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Abstract—Circular quadrature amplitude modulations (CQAM)
are introduced as an alternative to mono-dimensional ASK con-
stellations (and their QAM Cartesian product) for probabilistic
shaping with non-binary error-correcting codes. We propose
an exact construction method via recursive equations for bi-
dimensional CQAM constellations. We show that CQAMs are
subsets of the hexagonal lattice A2 for a particular alphabet
size. Then we describe CQAM constructions in three dimensions
from the D3 (fcc) lattice and from Fibonacci spirals.

I. INTRODUCTION

Quadrature Amplitude Modulations (QAM) are employed in
almost all digital communication systems over the Internet, in
cellular networks, in satellite links, in fiber optic links, and in
wireless local area networks [11]. Most QAM constellations
are carved from the bi-dimensional cubic lattice and have a
square or a rectangular shape. The error rate performance of
QAM constellations is dramatically improved with the use
of powerful error-correcting codes. However, a high coding
gain is not sufficient to achieve channel capacity. For additive
white Gaussian noise channels, the input distribution should
mimic a Gaussian distribution to approach capacity. Geometric
shaping with equiprobable signaling is an excellent method
to achieve capacity with real constellations [14] or complex
constellations [9]. The Voronoi cell of a lattice is another
means for shaping a constellation and achieving near-capacity
performance [6]. Recent results on geometric shaping with a
Gaussian-like codebook are very promising [3].

The Gaussian-like channel input can also be realized via
a probabilistic shaping of the signal constellation [7] [1].
This paper deals with the construction of signal constellations
for probabilistic shaping. Circular QAM were introduced in
[2] to make probabilistic shaping feasible with non-binary
codes without going back to the bit level. The next section
gives a quick overview of probabilistic shaping and how
CQAM fits non-binary coding. An exact construction method
for bi-dimensional CQAM, called the triangular construction,
is presented in Section III. Section III-B shows interesting
connections between the hexagonal lattice and 2D CQAM.
Similar connections are presented in Section IV between the
fcc lattice and 3D CQAM. Section IV also shows how to build
CQAM in three dimensions from Fibonacci spirals.

II. PROBABILISTIC SHAPING FOR NON-BINARY CODES

All types of digital transmission systems combining error-
correcting codes and probabilistic shaping of the modulator
constellation can be represented by the model depicted in
Figure 1. It is assumed that the information source is uniform
over a q-ary alphabet and the channel code is defined over a
p-ary alphabet (a field or a ring), where q ≥ 2 and p = qm,
m ≥ 1. A distribution matcher is applied to a fraction or
to all information symbols in order to generate new symbols
with a Gaussian-like prior distribution. These non-uniform
information symbols are shown in red in Figure 1 and their
main role is to shape the amplitude of the signal constellation.
Uniform symbols after encoding include parity symbols (the
code redundancy) and potentially a fraction of those uniform
information symbols from the source. Uniform symbols are
not involved in probabilistic amplitude shaping and should be
handled by the constellation mapping without perturbing the
shaping scheme. A proof is given in Section II-B that justifies
the assumption of uniform parity symbols after encoding over
GF (pm) (prime p) or Z/pZ (arbitrary p).
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Figure 1. General system model for probabilistic amplitude shaping.

A. From binary to non-binary coding

For mono-dimensional constellations, uniform symbols are
mapped to the sign of a constellation point. An illustration
is given in Figure 2. This corresponds to q = 2 and p = 2m,
m = 1 for binary codes [1] and m > 1 for characteristic-
2-field non-binary codes [13]. Each 8-ASK point has a label
of 3 bits. The two bits in red follow the prior distribution
created by the distribution matcher (probability mass function
represented by the red bars). On the other hand, parity bits
are all assigned to the sign bit. Hence, for mono-dimensional
constellations, the coding rate is taken to be larger than or
equal to log2(M)−1

log2(M) , where M is the constellation size.

