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The generation of abnormal excitations in pathological regions of the heart is a main trigger for lethal
cardiac arrhythmias. Such abnormal excitations, also called ectopic activity, often arise from areas with
local tissue heterogeneity or damage accompanied by localized depolarization. Finding the conditions that
lead to ectopy is important to understand the basic biophysical principles underlying arrhythmia initiation
and might further refine clinical procedures. In this study, we are the first to address the question of how
geometry of the abnormal region affects the onset of ectopy using a combination of experimental, in silico,
and theoretical approaches. We paradoxically find that, for any studied geometry of the depolarized region
in optogenetically modified monolayers of cardiac cells, primary ectopic excitation originates at areas of
maximal curvature of the boundary, where the stimulating electrotonic currents are minimal. It contradicts
the standard critical nucleation theory applied to nonlinear waves in reaction-diffusion systems, where a
higher stimulus is expected to produce excitation more easily. Our in silico studies reveal that the
nonconventional ectopic activity is caused by an oscillatory instability at the boundary of the damaged
region, the occurrence of which depends on the curvature of that boundary. The onset of this instability is
confirmed using the Schrödinger equation methodology proposed by Rinzel and Keener [SIAM J. Appl.
Math. 43, 907 (1983)]. Overall, we show distinctively novel insight into how the geometry of a
heterogeneous cardiac region determines ectopic activity, which can be used in the future to predict the
conditions that can trigger cardiac arrhythmias.
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I. INTRODUCTION

Arrhythmias are the most common cause of sudden
cardiac death worldwide, accounting for an estimated
6 million deaths annually [1]. However, the underlying
mechanisms are still not completely understood. From a
practical point of view, it is of paramount importance
to understand the mechanisms of arrhythmia initiation,
since by removing the triggers, arrhythmic events can be
avoided. Multiple recordings have shown that, in many
cases, lethal cardiac arrhythmias are triggered by so-called
ectopic beats, i.e., ill-timed electrical pulses originating
from damaged tissue, which disturb normal cardiac

rhythm [2,3]. Despite their practical importance, the meso-
scopic biophysical mechanisms of ectopic activity remain
largely unknown [4]. In a very general sense, ectopic
activity occurs when a depolarized region in the heart
produces depolarizing currents strong enough to initiate
propagating waves.
The process of wave initiation by such depolarizing

currents seems to be straightforward at first sight: larger
currents or larger sources can more easily depolarize a cell,
overcome the sink effect from adjacent cells, and produce a
propagating ectopic wave.
This principle works perfectly to describe curvature-

velocity relationships of waves in excitable media [5].
It closely relates to the nucleation theory of phase tran-
sitions [6,7], since one also needs to form a critical volume
to initiate a phase transition in a metastable phase of matter.
In electrophysiology, this paradigm is called the source-
sink relationship [8].
The depolarizing current by itself may depend on many

factors, including the shape of the ectopic region. The effect
of the shape of injury-induced depolarized zones on ectopic
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activity has so far not been studied in depth because it was
previously impossible to produce a depolarized region of a
given shape due to various technical limitations [9,10].
Currently, this issue can be resolved by applying optoge-
netic techniques, which were first applied in neuroscience
[11] and allow excellent spatiotemporal control of cellular
properties and wave dynamics in biological excitable media
[12,13]. Capitalizing on these advantages, we previously
showed that optogenetically induced localized oxidative
stress can be used to generate intentionally shaped zones
with sustained depolarization and associated ectopic activ-
ity [14]. In the current work, this technique was applied to
induce quasistable depolarized (QSD) zones of predefined
shapes in monolayers of cardiac cells.
Remarkably, the ectopic activity was found to preferen-

tially emerge from the sharp convex corners of QSD tissue
regions. This observation defies the conventional interpre-
tation of the source-sink concept, as in convex corners of
the QSD region, the density of the depolarizing current is
minimal.
In order to understand this paradoxical phenomenon, we

conducted numerical simulations and reproduced the effect in
physiologically detailed models and even in simple reaction-
diffusion models. Below, wewill link the phenomenon to the
occurrence of oscillatory instability at the boundary of the
QSD region and explain the onset of this instability semi-
analytically using the stationary Schrödinger equation.

II. MATERIALS AND METHODS

A more detailed description is provided in Appendix B.

A. Ectopic activity caused by optogenetic production
of reactive oxygen species

A plasma membrane-targeted version of a mini-singlet
oxygen generator (miniSOG) [15] was expressed in neonatal
rat ventricular myocyte (NRVM) monolayers following
lentiviral transduction, as reported previously [16,17].
Lentiviral vector particles were produced from shuttle plas-
mid pLV.hCMV-IE.miniSOG-PM.hHBVPRE, as detailed
elsewhere [17]. The mode of action of miniSOG and the
proviral DNA structure of the lentiviral vector are shown in
Figs. S1(a) and S1(b) of the Supplemental Material [18],
respectively. After establishing practically uniform trans-
duction with miniSOG-encoding lentiviral vector particles,
optical mapping was performed on eight- to ten-day-old
cardiac monolayer cultures with the fluorescent voltage-
sensitive dye di-4-ANEPPS to observe excitation waves.
A patterned projection system was used to focus 470-nm
LED light in the plane of the monolayers, in a region of
maximal size 6 × 6 mm. After irradiation with intensity
0.31 mW=mm2 for 3–6 min, to induce reactive oxygen
species (ROS) production, voltage was optically monitored.
Cumulative ROS damage resulted in ultralong action poten-
tials (APs) in the previously irradiated zone, lasting for

2–20 s. Light-induced ROS production did not change AP
duration (APD) in the unexposed parts of the monolayers,
which had an APD80 of 200–350 ms. The drastic spatial
difference inAPDcaused ectopicwaves to emanate from the
interface between the normal and damaged tissue regions, as
shown in the two examples of paired optical traces presented
in Fig. S1(d) of the Supplemental Material [18]. While, in
both examples, the optical signals from electrical activity
in most of the irradiated region remained almost flat with
a long plateau phase, the surrounding tissue exhibited
periodic APs. The ectopic beats emerged only during the
plateau phase of ultralong APs, in line with our previous
findings [14].

