
an

us
cr

ipt

 

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for 

Experimental Biology. All rights reserved. For permissions, please email: 

journals.permissions@oup.com 

Title: Caught green-handed: methods for in vivo detection and visualization of 

protease activity. 

Authors: Álvaro Daniel Fernández-Fernández 1, 2, Renier A. L. van der Hoorn 3, Kris 

Gevaert 4, 5, Frank Van Breusegem 1, 2 * and Simon Stael 1, 2, 4, 5 

Affiliations: 

1 Department of Plant Biotechnology and Bioinformatics, Ghent University, 

Technologiepark 927, 9052 Ghent, Belgium 

2 VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium 

3 The Plant Chemetics Laboratory, Department of Plant Sciences, University of 

Oxford, Oxford OX1 3RB, UK 

4 Department of Biomolecular Medicine, Ghent University, B9000 Ghent, Belgium 

5 VIB Center for Medical Biotechnology, B9000 Ghent, Belgium 

* Corresponding author 

Authors’ emails by order:  

alfer@psb.vib-ugent.be 

renier.vanderhoorn@plants.ox.ac.uk 

Kris.Gevaert@UGent.be 

frbre@psb.vib-ugent.be * 

sista@psb.vib-ugent.be 

Corresponding author’s telephone: + 32 (0)9 33 13 920 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/erz076/5364900 by G

hent U
niversity user on 27 February 2019

mailto:alfer@psb.vib-ugent.be
mailto:renier.vanderhoorn@plants.ox.ac.uk
mailto:Kris.Gevaert@UGent.be
mailto:frbre@psb.vib-ugent.be
mailto:sista@psb.vib-ugent.be


Acc
ep

te
d 

M
an

us
cr

ipt

 

2 

 

Highlights: This review collects the existing methods and strategies available to 

detect and visualize proteolysis in vivo, focusing on the most relevant techniques 

that can be implemented in a lab. 

Abstract: 

Proteases are enzymes that cleave peptide bonds of other proteins. Their 

omnipresence and diverse activities make them important players in protein 

homeostasis and turnover of the total cell proteome as well as in signal transduction 

in plant stress response and development. To fully understand protease function, it is 

of paramount importance to assess when and where a specific protease is active. 

Here, we review the existing methods to detect in vivo protease activity by means of 

imaging chemical activity-based probes and genetically encoded sensors. We focus 

on the diverse fluorescent and luminescent sensors at the researcher’s disposal and 

evaluate the potential of imaging techniques to deliver in vivo spatiotemporal detail of 

protease activity. We predict that in the coming years, revised techniques will help to 

elucidate plant protease activity, functions and hence expand the current status of 

the field. 

 

Key words: activity-based probes, in vivo imaging, fluorescent, luminescent, 

protease, plants, proteolysis, sensor, reporter. 
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Abbreviations:  

ABP: Activity-based Probes. 

BRET: Bioluminescent Resonance Energy Transfer. 

CA-GFP: Caspase Activatable GFP. 

CFP: Cyan Fluorescent Protein. 

DEVD: minimal consensus cleavage site for caspase-3 activity composed by 

aspartate-glutamate-valine-aspartate, processed after the C-terminal aspartate 

of the motif. 

eGFP: Enhanced variant of GFP containing double point mutations (F64L and 

S65T) which enhances photostability and folding efficiency. 

FRET: Förster Resonance Energy Transfer. 

GAL4: Galactose 4 transcription factor. 

GFP: Green Fluorescent Protein derived from jellyfish Aequorea victoria. 

HCV: Hepatitis C Virus. 

HIV: Human Immunodeficiency Virus. 

mRFP / RFP: monomeric Red Fluorescent Protein; Red Fluorescent Protein. 

NLS: Nuclear Localization Signal. 

PCD: Programmed Cell Death. 

TEVp: Tobacco Etch Virus protease. 

UAS: Upstream Activating Sequence. 

UV-C: Ultraviolet C radiation which can act as germicidal. 

VC3AI: Venus Caspase-3 Activation Indicator. 

YFP: Yellow Fluorescent Protein with a T203Y mutation related to GFP. 

Improved versions of YFP include Citrine and Venus. 
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1. Introduction 

Proteases exert a tight control on cellular functions by breaking the polypeptide chain 

of their substrate proteins. Substrate cleavage is the result of the recognition 

between the target amino acid sequence of a substrate and the binding pocket of a 

protease. This action can lead to changes in the localization, biomolecular 

interactions, turnover or enzymatic activity of their substrates. The importance of 

proteases across biological kingdoms and viruses cannot be overstated as they 

intervene in most developmental processes and responses to environmental cues 

(Turk, 2006; van der Hoorn, 2008). Proteases are also quite numerous, for example 

Arabidopsis thaliana has a reviewed number around 600 proteases, totalling to 2% 

of the protein coding genes, similar in number and family conservation to other plant 

species like rice and poplar (García-Lorenzo et al., 2006; van der Hoorn, 2008; 

Lallemand et al., 2015). 

Proteases are classified based on the catalytic amino acid inside their binding 

pocket, being cysteine, serine, aspartic acid, threonine or glutamic acid, whereas 

metalloproteases use a coordinated metal ion to catalyze peptide bond hydrolysis. In 

cysteine, serine and threonine proteases, the peptide bond is broken after 

nucleophilic attack of their respective catalytic amino acid aided by a molecule of 

water on the carbonyl group of the peptide bond. For metallo-proteases, aspartic and 

glutamic acid proteases, cleavage occurs by activation of a water molecule which 

then performs the nucleophilic attack. Asparagine peptide lyases, are also capable of 

peptide bond cleavage by an elimination reaction, and their classification as 

proteases is still under debate given the differences in their catalytic mechanism 

(Rawlings et al., 2011). Until the date, such enzymes have not been identified in 

plants. 

The actual protease recognition site in the substrate is generally defined by the 

amino acids surrounding the scissile peptide bond and these amino acids are 

denoted as P and P’ (P4P3P2P1↓P’1P’2P’3P’4) where the downward arrow indicates 

the peptide bond cleavage (Schechter and Berger, 1968). Proteases can show 

narrow substrate selectivity, like thrombin and its minimal substrate LVPR↓GS 

(Gallwitz et al., 2012), to have a broader substrate selectivity such as trypsin that 
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cleaves after arginine and lysine (Olsen et al., 2004). Many proteases have a certain 

degree of permissibility in their substrate sites such as the Tobacco Etch Virus 

protease, which recognizes the optimal substrate sequence ENLYFQ↓S but also 

recognizes EXLYXQ↓X sequence where X denotes amino acids with similar 

properties to those found in the optimal substrate sequence (Boulware et al., 2010; 

Sandersjöö et al., 2017). Considering protease specificity and activity redundancy 

over a common substrate are of main importance when designing a probe for in vivo 

applications. In general, most part of the substrates should be as specific as possible 

for a single protease and in some particular cases the detection of a processed 

substrate can confirm entrance in specific biological processes. This is well 

exemplified by caspase-3 and caspase-7 which are cysteine proteases that cleave 

after aspartic acid (D) and are considered triggers of apoptosis. 

To understand the in vivo relevance of protease activities, it is important to know 

their spatiotemporal activity profiles. Gene expression and protein distribution 

patterns in plant tissues can certainly offer some clues to the role of a particular 

protease. However, their activity is often strictly restrained following their synthesis. 

For most proteases, initial protein synthesis produces an inactive or zymogenic 

proteoform. Subsequently, a first layer of control is exerted by zymogen activation 

during which for instance an inhibitory propeptide is catalytically removed, as it is the 

case for subtilisin-like serine proteases or subtilases in plants (Meyer et al., 2016). 

