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Abstract 

Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and 

mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). 

RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 

and ANAC017, which mediate a ROS-related retrograde signal originating from 

mitochondrial complex III. Inactivation of RCD1 leads to increased expression of 

mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. 

Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox 

status of the chloroplasts, leading to changes in chloroplast ROS processing and 

increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox 

state and oligomerization of the RCD1 protein in vivo, providing feedback control on its 

function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-

phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from 

chloroplasts and mitochondria to establish transcriptional control over the metabolic 

processes in both organelles.   
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Introduction 

Cells of photosynthesizing eukaryotes are unique in harboring two types of energy 

organelles, the chloroplasts and the mitochondria, which interact at an operational level 

by the exchange of metabolites, energy and reducing power (Noguchi and Yoshida 2008, 

Cardol et al., 2009, Bailleul et al., 2015). Reducing power flows between the organelles 

through several pathways, including photorespiration (Watanabe et al., 2016), malate 

shuttles (Scheibe 2004, Zhao et al., 2018) and transport of carbon-rich metabolites from 

chloroplasts to mitochondria. At the signaling level, the so-called retrograde signaling 

pathways originating from the organelles influence the expression of nuclear genes (de 

Souza et al., 2016, Leister 2017, Waszczak et al., 2018). These pathways provide 

feedback communication between the organelles and the gene expression apparatus in 

the nucleus to adjust expression of genes encoding organelle components in accordance 

with changes in the developmental stage or environmental conditions.  

Reactive oxygen species (ROS), inevitable by-products of aerobic energy metabolism, 

play pivotal roles in plant organellar signaling from both chloroplasts and mitochondria 

(Dietz et al., 2016, Noctor et al., 2017, Waszczak et al. 2018). Superoxide anion radical 

(O2˙–) is formed in the organelles by the transfer of electrons from the organellar electron 

transfer chains (ETCs) to molecular oxygen (O2). In illuminated chloroplasts, superoxide 

anion formed from O2 reduction by Photosystem I (PSI) is converted to hydrogen peroxide 

(H2O2) which is further reduced to water by chloroplastic H2O2-scavenging systems during 

the water-water cycle (Asada 2006, Awad et al., 2015). Chloroplast production of ROS 

can be enhanced by application of methyl viologen (MV), a chemical that catalyzes 

shuttling of electrons from PSI to O2 (Farrington et al., 1973). The immediate product of 

this reaction, O2˙–, is not likely to directly mediate organellar signaling; however, H2O2 is 

involved in many retrograde signaling pathways (Leister 2017, Mullineaux et al., 2018, 

Waszczak et al. 2018). Organellar H2O2 was suggested to translocate to the nucleus 

directly (Caplan et al., 2015, Exposito-Rodriguez et al., 2017). It can oxidize thiol groups 

of specific proteins, thereby converting the ROS signal into thiol redox signals (Moller and 

Kristensen 2004, Nietzel et al., 2017). One recently discovered process targeted by 

chloroplastic H2O2 is the metabolism of 3'-phosphoadenosine 5'-phosphate (PAP). PAP 

is a toxic by-product of sulfate metabolism produced when cytoplasmic sulfotransferases 

(SOTs, e.g., SOT12) transfer a sulfuryl group from PAP-sulfate (PAPS) to various target 

compounds (Klein and Papenbrock 2004). PAP is transported to chloroplasts where it is 
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detoxified by dephosphorylation to adenosine monophosphate in a reaction catalyzed by 

the adenosine bisphosphate phosphatase 1, SAL1 (Quintero et al., 1996, Chan et al., 

2016). It has been proposed that oxidation of SAL1 thiols by chloroplastic H2O2 inactivates 

the enzyme, and accumulating PAP may act as a retrograde signal (Estavillo et al., 2011, 

Chan et al. 2016, Crisp et al., 2018).  

ROS are also produced in the mitochondria, for example by complex III at the outer side 

of the inner mitochondrial membrane (Cvetkovska et al., 2013, Ng et al., 2014, Huang et 

al., 2016, Wang et al., 2018). Blocking electron transfer through complex III by application 

of the inhibitors antimycin A (AA) or myxothiazol (myx) enhances electron leakage and 

thus induces the retrograde signal. Two known mediators of this signal are the 

transcription factors ANAC013 (De Clercq et al., 2013) and ANAC017 (Ng et al., 2013, 

Van Aken et al., 2016) that are both bound to the endoplasmic reticulum (ER) by a 

transmembrane domain. Mitochondria-derived signals lead to proteolytic cleavage of this 

domain. The proteins are released from the ER and translocated to the nucleus where 

they activate the mitochondrial dysfunction stimulon (MDS) genes (De Clercq et al. 2013, 

Van Aken et al., 2016). MDS genes include the mitochondrial alternative oxidases 

(AOXs), SOT12 and ANAC013 itself, which provides positive feedback regulation and 

thus enhancement of the signal.  

Whereas multiple retrograde signaling pathways have been described in detail (de Souza 

et al. 2016, Leister 2017, Waszczak et al. 2018), it is still largely unknown how the 

numerous chloroplast- and mitochondria-derived signals are integrated and processed 

by the nuclear gene expression system. Nuclear cyclin-dependent kinase E is implicated 

in the expression of both chloroplastic (LHCB2.4) and mitochondrial (AOX1a) 

components in response to perturbations of chloroplast ETC (Blanco et al., 2014), 

mitochondrial ETC, or H2O2 treatment (Ng et al., 2013). The transcription factor ABI4 is 

also suggested to respond to retrograde signals from both organelles (Giraud et al., 2009, 

Blanco et al. 2014), although its significance in chloroplast signaling has recently been 

disputed (Kacprzak et al., 2019). Mitochondrial signaling via ANAC017 was recently 

suggested to converge with chloroplast PAP signaling, based on similarities in their 

transcriptomic profiles (Van Aken and Pogson 2017). However, the mechanistic details 

underlying this convergence remain currently unknown.  
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Arabidopsis RADICAL-INDUCED CELL DEATH1 (RCD1) is a nuclear protein containing 

a WWE, a PARP-like [poly (ADP-ribose) polymerase-like], and a C-terminal RST domain 