B. Mathematical model for normal and QSD tissue

A hierarchy of models of different complexity was
used, including the Majumder-Korhonen model for
NRVMs [19], which is the model closest to our in vitro
setup. We employed the Ten Tusscher–Noble–Noble–
Panfilov (TNNP) model for adult human ventricular myo-
cytes [20] to study in silico possible manifestations of the
effects in human ventricular tissue. We also used the
FitzHugh-Nagumo (FHN) [21] and the Aliev-Panfilov
model [22], which were modified to study the generic
mechanisms underlying the observed effects. A detailed
description of all four models is given in Appendix B.
To identify the mechanism behind the ectopic activity

observed in our in vitro experiments, a generic description of
the tissue was used in order to relate the observed phenom-
ena to themost fundamental properties of cardiac excitation,
i.e., excitation of cardiomyocytes by local currents and
establishment of a transient refractory state in the cells
following excitation. In our view, this can best be achieved
by employing low-dimensional models, which focus on
these processes, rather than by relying on complex descrip-
tions of the underlying ionic currents and Ca2þ dynamics.
Simplified models often describe complex spatiotemporal
phenomena without loss of essential details (see, e.g.,
Ref. [23]). Therefore, we used the classical cubic FHN
model [21] in one (1D) or two (2D) spatial dimensions:

∂u
∂t ¼ −fðuÞ − vþDΔu;

∂v
∂t ¼ ε½u − γðr⃗Þv�; ð1Þ

where u is the normalized transmembrane potential, v
represents recovery processes, fðuÞ ¼ uðu − 1Þðu − aÞ,
0 < a < 0.5, and ε ≪ 1. To distinguish between illuminated
(i.e., oxidatively damaged) tissue exhibiting ultralong APs
(i.e., quasistable depolarization) and normal (i.e., nonillu-
minated) tissue, we altered the slope of the second variable
γðr⃗Þ as follows. Normal tissuewas modeled as a monostable
system (γ ¼ γmono ¼ 1.5), as it allows an excitable regime.
After excitation ðu ≈ 1Þ, the system returns to the resting
potential (u ¼ 0); see the nullclines in Fig. 3(a). Such a
monostable system supports propagating waves as well.
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The tissue exhibiting quasistable depolarization, however,
stays in the depolarized state much longer than the duration
of a normal AP. The QSD tissue reaches this depolarized
state from rest only after a depolarizing wave has passed
through it. The described computational model contains a
slow timescale variable, which, in the limiting case, can be
adiabatically eliminated [24], andQSD tissue can, therefore,
be modeled as a bistable system, which can be realized in
Eq. (1) by choosing γ ¼ γbi > 5.85, producing stable states
u ¼ 0 and u ¼ u3 > 0, as shown in Fig. 3(a). The other
parameters of the model were taken to be a ¼ 0.13,
ε ¼ 0.004, and D ¼ 2.0. The size of the computational
domain was 1024 × 1024, with a central bistable square
zone of size 400 × 400. Parameters for other shapes and
models are described in Appendix B.

III. RESULTS

A. Effect of QSD tissue geometry on ectopic
beat generation in optogenetic experiments

with cardiac monolayer cultures

In the first set of experiments, we generated ultralong
APs in a square region (i.e., QSD region) of 6 × 6 mm by
local light-induced production of ROS and studied its
effect on AP propagation. Following electrical stimulation,
an initial wave of excitation propagated through the tissue,
inducing long-lasting depolarization inside the square.
This generated secondary excitation waves (i.e., ectopic
beats) at the corners of the previously illuminated area,
which subsequently traveled through the medium; see
Fig. 1(a). The spatiotemporal organization of electrical
activity during the ectopic beats is shown in Fig. 1(b).
Consistent with our previous findings, the center of the
illuminated area (green trace) entered into a prolonged
state of depolarization (i.e., became QSD) without sig-
nificant oscillations, while the unexposed tissue produced
normal APs (magenta trace). The border zone between
both regions showed larger oscillations (blue trace) than
the center of the illuminated area. Moving from the center
to the periphery of the cell monolayer, there were
gradients in the amplitude of the oscillations indicative
of electrotonic effects. The observed wave emission is
paradoxical, for the following reason. The square region
produces depolarizing electrotonic currents that excite the
normal surrounding tissue of lower membrane potential.
The density of the depolarizing current obviously depends
on the shape of the heterogeneity, and it will be lowest at
its corners, where the ratio of depolarized to repolarized
tissue is minimal. Because of this unfavorable source-sink
relationship, the corners of the square are the least likely
regions for impulse generation, which is expected to occur
in the most concave regions of the interface, e.g., in the
middle of the square’s edges.
To further study how the boundary geometry affects

ectopic activity, additional optogenetic experiments were

performed, in which areas of ultralong APD had a Pacman-
like or elliptic shape; see Figs. 1(c) and 1(d). In line with the
results presented in Fig. 1(a), the first ectopic beat emerged
from the “jaw tip” of the Pacman rather than from its
“mouth,” as shown in frames 2–4 of Fig. 1(c). A similar
result was obtained for the elliptic heterogeneity, since once
again the ectopic activity was generated at the sites of
highest curvature (i.e., the vertices) [Fig. 1(d)]. In total,
such dynamics was observed in 29 out of 36 experiments
for the square-shaped heterogeneity, in 5 out of 5 cases for
the Pacman-like heterogeneity, and in 3 out of 4 cases for
the elliptical heterogeneity. Our in vitro experiments, thus,
robustly show that, contrary to what would be expected
based on classical source-sink considerations, ectopic
activity can originate from the parts of the depolarized
region with the highest curvature, where the density of the
depolarizing electrotonic current is lowest.

(a)

(b)

(c)

(d)

FIG. 1. Optogenetic induction of quasistable depolarized zones
(red areas) leads to ectopic waves emanating from the most
curved portions of the interface between tissue with ultralong and
normal action potentials. (a) Time series of a single experiment
showing ectopic waves originating from the corners of a square
quasistable depolarized region after a first wave has passed.
(b) Distribution of the oscillations amplitude during ectopic
activity at the positions indicated by the green, blue, and magenta
dot. (c) Generation of an ectopic wave from the “jaw tip of a
Pacman.” (d) Generation of an ectopic wave from the vertex of an
elliptic interface. In all figures, the symmetry is broken by the first
wave passing through the medium.
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B. Numerical simulations of ectopic beat generation
at the boundary of QSD regions

The experimental results described above were repro-
duced in numerical simulations of the detailed Majumder-
Korhonen model of the NRVM monolayer [Fig. 2(a)].
Similar results were obtained for the detailed human TNNP
ventricular model [Fig. 2(b)]. Thus, both in modeling
studies and in in vitro experiments, the ectopic activity
always originates at the corners of the QSD region. This