Other proteases lack clear inhibitory propeptide signals and instead require cleavage 

of internal sites for their activation. One example is the cleavage of the linker region 

between the p20 and p10 domains of metacaspases and caspases (Salvesen et al., 

2016). Additional internal cleavages or maturation of proteases can further affect 

their activity (Gu et al., 2012). Protease activation can also occur following a switch 

in the microenvironment such as altered pH, elevated calcium levels or other 

activating conditions, such as proximity induced multimerization (Lam and Zhang, 

2012). Post-translational modifications (PTMs) may further determine a protease’s 

activation state. For example, the catalytic cysteine of Arabidopsis metacaspase 9 

(AtMC9) is reversibly regulated by S-nitrosylation that blocks its activity (Belenghi et 

al., 2007). Other proteases in Arabidopsis such as ClpP1, Deg2 and ClpC2 were 

also found to be S-nitrosylated, but the importance of this modification is not clear 
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(Romero-Puertas et al., 2008; Hu et al., 2015). Proteases are also regulated by 

proteinaceous inhibitors (protease inhibitors or PIs) that bind the catalytic site, 

thereby blocking the capability to process their substrates (Grosse-Holz and van der 

Hoorn, 2016). Such interactions can be reversible, as it occurs for certain cysteine 

proteases and their inhibitors, cystatins (Benchabane et al., 2010), or irreversible, for 

example SERPIN1 that traps both AtMC9 and RD21A (Vercammen et al., 2006; 

Lampl et al., 2013; Grosse-Holz and van der Hoorn, 2016). PIs themselves are 

subject to regulation under various stress or developmental conditions, and a given 

protease can be regulated by multiple PIs (Rustgi et al., 2018), thereby further 

increasing the repertoire to fine-tune regulation of protease activities. Lastly, 

proteases localize to all sub-compartments in cells (van Wijk, 2015) and protease 

activity can depend on relocation of proteases in cells. For example, phytaspase 

delocalizes from the extracellular to the intracellular space (Chichkova et al., 2010) 

and vacuolar processing enzymes first need to be released into the cytosol during 

programmed cell death (Hatsugai et al., 2015). 

Researchers studying proteases often use peptidic probes that report proteolytic 

activity. Ideally, such probes are used in vivo to evaluate protease activities in their 

natural cell environment, while delivering spatiotemporal resolution. Over the years, 

increasing knowledge of protease substrate specificity has allowed to develop better 

tools for studying protease activity. Here, we review the use of chemical probes and 

genetically encoded sensors in plants and future expectations. We then widen the 

horizon towards techniques available for in vivo spatiotemporal protease activity 

detection in the mammalian protease field, which are expected to be implemented in 

plant cells. 

 

2. Chemical probes 

2.1. Chemical activity-based probes 

Activity-based probes (ABPs) are chemical probes capable of detecting the catalytic 

enzymatic site of an enzyme (Heal et al., 2011). ABP can be synthesized from a 

known chemical inhibitor which is generally termed warhead, followed by a linker that 
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can resemble an amino acidic sequence allowing a certain degree of specificity in 

the design and finally a tag that can be used with different purposes such as pull-

down or imaging. These chemical probes mimic a substrate cleavage/scissile bond 

and lock the proteolytic mechanism in a covalent intermediate stage (Sanman and 

Bogyo, 2014). Inherently, ABPs only exist for proteases that react with their 

substrate through a covalent intermediate like for cysteine, serine and threonine 

proteases, but not for aspartic, glutamic acid and metallo-proteases (van der Hoorn, 

2008). Probes for the latter classes are photo-affinity probes based on reversible 

inhibitors and require UV exposure to establish a covalent bond (Li et al., 2000). 

ABPs entail a reporter tag to facilitate detection. Fluorescent reporter tags are 

practical tools for cell biology studies, usually permit cell entry, but do not report on 

the identity of the labelled proteases. By contrast, biotinylated probes can be readily 

used to purify and identify the labelled proteases by means of mass spectrometry, 

but the entry of biotinylated probes into the cell is often problematic. To overcome 

this issue, chemical moieties called “minitags” can be coupled to e.g. fluorophores or 

biotin using a bio-orthogonal chemical coupling reaction, such as click chemistry 

between alkynes (C≡C) and azides (N3) (Speers and Cravatt, 2004; Kaschani et al., 

2009b). Minitagged probes are efficient to cross cellular membranes, reason why 

they are frequently used for in vivo labelling. However, minitags detection usually 

involves a Cu+-catalysed coupling reaction in the protein extraction (ex vivo). Other 

two-step labelling processes include the Staudinger-Bertozzi ligation and the Diels-

Alder ligation (Verdoes and Verhelst, 2016). Using specific coupling protocols and 

reagents, it is possible to perform the coupling reaction in situ like in fixed tissues 

(Paper et al., 2018), or even in vivo (Chang et al., 2010). 

Fluorescently labelled proteins can be visualised in protein gels after electrophoresis 

(profiling) or by microscopic imaging (Fig. 1A). Although nearly all fluorescent ABPs 

can be used for in vivo labelling and profiling, imaging makes little sense if the 

probes are not sufficiently specific. For instance, active serine proteases can be 

efficiently profiled in vivo with fluorophosphonate probes (Liu et al., 1999; Kaschani 

et al., 2009a). However, these probes label over 50 different proteins, making life-cell 

imaging with such probes not very informative due to redundancy of activity over one 

ABP. In fact, more selective and specific probes are better suited for activity-based 

imaging. For instance, three fluorescent ABPs targeting the proteasome revealed 
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quick labelling from 1 minute for subunits β2 and β5, while subunit β1 was labelled in 

a timeframe of around one hour (Kolodziejek et al., 2011).The probes were designed 

based on known proteasome inhibitors from vinyl sulfones, epoxomicin and 

syringolin A. Another probe designed for detection of vacuolar processing enzyme 

probes displayed fluorescence in the vacuole of plant cell cultures and leaves while 

this signal was absent in vacuolar processing enzyme null mutants (Misas-Villamil et 

al., 2013).  

An important technical limitation of fluorescently labelled probes is that they 

fluoresce also when not bound to a target and may thus cause background signals 

that obscure detection of labelled proteins. This problem is often solved by washing 

out non-reacted probes or by using low probe doses such that eventually all probes 

are immobilized on their targets. An elegant alternative solution are quenched 

probes, which have been described for various cysteine proteases but were mostly 

used in mammalian systems (Blum et al., 2005; Edgington et al., 2009; Verdoes et 

al., 2012; Edgington et al., 2013). These probes contain a quenching group that 

suppresses the fluorophore emission of light until the probe interacts with the 

protease (Edgington-Mitchell et al., 2017). 

Although activity-based imaging also has limitations because these probes inactivate 

the labelled proteases, and that some labelling time (up to one hour) is needed to 

achieve labelling, the great advantage of these probes is that after imaging, the 

labelled proteins can also be detected upon separation of extracts on protein gels to 

identity the labelled proteins. 

 

2.2. Chemical protease substrate probes 

Together with ABPs, the utilization of fluorescent chemical reagents that react to 

protease activity can be of interest for the plant field. For example, DEVD-

NucView488 (Fig. 1B) can be used to visualize caspase by nuclei labelling (Cen et 

al., 2008). It contains a DNA intercalating reagent similar to thiazole orange that 

react with a negatively charged group of DEVD hiding fluorescence. This motif is 

cleaved by caspases after the second aspartic acid (DEVD↓) leading to subsequent 

DNA binding of the reagent and thereby inducing detectable fluorescence. When 

indole-3-carbinol is applied to trigger apoptosis to cell cultures, the nuclei of these 

cells are thereby fluorescently labelled. In plants, caspase-3 and -7-like activities 
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have been detected in the cytosol, generative cell and vegetative nuclei of Papaver 

roheas pollen (Bosch and Franklin-Tong, 2007, 2008) using CR-(DEVD)2. In this 

probe, two DEVD peptides were added to cresyl violet, which quenches its 

fluorescence (Fig. 1C). DEVDases and proteases with caspase-3/7-like activities 

release the DEVD peptides, uncovering the compound’s fluorescence. With this 

probe, caspase-3-like activity was detected in the vegetative nucleus, cytosol and 

generative cells of pollen tubes of poppy plants during induction of self-

incompatibility. Despite the fact that other proteases are known to be involved in 

pollen programmed cell death (PCD) in Arabidopsis (Zhang et al., 2014), the actual 

poppy plant proteases involved remain unidentified. These probes were further 

developed to include infrared fluorophores that can be used to image in deeper 

tissues of life animals and are now developed to image malignant tumours during 

surgery (Blum et al., 2007; Edgington et al., 2009; Verdoes et al., 2012). 