(RCD1-SRO1-TAF4) (Overmyer et al., 2000, Ahlfors et al., 2004, Jaspers et al., 2009, 

Jaspers et al., 2010). In yeast two-hybrid studies RCD1 interacted with several 

transcription factors (Jaspers et al. 2009)  including ANAC013, DREB2A (Vainonen et al., 

2012), and Rap2.4a (Hiltscher et al., 2014) via the RST domain (Jaspers et al., 2010). In 

agreement with the numerous potential interaction partners of RCD1, the rcd1 mutant 

demonstrates pleiotropic phenotypes in diverse stress and developmental responses 

(Jaspers et al. 2009). It has been identified in screens for sensitivity to ozone (Overmyer 

et al. 2000), tolerance to MV (Fujibe et al., 2004) and redox imbalance in the chloroplasts 

(Heiber et al., 2007, Hiltscher et al. 2014). RCD1 was found to complement the deficiency 

of the redox sensor YAP1 in yeast (Belles-Boix et al., 2000). Under standard growth 

conditions, the rcd1 mutant displays differential expression of over 400 genes, including 

those encoding mitochondrial AOXs (Jaspers et al. 2009, Brosche et al., 2014) and the 

chloroplast 2-Cys peroxiredoxin (2-CP) (Heiber et al. 2007, Hiltscher et al. 2014).  

Here we have addressed the role of RCD1 in the integration of ROS signals emitted by 

both mitochondria and chloroplasts. Abundance, redox status and oligomerization state 

of the nuclear-localized RCD1 protein changed in response to ROS generated in the 

chloroplasts. Furthermore, RCD1 directly interacted in vivo with ANAC013 and ANAC017 

and appeared to function as a negative regulator of both transcription factors. The RST 

domain, mediating RCD1 interaction with ANAC transcription factors, was required for 

plant sensitivity to chloroplastic ROS. We demonstrate that RCD1 is a molecular 

component that integrates organellar signal input from both chloroplasts and 

mitochondria to exert its influence on nuclear gene expression.    
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Results 

The response to chloroplastic ROS is compromised in rcd1  

Methyl viologen (MV) enhances ROS generation in illuminated chloroplasts by catalyzing 

the transfer of electrons from Photosystem I (PSI) to molecular oxygen. This triggers a 

chain of reactions that ultimately inhibit Photosystem II (PSII) (Farrington et al. 1973, 

Nishiyama et al., 2011). To reveal the significance of nuclear protein RCD1 in these 

reactions, rosettes of Arabidopsis were pre-treated with MV in darkness. Without 

exposure to light, the plants displayed unchanged PSII photochemical yield (Fv/Fm). 

Illumination resulted in a decrease of Fv/Fm in wild type (Col-0), but not in the rcd1 mutant 

(Fig. 1A), suggesting increased tolerance of rcd1 to chloroplastic ROS production. 

Analysis of several independent rcd1 complementation lines expressing different levels 

of HA-tagged RCD1 revealed that tolerance to MV inversely correlated with the amount 

of expressed RCD1 (Fig. 1 – figure supplements 1, 2). This suggests that RCD1 protein 

quantitatively lowered the resistance of the photosynthetic apparatus to ROS.  

Treatment with MV leads to formation of superoxide that is enzymatically dismutated to 

the more long-lived H2O2. Chloroplastic production of H2O2 in the presence of MV was 

assessed by staining plants with 3,3′-diaminobenzidine (DAB) under light. Higher 

accumulation of H2O2 was evident in MV pre-treated rosettes of both Col-0 and rcd1. 

Longer illumination led to a time-dependent increase in the H2O2 accumulation in Col-0, 

but not in rcd1 (Fig. 1 – figure supplement 3). In several MV-tolerant mutants, the 

resistance is based on restricted access of MV to chloroplasts (Hawkes 2014). However, 

in rcd1 MV pre-treatment led to an initial increase in H2O2 production similar to that in the 

wild type (Fig. 1 – figure supplement 3), suggesting that resistance of rcd1 was not due 

to lowered delivery of MV to PSI. To test this directly, the kinetics of PSI oxidation was 

assessed by in vivo spectroscopy using DUAL-PAM. As expected, pre-treatment of 

leaves with MV led to accelerated oxidation of PSI. This effect was identical in Col-0 and 

rcd1, indicating unrestricted access of MV to PSI in the rcd1 mutant (Fig. 1B).  

The MV toxicity was not associated with the changed stoichiometry of photosystems (Fig. 

1 – figure supplement 4A). However, in Col-0 it coincided with progressive destabilization 

of PSII complex with its light-harvesting antennae (LHCII) and accumulation of PSII 

monomer (Fig. 1 – figure supplement 4B). No signs of PSI inhibition were evident either 

in DUAL-PAM (Fig. 1B) or in PSI immunoblotting assays (Fig. 1 – figure supplement 4B) 
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in either genotype. The fact that production of ROS affected PSII, but not PSI where these 

ROS are formed, suggests that PSII inhibition results from a regulated mechanism rather 

than uncontrolled oxidation by ROS, and that this mechanism requires the activity of 

RCD1.  

Previous studies have described rcd1 as a mutant with altered ROS metabolism and 

redox status of the chloroplasts, although the underlying mechanisms are unknown 

(Fujibe et al. 2004, Heiber et al. 2007, Hiltscher et al. 2014, Cui et al., 2018). No significant 

changes were detected in rcd1 in transcript levels of chloroplast-related genes (Brosche 

et al. 2014). Analyses of the low molecular weight antioxidant compounds ascorbate and 

glutathione did not explain the tolerance of rcd1 to chloroplastic ROS either (Heiber et al. 