holds true for a wide range of APDs in the QSD region;
e.g., the phenomenon can be observed in silico even for
QSD zones with moderately prolonged (1–1.2 s) APDs,
resulting in the generation of just one ectopic beat from the
corners (Fig. S5 of the Supplemental Material [18]). As
also in vitro moderately prolonged APDs give rise to
ectopic activity from the corners of a square QSD region
(Fig. S6 of the Supplemental Material [18]), this phenome-
non appears to be very robust. Although ionic models
accurately reproduce the biophysical mechanism of AP
generation, in a mathematical sense, they are quite com-
plex. Thus, in order to isolate the fundamental mechanisms
driving the observed phenomenon, it is always beneficial to
reproduce it using a minimalistic generic description.
We were able to reproduce this effect using simplified
low-dimensional models, i.e., modified versions of the
Aliev-Panfilov and FHN models [Figs. 2(c) and 2(d),
respectively]. A detailed motivation of the simplified
models choice is presented in Appendix B. As a further
simplification, we were able to reproduce the same effect
when the QSD region was represented as a bistable system
and the normal cells as a monostable system [Fig. 3(a)],
which was achieved by changing the parameter γ. This
produced similar results as obtained in vitro. [Compare
Figs. 1(a)–1(d) with Figs. 3(b)–3(e), respectively.] The
ectopic activity originated from the corners of the bistable
(i.e., QSD) region, as in the in vitro experiments. Similar
data were obtained for the bistable/monostable version of
the Aliev-Panfilov cardiac tissue model [22] (Fig. S2 of the
Supplemental Material [18]). These results suggest that
ectopic activity is more likely to occur in high-curvature
border zones of the bistable (i.e., QSD) region than in
border areas with low curvature. Consistently, a small disc-
shaped bistable region yielded a propagating response in
the surrounding tissue [Fig. 3(f)], but a larger QSD disc did
not [Fig. 3(g)]. The fact that the effect persists even in a
simple computer model implies that it is related to
fundamental properties of excitation. Looking closer to
the initiation mechanism of the ectopic waves, we found
that the interface at the boundary of the bistable region
exhibits oscillatory activity [Figs. 3(c), 3(f), and 3(g)]. In
the simulation result Fig. 3(c), two oscillations of small
amplitude are followed by one with a larger amplitude. The
larger oscillation then forms an impulse propagating from
the corner of the QSD region into the surrounding normal
tissue. These numerical data strongly resemble the in vitro
results of Fig. 1(b). Because of the presence of noise in the
optical mapping experiments, the number of smaller
amplitude oscillations needed to produce a propagating
impulse in a real cardiac monolayer could not, however, be
reliably determined. The importance of these oscillations
was therefore scrutinized in simulations, in which the
potential in the bistable region was clamped to its higher
stable value u ¼ u3. In this case, ectopic activity from the
corners disappeared. Instead, the system generated a single

FIG. 2. Numerical modeling of ectopic wave generation from
corners of a square quasistable depolarized region in four
different cardiac tissue models. For each model, a snapshot of
ectopic activity and voltage signals at three different locations,
indicated by the green, blue, and magenta dots, are presented.
(a) Majumder-Korhonen model of neonatal rat ventricular my-
ocytes. (b) ten Tusscher–Noble–Noble–Panfilov model of adult
human ventricular myocytes. Both detailed physiological models
contained an increased conductance and slow inactivation var-
iable of the late Naþ current in the QSD tissue. (c) Aliev-Panfilov
model. (d) FitzHugh-Nagumo model. Both of these simplified
models contained a slow repolarizing variable, in addition to the
bistable kinetics of the QSD tissue. In all snapshots of ectopic
activity, the symmetry is broken by the first wave passing through
the medium.
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pulse propagating from the entire border of the hetero-
geneity, which was followed by the establishment of a
steady-state spatial distribution of voltage (Fig. S3 of the
Supplemental Material [18]).
To further study the boundary oscillations that are

responsible for ectopic beat generation, we performed
simulations for different nullcline slopes γbi in the bistable
region (Fig. 4), keeping the same 2D setup as in Fig. 3(a).
Numerical calculations in the 2D domain were compared to
1D simulations modeling the presence of a planar QSD
region. Numerically computed stationary solutions were
used as initial conditions. The following changes were
observed. First, for γbi ¼ 20, i.e., deep in the bistable
regime, no oscillations occurred at the interface [Fig. 4(a)].
For γbi ¼ 14 [Fig. 4(b)], oscillations emerged in 1D at the
interface that did not produce any waves. However, in 2D, a
periodic propagating response from the corners of the
square was observed. Finally, for γbi ¼ 11 [Fig. 4(c)],
low amplitude oscillations occurred at the interface

FIG. 3. Numerical modeling of ectopic waves in the FitzHugh-
Nagumo model. (a) Modeling scheme. White zones with
ultralong action potentials (i.e., quasistable depolarization) are
represented by a bistable system (γ ¼ 14), while the surrounding
black zone (normal tissue) is modeled as a monostable system
(γ ¼ 1.5). (b) Snapshots of ectopic beat generation from the
corner of a quasistable depolarized square after passing of an
initial wave [compare to Fig. 1(a)]. (c) Distribution of oscillation
amplitude for oscillatory activity in (b); [compare to Fig. 1(b)].
(d),(e) Preferential generation of ectopic activity from the highest
curvature areas of Pacman-shaped (d) and elliptic (e) regions
[compare to Figs. 1(c) and 1(d), respectively]. The symmetry is
broken by the first wave passing through the medium in (b) and
(d). The wave was coming from the bottom of the domain. (f),(g)
Ectopic wave potentiation by the curvature of the border zone in
radially symmetric cases. Time traces, corresponding to snap-
shots, are indicated by green, blue, and magenta lines. (f) Sub-
threshold nonpropagating oscillatory response from a disc of
large size (low curvature). (g) Propagating periodic response from
a disc of small size (high curvature).

FIG. 4. Influence of the nullcline slope 1=γ of the bistable zone
on ectopic wave generation. (a)–(c) Induction of ectopic activity
for γ ¼ 20 (a), 14 (b), or 11 (c). Left panels: Nullclines. Middle
panels: Space-time plots of 1D simulation. Right panels: Snap-
shot from 2D simulation. (a) For γ ¼ 20, only the stationary
solution is found in 1D and 2D. (b) For γ ¼ 14, subthreshold
oscillatory activity is seen in 1D and periodic waves emanating
from the corners in 2D. (c) For γ ¼ 11, a propagating response is
observed both in 1D and 2D. Like in (b), the ectopic origins are
located in the corners of the bistable regions. (d) Bifurcation
diagram for a curved (R ¼ 36.0, red line) and flat (blue line)
interface between the monostable (i.e., excitable) and bistable
(i.e., quasistable depolarized) regions.
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between the mono- and bistable regions and periodically
produced ectopic activity, both in 1D and in 2D, which in
the latter case arose at the corners.
By plotting the amplitude of oscillation versus γbi, the

bifurcation curve for a 1D domain [Fig. 4(d), blue line] was
generated. This curve showed that, at γbi ≤ 15.5, oscilla-
tions with increasing amplitude arose. A similar bifurcation
curve was generated for a circular depolarized region with
radius R ¼ 36.0 (red line). In this case, the bifurcation
already occurs at γbi ¼ 15.9. Thus, we again find that
curvature makes the onset of instability easier, in line with
the observed ectopic wave emission from corners. How-
ever, still it is not clear why curvature shifts the bifurcation
point.

IV. MECHANISM OF CURVATURE-DEPENDENT
INSTABILITY

Two different approaches were chosen to explain the
curvature effect: (i) the curvature-velocity relationship and
(ii) the Schrödinger equation analogy by Keener and
Rinzel [25].