 

3. Direct-fluorescent sensors of proteolytic activity 

Most of the existing proteolytic sensors are based on modifications of eGFP (Fig. 2A 

and 2B) and its derived fluorescent proteins. The use of these proteins can be 

advantageous due to their modifications in emission and excitation parameters. It is 

also a point to consider that other proteins can outperform eGFP in specific 

environments like super folding versions of GFP, Cherry2, or split mNeonGreen2 

(Feng et al., 2017) and that researchers can profit of them to engineer protease 

activity sensors in the future. 

 

3.1. FRET sensors 

Förster Resonance Energy Transfer (FRET) applications are nowadays employed in 

almost every field of cell biology and have the longest history as genetic protease 

reporters (Weiss, 2000). FRET is based on energy transfer between two proteins or 

particles in a spatial contiguity by a linker containing a specific amino acid sequence. 

Upon excitation, the donor transmits its energy to the acceptor which is then excited 

and emits fluorescence. Once the proximal position is lost, the acceptor signal 

decreases and the donor signal enhances (Fig. 2C). FRET proteolytic biosensors 

include detection of Xa protease (Mitra et al., 1996), thrombin (Zhang, 2004), trypsin 

(Heim and Tsien, 1996), caspase-1(Mahajan et al., 1999), caspase-3 (Xu et al., 
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1998; Luo et al., 2001) and caspase-8 (Luo et al., 2003), anthrax lethal factor 

protease (Kimura et al., 2007), matrix metalloprotease (MMP) 1 (Ouyang et al., 

2008), MMP-2 (Yang et al., 2007) and MMP-9 (Stawarski et al., 2014); ADAM 17 

protease (Chapnick et al., 2015), neutrophil elastase (Schulenburg et al., 2016), 

Hepatitis C Virus (HCV) NS3 protease (Sabariegos et al., 2009) and calpain 

(Vanderklish et al., 2000; Stockholm et al., 2005). 

FRET reporters are made of two fluorescent proteins with complementing features in 

emission and absorbance. Some improvements were made aimed at increasing 

FRET efficiency. For example, two mutations in the surface between the interaction 

of a YFP variant and a Cyan Fluorescent Protein (CFP) increases FRET 4-fold 

compared to the original versions of these proteins (Vinkenborg et al., 2007). More 

recently, novel FRET sensors included the use of weak interactor peptides at the 

fluorescent proteins, bringing them spatially together and enhancing energy transfer 

(Grunberg et al., 2013). This set of sensors was named helper-interaction FRET and 

proteolytic sensors were arranged to recognise caspase activity using LDEVD as 

linker between mTurquoise2, and mCitrine, which are improved versions of CFP and 

YFP respectively. The position of the weak interactor peptides was tested at the N- 

and C-termini of the sensor or included in structural loops of the fluorescent proteins. 

Upon caspase-3 activity, the linker is cleaved, and despite the helpers, the proximity 

is lost and the protease acceptor loses its fluorescence in higher ratios than common 

FRET sensors that did not include the interaction helpers. 

In plants, FRET sensors are routinely used for the detection of protein-protein 

interactions and intracellular signals such as calcium levels, abscisic acid, pH levels 

or ATP concentration and have been extensively reviewed in (Grossmann et al., 

2018). However, reports on successful use of genetically encoded sensors for plant 

proteases are scarce. Zhang and colleagues used FRET based sensor with an 

amino acid linker, separating the two chromophores, containing a DEVD sequence 

for the detection of caspase-3-like activity in Arabidopsis protoplasts when exposed 

to UV-C light (Zhang et al., 2009). Exposure to UV-C light for less than half an hour 

resulted in a reduced FRET signal with a maximum at 1 hour after treatment, 

indicating a relatively high activation by caspase-3-like proteases. The reduction in 

signal observed was not detected in the negative control reporter that used the 

DEVG linker sequence that is not recognized by caspase-3-like protease. Caspase-

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/erz076/5364900 by G

hent U
niversity user on 27 February 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

12 

 

3-like activity is a recurrent topic in the field of plant proteases although there are no 

genuine caspase genes found in plant genomes, and though inhibitors of caspases 

generally block plant PCD (Sueldo and van der Hoorn, 2017). A FRET based 

biosensor was also used in plant protoplasts for the detection of a latent peptidase 

activity of the ubiquitin-activated peptidase DA1 (Dong et al., 2017). The approach 

used eGFP and mCherry flanking the whole sequence of DA1 substrate, Big Brother 

instead of the conventional YFP/CFP pair. An increase in the green fluorescence 

lifetime, which in this case corresponded to the donor eGFP, was shown when DA1 

was co-expressed, indicating that mCherry part is distant and that FRET decreased. 

Apart from reporting protease activity in vivo and in vitro, FRET reporters can serve 

as markers of certain pathways like apoptosis and to screen for inhibitors of 

enzymatic activities (Jones et al., 2000; Zhang, 2004). Another FRET application is 

the generation of randomized substrate libraries to detect protease specificity 

(Fretwell et al., 2008) as a way of designing fluorescent probes that are as specific 

as possible for the protease of interest. 

 

3.2. Fluorescence complementation 

The newest generation of genetic fluorescent protease reporters use fluorescence 

complementation. This mechanism relies on split versions of fluorescent proteins 

with null or decreased fluorescence emission, which in proximity can complement 

and reconstitute fluorescence (Ohad et al., 2007). Although this technique has been 

mainly exploited for the detection of protein-protein interaction such as bimolecular 

fluorescence complementation (BiFC) it can be tuned for the detection of proteolytic 

activity. Here we include designs where both parts are designed as separated 

segments to recompose fluorescence and rearrangements in the amino acid 

composition that disturb protein structure or destabilizes chromophore formation. To 

detect protease activity, it is necessary that these reporters include a protease 

recognition sequence that partially reconstitutes or enhances fluorescence after 

processing (Fig. 3). Some of these sensors are conceived as individual sensors (Fig. 

3A-C and 3E), others have a stable additional fluorescent signal, independent of 

proteolysis, to obtain a ratiometric signal (Fig. 3D). Structural loops are candidate 

regions in which protease cleavage sites can be introduced, though probe design 

has to be carefully considered and success can depend on both the protease and 
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the cleavage site used. For instance, eGFP loops 7, 8 and 9 were modified to 

include a motif that is known to be cleaved by trypsin (Chen et al., 2009b). The 

design including grafting at several locations such as the glutamic acid in the loop 9 

at position 172 of the fluorescent protein by introducing a linker of 31 amino acids, 

showing a better response after incubation with trypsin in vitro and after induction of 

trypsin formation with caerulein in pancreatic cell culture with increased levels of 

trypsinogen, which is the trypsin precursor. The same design showed positive results 

when studying caspase-3 activity by crafting DEVD-motifs, overall indicating that 

previous mentioned glutamic acid at loop 9 might be well suited to develop new 

protease reporters upon implementing minimal substrates (Chen et al., 2009a) (Fig. 

3A). 