2007, Hiltscher et al. 2014). To understand the molecular basis of the RCD1-dependent 

redox alterations, the levels of chloroplast proteins related to photosynthesis and ROS 

scavenging were analyzed by immunoblotting. None of these showed significantly altered 

abundance in rcd1 compared to Col-0 (Fig. 1 – figure supplement 5A). Furthermore, no 

difference was detected between the genotypes in abundance and subcellular distribution 

of the nucleotide redox couples NAD+/ NADH and NADP+/ NADPH (Fig. 1 – figure 

supplement 5B, C). Finally, the redox status of chloroplast thiol redox enzymes was 

addressed. The chloroplast stroma-localized 2-Cys peroxiredoxin (2-CP) is an abundant 

enzyme (Konig et al., 2002, Peltier et al., 2006, Liebthal et al., 2018) that was recently 

found to link chloroplast thiol redox system to ROS (Ojeda et al., 2018, Vaseghi et al., 

2018, Yoshida et al., 2018). The level of the 2-CP protein was unchanged in rcd1 (Fig. 1 

– figure supplement 5A). To assess its redox state, protein extracts were subjected to 

thiol bond-specific labeling as described in Fig. 1C (Nikkanen et al., 2016). While in Col-

0 the larger fraction of 2-CP was present as oxidized forms, in rcd1 most 2-CP was 

reduced, both in the darkness and under light. Thus, RCD1 likely is involved in the 

regulation of the redox status of chloroplastic thiol enzymes.  

Taken together, the results hinted that the mechanisms by which RCD1 regulates 

chloroplastic redox status are independent of the photosynthetic ETC, or steady-state 

levels and distribution of nucleotide electron carriers. However, they appear to be 

associated with changed thiol redox state of chloroplast enzymes.  
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RCD1 protein is sensitive to ROS 

It was next tested whether the nuclear RCD1 protein could itself be sensitive to ROS, 

thus accounting for the observed alterations. For that, the RCD1-HA complementation 

line was used (line “a” in Fig. 1 – figure supplement 1). No changes were detected in 

RCD1-HA abundance during 5 hours amid the standard growth light period, or during 5-

hour high light treatment. On the other hand, both MV and H2O2 treatments led to a 

gradual decrease in RCD1 abundance (Fig. 2A). When plant extracts from these 

experiments were separated in non-reducing SDS-PAGE, the RCD1-HA signal resolved 

into species of different molecular weights (Fig. 2B). Under standard growth conditions or 

high light, most RCD1-HA formed a reduced monomer. In contrast, treatment with MV 

under light or H2O2 resulted in the fast conversion of RCD1-HA monomers into high-

molecular-weight aggregates (Fig. 2B). Importantly, MV-induced redox changes in RCD1-

HA only occurred in light, but not in darkness, suggesting that the changes were mediated 

by increased chloroplastic ROS production (Fig. 2B and Fig. 4 – figure supplement 2B). 

To test whether oligomerization of RCD1 was thiol-regulated, a variant of RCD1-HA was 

generated where seven cysteines in the linkers between the RCD1 domains were 

substituted by alanines (RCD1Δ7Cys; Fig. 2 – figure supplement 1A). The treatments of 

rcd1: RCD1Δ7Cys-HA plants with MV or H2O2 led to significantly less aggregation of 

RCD1Δ7Cys-HA compared to RCD1-HA. In addition, the levels of RCD1Δ7Cys-HA were 

insensitive to MV or H2O2 (Fig. 2 – figure supplement 1B). In three independent 

complementation lines the RCD1Δ7Cys-HA variant accumulated to higher levels 

compared to RCD1-HA (Fig. 2 – figure supplement 1C). This suggests the involvement 

of the tested RCD1 cysteine residues in the regulation of the protein oligomerization and 

stability in vivo. However, the tolerance of the RCD1Δ7Cys-HA lines to chloroplastic ROS 

and the expression of the selected RCD1-regulated genes in response to MV treatment 

were comparable to that of the RCD1-HA lines or Col-0 (Fig. 2 – figure supplement 1C, 

D). These results suggest that the RCD1 protein is sensitive to chloroplastic ROS. 

However, the changes in RCD1 abundance and redox state did not explain the RCD1-

dependent redox alternations observed in the chloroplasts.  

Mitochondrial respiration is altered in rcd1 

In further search for the mechanisms of RCD1-dependent redox alternations in the 

chloroplast (Fig.1), analysis of cell energy metabolism was performed by [U-14C] glucose 
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labeling of leaf discs from light- and dark-adapted Col-0 and rcd1 plants. Distribution of 

radioactive label between emitted 14CO2 and fractionated plant material was analyzed. 

This revealed significantly more active carbohydrate metabolism in rcd1 (Fig. 3 

supplemental dataset 1). The redistribution of radiolabel to sucrose, starch and cell wall 

was elevated in rcd1 as were the corresponding deduced fluxes (Fig. 3), suggesting that 

rcd1 displayed a higher respiration rate indicative of mitochondrial defects.  

Indeed, earlier transcriptomic studies in rcd1 have revealed increased expression of 

genes encoding mitochondrial functions, including mitochondrial alternative oxidases 

(AOXs) (Jaspers et al. 2009, Brosche et al. 2014). Immunoblotting of protein extracts from 

isolated mitochondria with an antibody recognizing all five isoforms of Arabidopsis AOX 

confirmed the increased abundance of AOX in rcd1 (Fig. 4A). The most abundant AOX 

isoform in Arabidopsis is AOX1a. Accordingly, only a weak signal was detected in the 

aox1a mutant. However, in the rcd1 aox1a double mutant AOXs other than AOX1a were 

evident, thus the absence of RCD1 led to an increased abundance of several AOX 

isoforms.  

To test whether the high abundance of AOXs in rcd1 correlated with their increased 

activity, seedling respiration was assayed in vivo. Mitochondrial AOXs form an alternative 

respiratory pathway to the KCN-sensitive electron transfer through complex III and 

cytochrome C (Fig. 4B). Thus, after recording the initial rate of O2 uptake, KCN was added 

to inhibit cytochrome-dependent respiration. In Col-0 seedlings KCN led to approximately 

80 % decrease in O2 uptake, versus only about 20 % in rcd1, revealing elevated AOX 

capacity of the mutant (Fig. 4C). The elevated AOX capacity of rcd1 was similar to that of 

an AOX1a-OE overexpressor line (Umbach et al., 2005). In the rcd1 aox1a double mutant 

the AOX capacity was comparable to Col-0 or aox1a (Fig. 4C). Thus, elevated AOX 

respiration of rcd1 seedlings was dependent on the AOX1a isoform. Importantly, 

however, metabolism of rcd1 aox1a was only slightly different from rcd1 under light and 

indistinguishable from rcd1 in the darkness (Fig. 3 – supplemental dataset 1). This again 

indicated that the studied phenotypes of rcd1 are associated with the induction of more 

than one AOX isoform. Taken together, the results suggested that inactivation of RCD1 

led to increased expression and activity of AOX isoforms, which could contribute to the 

observed changes in energy metabolism of rcd1 (Fig. 3).  