A. Qualitative explanation by backward motion
of wavefront

First, in a very general sense, the effect of positive
curvature on wave propagation is a reduction of propaga-
tion velocity, which can be explained by the fact that the
density of local currents for a radially expanding (i.e.,
convex) wavefront is smaller than that for a planar wave-
front. Oppositely, negative curvature, as present in a
collapsing circular (i.e., concave) wavefront, results in a
more favorable source-sink relationship and, therefore,
faster wave propagation than no curvature. Let us now
consider a stationary distribution of voltage for the planar
and curved domain and find out how the curvature of the
boundary can contribute to the onset of instability. The
instability can occur either by a slight shift of the stationary
solution in the forward direction (i.e., towards the normal
tissue) or by a similar shift backwards. The forward motion,
which is similar to the expansion of a wavefront, should
generally be inhibited by curvature, while backward motion
should be strengthened by it. The importance of either
effect can be assessed numerically, since, in the radially
symmetric case, one can write the 2D Laplacian from
Eq. (1) asΔu ¼ ð∂2u=∂r2Þ þ ð1=rÞð∂u=∂rÞ, where r is the
radial coordinate and the term Icurv ¼ ð1=rÞð∂u=∂rÞ
accounts for the wavefront curvature. We performed
simulations in which Icurv was present only in the normal
or bistable region. We found that, when Icurv was present
inside the QSD region only, it enhanced the instability. For
example, in the case of a circular depolarized region with a
radius R ¼ 36.0, the ectopic waves started to appear for
γbi ¼ 15.3, compared to γbi ¼ 13.9 in the fully radially
symmetric system. However, in the opposite case, when

Icurv was present outside the bistable area, the formation of
ectopic activity was observed for γbi < 12.5 only. Thus,
under these circumstances, the curvature of the wavefront
hindered the development of ectopic activity. Overall, we
can conclude that informally the observed deviation from
the conventional source-sink mismatch concept can be
explained by the fact that curvature potentiates the initial
backward motion of the wave to the inside of the QSD
region, which breaks the stability of the system and
eventually results in the onset of ectopic activity.

B. Semianalytical study of the instability using a
Schrödinger equation analogy

To further analyze the oscillatory instability leading to
ectopic activity, we extended the theoretical approach by
Keener and Rinzel in Ref. [25]. However, in order to apply
it, a simplification is introduced. The oscillatory instability
occurs in the coupled mono- and bistable system and, thus,
is present in both QSD and normal regions. In other words,
the presence of the monostable region triggers activity in
the border zone of the bistable region, leading to ectopic
beat generation. However, in order to perform an analytical
analysis, we need to restrict ourselves to one region only
and replace the other region by a boundary condition. We
keep the bistable QSD region and replace the normal
(monostable) region by the Dirichlet boundary condition
u ¼ 0. The rationale for this is that such a boundary
condition creates a current load on the QSD region similar
to that of the monostable region. Indeed, if we consider a
square 2D domain in a bistable regime and Dirichlet
boundary condition u ¼ 0 at the square’s boundary, the
important features of Fig. 4 will be reproduced.
In particular, for large values of γ, the solution is stable.

Decreasing γ leads to oscillations at the boundary [Fig. 5(a)],
which occur at the corners and are similar to the oscillations
seen in Figs. 3(c) and 4(b). Thus, once again, we see that
curvature of the boundary potentiates the instability. To
account for the effects of the boundary curvature, we will
perform analytical calculations for the onset of instability on
an interval ½l; L� ð0 < l ≪ LÞ and on an annulus with radii
½l; L� and compare the results.We choose an annulus instead
of a disc because it simplifies the analysis and, for small l, the
inner boundary has no effect on the onset of instability,
which occurs at the outer boundary of the domain. Although
our analysis can be extended to a disc, this will require
additional estimations at r ¼ 0, which would complicate
presentation of the results.
Formally, we consider Eq. (1) and impose Dirichlet

boundary conditions uðLÞ ¼ 0 and uðlÞ ¼ u3 for the 1D
case and for an annulus. In both 1D and 2D, such boundary
conditions allow a spatially nonuniform distribution of
voltage (i.e., a smooth transition from u ¼ 0 to u ¼ u3),
which is normally stationary in time and mimics the
boundary between the QSD region and normal tissue from
Fig. 3.
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In this case, when γ is decreased, in the same way as in
Fig. 4, we also observed the transition from stationary to
oscillatory behavior, which is moreover facilitated by
curvature.
The stability of the stationary solution in such a setup

can be studied analytically. First, note that the stationary
solutions ðu; vÞ ¼ ½ϕðxÞ; ηðxÞ� to Eq. (1) have η ¼
ðϕ=γÞ, such that, in the absence of curvature (i.e., on a
line), ϕðxÞ can be found by direct integration of the
following equation, which can be viewed as Newton’s
equation in a potential field:

1

D

�
−fðϕÞ−ϕ

γ

�
þ∂2ϕ

∂x2 ¼0; ϕðlÞ¼u3; ϕðLÞ¼0; ð2Þ

where u3 is the largest root of fðuÞ. Stability can be
analyzed by linearizing around a stationary solution.
Considering the perturbation u¼ϕ þ ϕ1; v¼η þ η1, with
ϕ1 ¼ eλtψðxÞ, η1 ¼ eλtzðxÞ, yields the stationary
Schrödinger equation [25]

−
∂2ψ

∂x2 þ VðxÞψ ¼ Eψ ; ð3Þ

with potential VðxÞ ¼ f0½ϕðxÞ�=D and energy E ¼ −½λþ
ðε=λþ εγÞ�=D, subjected to the boundary conditions
ψðlÞ ¼ 0, ψðLÞ ¼ 0. The stability of the stationary solution
is lost when λ, which can be found from the energy
E ¼ −½λþ ðε=λþ εγÞ�=D, has a positive real part [25].
From the relation between E and λ, one can see that
decreasing E leads to destabilization of the solution, a
property that will be used below. Note that, since ϕðxÞ is

monotonously decreasing and f0 is a quadratic function,
VðxÞ has the shape of a potential well; see Fig. 5(b).
Our numerical simulations have shown that the insta-

bility occurs when γ is decreased below a critical value.
Since a change of γ alters the stationary solution ϕðxÞ of
Eq. (1), it affects the shape of the potential well VðxÞ, but
not its depth. Representative cases are shown in Fig. 5(b)
together with the numerically computed ground energy
level for this potential. Lowering γ widens the well, which
decreases the energy of the ground state and, thus,
facilitates the onset of instability. Figure 5(c) shows the
real part of λ as a function of γ calculated from the ground
state energy in Schrödinger’s equation, predicting a critical
value of γ ¼ 7.813 and a nonzero imaginary part of λ at this
value, indicating a Hopf bifurcation. We have also deter-
mined the critical value of γ by direct numerical calcu-
lations and found it to be γ ¼ 7.810, thus very close to the
theoretically predicted value. Now let us consider the effect
of curvature of the domain boundary at x ¼ L (representing
the edge of the depolarized region) on the onset of the
instability. In this case, stationary solutions fϕrðrÞ; ηrðrÞg
can be found from

1

D

�
−fðϕrÞ −

ϕr

γ

�
þ ∂2ϕr

∂r2 þ 1

r
∂ϕr

∂r ¼ 0: ð4Þ

The curvature term ð1=rÞð∂ϕr=∂rÞ is equivalent to a
friction force when Eq. (4) is interpreted as a particle in a
Newtonian potential. Friction generally slows down the
motion, and, in Appendix A, it is shown in detail that, as a
result, ϕrðxÞ ≤ ϕðxÞ, making the potential well broader.
When performing stability analysis on this new steady-

state profile ϕr for the radially symmetric case, we can
substitute ψ ¼ r−1=2χ, yielding