More recently, Callahan and colleagues modified a split GFP protein reporter system 

(Kamiyama et al., 2016) by partially caging a GFP11 β-strand that has a high affinity 

for the remaining GFP1-10 β-strands (Callahan et al., 2010). In this reporter named 

Pro-GFP, the GFP11 β-strand replaces the exposed loop of the protease inhibitor 

eglin c with a proteolytic site at the C-terminal part of this β-strand. Both inhibitory 

domains are highly stable and remain together even after cleavage however, 

cleavage concedes enough flexibility for GFP11 to complement GFP1-10 (Fig. 3B). 

This sensor was also tailored for the detection of thrombin, caspase-3 and HIV 

proteolytic activity, showing a 6-fold increasing in signal when the proteases were 

present. 

VC3AI is a single protein biosensor for caspases 3 and 7 (Zhang et al., 2013). VC3AI 

stands for Venus Caspase-3 Activity Indicator shaped by a circularly permuted YFP 

protein with a F46L mutation called Venus. In its design, the original design of N- and 

C-halves of Venus are inverted and ligated using a typical caspase cleavage site. 

VC3AI is flanked by inteins (Mills et al., 2014), which are peptides that can self-

excise leading to association of the remaining adjacent sequences, in this case both 

ends of the permuted sensor which is then circularized. The structure of the circular 

protein constricts the Venus moieties in a format with decreased fluorescence, 

which, after cleavage, is loosen up and shows higher levels of fluorescence (Fig. 

3C). Detection of apoptotic events in tumour cell culture showed a 10-fold 

fluorescence increase within 8 hours after induction of apoptosis. Here, DEVD 
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processing was also observed in non-apoptotic cells, which may lead to exploring 

new functions of caspases apart from cell death, and exemplifies the power of 

generating new biological hypotheses with these sorts of probes. Versions of this 

sensor using blue, green and red fluorescent proteins, termed respectively, CC3AI, 

GC3AI and RC3AI, also successfully reconstituted fluorescence upon cell death 

induction. This extended colour palette opens diverse possibilities to combine with 

several cell dyes or markers indicating cell viability and to exploit the intrinsic 

characteristics of each fluorescent protein. In a further study, such different probes 

for detecting caspase-3 activity in fruit flies were reported, thereby increasing the 

applications of the caspase reporter toolkit (Schott et al., 2017). 

iProteases are a group of sensors in which the two domains of an Infrared 

Fluorescent Protein are truncated and fused both N- and C-terminal to self-

complementing split eGFP which here acts as the ratiometric signal (To et al., 2015). 

The domains in the truncated version keep a crucial cysteine distant enough from 

the site of chromophore formation, that is mediated by biliverdin. This cysteine 

displacement avoids thioether formation between biliverdin in the binding site and 

the cysteine, and therefore blocks fluorescence. Using a linker holding specific 

substrates for TEVp, caspase-3/7 and HCV protease, respective iSensors (iTEV, 

iCasper and iHCV) were obtained, showing how a single sensor design can be 

turned into a potent detector of dynamics for different proteases. The analysis of the 

cleaved purified sensor showed an increase in fluorescence ten seconds after 

biliverdin addition, detecting immediate response which can be used for quick 

readout of proteolysis when biliverdin is available. Results in vivo indicated detection 

of apoptosis events in Drosophila in a frame time of 1 hour after staurosporine 

addition, which is a protein kinase inhibitor which induces apoptosis including 

caspase activation. The presence of a ratiometric permanent green signal allowed to 

detect transfected cells independently of protease activity.  

Another ratiometric sensor, dubbed ZipGFP was developed for detection of 

proteases action, where eGFP was first split and interaction of the separate parts 

was blocked by zipping together the C- and N-terminal ends of β-strands 1 to 10 and 

β-strand 11 with heterodimers of E5 and K5 coils (To et al., 2016). Ratiometry was 

achieved by N-terminal fusion of eGFP β-strands 1-10 to mCherry with a T2A 
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peptide for self-cleavage by ribosomal skipping (Szymczak et al., 2004), producing 

equimolar amount of protease reporter and mCherry (Fig. 3D). Cleavage of TEVp 

and caspase-3 substrate sites liberated the E5/K5 heterodimers allowing the cavity 

of the main structure to be complemented both in vitro and during apoptosis of 

zebrafish embryos. ZipGFP outperformed previously described FRET sensors given 

a 10-fold increase of eGFP signal, which rarely could be detected by energy transfer 

(To et al., 2016). 
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3.3. Single fluorescently labelled sensors 

Various sensors use translational fusions to proteins or protein domains that hamper 

GFP folding, and therefore fluorescence, or reduce lifetime of the sensor due to their 

instability in a particular cellular environment. For instance, Caspase Activatable 

GFP sensors (CA-GFP) are based on this concept (Nicholls et al., 2011). Here, 

eGFP is fused to a 27 amino acid stretch of the monomer of the homotetrameric 

influenza M2 proton channel protein, bridged by a DEVD sequence. The M2 domain 

also tetramerized in CA-GFP, thereby hindering correct maturation of the eGFP 

chromophore and reducing its fluorescence (Fig. 3E). Caspase cleavage freed this 

quenching domain, thereby enhancing fluorescence 45-fold in bacteria, while only 3-

fold in mammalian cell culture. These results illustrate that protease reporters can be 

highly system-dependent and that they need to be tested and optimized for each 

organism or cellular context. Interestingly, N-terminal fusions of the M2 domain did 

not quench eGFP fluorescence while C-terminal fusion gave 40-fold increases for 

caspase-3/7 (Nicholls and Hardy, 2013). YFP, Cerulean and mNeptune versions 

were later developed with varying results, probably because of the variable spatial 

conformation and protein maturation of the different fluorophores (Wu et al., 2013). 

Similarly, the fusion of GFP to a C-terminal bacterial degron ssrA 

(AANDENYNYALAA) through different substrates of TEVp showed preference for 

ENLYFQ↓G over other minimal substrates in Escherichia coli (Kostallas and 

Samuelson, 2010; Kostallas et al., 2011). Here, ssrA is an optimized peptide that 

induces fast protein turnover of the sensor via the bacterial degradation system 

shaped by the caseinolytic proteinase XP complex. This knowledge about GFP 

structure was exploited to permute the last β-strand at the beginning of the sensor 

that includes proteolytic cleavable sites at the loops between the original β-strands 6 

and 7 or β-strands 7 and 8. The circularly permuted GFP reported 50 times faster 

degradation of Lon bacterial substrates in vivo than native GFP, possibly this is due 

to the decreased thermal stability of the permuted sensors (Wohlever et al., 2013).  

 

3.4. Proteolysis-mediated delocalization sensors  

This class of sensors exploits protein localization (and re-localization) to read out 

cleavage by proteases. The simplest design come from the observation of changes 
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in cellular compartmentalization using single fluorescently fusion proteins. However, 

some minimal conditions are required: the fluorescent tag needs to be attached to 

the mobile component and this tag may not interfere with specific signals or transit 

peptides present in the protein addressing correct localization. In the cell content, 

some transcriptional effectors are targeted to other location than nucleus in a state 

that requires to undergo PTMs for transport to the nucleus where they can exert their 

function (Andréasson et al., 2006; Iwata et al., 2017). In Arabidopsis, NAC 

Transmembrane Motif 1 is processed by an intramembrane protease, likely 

phytocalpain, loses its transmembrane domain and relocates to the nucleus (Kim et 

al., 2006). The processing was visualized by GFP fused to whole NAC factor and in 

the truncated versions of the protein, mimicking cleavage site but blocked when the 

full protein tagged is incubated with specific phytocalpain inhibitors.  