11 
 

Mitochondrial AOXs affect ROS processing in the chloroplasts 

Inhibition of complex III by antimycin A (AA) or myxothiazol (myx) activates mitochondrial 

retrograde signaling (Fig. 4B). It leads to nuclear transcriptional reprogramming including 

induction of AOX genes (Clifton et al., 2006). Accordingly, overnight treatment with either 

of these chemicals significantly increased the abundance of AOXs in Col-0, rcd1 and rcd1 

aox1a (Fig. 4 – figure supplement 1). Thus, sensitivity of rcd1 to the complex III retrograde 

signal was not compromised, rather continuously augmented. In addition, no major effect 

was observed on RCD1-HA protein level or redox state in the RCD1-HA line treated with 

AA or myx, suggesting that RCD1 acts as a modulator, and not the mediator, of the 

mitochondrial retrograde signal (Fig. 4 – figure supplement 2).  

To assess whether increased AOX abundance affected chloroplast functions, PSII 

inhibition was assayed in the presence of MV in AA- or myx-pre-treated leaf discs. Pre-

treatment of Col-0 with either AA or myx increased the resistance of PSII to inhibition by 

chloroplastic ROS (Fig. 4D), thus mimicking the rcd1 phenotype. In addition to complex 

III, AA has been reported to inhibit plastid cyclic electron flow dependent on PGR5 

(PROTON GRADIENT REGULATION 5). Thus, pgr5 mutant was tested for its tolerance 

to chloroplastic ROS after AA pre-treatment. AA made pgr5 more MV-tolerant similarly to 

the wild type, indicating that PGR5 is not involved in the observed gain in ROS tolerance 

(Fig. 4 – figure supplement 3A).  

Mitochondrial complex III signaling induces expression of several genes other than AOX. 

To test whether accumulation of AOXs contributed to PSII protection from chloroplastic 

ROS or merely correlated with it, the AOX inhibitor salicylhydroxamic acid (SHAM) was 

used. Treatment of plants with SHAM alone resulted in very mild PSII inhibition, which 

was similar in rcd1 and Col-0 (Fig. 4 – figure supplement 3B). However, pre-treatment 

with SHAM made both rcd1 and Col-0 plants significantly more sensitive to chloroplastic 

ROS generated by MV (Fig. 4E), thereby partially abolishing MV tolerance of the rcd1 

mutant. Involvement of the plastid terminal oxidase PTOX (Fu et al., 2012) in this effect 

was excluded by using the ptox mutant (Fig. 4 – figure supplement 3C). Noteworthy, 

analyses of AOX1a-OE, aox1a and rcd1 aox1a lines demonstrated that AOX1a isoform 

was neither sufficient nor necessary for chloroplast ROS tolerance (Fig. 4 – figure 

supplement 4). Taken together, these results indicated that mitochondrial AOXs 
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contributed to resistance of PSII to chloroplastic ROS. We hypothesize that AOX isoforms 

other than AOX1a are implicated in this process.  

Evidence for altered electron transfer between chloroplasts and mitochondria in 

rcd1 

The pathway linking mitochondrial AOXs with chloroplastic ROS processing is likely to 

involve electron transfer between the two organelles. Chlorophyll fluorescence under light 

(Fs; Fig. 1 – figure supplement 2) inversely correlates with the rate of electron transfer 

from PSII to plastoquinone and thus can be used as a proxy of the reduction state of the 

chloroplast ETC. After combined treatment with SHAM and MV (as in Fig. 4E), Fs 

increased in rcd1, but not in Col-0 (Fig. 5A). This hinted at a pathway that in rcd1 linked 

the chloroplast ETC to the activity of mitochondrial AOXs, with the latter functioning as 

an electron sink. When the AOX activity was inhibited by SHAM, electron flow along this 

pathway was blocked. This led to accumulation of electrons in the chloroplast ETC and 

hence to the observed rise in Fs. As a parallel approach, dynamics of PSII photochemical 

quenching was evaluated in MV-pre-treated Col-0 and rcd1. In both lines, this parameter 

dropped within the first 20 min upon exposure to light and then started to recover. 

Recovery was more pronounced and more suppressed by SHAM in rcd1 (Fig. 5 – figure 

supplement 1). These experiments suggest that exposure of MV-pretreated plants to light 

triggered an adjustment of electron flows, which was compromised by SHAM. This was 

in line with the involvement of AOXs in photosynthetic electron transfer and chloroplast 

ROS maintenance.  

One of the mediators of electron transfer between the organelles is the malate shuttle 

(Scheibe 2004, Zhao et al. 2018). Thus, malate concentrations were measured in total 

extracts from Col-0 and rcd1 seedlings. Illumination of seedlings pre-treated with MV led 

to dramatic decrease in malate concentration in Col-0, but not in rcd1 (Fig. 5B). 

Noteworthy, under standard light-adapted growth conditions, the concentration and the 

subcellular distribution of malate was unchanged in rcd1 (Fig. 5 – figure supplement 2). 

These observations suggest that exposure to light of MV-pre-treated plants resulted in 

rearrangements of electron flows that were different in Col-0 and rcd1.   