Probabilistic amplitude shaping was generalized to complex
constellations by introducing circular symmetry [2]. Similar
to Hadamard transform with ± generalized to Fourier trans-
form with e2π

√
−1/p, the sign approach in mono-dimensional
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Figure 2. Probabilistic amplitude shaping of 8-ASK constellation.

constellations is replaced by a phase approach. A complex
constellation suited to probabilistic amplitude shaping should
have its points organized in circles around the origin: non-
uniform symbols select a circle and uniform symbols select a
point on the circle. The CQAM defined in [2] has M = p2

points organized in p circles (also called shells) and p points
per shell. Examples of CQAM are shown in Figures 3&4.
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Figure 3. The 64 points of an 82-CQAM constellation. Edges are connecting
pairs of points located at minimum distance from each other.

For simplicity, it is assumed that the radius of the first
shell, i.e. the inner radius of the CQAM, is ρ0 = 1.
The set of p2 points of a CQAM shall be denoted by
A = {xk}p

2−1
k=0 , where point xip+` is the `th point on shell

i, 0 ≤ i, ` ≤ p − 1. The minimum Euclidean distance
of CQAM is dEmin(A) = 2 sin(πp ). The average energy
of CQAM is Es =

∑p−1
i=0 πiρ

2
i , where πi is the a priori

probability distribution of the amplitude as imposed by the
distribution matcher. A CQAM point has a priori probability
π(xip+`) =

πi

p . The average energy in the uniform case, when
all points are equiprobable, becomes Es(unif) =

∑p−1
i=0 ρ

2
i /p.

There exist infinitely many ways to place p circles around
the origin in the complex plane with p points per circle.
The original CQAM construction aimed at maximizing the
figure of merit given by the ratio d2Emin

Es(unif)
. The construction

algorithm from [2] can be summarized as follows:
• Original construction algorithm for 2D p2-CQAM.
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Figure 4. The 1849 points of 432-CQAM constellation. Notice the presence
of rings appearing at

√
3 and

√
7, while the outer radius approaches

√
13.

Given constellation points on shells 0 to i−1, put p equidistant
points on shell i and numerically find the smallest radius ρi
for this shell, ρi ≥ ρi−1, and the best phase shift φi such that
dEmin is satisfied.

The drawbacks of the original CQAM construction algorithm
are: 1- Slow construction for large p. 2- Propagation of
numerical errors. 3- No explanation for the waves defining
three ring zones and the outer radius limit. In Section III
describing the exact triangular construction, we will prove that
the three CQAM ring zones are separated by radii

√
3 and

√
7.

The reader may check that the outer radius is bounded from
above by

√
13 via the recursive equations of Theorem 5.

B. Uniformity of parity symbols in fields and rings

Lemma 1 and Theorem 1 in [2] prove that parity symbols
obtained from linear encoding over a prime field Fp with a
dense generator matrix tend to have a uniform distribution. The
next theorem generalizes the result to any field. The integers q
and p below should not be confused with q and p used earlier
in this section to define the source alphabet size and the code
alphabet size.

Theorem 1: Let Fq be a finite field, where q = pm with p
prime and m ≥ 1. Consider a sequence {s`}`≥1 of indepen-
dent random symbols over Fq . Suppose that the probability
distributions of {s`}`≥1 satisfy
lim inf`→∞{minu∈Fq

Pr{s` = u}} > 0. Then

∀γ ∈ Fq, lim
k→∞

Pr

(
k∑
`=1

s` = γ

)
= 1/q.