−
∂2χ

∂r2 þ VrðrÞχ ¼ Eχ; χðlÞ ¼ 0; χðLÞ ¼ 0; ð5Þ

with a modified potential VrðrÞ ¼ −f0½ϕrðrÞ�=D − 1=
ð4r2Þ. The additional centrifugal term −1=ð4r2Þ always
lowers the potential well. As a result, we have shown that
the spectrum of the radially symmetric problem Er will
always be lower in comparison to the case without
curvature. Therefore, in our model, positive curvature of
the domain boundary will always potentiate the onset of an
oscillatory (Hopf) instability.
Also, when the QSD region has a more complex shape,

the Schrödinger equivalence still applies. In that case, the
stationary solution will produce a potential well in two or
three spatial dimensions that is localized near the boundary
of the QSD region. This well will be broader in the regions
where the profile of the stationary solution is less steep.
As, in highly curved portions of the interface (e.g., at the
corners), diffusion (i.e., electrotonic) effects are more
pronounced, a local broadening of the well can be expected

FIG. 5. (a) Localization of oscillations in corners of a bistable
domain with zero Dirichlet boundary condition and γ ¼ 8.9.
(b) Schrödinger potential wells with ground energy (dashed lines)
values for γ ¼ 6.6 (red line) and γ ¼ 13 (blue line). (c) Stability
parameter Reλ for different values of γ, from the ground energy
calculation of the Schrödinger eigenvalue problem. The points
corresponding to γ ¼ 6.6 and γ ¼ 13 are indicated by red and
blue dots, respectively, for matching with the potential well
profiles in (b).
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there. The Schrödinger eigenfunctions will, thus, be local-
ized in the broader parts of the well, and these are precisely
the boundary oscillations that cause the onset of instabil-
ities. We can now understand the emergence of ectopic
beats at sharp corners from a physical principle: In the
corners, the transition in voltage between QSD and normal
tissue will be less steep, offering more room for boundary
oscillations to develop.

V. DISCUSSION

In this study, optogenetics has been applied to investigate
the onset of ectopic activity in cardiac tissue. In our setup,
the ectopic activity originated from the boundary of a QSD
(ultralong AP) region. Contrary to the classical principle of
source-sink mismatch, the ectopic activity preferentially
arose at the boundaries between the oxidatively damaged
region and the normal tissue with the highest curvature.
Using in silico models and an analytical approach, we
demonstrate that the mechanism of this effect is closely
related to the occurrence of oscillatory (i.e., Hopf) insta-
bility at these sites.
We demonstrated such a mechanism in detailed physio-

logical and simplified generic models. Since we reproduced
the results in different models and uncovered the general
underlying biophysical mechanism, we expect that our
results might be applicable to different clinical situations,
in which the APD is abnormally lengthened beyond 2 s.
Such situations of APD prolongation might be a result of
oxidative stress [26], drug treatment, poisoning, or genetic
mutations [26–29]. Compounds with strong APD-prolong-
ing ability include Ca2þ channel agonists like Bay K8644;
class Ia antiarrhythmics (e.g., quinidine); unintended hERG
channel blockers like the antibiotic erythromycin; certain
class III antiarrhythmics (e.g., E4031); and a large variety of
neurotoxins (e.g., anemone toxin). APD-prolonging muta-
tions have been found, e.g., in the genes encoding calmodu-
lin [30], calmodulin-dependent kinase II [31], and fast Naþ

and L-type Ca2þ channels [32,33]. APDs are also drastically
increased during bradycardia induced by disease or rest and
sleep [28,29]. The fact that APD prolongation might occur
heterogeneously due to intrinsic transmural differences in
repolarization kinetics, e.g., caused by increased late Naþ
and decreased slowly delayed rectifier currents in the
midmyocardial wall [28], further increases the proarrhyth-
mic risk. However, as we showed experimentally (see
Fig. S6 of the Supplemental Material [18]) and in numerical
simulations (see Fig. S5 of the Supplemental Material [18]),
extreme prolongation of AP is not required for ectopic wave
initiation from the corners of aQSD region. It was also found
for shorter APDs of 1.2 s in vitro, of 1 s in the Majumder-
Korhonen model of NRVMs, and of 1.5 s in the TNNP
model of adult human ventricular cardiomyocytes. These
APDs are well within the range of those described in
multiple channelopathies [32,33]. APDs of 1–2 s can be
manifested in a transient fashion during pause-induced

[32,34] or rhythm-acceleration-induced [35,36] APD pro-
longation. Both of these disturbances lead to torsade de
pointes arrhythmias, which are widely observed clinically
for different types of longQT syndrome [37]. To sumup, our
results might apply to various clinical situations given the
wide range of prolonged APDs for which the emission of
ectopic waves from high curvature areas was manifested.
Besides by ultralong APs, ectopy from boundary areas of

high curvature can also be caused by regional multifold
increases in Ca2þ conductance. Such a local increase in
Ca2þ conductance can result from long-chain fatty acid
accumulation due to regional ischemia [38]. We illustrated
this case in Fig. S7 of the Supplemental Material [18].
Another possible example is the ectopic activity arising

from the ostia of pulmonary veins, which is one of the
major triggers of atrial fibrillation. It was reported that
patients with a common ostium of the left pulmonary veins
have a higher propensity for developing atrial fibrillation
[39]. This common ostium has an elliptic shape, thus
containing border areas of high curvature, which may be a
reason for the higher chance of developing arrhythmias.
Apart from providing a possible explanation for the

emergence of particular forms of cardiac ectopy, our results
may also help to refine surgical ablation procedures. Our
finding that boundary curvature can play an important role
in the generation of arrhythmic waves suggests that
smoothening the borders between healthy and diseased
myocardium may be beneficial, and that ablation of only
the sharp convex corners of damaged cardiac tissue might
be sufficient to prevent ectopic activity.
Usually, ectopic or focal activity is believed to be a result

of abnormal automaticity caused by early or delayed
afterdepolarizations [40] or so-called injury currents from
damaged tissue [3]. For injury currents, it has been reported
that abnormal automaticity may originate from the coupling
of an excitable cell with another cell with a higher (i.e., less
negative) resting membrane potential [41–43]. Despite the
fact that the resting states of both cells are stable, an
oscillatory (i.e., Hopf) bifurcation can emerge in such a
coupled system. A similar situation exists in Figs. 1(c)
and 3(c). However, in our case, the Hopf bifurcation
emerges from the coupling of multiple mono- and bistable
cells in a diffusive manner.
Keener and Rinzel [25] were the first to identify this