Dual-tagged substrate proteins provide information for both parts of a cleaved 

construct. An example in Arabidopsis thaliana is mCherry/GFP-tagged NAC017 at its 

N- and C-site respectively. Proteolysis occurs after application of antimycin A, an 

inducer of mitochondrial retrograde signalling. Initially, both GFP/mCherry reside at 

the endoplasmic reticulum membrane, but the mCherry signal moves to the nucleus 

after treatment, while GFP remains at the original position. Although no additional 

experiments to determine the identity of the responsible protease have been 

performed, the readout can be used as retrograde signalling markers when 

antimycin A is used (Ng et al., 2013).  

A clear example of de-localization based reporters are caspase biosensors 

containing an N-terminal Nuclear Export signal (NES) sequence followed by a 

caspase recognition site, YFP and a C-terminal Nuclear Localization Signal (NLS) C-

terminal sequence (NES-DEVD-YFP-NLS), being the NES detachable by caspases 

(Tang et al., 2012). YFP is present in the cytosol and nuclei in normal conditions but 

turns mainly nuclear after treatment with apoptotic inducers. Something to take into 

consideration with these sensors is that they only work when the protease and the 

sensor can meet each other in the same subcellular space, in this case cytosol 

and/or nucleus. An elegant application of dual fluorescent sensors is the 

demonstration of elusive separase activity in cohesin cleavage, necessary for sister 

chromatid disengagement. A cohesin domain was doubly tagged with mCherry and 
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eGFP at its N- and C-terminus respectively. Additionally, to ensure co-localization 

with separase to its active cell cycle phase, the sensor was cloned in frame with a 

centromeric located protein (CENP-B) or histone marker for chromosomal 

localization (H2B). Separase processing of its substrate led to chromosomal red 

labelling, while green signal diffused to the rest of the cell. This sensor helped to 

elucidate how separase regulation occurs in HeLa cells and to detect protease 

activity in a specific cell cycle phase in a concrete and controlled subcellular location 

(Shindo et al., 2012). 

A successful reporter denoted apoptotic processes in different organisms such as 

Drosophila and chicken embryos (Bardet et al., 2008). This reporter named apoliner, 

depends on membrane anchoring using mCD8 followed by mRFP, a BIR1 domain 

and a NLS-eGFP. Caspase activity was detected both by fluorescence microscopy 

and immunoblots in a period shorter than one hour in fruitfly cell lines after induction 

of apoptosis. Initially, in healthy cells membrane co-localization of mRFP and eGFP 

was found, while the latter transited to the nucleus once caspases were activated. At 

the final stage of apoptosis, eGFP was likely degraded by additional proteases and 

mRFP remained as a unique signal at membranes. Apoliner showed no impact on 

developmental cell death measured by the TUNEL assay in Drosophila and could 

detect caspase activity in chick embryos faster (6 to7 hours) than by 

immunohistochemistry (17 hours). Another similar probe used reporters as 

molecules that change localization after protease cleavage (Kim et al., 2013). Here, 

both single- and dual-colour fluorescent reporters were used that determined 

hepatitis C virus NS3 protease activity by miss-localization of one or both of their 

components. In an appealing approach for the production of multiple proteins in 

Escherichia coli and mammalian cells, a single open reading frame alternating 

proteins with TEVp cleavage sites showed efficient delivery of fluorescently tagged 

sub-products (Chen et al., 2010). A correct cleavage and quantification of the 

different proteins in bacteria was detected on immunoblot. One of the mammalian 

cell lines included diverse localization proteins to nuclei, membranes and cytosol 

with masked target peptides which, after processing, label this location with the 

different fluorescent protein markers, showing flexibility for designing delocalization 

sensors. 
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4. Transcriptional reporters 

Protease cleavage of membrane-bound transcriptional activators can result in 

reporter gene activation. Examples of setups relying on this mechanism include 

CaspaseTracker and CasExpress (Tang et al., 2015; Ding et al., 2016) that study 

caspase activity during apoptosis and its evasion by anastasis. The term anastasis 

refers to a Greek word for resurrection. In molecular biology, it indicates the 

mechanism by which cells experiencing caspase activation are capable to exit 

apoptosis (Sun et al., 2017). Although caspase activation has been thought to be a 

point of no return in apoptosis, anastasis is showing the potential of organisms to 

evade cell death. Both systems exploit the fusion of a membrane-bound mCD8 

protein to the yeast transcription activator protein galactose transcription factor 

(GAL4) through a caspase-3-like recognition sequence (DQVD) and a BIR1 domain 

for enhanced caspase recognition. Membrane tethering by mCD8 prevents GAL4 to 

translocate to the nucleus which only occurs upon cleavage at the DQVD site. Once 

in the nucleus, GAL4 binds to the transcription enhancer Upstream Activation 

Sequence (UAS) and induces both nuclear targeted RFP expression and expression 

of a recombinase named flippase. A third component of the sensor, is a cassette that 

contains a transcriptional stop sequence flanked by recombinase sites followed by 

an initial untranscribed GFP. Transcription arrest is reverted through recombinase 

activity, excising the fragment of DNA which is subsequently inherited by the cell-line 

lineage (Fig. 4A). This system presents a captivating feature by which transient 

caspase activity and developmental caspase activity can be discriminated. Here, 

RFP expression reflects relatively fast apoptotic activity, GFP expression accounts 

for caspase activities during physiological events and development. The main 

difference between both systems is that with CaspaseTracker GFP is expressed in 

the cytosol, while with CasExpress, both signals are found in the nucleus. 

Splitting transcriptional inductors using a cleavable linker between their DNA binding 

site and the transcriptional effector also allows to detect proteolysis (Smith and 

Kohorn, 1991). Recently, a series of new transcriptional reporters of activity has 

been developed to screen for Hepatitis C Virus NS3 protease inhibitors (Fig. 4B and 

C) (Tague et al., 2018). NS3 is a protease that cleaves in Cis, meaning that it 

cleaves from its containing sequence, which can be exploited for conditional 

degradation (Lin et al., 2008; Chung et al., 2015). To study drug-conditioning 
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proteolysis, Tague and colleagues split Gal4 into its DNA binding domain and its 

transcriptional activation and translationally fused to a NS3 protease through a linker 

containing the protease minimal substrates at both sides. In normal conditions the 

protease can free itself by cleavage, and the spatial contiguity of the components are 

lost. On the contrary, when the protease activity is inactivated by a specific inhibitor, 

the whole complex remained intact and moves together to the nucleus, where it 

recognizes the UAS region leading to H2B-Citrine expression which resulted in 

nuclear fluorescence (Fig. 4B). Another system uses sequestering of the Gal4 

protein by a translational fusion with a protein that localizes in the membrane and 

NS3 protease as dock. The system is robust enough to keep Gal4 away from the 

nuclei if there is presence of inhibitor, but on the contrary to the previous system, 

proteolysis leads to fully active Gal4 to translocate and induce expression of the 

reporting signal (Fig. 4C). Those are vey elegant examples of both on-to off and off-

to on induction and repression of a reporting system based on proteolysis and 

controlled by inhibitors. In the same study, an inactive Cas9 version serving as 

location system and transcriptional activation domain was also used. Here, by 

changing the guide RNA design, any reporter or product of an endogenous gene can 

be used as readout. In addition, an “inhibitor-off” system was developed by 

sequestering a full transcriptional activator into the membrane. This system is 

switched on upon protease activation, allowing the transcription factor to relocate to 

the nucleus. 