Next, the activity of another component of the malate shuttle, the NADPH-dependent 

malate dehydrogenase (NADPH-MDH), was measured. Chloroplast NADPH-MDH is a 

redox-regulated enzyme activated by reduction of thiol bridges. Thus, the initial NADPH-
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MDH activity may reflect the in vivo thiol redox state of the cellular compartment from 

which it has been isolated. After measuring this parameter, thiol reductant was added to 

the extracts to reveal the total NADPH-MDH activity. Both values were higher in rcd1 than 

in Col-0 (Fig. 5C). To determine the contribution of in vivo thiol redox state, the initial 

NADPH-MDH activity was divided by the total activity. This value, the activation state, 

was also increased in rcd1 (Fig. 5C). 

Taken together, our results suggested that mitochondria contributed to ROS processing 

in the chloroplasts via a mechanism involving mitochondrial AOXs and possibly malate 

shuttle. These processes appeared to be dynamically regulated in response to 

chloroplastic ROS production, and RCD1 was involved in this regulation. 

Retrograde signaling from both chloroplasts and mitochondria is altered in rcd1 

Our results demonstrated that absence of RCD1 caused physiological alterations in both 

chloroplasts and mitochondria. As RCD1 is a nuclear-localized transcriptional co-

regulator (Jaspers et al. 2009, Jaspers et al. 2010), its involvement in retrograde signaling 

pathways from both organelles was assessed. Transcriptional changes observed in rcd1 

(Jaspers et al. 2009, Brosche et al. 2014) were compared to gene expression datasets 

obtained after perturbations in energy organelles. This revealed a striking similarity of 

genes differentially regulated in rcd1 to those affected by disturbed organellar function 

(Fig. 6 – figure supplement 1). Analyzed perturbations included disruptions of 

mitochondrial genome stability (msh1 recA3), organelle translation (mterf6, prors1), 

activity of mitochondrial complex I (ndufs4, rotenone), complex III (AA), and ATP synthase 

function (oligomycin), as well as treatments and mutants related to chloroplastic ROS 

production (high light, MV, H2O2, alx8/ fry1, norflurazon).  

In particular, a significant overlap was observed between genes mis-regulated in rcd1 

and the mitochondrial dysfunction stimulon (MDS) genes (De Clercq et al. 2013) (Fig. 

6A). Consistently, AOX1a was among the genes induced by the majority of the 

treatments. To address the role of RCD1 protein in the induction of other MDS genes, 

transcription of some of them was assayed 3 hours after AA treatment (Fig. 6 – figure 

supplement 2). As expected, expression of all these genes was elevated in rcd1 under 

control conditions. AA induced accumulation of MDS transcripts to similar levels in Col-0, 

rcd1 and rcd1: RCD1-HA lines expressing low levels of RCD1. For one marker gene, 
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UPOX (UP-REGULATED BY OXIDATIVE STRESS), AA induction was impaired in the 

lines expressing higher levels of RCD1-HA or RCD1Δ7Cys-HA (Fig. 6 supplement 2).  

In addition to MDS, the list of genes mis-regulated in rcd1 overlapped with those affected 

by 3'-phosphoadenosine 5'-phosphate (PAP) signaling (Estavillo et al. 2011, Van Aken 

and Pogson 2017) (Fig. 6A). Given that PAP signaling is suppressed by the activity of 

SAL1, this signaling was increased in the mutants deficient in SAL1 (alx8 and fry1, Fig. 

6A, Fig. 6 supplement 1). One of the MDS genes with increased expression in rcd1 

encoded the sulfotransferase SOT12, an enzyme generating PAP. Accordingly, 

immunoblotting of total protein extracts with αSOT12 antibody demonstrated elevated 

SOT12 protein abundance in rcd1 (Fig. 6B). To address the functional interaction of 

RCD1 with PAP signaling, rcd1-4 was crossed with alx8 (also known as sal1-8). The 

resulting rcd1 sal1 mutant was severely affected in development (Fig. 6C). The effect of 

PAP signaling on the tolerance of PSII to chloroplastic ROS production was tested. The 

single sal1 mutant was more tolerant to MV than Col-0, while under high MV 

concentration rcd1 sal1 was even more MV-tolerant than rcd1 (Fig. 6 – figure supplement 

3). Together with transcriptomic similarities between rcd1 and sal1 mutants, these results 

further supported an overlap and/ or synergy of PAP and RCD1 signaling pathways.  

RCD1 interacts with ANAC transcription factors in vivo  

Expression of the MDS genes is regulated by the transcription factors ANAC013 and 

ANAC017 (De Clercq et al. 2013). The ANAC-responsive cis-element (De Clercq et al. 

2013) was significantly enriched in promoter regions of rcd1 mis-regulated genes (Fig. 6 

– figure supplement 1). This suggested a functional connection between RCD1 and 

transcriptional regulation of the MDS genes by ANAC013/ ANAC017. In an earlier study, 

ANAC013 was identified among many transcription factors interacting with RCD1 in the 

yeast two-hybrid system (Jaspers et al. 2009). This prompted us to investigate further the 

connection between RCD1 and ANAC013 and the in vivo relevance of this interaction.  

Association of RCD1 with ANAC transcription factors in vivo was tested in two 

independent pull-down experiments. To identify interaction partners of ANAC013, an 

Arabidopsis line expressing ANAC013-GFP (De Clercq et al. 2013) was used. ANAC013-

GFP was purified with αGFP beads, and associated proteins were identified by mass 

spectrometry in three replicates. RCD1 and its closest homolog SRO1, as well as 

ANAC017, were identified as ANAC013 interacting proteins (see Table 1 for a list of 
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selected nuclear-localized interaction partners of ANAC013, and Fig. 7 – supplemental 

dataset 1 for the full list of identified proteins and mapped peptides). These data 

confirmed that ANAC013, RCD1 and ANAC017 are components of the same protein 

complex in vivo. In a reciprocal pull-down assay using transgenic Arabidopsis line 

expressing RCD1 tagged with triple Venus YFP under the control of UBIQUITIN10 

promoter, RCD1-3xVenus and interacting proteins were immunoprecipitated using αGFP 

(Table 1; Fig. 7 – supplemental dataset 2). ANAC017 was found among RCD1 

interactors.   