Proof: Let S =
∑k
`=1 s` and q`(u) = Pr{s` = u}. Using

techniques similar to Theorem 1 of [2], firstly we prove the
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following

Pr(S = γ) =

(
1 +

∑
v

k∏
`=1

(∑
u
q`(u)ω

<u+γ,v>

))
q

,

where u spans all elements of Fq , v spans all non-zero
elements of Fq , ω = exp(2π

√
−1/p) is a p-th root of unity,

and < u, v > denotes the scalar product of two elements from
Fq seen as two vectors (Fq is a vector space of dimension m
over Fp). The lim inf condition on the distribution Pr{s` = u}
guarantees that

∣∣∣∣∑
u
q`(u)ω

<u+γ,v>

∣∣∣∣ < 1 so the right term in

the numerator of the expression of Pr(S = γ) vanishes.

The result of Theorem 1 can be easily extended to any ring
using a similar proof. The lim inf condition is mandatory to
keep the weighted sum of powers of ω inside the unit circle,
because divisors of zero in the ring are going to create many
identical powers of ω within that sum.

Theorem 2: Let p be an arbitrary positive integer, p ≥ 2.
Consider a sequence {s`}`≥1 of independent random symbols
over the ring Zp = Z/pZ,
where lim inf`→∞{minu∈Zp Pr{s` = u}} > 0. Then

∀γ ∈ Zp, lim
k→∞

Pr

(
k∑
`=1

s` = γ

)
= 1/p.

III. TRIANGULAR CONSTRUCTION OF 2D CQAM

The exact construction of a CQAM constellation deals with
tiling equilateral and isosceles triangles on top of each others
starting from the unit circle. We shall call it the triangular
construction. The reader can observe such tiling of triangles
in Figure 3.

A. Establishing three ring zones and the construction

By convention we took ρ0 = 1. On the first shell, also by
convention, the first point has phase φ0 = 0. The remaining
p−1 points on this shell are determined by successive rotations
over an angle of 2π

p . Now, the construction of the second
shell is straightforward: Just draw equilateral triangles with
the bases defined by consecutive points on shell 0. The outer
corners of the equilateral triangles form the second shell
(i = 1) with φ1 = π

p .

On any upper shell i, after finding its radius ρi and the
phase φi of its first point, rotating by 2π

p gives the remaining
p − 1 points. The main constraint while building shell i is
to minimize ρi while maintaining the minimum Euclidean
distance d = dEmin(A) with lower shells. Let us consider
three consecutive shells i, i−1, and i−2 as shown in Figure 5.

Let A and B be the length of two line segments as drawn in
the figure. We have d

2 ≤ A =
√
d2 −B2 and 2B ≤ d

√
3. But

B = ρi−1 sin(
π
p ) which yields ρi−1 ≤

√
3. This defines a first

ring zone for all CQAM shells with radii in the range [1,
√
3].
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B
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d
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Figure 5. Representation of points in three shells in ring zone 1.

Also, from the representation of the three shells, it is easy to
prove that ρi = ρi−2 + d ·

√
4− ρ2i−1. Similar to shell 0 and

shell 1, the phase shift of the first point toggles between 0
and π

p . The triangular construction of CQAM points in ring
zone 1 is now stated as follows:

Theorem 3: In zone 1 where the the radius is less than or
equal to

√
3, CQAM points are determined via the following

recursive equations, where d = 2 sin(π/p):
ρ0 = 1, φ0 = 0.
ρ1 = 1

2

(√
4− d2 +

√
3d
)
, φ1 = π

p .
As long as ρi−1 ≤

√
3:

ρi = ρi−2 + d ·
√

4− ρ2i−1 and φi = φi−2.

For shells outside zone 1, similar reasoning leads to a second
limiting radius equal to

√
7. We omit the cumbersome proofs

due to space limitation. The second ring zone includes shells
with radii in the range [

√
3,
√
7]. Isosceles triangles defining a

new shell i in zone 2 have their bases from two points located
at shells i − 1 and i − 2 respectively. This creates a rotation
shifting the first point away from phase 0 and π

p as in zone 1.
The second ring zone is stated by the next theorem with a
double recursion on both ρi and φi.