 

5. Bioluminescent sensors 

Besides fluorescence means to detect protease activities, luminescent reporters can 

also be used. Bioluminescence resonance energy transfer (BRET) are based in the 

same principle than FRET, but generally the protein acting as donor is a luciferase 

which needs a substrate such as coelenterazine and ATP or oxygen to emit 

luminescence (Subramanian et al., 2006). Depending on the range of emission of 

the luciferase different fluorescent proteins can be used as acceptors (Fig. 5A). In 

plants BRET has been used to detect processing of several versions of ubiquitin-like 

proteins AtAtg8 (a-i) by the Arabidopsis cysteine protease AtAtg4 in a study linking 

proteolysis, trafficking and autophagy (Woo et al., 2014). The different versions of 

Atg8 were cloned into a reporter consisting of a N-terminal fusion to Citrine and a C-

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/erz076/5364900 by G

hent U
niversity user on 27 February 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

22 

 

terminal fusion to an optimized version of Renilla luciferase (Woo and von Arnim, 

2008). Interestingly, BRET ratios showed substantial differences between wild-type 

plants and double Atg4a4b mutants. BRET independent Citrine signal was detected 

in wild-type vacuoles, mainly as autophagosomes, indicating that the cleaved sensor 

behaves as the naturally occurring protein whereas the punctuated signal is lost in 

the mutant lines, likely due to the absence of proteolytic processing but is detected in 

the cytosol. Furthermore, luciferases retain activity in native gels after addition of 

luciferin allowing direct detection of cleaved reporter fragments containing intact 

luciferase. Other BRET sensors were developed for detecting caspase-3 activity 

using click beetle green luciferase and tandem dimer Tomato (Gammon et al., 2009). 

One of the newest sensors uses NanoLuc (Hall et al., 2012), an engineered 

luciferase with optimized characteristics, with mNeonGreen for the individual 

detection of caspase-3, -8 and -9 (den Hamer et al., 2017). A 10-fold decrease of 

BRET signal in vitro after staurosporine addition was reported. 

A different design was followed for creating iGLuc, initially consisting of pro-

interleukin fused to Gaussia luciferase (Bartok et al., 2013). Similar to the CA-GFP 

probe, multimerization of the protein via pro-interleukin inactivated luciferase 

luminesce, which increased more than 500-fold upon caspase-1 activation (Fig. 5B). 

iGluc could also be used when the cleavage site was changed for a caspase-3 or a 

TEVp recognition site and addition of its respective proteases (Bartok et al., 2013). 

This design also allowed the generation of specific and functional luciferase 

reporters for in vitro detection and in vivo imaging of other proteases such as the 

enterovirus 3C protease (Zhang et al., 2017).  

Similar to the fluorescence complementation probes, structural destabilization of 

luciferase reporters that can be reconstituted by proteolysis was also explored. By 

cyclic permuting the N- and C-terminal parts of firefly luciferase, luminescence is 

decreased. Both regions can be linked together by a protease cleavage site that 

allows enough structural flexibility after cleavage to enhance luciferase activity (Fig. 

5C). This model was demonstrated for caspase-3/7/8, enterokinase and TEVp 

among others (Fan et al., 2008). Another luciferase reporter benefits from a split 

firefly luciferase reporter system by addition of coil-coiled domains that hamper 

luciferase reconstitution by spatial limitation. The linker region can be detached by 

caspase-3 or TEVp cleavage, both luciferase parts can then come together and 
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perform mono-oxygenation of luciferin, producing luminescence (Shekhawat et al., 

2009). This was also used for reporting proteolysis by applying the split β-lactamase 

system, which shows potential applications for other split reporter versions. 

One of the main drawbacks of luminescent sensors is the necessity to 

deliver/provide co-factors for the emission of luminescence. The addition of 

supplementary substances might modify plant endogenous responses and requires 

of proper controls. Moreover, detection of luminescence can decrease over time, 

affecting experiments where long time tracking is necessary. On the other hand, 

luminescence-based sensors are more sensitive than fluorescent ones and generally 

display very low background signals, which improves quantitation. 

 

Conclusions and perspectives 

In the last decade, the implementation and development of novel protease activity 

probes for use in plants has led to significant biological insight on processes ranging 

from development and senescence to biotic stress (Morimoto and van der Hoorn, 

2016). Some of these studies leveraged the potential of imaging spatiotemporal 

protease activity, as addressed in the beginning of this review, together with an 

increased use of chemicals and dyes for imaging. ABPs in the plant field have mainly 

been used for the identification of active proteases in vivo and in vitro. The diversity 

of established protocols in plants have greatly aided in the pipeline for protease 

identification using mass spectrometry. However, not many probes have been used 

for imaging, mostly because they label many proteases from the same class. One of 

the main drawbacks of chemical probes is that ABPs work as inhibitors of proteolytic 

activity, thus inactivating enzymatic activity and potentially blocking downstream 

processes and disturbing cell biology. Possibly though, only a part of the total pool of 

ABP-targeted proteases is labelled, allowing the other fraction of the pool to perform 

their biological role. In addition, the membrane-permeability and bioavailability might 

be limited in some cases, although many fluorescent probes can be used for 

labelling in vivo. Therefore, to study in vivo processes one should use the minimal 

amount of ABP that permits the tracking and visualization of the target protease 

while minimizing the effect on plant physiology. 
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More recently, the development of proteinaceous probes to visualize protease 

activity has evolved. Genetically encoded probes include fluorescent, luminescent 

and transcriptional detectors of proteolysis. Genetic reporters are relatively cheap 

and easy to tune for specific protease requirements by standard cloning techniques 

available in most molecular biology labs. They also allow versatility when specific 

tissues are the area of interest where a protease is expressed. Genetic probes do 

not inhibit proteases, but might compete for genuine substrates. Therefore, it is 

important to test that such reporters do not have a significant influence on the 

system to which they are applied. For instance, adding a substrate of caspases may 

speed up apoptosis generating internal bias in the experiment. Different genetic 

reporters allow fast detection of proteolysis without additional steps needed for 

labelling or washing of reagents. In terms of speed, FRET reporters are well-suited 

for real time and fast processes, because their readout depends on protein proximity, 

which is lost immediately upon processing. Fluorescent complementation follows a 

gradual activation, but reporting the activity is delayed in time. Luminescent sensors 

have as an advantage that they allow very precise measurements, but, on the other 

hand, they require expensive co-factors. Lastly, transcriptional sensors are 

interesting tools that mark activity from parental cells in which proteolysis occurs. 

However, they are without any doubt the slowest to report activity due to their 

mechanism of translocation, transcription and maturation of newly synthesized 

proteins. 

Genetic protease reporters have been underexplored in plant research, maybe due 

to the lack of known protease activation mechanisms and the poor number of 

validated substrates. Minimal knowledge on protease specificity is generally required 

to design such tools, meaning the capacity to identify real or synthetic substrates by 

some of the existing proteomic techniques used in N-terminomics (Demir et al., 

2018). However, these arguments also hold true for chemical probes. Nevertheless, 

probes could be a useful tool to determine specificity of the cleavage motifs in cases 

where N-terminomics are not suitable to identify specific peptides. For instance, 

some of peptides resulted from proteases activity can contain physical and chemical 

properties which made them undetectable using mass spectrometry, but which can 

be inserted in sensors to determine action of proteases with the proper controls. A 
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considerable effort will be required to establish trusted protocols and protease-

specific probes in plant research. Except for the limited availability of biliverdin in all 

plants cellular compartments (Kohchi et al., 2001) which would limit the use of 

iProteases sensors (To et al., 2015), there seem no significant biological barriers to 

adapt existing genetic probes to plant research. In mammalian studies, caspases 

were mostly targeted by various genetic probes, primary because of their importance 

in disease and inflammation, but perhaps also because they are a prime example of 

an inducible protease with a well-known activation mechanism with very distinctive 

cleavage profiles and therefore easy to investigate (Salvesen et al., 2016). Apart 

from reconfirming previous observations, genetic protease probes could serve to 

discover new biology, as exemplified in the case of anastasis (Sun et al., 2017). As 

plant proteases are generally less studied than mammalian proteases, this provides 

a clear incentive for translation of the concepts of genetic probes to plants and the 

discovery of new biology. 
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Box 

Considerations when working with or translating chemical and genetic probes to 

plants: 

- Occam’s razor principle states that the simplest solution is most likely the 

best. The most uncomplicated sensors and the least number of additional 

components introduced in the experiments might help to produce results. Also 

probes with less sophisticated equipment requirements for readout will 

facilitate the work of the researchers (excitation/emission). 