Hopf instability in a FHN system for the case of a single
fiber with Dirichlet or Neumann boundary conditions at
one of the ends. Here, we have extended their approach to
curved domains.
Similar behavior has been observed for the interface

between oscillatory and excitable regions in the Belousov-
Zhabotinsky reaction [44,45]. However, no local bifurca-
tion analysis was possible for simulation of this chemical
activity, since the limit cycles already had a high amplitude.
In physical systems, curvature-induced effects have been

observed in nonlinear optics of solitons [46,47], shock
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waves in Bose-Einstein condensate [48], the appearance of
additional curvature-induced magnetic force in a magnetic
shell [49], the onset of superconductivity in curved
domains [50,51], the appearance of prohibited states in
condensed matter physics and material science [52], and
curvature-induced bound states for quantum wires [53]. In
all these cases, positive curvature induced unusual behav-
ior, which cannot be observed under normal conditions in a
flat geometry. The last example is most striking and stems
from the fundamental result of topological trapping of a
quantum particle [54]. In Ref. [54], it was shown that a
quantum mechanical particle is preferentially trapped
in a region of high curvature of a spatially extended
Schrödinger well. The same principle applied here: The
strong curvature near corners of the QSD region lowers the
energy of the Schrödinger well precisely there. Overall, it is
not surprising to find a quantum mechanical analogy in a
reaction-diffusion context due to the long-standing math-
ematical similarity of the diffusion and Schrödinger equa-
tions [55]. One can just go to imaginary time and get the
similar retrograde diffusion equations. Similarity between
the diffusion formalism and Schrödinger equation can
also be found on more general physical grounds due to
the analytical continuation connection between the Wiener
integral for the Brownian motion process and the Feynman
path integral [56]. Therefore, the quantum mechanical
analogy of localization might be applicable to more
complex cases of multiple diffusing species [44] in com-
parison to the simple diffusion of voltage in our case.
Because of the simplicity and generality of our computer
model, we would expect similar effects to be found in other
areas of biology, chemistry, and physics.
Albeit we reproduced the phenomenon in complex

detailed models, in our research we have intentionally
focused on a simplified computer model for cardiac tissue
in order to relate the effect to the most fundamental
properties of cardiac excitation and to be able to perform
an analytical study of the dynamics. It would, however, also
be of interest to investigate the role of different ionic
currents in the observed effects in a more detailed math-
ematical model of cardiac muscle cells.
In our paper, we were able to reproduce the experimen-

tally observed effect of ectopy from the corners in a highly
relevant mathematical model for our experimental system,
namely, theMajumder-Korhonenmodel of NRVMs and in a
detailed and more clinically relevant model of adult human
ventricular cardiomyocytes. Although, in all our in silico
models, ectopy from boundary areas with high curvature
occurs for a wide range of parameters (for example, for the
QSD zone, as shown in Fig. 4, 11 ≤ γbi ≤ 14 results in
corner-confined ectopy), we did not study in detail all
possible regimes in such a system, e.g., ectopy from corners,
faces, or middles of the region, and the locations of such
regimes in the parametric space. It would, hence, be
interesting to investigate all possible manifestations of

ectopy in a wider class of mathematical models, including
detailed models for human cardiac tissue (see, e.g., O’Hara-
Rudy [57] and Grandi [58]) and modern low-dimensional
cardiac models (see, e.g., Mitchell-Schaeffer [59] and
Corrado [60]) in future studies.
The extension of our work to 3D would be of importance

as well, since injured cardiac ventricles typically exhibit a
complex 3D structure. The effects of curvature on ectopic
activity are expected to be even more pronounced in 3D
systems than in our 2D preparations.
In conclusion, we have demonstrated, using comple-

mentary in vitro and in silico models, that the border zones
between damaged and healthy myocardium with the high-
est positive curvature are the most likely areas for the onset
of ectopic activity. As the electrotonic load for formation of
excitation is maximal in such areas, this effect is para-
doxical. Our finding, thus, adds a new potential mechanism
for cardiac ectopy and represents an additional controllable
degree of freedom to prevent arrhythmogenesis.
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APPENDIX A: ANALYTICAL PROOF THAT
CURVATURE PROMOTES INSTABILITY

Our proof will be based on the Schrödinger analogy first
given by Rinzel and Keener. They stated that the relation
EðλÞ can be inverted by solving the quadratic equation

λ2 þ ðϵγ þDEÞλþ ϵð1þ γDEÞ ¼ 0: ðA1Þ

From studying the possible locations of roots λ1, λ2 in the
complex plane, it follows that at least one root has a positive
real part if and only if λ1 þ λ2 ¼ −ðϵγ þDEÞ is positive.
Therefore, the stationary solution will become unstable
when E < E0 ¼ −ϵγ=D. At this critical value, λ1λ2 ¼
ð1þ γDE0Þ ¼ 1 − γ2ϵ > 0 in our working regime. This
indicates that, at the instability threshold, λ1, λ2 are purely
imaginary and, therefore, the system undergoes a Hopf
bifurcation.
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We now proceed to show that positive curvature of the
boundary promotes instability of the system by proving that
positive curvature of the boundary always lowers E.
Adding curvature to the system changes both the sta-

tionary profile and the associated linearized equation. We
show this in two steps. First, we write the systems [1] and
[3] of the main text as a particle with unit mass in a
Newtonian potential: letting u correspond with 1D particle
position X and x with time t ∈ ½l; L� yields

d2X
dt2

þ bðtÞ dX
dt

¼ −
dUðXÞ
dX

; ðA2Þ

with potential UðXÞ ¼ R
X fðϕÞdϕ. For the case without

curvature, bðtÞ ¼ 0, corresponding to a frictionless
Newtonian system; the case with curvature is equivalent
to the particle being subjected to a frictional force
bðtÞ ¼ 1=t. In both cases, the boundary conditions are
XðlÞ ¼ u3 and XðLÞ ¼ u1. A representative solution for
both cases is given in Fig. S4(a) of the Supplemental
Material [18]. Note that, since both particles need to travel
the same distance u3 − u1 in the same time interval L − l,
the frictionless case starts with a smaller initial velocity
and, therefore, always lags behind the case with friction,
only catching up at time t ¼ L. Since u3 > u1 and the
Newtonian paths were called ϕðxÞ and ϕrðxÞ in the main
text, we thus have

ϕðxÞ > ϕrðxÞ; l < x < L: ðA3Þ

With this result, we can compare the eigenvalues E of the
linear system,

−
∂2ψ

∂x2 þ VðxÞψ ¼ Eψ ; ðA4Þ

for potentials VðxÞ ¼ −f0ðϕÞ=D or VrðxÞ ¼ −f0ðϕrÞ=D,
yielding ground state eigenvalues E and E1, respectively.
Note that the term ð1=xÞðdψ=dxÞ is not included here yet; it
will be performed below. A well-known property of the
Schrödinger problem is that a wider and deeper well lowers
the energy. For the two cases considered, the well depth is
equal to −f0ðumÞ=D, with um representing the unique
inclination point of fðuÞ. Thus, the difference in E will
only depend on the width of the potential well. To define
the well width Wr or W for the cases with and without
curvature, we consider the typical wells for our system as
shown in Figs. 5(b) and in S4(b) of the Supplemental
Material [18]. Note that f0ðϕÞ is a quadratic function
centered at ϕ ¼ um < ðu1 þ u3Þ=2; see Fig. S4(c) of the
Supplemental Material [18]. Hence, VðlÞ > VðLÞ; i.e., the
potential is always higher on the left-hand side, where
the boundary condition is uðlÞ ¼ u3. Therefore, it makes
sense to define the width of the potential as the region
where VðxÞ < VðLÞ; see Fig. S4(a) of the Supplemental