To test whether RCD1 directly interacts with ANAC013/ ANAC017 in vivo, the complex 

was reconstituted in the human embryonic kidney cell (HEK293T) heterologous 

expression system (details in Fig. 7 – figure supplement 1). Together with the results of 

in vivo pull-down assays, these experiments strongly supported the formation of a 

complex between RCD1 and ANAC013/ ANAC017 transcription factors.   

Structural and functional consequences of RCD1-ANAC interaction 

RCD1 interacts with many transcription factors belonging to different families (Jaspers et 

al. 2009, Jaspers et al. 2010, Bugge et al., 2018) via its RST domain. The strikingly 

diverse set of RCD1 interacting partners may be partially explained by disordered flexible 

regions present in the transcription factors (Kragelund et al., 2012, O'Shea et al., 2017, 

Bugge et al. 2018). To address structural details of this interaction, the C-terminal domain 

of RCD1 (residues 468-589) including the RST domain (RSTRCD1; 510-568) was purified 

and labeled with 13C and 15N for NMR spectroscopic study (Tossavainen et al., 2017) 

(details in Fig. 7 – figure supplement 2 and Fig. 7 – supplemental dataset 3). ANAC013 

was shown to interact with RCD1 in yeast two-hybrid assays (Jaspers et al. 2009, O'Shea 

et al. 2017). Thus, ANAC013235-284 peptide was selected to address the specificity of the 

interaction of the RST domain with ANAC transcription factors using NMR (details in Fig. 

7 – figure supplement 3A, B). Binding of RCD1468-589 to ANAC013235-284 caused profound 

changes in the HSQC spectrum of RCD1468-589 (Fig. 7A, Fig. 7 – figure supplement 3C). 

These data supported a strong and specific binary interaction between the RCD1 RST 

domain and the ANAC013 transcription factor.  

To evaluate the physiological significance of this interaction, stable rcd1 complementation 

lines expressing an HA-tagged RCD1 variant lacking the C-terminus (amino acids 462-

589) were generated. The rcd1: RCD1ΔRST-HA lines were characterized by increased 
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accumulation of AOXs in comparison with the rcd1: RCD1-HA lines (Fig. 7B). They also 

had rcd1-like tolerance of PSII to chloroplastic ROS (Fig. 7C).  

Physiological outcomes of the interaction between RCD1 and ANAC transcription factors 

were further tested by reverse genetics. ANAC017 regulates the expression of ANAC013 

in the mitochondrial retrograde signaling cascade (Van Aken et al. 2016). Since ANAC017 

precedes ANAC013 in the regulatory pathway and because no anac013 knockout mutant 

is available, only the rcd1-1 anac017 double mutant was generated. In this double mutant 

curly leaf habitus of rcd1 was partially suppressed (Fig. 8A). The rcd1-1 anac017 mutant 

was more sensitive to chloroplastic ROS than the parental rcd1 line (Fig. 8B). The double 

mutant was characterized by lower abundance of AOX isoforms (Fig. 8C), dramatically 

decreased expression of MDS genes (Fig. 8 – figure supplement 1) and lower AOX 

respiration capacity (Fig. 8D) compared to rcd1. Thus, gene expression, developmental, 

chloroplast- and mitochondria-related phenotypes of rcd1 were partially mediated by 

ANAC017. These observations suggested that the in vivo interaction of RCD1 with ANAC 

transcription factors mediated by the RCD1 C-terminal RST domain are necessary for 

regulation of mitochondrial respiration and chloroplast ROS processing.    

 

Discussion 

RCD1 integrates chloroplast and mitochondrial signaling pathways 

Plant chloroplasts and mitochondria work together to supply the cell with energy and 

metabolites. In these organelles, ROS are formed as by-products of the electron transfer 

chains (photosynthetic in chloroplasts and respiratory in mitochondria). ROS serve as 

versatile signaling molecules regulating many aspects of plant physiology such as 

development, stress signaling, systemic responses, and programmed cell death (PCD) 

(Dietz et al. 2016, Noctor et al. 2017, Waszczak et al. 2018). This communication network 

also affects gene expression in the nucleus where numerous signals are perceived and 

integrated. However, the molecular mechanisms of the coordinated action of the two 

energy organelles in response to environmental cues are only poorly understood. 

Evidence accumulated in this and earlier studies revealed the nuclear protein RCD1 as a 

regulator of energy organelle communication with the nuclear gene expression 

apparatus.  
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The rcd1 mutant displays alterations in both chloroplasts and mitochondria (Fujibe et al. 

2004, Heiber et al. 2007, Jaspers et al. 2009, Brosche et al. 2014, Hiltscher et al. 2014), 

and transcriptomic outcomes of RCD1 inactivation share similarities with those triggered 

by disrupted functions of both organelles (Fig. 6). The results here suggest that RCD1 

forms inhibitory complexes with components of mitochondrial retrograde signaling in vivo. 

Chloroplastic ROS appear to exhibit a direct influence on redox state and stability of 

RCD1 in the nucleus. This positions RCD1 within a regulatory system encompassing 

mitochondrial complex III signaling through ANAC013/ ANAC017 transcription factors 

and chloroplastic signaling by H2O2. The existence of such an inter-organellar regulatory 

system, integrating mitochondrial ANAC013 and ANAC017-mediated signaling (De 

Clercq et al. 2013, Ng et al. 2013) with the PAP-mediated chloroplastic signaling (Estavillo 

et al. 2011, Chan et al. 2016, Crisp et al. 2018) has been previously proposed on the 

basis of transcriptomic analyses (Van Aken and Pogson 2017). However, the underlying 

molecular mechanisms were unknown. Based on our results we propose that RCD1 may 

function at the intersection of mitochondrial and chloroplast signaling pathways and act 

as a nuclear integrator of both PAP and ANAC013 and ANAC017-mediated retrograde 

signals. 

RCD1 has been proposed to act as a transcriptional co-regulator because of its 

interaction with many transcription factors in yeast-two-hybrid analyses (Jaspers et al. 