- Probe design. There is not a clear rule on how long a linker can be, this might 

depend on the probe and on the nature of the amino acids and the final 

spatial conformation of its ends. Some examples in this review indicate that it 

is possible to detect cleavage of some full proteins labelled at the C- and N-

termini as is the case for DA1 and separase substrates using FRET or 

delocalization sensors. Additionally, there exists a lot of variability between 

organisms and efficiency on the reporters. We suggest to test reporters with 

known proteases, such as TEVp, can help to optimize the system. 

Furthermore, we encourage to use uncleavable linker sequences containing 

flexible linkers such as repetitions of glycine-glycine-serine or known 

proteolysis resistant sequences that can have mutagenized version of key 

residues in the recognition sequence as negative controls. Additional controls 

using mutant lines where proteases are knock-out or are inactive is highly 

recommended.  

- The selection of the fluorophores for a concrete application need to be 

considered (Evers et al., 2006; Bajar et al., 2016). Far red probes developed 

specifically for imaging deeper in mammalian tissues are not particularly 

needed for plant protease research. For example, using red shifted chemicals 

or proteins in the aerial parts of plants might overlap with chlorophyll auto-

fluorescence, thereby complicating imaging. 

- Cell permeability. Chemical probes are very diverse and presence of 

hydrogen bond donors and acceptors can reduce membrane permeability 

(Verdoes and Verhelst, 2016). This is exemplified with some biotinylated and 

carboxylate containing probes. This problem can be circumvented by 
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conjugation of cell-penetrating peptides or addition of a two-step labelling 

protocol. Carboxylic acid can also be masked in the shape of ethyl ester, 

which increases its permeability. 

- Subcellular localization. Genetic probes can be targeted via targeting signals, 

whereas chemicals are generally untargeted. Targeting might be a way to 

increase a probe’s specificity. Most genetic probes so far have been applied in 

the cytosol, although there should be no problem targeting them to organelles. 

A point of concern might be the effect of pH variation for example in the 

secretory pathway (decreasing pH along trafficking from the ER to the 

extracellular space or vacuole). 

- Kinetics. Looking at fast processes is probably most efficient using FRET 

probes. Slower folding of complementation type probes or incubation times for 

chemical labelling better serve a static and macroscopic overview of protease 

activity. 

- Availability of protease substrate specificities is a bottleneck for both chemical 

(that frequently employ peptide chemical bonds in their structure) and genetic 

probes. However, these are increasingly becoming available for plant 

proteases (Demir et al., 2018). Protease specificity of genetic probes might 

benefit here from the added information on P’ site signatures, which are 

mostly not present in chemical probes because of their make-up having a 

functional group (warhead) in the P1’ position. 
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Sensor Readout Mechanism Protease(s) targeted Uses Substrates Maximal Substrate 

coverage 

Response  References 

Activity Based Probes  

(ABP) 

Fluorescence Catalytic site binding +++ in vitro/ in vivo +++ P4-P1’ Fast (1)  (Morimoto 

and van 

der Hoorn, 

2016) 

DEVD-NucView488 Fluorescence Cleavage activation Casp-3 in vitro/ in vivo DEVD P4-P1 Fast (Cen et al., 

2008) 

CR-(DEVD)2 Fluorescence Cleavage activation Casp-3 in vitro/ in vivo DEVD P4-P1 Fast  (Bosch and 

Franklin-

Tong, 

2007) 

FRET  rFluorescence Cleavage reduces signal +++ in vitro/ in vivo +++ P5-P5’ (2) Fast  +++ 

Grafted GFP Fluorescence Fluorescence Complementation Trypsin, Casp-3 in vitro/ in vivo 32 aa linker, 

DEVD 

NA Medium (Chen et 

al., 2009a; 

Chen et al., 

2009b) 

Pro-GFP Fluorescence Fluorescence Complementation Thrombin, Casp-3, HIV protease in vivo +++ +++ Medium (Callahan 

et al., 

2010) 

VC3AI Fluorescence Fluorescence Complementation Casp-3 in vitro/ in vivo DEVD P4-P1' Medium (Zhang et 

al., 2013) 

iProteases  rFluorescence Fluorescence Complementation Casp-3, TEVp, HCV in vitro/ in vivo +++ 9-15 aa consensus 

sequence 

Fast-Medium (To et al., 

2015) 

ZipGFP rFluorescence Fluorescence Complementation Casp-3, TEVp in vitro/ in vivo DEVD/ENLYFQ +++ Medium (To et al., 

2016) 

Caspase Activatable-

GFP 

Fluorescence Fluorescence Gain Casp-3, Casp-7, TEVp in vitro/ in vivo +++ P6-P4’ Medium (Nicholls et 

al., 2011; 

Nicholls 
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(CA-GFP) and Hardy, 

2013; Wu 

et al., 

2013) 

GFP-ssrA Fluorescence Fluorescence Gain TEVp in vitro/ in vivo ENLYFQX 

variants 

P6-P1’ Medium (Kostallas 

and 

Samuelson, 

2010; 

Kostallas et 

al., 2011) 

NES-DEVD-YFP-NLS Fluorescence change Miss-localization Casp-3 in vivo DEVD P4-P1 Fast (Tang et 

al., 2012) 

Separase sensor Fluorescence change Miss-localization Separase in vivo Cohesin Full protein Fast (Shindo et 

al., 2012) 

Apoliner Fluorescence change Miss-localization Casp-3 in vivo DEVD P4-P1 Medium-Late (Bardet et 

al., 2008) 

Caspase Tracker Fluorescence Fluorescence transcription Casp-3 in vivo DQVD P4-P1' Late (Tang et 

al., 2015; 

Tang et al., 

2018) 

CasExpress Fluorescence Fluorescence transcription Casp-3 in vivo DQVD P4-P1 Late (Ding et al., 

2016) 

Chemogenetic probes Fluorescence Fluorescence transcription HCV in vivo NA NA Late (Tague et 

al., 2018) 

BRET rLuminescent Cleavage reduces signal +++ in vitro/ in vivo +++ +++ Fast (Gammon 

et al., 

2009; Hall 

et al., 

2012; Woo 

et al., 
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2014) 

iGluc Luminescent Fluorescence Gain +++ in vitro/ in vivo +++ NA Medium (Bartok et 

al., 2013) 

CP-Luc Luminescent Luminescence Complementation +++ in vitro/ in vivo +++ NA Medium (Fan et al., 

2008) 

Coiled-coil Luciferase Luminescent Luminescence Complementation Casp-3, TEVp in vitro/ in vivo DEVD/ENLYFQ P6-P1’ Medium (Shekhawat 

et al., 

2009) 

 

Table 1. Main protease reporters mentioned in this review and their characteristics 

(1) Dependent on cell permeability. 

(2) Linkage length highly variable depending on design. 

+++ Indicates more than 3 counts on this cell value. 

Aa: amino acids. 

rFluorescence: ratiometric Fluorescence. 

Casp: Caspase  

NA: Not available 
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Figure Legends 

Figure 1. Representation of chemical probes used for protease detection. 

A) Different uses of ABPs and several possibilities to apply for protease detection 

combined with MS, gel detection of active proteases and imaging techniques using 

fluorescence microscopes. B) DEVD-NucView488 mode of action. A carboxyl 

derivative of thiazole orange is used to synthesize the probe that contains an 

acetylated tetrapeptide which hampers the dye reaction with DNA. Once it is 

released in can report signal, corresponding to caspase-3 activity. C) Representation 

of Rationale for CR-(DEVD)2 for the detection of caspase-3 like activity. The figure 

depicts quenched fluorescence of cresyl violet (CR) by two DEVD caspase-3 

substrates which are bound to. After processing by activated caspases, the peptides 

are released and cresyl violet turns fluorescent serving as a readout of protease 

activity. 