Material [18]. Since f0ðuÞ is a quadratic function and
u1 ¼ 0, it follows that f0ð2umÞ ¼ VðLÞ, such that W ¼
L − ϕ−1ð2umÞ, Wr ¼ L − ϕ−1

r ð2umÞ. Hence, it follows
from Eq. (A3) that

Wr > W ⇒ E1 < E: ðA5Þ

We still have to consider the effect of adding the curvature
term to Eq. (A4). However, in the main text, it is shown that
a substitution ψ ¼ r−1=2χ produces again the Schrödinger
problem with a potential shifted down by 1=ð4r2Þ and
eigenvalue Er. Therefore,

Er < E1 < E: ðA6Þ

Hence, we have established that positive curvature at the
boundary of a bistable domain promotes instability. As we
have only used qualitative properties of the solution, e.g.,
monotonicity of the profile and the asymmetric sigmoidal
shape of fðuÞ, our analysis is not restricted to the FHN
model. Our analysis can be extended for a disc. This would,
however, require additional estimations at r ¼ 0 that would
unnecessarily complicate the presentation of the results.

APPENDIX B: SUPPLEMENTARY MATERIALS
AND METHODS

1. Cell isolation and culture

NRVMs were isolated and cultured as reported previ-
ously [16]. In brief, hearts were excised from neonatal
rats under anaesthesia, and venticular tissue was delicately
chopped and dissociated with 450 U=ml collagenase
type I (Worthington, Lakewood, New Jersey) and
18.75 Kunitz=ml DNase I (Sigma-Aldrich, St. Louis,
Missouri). Cells were seeded on round, fibronectin-coated
(Sigma-Aldrich) 15-mm-diameter glass coverslips in 24-
well culture plates (Corning Life Sciences, Corning, New
York). Cells were seeded at a density of 8 × 105 cells=well
and incubated for 2 h with mitomycin-C (10 μg=ml,
Sigma-Aldrich) to inhibit proliferation of nonmyocytes.

2. Molecular cloning

The self-inactivating lentiviral shuttle plasmid
pLV.hCMV-IE.miniSOG-PM.hHBVPRE, which codes for
a plasma-membrane-associated version of miniSOG, was
engineered by a two-step operation. In step 1, the miniSOG-
coding sequence was extended with the plasma-membrane
targeting motif of human K-Ras4B by substituting the
BglII × EcoRI fragment of plasmid miniSOG-C1 [15] with
a linker molecule composed of oligonucleotides 5’ GATC-
CAAGATGAGCAAAGACGGCAAAAAGAAGAAAAA-
GAAGTCCAAGACAAAGTGCGTGATCATGTAAAG 3’
and 5’AATTCTTTACATGATCACGCACTTTGTCTTGG-
ACTCTTTTTCTTCTTTTTGCCGTCTTTGCTCATCTTG
3’ (Sigma-Aldrich). The resulting plasmid was designated
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pminiSOG-PM. In step 2, the 414-bp Eco47III × EcoRI
fragment of pminiSOG-PM was blunt-ended with Klenow
polymerase and inserted in between the SmaI site and filled-
in BsrGI site of pLV.hCMV-IE.IRES.eGFP.hHVBPRE
[16]. The resulting construct was designated pLV.hCMV-
IE.miniSOG-PM.hHBVPRE. The restriction enzymes and
other DNA-modifying enzymes were purchased from New
EnglandBiolabs (Bioké, Leiden, theNetherlands) orThermo
Fisher Scientific (Landsmeer, the Netherlands). Large-scale
plasmid isolation was performed with the JETSTAR 2.0
Plasmid Maxiprep kit (Genomed, Löhne, Germany), in
accordance with the instructions supplied with the kit.

3. Lentiviral vector particle production and
transduction of confluent monolayers of NRVMs

Construct pLV.hCMV-IE.miniSOG-PM.hHBVPRE was
used for the production of miniSOG-encoding lentiviral
vector particles employing a second-generation packaging
system as previously detailed [17]. These particles were
subsequently used to transduce 5-day-old continuous
monolayer cultures of NRVMs with a vector dose that
resulted in transduction of approximately 95% of the cells.
Assessment of the transduction efficiency was done with an
inverted phase-contrast and fluorescence microscope
(Axiovert 35, Carl Zeiss, Sliedrecht, the Netherlands) by
visualization of the green fluorescent signals produced by
excited miniSOG molecules.

4. Optical mapping and patterned illumination
of monolayers

After 8–10 days of culturing, ventricular monolayers
were optically mapped using the voltage-sensitive dye di-4-
ANEPPS (Thermo Fisher Scientific) as reported previously
[17]. The mapping setup was based on a 100 × 100 pixel
CMOS Ultima-L camera (Scimedia, Costa Mesa,
California). The field of view was 16 × 16 mm, resulting
in a spatial resolution of 160 μm=pixel. For targeted
illumination of monolayers, the setup was optically con-
jugated to a digitally controlled micromirror device (DMD),
the Polygon 400 (Mightex Systems, Toronto, Ontario), with
a high-power blue (470-nm) LED (BLS-LCS-0470-50-
22-H, Mightex Systems). Before starting the actual experi-
ments, all monolayers were mapped during 1-Hz electrical
point stimulation to check baseline conditions. Electrical
stimulation was performed by applying 10-ms-long rectan-
gular electrical pulses with an amplitude of 8 V to a bipolar
platinum electrode with a spacing of 1.5 mm between the
anode and cathode. Only cultures with an APD at 80%
repolarization (APD80) below 350 ms and a conduction
velocity above 18 cm=s were used for further experiments.
Next, monolayers were illuminated with different light
patterns at constant intensity (0.3125 mW=mm2) in the
sample plane for 3–6 min. The resulting electrical activity
was recorded for 6–24 s at exposure times of 1 or 6 ms
per frame.

5. Data analysis

Data analysis was performed using specialized BVAna
software (Scimedia), ImageJ Ref. [61], and custom-written
scripts in Wolfram Mathematica (Wolfram Research,
Hanborough, Oxfordshire, United Kingdom). APD and
conduction velocity were calculated as described previ-
ously [17]. To prepare representative frames of wave
propagation, optical mapping videos were filtered with a
spatial averaging filter (3 × 3 stencil) and a derivative filter.