2009). The in vivo interaction of RCD1 with ANAC013 and ANAC017 revealed in this 

study (Table 1, Fig. 7, 8) allows RCD1 to modulate expression of the MDS, a set of 

nuclear genes activated by ANAC013/ ANAC017 and mostly encoding mitochondrial 

components (De Clercq et al. 2013). ANAC013 itself is an MDS gene, thus mitochondrial 

signaling through ANAC013/ ANAC017 establishes a self-amplifying loop. Transcriptomic 

and physiological data support the role of RCD1 as a negative regulator of these 

transcription factors (Fig. 6, 7, 8). Thus, RCD1 is likely involved in the negative regulation 

of the ANAC013/ ANAC017 self-amplifying loop and in preventing excessive expression 

of MDS genes under unstressed conditions.  

Induction of genes in response to stress is commonly associated with rapid inactivation 

of a negative co-regulator. Accordingly, the RCD1 protein was sensitive to treatments 

triggering or mimicking chloroplastic ROS production. MV and H2O2 treatment of plants 

resulted in rapid oligomerization of RCD1 (Fig. 2). Involvement of chloroplasts is indicated 

by the fact that MV treatment led to redox changes of RCD1-HA only in light (Fig. 2B, Fig. 
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4 – figure supplement 2B). In addition, little change was observed with the mitochondrial 

complex III inhibitors AA or myx (Fig. 4 – figure supplement 2A, B). Together with the fact 

that MDS induction was not compromised in the rcd1 mutant (Fig. 4 – figure supplement 

1, Fig. 6 – figure supplement 2), this suggests that RCD1 may primarily function as a 

redox sensor of chloroplastic, rather than mitochondrial, ROS/ redox signaling. In addition 

to fast redox changes, the overall level of RCD1 gradually decreased during prolonged 

(5 hours) stress treatments. This suggests several independent modes of RCD1 

regulation at the protein level.  

The complicated post-translational regulation of RCD1 is reminiscent of another 

prominent transcriptional co-regulator protein NONEXPRESSER OF PR GENES 1 

(NPR1). NPR1 exists as a high molecular weight oligomer stabilized by intermolecular 

disulfide bonds between conserved cysteine residues. Accumulation of salicylic acid and 

cellular redox changes lead to the reduction of cysteines and release of NPR1 monomers 

that translocate to the nucleus and activate expression of defense genes (Kinkema et al., 

2000, Mou et al., 2003, Withers and Dong 2016). Similar to NPR1, RCD1 has a bipartite 

nuclear localization signal and, in addition, a putative nuclear export signal between the 

WWE and PARP-like domains. Like NPR1, RCD1 has several conserved cysteine 

residues. This could allow redox-controlled translocation of RCD1 between the nucleus 

and the cytoplasm, thus providing an additional mode of regulation. Changes of RCD1 

localization between the nucleus and the cytosol in response to stress conditions have 

previously been described in transient expression systems (Katiyar-Agarwal et al., 2006). 

Interestingly, mutation of seven interdomain cysteines in RCD1 largely eliminated the fast 

in vivo effect of chloroplastic ROS on redox state and stability of RCD1; however, it did 

not significantly alter the plant response to MV (Fig. 2, Fig. 2 – figure supplement 1C, D). 

This suggests that redox-dependent oligomerization of RCD1 may serve to fine-tune its 

activity. 

MDS genes are involved in interactions between the organelles 

How the RCD1-dependent induction of MDS genes contributes to the energetic and 

signaling landscape of the plant cell remains to be investigated. Our results suggest that 

one component of this adaptation is the activity of mitochondrial alternative oxidases, 

which are part of the MDS regulon. Consequently, AOX proteins accumulate at higher 

amounts in rcd1 (Fig. 4). Pretreatment of wild type plants with complex III inhibitors AA or 
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myx led to elevated AOX abundance coinciding with increased tolerance to chloroplastic 

ROS. Moreover, the AOX inhibitor SHAM made plants more sensitive to MV, indicating 

the direct involvement of AOX activity in the chloroplastic ROS processing. It thus appears 

that AOXs in the mitochondria form an electron sink that indirectly contributes to the 

oxidization of the electron acceptor side of PSI. In the rcd1 mutant, this mechanism may 

be continuously active. The described inter-organellar electron transfer may decrease 

production of ROS by PSI (asterisk in Fig. 9). Furthermore, chloroplastic ROS are 

considered the main electron sink for oxidation of chloroplast thiol enzymes (Ojeda et al. 

2018, Vaseghi et al. 2018, Yoshida et al. 2018). Thus, the redox status of these enzymes 

could depend on the proposed inter-organellar pathway. This is in line with higher 

reduction of the chloroplast enzymes 2-CP and NADPH-MDH observed in rcd1 (Fig. 1C, 

Fig. 5C). 

The malate shuttle was recently shown to mediate a chloroplast-to-mitochondria electron 

transfer pathway that caused ROS production by complex III and evoked mitochondrial 

retrograde signaling (Wu et al., 2015, Zhao et al. 2018). Altered levels of malate and 

increased activity of NADPH-dependent malate dehydrogenase in rcd1 (Fig. 5) suggest 

that in this mutant the malate shuttle could act as an inter-organellar electron carrier. 

Another MDS gene with more abundant mRNA levels in the rcd1 mutant encodes 

sulfotransferase SOT12, an enzyme involved in PAP metabolism (Klein and Papenbrock 

2004). Accordingly, SOT12 protein level was significantly increased in the rcd1 mutant 

(Fig. 6B). Accumulation of SOT12 and similarities between transcript profiles of RCD1- 

and PAP-regulated genes suggest that PAP signaling is likely to be constitutively active 

in the rcd1 mutant. Unbalancing this signaling by elimination of SAL1 leads to severe 

developmental defects, as evidenced by the stunted phenotype of the rcd1 sal1 double 

mutant. Thus, the RCD1 and the PAP signaling pathways appear to be overlapping and 

somewhat complementary, but the exact molecular mechanisms remain to be explored.  