 

Figure2. Fluorescent proteins at the rescue of proteolytic activity. 

A) Schematic representation of the β-barrel fold of eGFP. β-barrel numbers are 

indicated over the structure. Important residues including in different experiments for 

the development of proteolysis-sensitive version of eGFP are indicated with a circle. 

When the specific residues are behind a strand in the spatial dimension the circle is 

displaced with a discontinuous line. Asparagine at position 144 (N144), glutamine at 

position 157 (Q157) and glutamic acid at position 172 (E172) were used for the 

grafting experiments including processing sites in the loop 7, 8 and 9 of eGFP 

respectively. A154 and D155 are commonly used for splitting GFP in both C- and N-

terminal and used in BiFC assays and VC3AI and derivate proteolytic sensors. 

Lysine 214 (K214) is generally used to delimitate GFP1-10. Its complementing part 

GFP11 starts at arginine at site 215 (R215) and lacks the last 8 amino acids being a 

threonine (T230) the last of them as used in ZipGFP and ProGFP. NH2 and COOH 

indicates the N- and C-terminal ends of eGFP. B) Cartoon representing the 

secondary structure of GFP. The corresponding amino to the design of protease 

sensitive eGFP are also indicated in this cartoon. C) Example of a FRET sensor 
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using CFP and YFP. Both proteins are part of a single molecule joined by a linker 

containing a cleavable peptide. Generally, only the donor fluorescent protein is 

excited which uses energy to transmit to the acceptor. When proteins are not in a 

spatial proximity, this energy transfer is lost, the donor fluorescence increases and 

the acceptor fluorescence decreases as indicated by the background stars. The 

maximal indicated distance to emit fluorescence is generally accepted as 10 nm of 

distance between fluorescent proteins as indicated in the figure. 

 

Figure 3. A palette of genetically encoded fluorescent reporters for the 

detection of proteolytic activity. Representation of the different mechanisms 

employed by genetically encoded sensors of protease activity based on fluorescent 

proteins. Fluorescent proteins are depicted in the colour of their maxima spectra 

emission and cleavage sites are indicated by discontinuous thick black lines with 

scissor indicating cleavage and by open dotted lines after processing. A) 

Representation of a grafted version of eGFP. By addition of a cleavable recognition 

site in a eGFP loop after a glutamic acid in position 172, one of the β-strands of 

eGFP is misplaced affecting the overall final protein conformation. The position of 

the amino acids indispensable for chromophore formation is in this manner 

sufficiently distant to lower eGFP efficiency. Once the loop constringency is loosened 

up by protease activity, the β-strand can relocate to its natural position. Note that 

other two amino acids in previous loops were used for this experiment as indicated in 

figure 2. B) The Pro-GFP sensor. Pro-GFP is based on the enclosure of the β-11 

strand of eGFP using a proteolytic resistant protein domain of eglin c containing two 

alpha-helices (indicated as grey cylinders) and a cleavable site. While the protein 

containing β-strands 1-10 is not capable of producing fluorescence, 

complementation reconstitutes eGFP conformation and fluorescence. C) Venus 

Caspase 3 Activity Indicator (VC3AI). VC3AI is based on the constriction and 

modification of the structure of a YFP variant. The fluorescent protein is permuted by 

generating new N- and C-terminal ends at A154 and D55 and the original termini are 

linked using a protease recognition site showed by the black dotted line. To 

circularize the sensor Dc and Dn fragment of Npu DnaE intein are added to the new 

termini which can self-release in a process known as protein splicing and lead to 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/erz076/5364900 by G

hent U
niversity user on 27 February 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

3 

 

circularization of the sensor (indicated by the horizontal grey arrow). In this 

conformation the fluorescent protein is not capable to efficiently reassemble with 

itself or other permuted circularize proteins. Once that the linker is processed 

complementation of the molecule occurs and the fluorescence is reconstituted as 

indicated by the black arrow. D) ZipGFP ratiometric protease detector. ZipGFP 

contains the β-strands 1-10 of eGFP linked by a 2A peptide to mCherry. Those 

sequences are efficiently processed by ribosomal skipping of the 2A-like peptide 

resulting in a constitutive and continuous ratiometric red signal. The β-strands 1-10 

and 11 of eGFP contain additional extensions incorporating binding peptides that 

knot the structure impeding unspecific reconstitution by both parts. The peptide 

position can be relaxed by cleavage of one of the linkers re-establishing GFP as a 

full functional reporter. E) Caspase Activatable GFP (CA-GFP). C-terminal fusion of 

eGFP to the 28 amino acids of the intermembrane domain of influenza matrix protein 

2 leads to tetramerization of the sensor hampering maturation of the chromophore. 

Upon proteolysis, the multimeric dependence of GFP is broken and four molecules 

of GFP can mature and emit fluorescence.  

 

Figure 4. Transcriptional based reporters for the detection of proteolysis in a 

cell type. A) Scheme of the functioning mechanism of CaspaseTracker. A 

transcriptional activator Gal4 containing a cleavage site for caspase-3, DEQD, is 

translationally fused to a membrane anchored protein, which blocks unspecific 

transcription. Proteases cleaving the site liberate the activator, which then trans-

localizes to the nucleus, binds the UAS sequence and transiently expresses nuclear 

RFP and a recombinase such as flippase. The last part of the reporters contains a 

constitutive promoter followed by flippase recognition targets (yellow triangles) 

containing signals for transcription termination and an external eGFP coding 

sequence which initially is not transcribed. Once the recombinase is expressed, it 

excises the DNA fragment bordering the flippase recognition targets sites allowing 

permanent cytosolic GFP expression in the cell and in the cell lineage originated 

from this cell. B) An off-to-on proteolytic drug-inducible transcriptional reporter where 

both parts of Gal4 necessary for transcription are divided by adding a NS3 protease. 

Under normal conditions, the activation domain is cleaved off and even if the binding 
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domain can bind to the reporter gene, histone H2B labelled with Citrine, the signal is 

not present. When a NS3 inhibitor is present the continuity of the structure of the 

protein is maintained, shifting all together to nuclei position and inducing gene 

expression. C) Example of a proteolytic on-to-off drug-repressed transcriptional 

system, where Gal4 is confined to the membrane by a peptide with a NS3 protease 

in between. The system is initially active by action of NS3 which liberates Gal4 to 

report its activity. Once the drug is present, Gal4 is maintained in the membrane and 

the signal vanishes. 

 

Figure 5. Luminescent reporters for the detection of protease activity. A) 

Schematic drawing to depict BRET rationale. The different BRET systems are based 

on the proximity transfer of energy of luciferases, usually blue light to a proximal 

fluorescence protein, in this case eGFP. The ratio between emission and absorption 

at different wavelengths serves as a readout for processing of the linker peptide 

containing a minimal substrate. B) Representation of iGLuc system of Gaussia 

luciferase based on the multimerization of pro-interleukins diminishing luciferase 

action. The action of protease serves as element to allow release of the 

conformation of the multimers resulting in a luminescence enhancement. C) Drawing 

of the cyclic permuted Luciferase (CP-Luc) used for the detection of proteolysis. N- 

and C-terminal domains have been swapped and connected using a linker 

containing a site for proteolysis. Keeping the luciferase domains separate avoids 

enzymatic activity when co-factors are added, but it is enhanced after freeing the 

components.  D) Mechanism of the auto-inhibited coil-coiled reporter Luciferase. In 

this system, complementation of the component parts is blocked by coil-coiled 

element addition to the split luciferase structures, blocking the interaction of the 

halves. When this appendages are proteolytically removed, both parts of firefly 

luciferase can reconstitute the structure, which in presence of luciferin and ATP, will 

emit luminescence. 
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