6. Numerical modeling and calculations

a. Numerical calculations with simplified models

For 2D and 1D simulations, we used the forward Euler
method with time step Δt ¼ 0.002 and a centered finite-
differencing scheme to discretize the Laplacian with space
step Δx ¼ 0.25. A 1024 × 1024 grid was used for the 2D
simulation and a 1024-point cable for the 1D simulation. In
all simplified models, spatially uniform zero initial con-
ditions were used for all variables. To eliminate possible
spatial discretization errors, we used time step Δt ¼
0.00 015 625 and space step Δx ¼ 0.03 125, and we used
8192 grid points for the 1D bistable system and for the
Schrödinger eigenvalue problem. The Schrödinger
eigenvalue problem was solved by calculating a finite-
dimensional matrix eigenvalue problem using a centered
second-order finite-differencing scheme for the Laplacian
operator.

b. Aliev-Panfilov model

We used the modified Aliev-Panfilov model [22] to
create bistable and monostable zones as shown in Fig. S2 of
the Supplemental Material [18],

∂u
∂t ¼ −kðu − 1Þðu − aÞ − ruvþDΔu;

∂v
∂t ¼ 0.9

�
cþ

�
d1v

d2 þ u

��
½−v − kuðu − b − 1Þ�; ðB1Þ

where c ¼ 0.002, b ¼ 0.15, d1 ¼ 0.2, d2 ¼ 0.3, k ¼ 8, and
D ¼ 2.0. These parameters are the same for the bi- and
monostable zone. The equations for the monostable zone
were converted to bistable ones by using the threshold a ¼
0.08 and a repolarizing force r ¼ 0.61. The values for the
monostable zone were a ¼ 0.15 and r ¼ 1 as in the original
Aliev-Panfilov formulation. The corresponding nullclines
are shown in Fig. S2(a) of the Supplemental Material [18].

c. Implementation of ultralong APs in the FHN model

To mimic ultralong APs in a simplified model, we
modified the FHN reaction-diffusion model as follows:
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∂u
∂t ¼ −fðuÞ − v − gþDΔu;

∂v
∂t ¼ ε½u − γðr⃗Þv�;
∂g
∂t ¼ ε2ðu − γ2gÞ: ðB2Þ

Here, fðuÞ ¼ uðu − 1Þðu − aÞ, a ¼ 0.13, ε ¼ 0.004, and
D ¼ 2.0. The state variable g was added to the standard
model, having the slowest timescale ε2 ¼ 0.00005 ≪
ε ≪ 1. Another parameter γ2 ¼ 3.12. For g ¼ 0, the differ-
ential equations for u and v constitute a monostable or
bistable system. Normal tissue was modeled as a mono-
stable system (γ ¼ γmono ¼ 1.5), if g ¼ 0. QSD tissue was
modeled as a bistable system (γ ¼ γbi ¼ 14.0), if g ¼ 0.

d. Implementation of ultralong APs
in the Aliev-Panfilov model

Similarly to the previous paragraph, we introduced a
very slowly recovering variable g in the Aliev-Panfilov
model:

∂u
∂t ¼ −kðu − 1Þðu − aÞ − ruðvþ gÞ þDΔu;

∂v
∂t ¼ 0.9

�
cþ

�
d1v

d2 þ u

��
½−v − kuðu − b − 1Þ�;

∂g
∂t ¼ ε2ðu − γ2gÞ; ðB3Þ

where ε2 ¼ 0.0001, γ2 ¼ 3.12.

e. Detailed electrophysiological model of NRVMs
with regionally activated late Na + current

The monolayer model of NRVMs was adopted from
[19]. The steady-state voltage dependence for the inacti-
vation variable h of fast Naþ current was changed to
h∞ ¼ ½1þ e½ð65þVÞ=6.07��−1, where V is the transmembrane
potential. In the square QSD zone, the late Naþ current was
formulated as an additional low-conductance Naþ current,
in accordance with [62]

INa ¼ GNaLmL
3hLðV − ENaÞ; ðB4Þ

where GNaL ¼ 1.2288 mS=μF. The formulation of the
activation variable mL coincides with the formulation of
m for the fast Naþ current and, for hL, it is given by

dhL
dt

¼ hL − hL;∞
τhL

: ðB5Þ

Here, the steady-state voltage dependence was chosen to be
hL;∞ ¼ ½1þ e½ð101þVÞ=6.1��−1. By changing time constant
τhL, we were able to modify the duration of ectopic activity
episodes. τhL ¼ 15 000 ms was chosen for Fig. 2 and τhL ¼
3000 ms for Fig. S5(a) of the Supplemental Material [18].

The forward Euler method was used to integrate the
equations with a time step Δt ¼ 0.005 ms and a centered
finite-differencing scheme to discretize the Laplacian with
a space step of Δx ¼ 0.0625 mm. The total computational
domain size was 256 × 256 grid points; the centrally
located square with the activated late Naþ current consisted
of 115 × 115 grid points. To create stationary initial
conditions, the model was integrated for 2 min before a
single stimulus was applied to the lower border of the
domain.

f. Detailed electrophysiological model of adult
human ventricular myocytes with regionally

activated late Na + current

The ten Tusscher-Noble-Noble-Panfilov model was
adopted from Ref. [20]. The conductances of the transient
outward (Gto), rapid (GKr), and the slow delayed (GKs)
rectifier Kþ current were reduced to 50% of their original
values. This did not significantly prolong APD.
The late Naþ current was implemented in the same

manner as for the rat model. We used the same formalism as
in Eq. (B4), where the activation kinetics coincides with the
kinetics of the fast Naþ current. The inactivation variable
also followed Eq. (B5). The steady-state inactivation was
hL;∞ ¼ ½1þ e½ð101þVÞ=6.1��−1, where V is the transmem-
brane potential; the conductance of the channel GNaL ¼
0.65536 mS=μF. Time constants were τhL ¼ 25000 ms for
the prolonged episode in Fig. 2 of the main manuscript and
τhL ¼ 5000 ms for the short episode in Fig. S5(b)
of the Supplemental Material [18]. The forward Euler
method was used to integrate the equations with a time
step Δt ¼ 0.005 ms and a centered finite-differencing
scheme to discretize the Laplacian with a space step
Δx ¼ 0.0625 mm. The diffusion coefficient was equal to
0.000154 cm2=ms. The total computational domain size
was 1024 × 1024 grid points; the centrally located square
with the activated late Naþ current consisted of 460 × 460
grid points. The model was integrated for 2 min to create
stationary initial conditions. Thereafter, a single pulse was
delivered at the lower border of the domain.

g. Detailed electrophysiological model of adult
human ventricular myocytes with regionally

increased Ca2 + current

The ten Tusscher–Noble–Noble–Panfilov model was
adopted from Ref. [20]. The conductance of the transient
rapid delayed rectifier (GKr) was set to zero throughout the
computational domain. The time constant of the inactivating
f-gate of the L-type Ca2þ was reduced twofold uniformly in
the domain. The conductance of L-type Ca2þ channel GCaL
was increased 12 times inside the square to mimic damaged
tissue and 2 times in the surrounding tissue, causing a sixfold
difference in conductance between the inner and outer
regions of the domain. The diffusion coefficient was set
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to 0.000154 cm2=ms. The forward Euler method was used
to integrate the equations with Δt ¼ 0.005 ms. The Lapla-
cian was implemented using a centered finite-differencing
scheme with Δx ¼ 0.0625 mm. The total domain size was
512 × 512 grid points; the centrally located square with the
increased Ca2þ current consisted of 230 × 230 grid points.
The model was integrated for 2 min to create stationary
initial conditions, after which a stimulus was delivered at the
lower domain boundary. The initial wave of excitation led to
a sustained depolarization of the square, followed by ectopic
waves originating from the corners of the square (Fig. S7 of
the Supplemental Material [18]).
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