Theorem 4: In zone 2 where the the radius is in the range
[
√
3,
√
7], CQAM points are determined via the following

recursive equations, where d = 2 sin(π/p):
Define

α =

{
φi−2 − φi−1 φi−2 > φi−1

φi−2 − φi−1 + 2π
p otherwise,

t2 = ρ2i−1 + ρ2i−2 − 2ρi−1ρi−2 cosα.

Then as long as ρi−1 ≤
√
7,

ρi =

√
d2 + ρi−1ρi−2

(
cosα+ | sinα|

√
4d2−t2
t2

)
and φi = φi−1 + arccos

(
ρ2i−1+ρ

2
i−d

2

2ρi−1ρi

)
mod 2π

p .

Finally, beyond radius
√
7, cumbersome equations and isosce-

les triangles with a corner on shell i (the newly built shell)
and two corners from shells i− 2 and i− 3 respectively lead
to this third theorem.
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Theorem 5: In zone 3 where the radius is in the range
[
√
7,
√
13], CQAM points are determined via the following

recursive equations, where d = 2 sin(π/p):
Define

α =

{
φi−2 − φi−3 φi−2 > φi−3

φi−2 − φi−3 + 2π
p otherwise,

t2 = ρ2i−2 + ρ2i−3 − 2ρi−2ρi−3 cosα.

Then as long as i < p,

ρi =

√
d2 + ρi−2ρi−3

(
cosα+ | sinα|

√
4d2−t2
t2

)
and φi = φi−3 + arccos

(
ρ2i−3+ρ

2
i−d

2

2ρi−3ρi

)
mod 2π

p .

The recursive equations in Theorem 3 followed by Theo-
rems 4&5 constitute the complete triangular construction of
the 2D CQAM constellation with a total of p2 points spread
over p shells.

It is obvious that the triangular construction is a greedy
algorithm. It minimizes

∑i
k=0 ρ

2
k when building the i-th shell.

A full tree search would lead to the minimal Es(unif) while
d = dEmin = 2 sin(π/p) is guaranteed. Table I lists the
average energy for both constructions. The full tree search is
intractable at large p. The good news is the quasi-optimality
of the triangular construction.

Table I
TRIANGULAR CONSTRUCTION VERSUS FULL TREE SEARCH.

p Es(A) Es(Atree) p Es(A) Es(Atree)
8 5.980890 5.980890 20 6.622981 6.622981
12 6.232051 6.232051 24 6.655495 6.653505
16 6.525934 6.525934 28 6.728819 6.725524

B. 2D CQAM as subset of the hexagonal lattice

The term shell used in previous sections to refer to a subset
of CQAM with all points on the same circle comes from the
theory of point lattices and sphere packing [4]. In R2, it is nat-
ural to compare CQAM constellations to the hexagonal lattice
A2, the latter being the densest lattice in dimension 2 (highest
Hermite constant) and has the maximal kissing number too.
The Theta series of A2 is 1+6q+6q3+6q4+12q7+6q9+. . ..
Notice that all shells have a population multiple of 6. Besides
tiling regular hexagons in R2 or packing spheres by shifting
rows, A2 is also obtained by tiling equilateral triangles. This is
in direct relationship with our triangular CQAM construction,
however this A2-CQAM connection exists only for a particular
value of p as stated by the following proposition.

Proposition 1: p2-CQAM constellations with p = 6 points
per shell are subsets of the lattice A2. This special CQAM is
plotted in Figure 6.

Proof: A2 is built by tiling equal-size equilateral triangles
and it is organized by shells around the origin with populations
multiple of 6 per shell. Taking 36 points from the first five

shells of A2 leads to the best figure of merit. This corresponds
to a 62-CQAM with shells 4 and 5 of equal radius and no
isosceles triangles in its construction.

Figure 6. Five shells from the hexagonal lattice coinciding with 62-CQAM.

It is possible to construct from A2 an extended CQAM with
more than 6 shells. Figure 7 shows an extended CQAM with
25 shells and 6 points per shell corresponding to the first 17
shells of the A2 lattice.

Figure 7. This extended CQAM constellation with 25 shells (p = 6 points
per shell) is a subset of the hexagonal lattice.

IV. 3D CQAM FROM LATTICES AND SPIRALS

A direct extension of CQAM to 3-dimensional spaces is based
on the face-centered cubic lattice D3. Similar to the equilateral
triangles tiling associated to A2, there exists a tiling of the
space using a regular polyhedron obtained from two regular
tetrahedra and one regular octahedron. The vertices of this
tiling form the D3 (fcc) lattice. Its Theta series is 1+ 12q2 +
6q4+24q6+12q8+24q10+8q12+48q14+6q16+36q18 . . ..
The CQAM triangular construction may coincide with D3 if
its shells have population multiple of 12. It is not true for all
shells as observed in the Theta series.

Proposition 2: 3D CQAM constellations can be constructed
from D3 shells with population multiple of 12.

Proof: We consider building a 3D p2-CQAM with 12
points per shell and 12 shells, p = 12. Take the first 9 shells
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of D3 with squared norm varying from 2 to 18. Drop shells
2, 6, and 8 with squared norms 4, 12, and 16 respectively.
Also, drop 12 points out of 36 from the ninth shell. You get
12 shells of a CQAM with a total of 144 points.

The construction of a 3D CQAM with an arbitrary number of
points cannot necessarily have a lattice structure. This problem
is related to placing N equidistant points on the 3D unit
sphere. The number N can be equal to the number p of shells
(as in Proposition 2) or we may also consider N = p2 so the
CQAM cardinality becomes p3 points, leading to an uncoded
information rate of log2(p) bits per dimension identical to the
rate of a 2D p2-CQAM. In this case we may refer to the
constellation as a p3-CQAM in R3.

Determining N regularly-placed equidistant points on the
3D unit sphere is only possible for N = 4, 6, 8, 12, 20, 24,
and 30 points [4]. The vertices, faces, and edges of regular
convex polyhedra (the five Platonic solids) make the points of
a CQAM shell. Except for those special numbers, this 3D
problem has no exact solution. Good methods for placing
points almost uniformly on a sphere were proposed in the
literature. Besides random methods based on uniform or
Gaussian random variables, such as methods published in [5]
[10] [8], Fibonacci spirals [15] and generalized spirals [12]
on 3D spheres are the best suited to our CQAM construction.
However, none of them guarantees a good minimum distance
between the points on the spiral. Most of the points in the
generalized spiral have better local minimum distance than
those on the Fibonacci spiral. Unfortunately, points near the
South pole of a generalized spiral are too close.

Minimum distance is improved by considering a new spiral
mixing both methods and by slightly moving the first few
points near the North pole along the spiral path. Our proposed
spiral is a mixture of the Fibonacci spiral and the generalized
spiral: in spherical coordinates, zi follows the same expression
as a Fibonacci spiral [15] and the phase φi follows the formula
of a generalized spiral [12]. For i = 0 . . . N − 1, the N points
of our spiral are given by:

zi = 1− 2i+ 1

N
, φi = φi−1 +

3.6√
N(1− z2i )

,

where φ0 = φN−1 = 0. For the purpose of illustration only,
Figure 8 shows a 3D spiral with 24 points. In general, as
mentioned above, it is recommended to consider p shells with
p2 points per shell for 3D CQAM.

V. CONCLUSIONS

Methods for constructing circular QAM constellations in R2

and R3 were presented in this paper. Shaping a signal con-
stellation appears to be an easy task in practice. Numerical
values of mutual information (not shown in this document) are
very close to capacity. In our next step, the difficulty could be
encountered in selecting a suitable p-ary error-correcting code
with a reasonable complexity that performs well in conjunction
with the constellation labeling.

Figure 8. Our spiral for N = 24 points. The points are almost uniformly
placed on the sphere in order to define a CQAM shell.
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