RCD1 regulates stress responses and cell fate 

The MDS genes represent only a fraction of genes showing differential regulation in rcd1 

(Fig. 6 – figure supplement 1). This likely reflects the fact that RCD1 interacts with many 

other protein partners in addition to ANACs. The C-terminal RST domain of RCD1 was 

shown to interact with transcription factors belonging to DREB, PIF, ANAC, Rap2.4 and 

other families (Jaspers et al. 2009, Vainonen et al. 2012, Hiltscher et al. 2014, Bugge et 
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al. 2018). Analyses of various transcription factors interacting with RCD1 revealed little 

structural similarity between their RCD1-interacting sequences (O'Shea et al. 2017). The 

flexible structure of the C-terminal domain of RCD1 probably determines the specificity 

and ability of RCD1 to interact with those different transcription factors. This makes RCD1 

a hub in the crosstalk of organellar signaling with hormonal, photoreceptor, immune and 

other pathways and a likely mechanism by which these pathways are integrated and co-

regulated. 

The changing environment requires plants to continuously readjust their energy 

metabolism and ROS processing. On the one hand, this happens because of abiotic 

stress factors such as changing light intensity or temperature. For example, a sunlight 

fleck on a shade-adapted leaf can instantly alter excitation pressure on photosystems by 

two orders of magnitude (Allahverdiyeva et al., 2015). On the other hand, chloroplasts 

and mitochondria are implicated in plant immune reactions to pathogens, contributing to 

decisive checkpoints including PCD (Shapiguzov et al., 2012, Petrov et al., 2015, Wu et 

al. 2015, Van Aken and Pogson 2017, Zhao et al. 2018). In both scenarios, perturbations 

of organellar ETCs may be associated with increased production of ROS. However, the 

physiological outcomes of the two situations can be opposite: acclimation in one case 

and cell death in the other. The existence of molecular mechanisms that unambiguously 

differentiate one type of response from the other has been previously suggested (Trotta 

et al., 2014, Sowden et al., 2017, Van Aken and Pogson 2017). The ANAC017 

transcription factor and MDS genes, as well as PAP signaling, were proposed as 

organelle-related components counteracting PCD during abiotic stress (Van Aken and 

Pogson 2017). This suggests that RCD1 is involved in the regulation of the cell fate 

checkpoint. Accordingly, the rcd1 mutant is resistant to a number of abiotic stress 

treatments (Ahlfors et al. 2004, Fujibe et al. 2004, Jaspers et al. 2009).  

Interestingly, in contrast to its resistance to abiotic stress, rcd1 is more sensitive to 

treatments related to biotic stress. The rcd1 mutant was originally identified in a forward 

genetic screen for sensitivity to ozone (Overmyer et al. 2000). Ozone decomposes in the 

plant cell wall to ROS mimicking formation of ROS by respiratory burst oxidases (RBOHs) 

in the course of plant immune reactions (Joo et al., 2005, Vainonen and Kangasjarvi 

2015). The opposing roles of RCD1 in the cell fate may be related to its interaction with 

diverse transcription factor partners and/ or different regulation of its stability and 

abundance. For example, transcriptomic analyses showed that under standard growth 
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conditions, a cluster of genes associated with defense against pathogens had decreased 

expression in rcd1 (Brosche et al. 2014), and no ANAC013/ ANAC017 cis-element motif 

is associated with these genes (Fig. 6 – figure supplement 1). In agreement with its role 

in biotic stress, RCD1 is a target for a fungal effector protein that prevents the activation 

of plant immunity (Wirthmueller et al., 2018). Another possible factor determining varying 

roles of RCD1 in the cell fate is differential regulation of RCD1 protein function by ROS/ 

redox signals emitted by different subcellular compartments. The sensitivity of RCD1 to 

chloroplastic ROS (Fig. 2) can be interpreted as negative regulation of the pro-PCD 

component. We hypothesize that this inactivation can occur in environmental situations 

that require physiological adaptation rather than PCD. For example, an abrupt increase 

in light intensity can cause excessive electron flow in photosynthetic ETC and 

overproduction of reducing power. The resulting deficiency of PSI electron acceptors can 

lead to increased production of chloroplastic ROS, which via retrograde signaling might 

influence RCD1 stability and/ or redox status, inhibiting its activity and thus affecting 

adjustments in nuclear gene expression (Fig. 9). Among other processes, RCD1-

mediated suppression of ANAC013/ ANAC017 transcription factors is released, leading 

to the induction of the MDS regulon. The consequent expression of AOXs together with 

increased chloroplast-to-mitochondrial electron transfer is likely to provide electron sink 

for photosynthesis, which could suppress chloroplast ROS production and contribute to 

the plant’s survival under a changing environment (Fig. 9). 

 

Materials and methods 

Plants and mutants 

Arabidopsis thaliana adult plants were grown on soil (peat : vermiculite = 1:1) in white 

luminescent light (220-250 µmol m-2 s-1) at a 12-hour photoperiod. Seedlings were grown 

for 14 days on 1 x MS basal medium (Sigma-Aldrich) with 0.5 % Phytagel (Sigma-Aldrich) 

without added sucrose in white luminescent light (150-180 µmol m-2 s-1) at a 12-hour 

photoperiod. Arabidopsis rcd1-4 mutant (GK-229D11), rcd1-1 (Overmyer et al. 2000), 

aox1a (SAIL_030_D08), AOX1a-OE (Umbach et al. 2005), ptox (Wetzel et al., 1994), 

anac017 (SALK_022174), and sal1-8 (Wilson et al., 2009) mutants are of Col-0 

background; pgr5 mutant is of gl1 background (Munekage et al., 2002). ANAC013-GFP 

line is described in (De Clercq et al. 2013), RCD1-HA line labeled “a” in Fig. 1 – figure 
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supplement 1 is described in (Jaspers et al. 2009), rcd1 aox1a double mutant – in 

(Brosche et al. 2014). RCD1-3xVenus, RCD1∆7Cys-HA, RCD1∆RST-HA lines are 

described in Cloning.  

Cloning  

rcd1 complementation line expressing RCD1 tagged with triple HA epitope on the C-

terminus was described previously (Jaspers et al. 2009). In this line the genomic 

sequence of RCD1 was expressed under the control of the RCD1 native promotor (3505 

bp upstream the start codon). The RCD1∆7Cys-HA construct was generated in the same 

way as RCD1-HA. The cysteine residues were mutated to alanines by sequential PCR-

based mutagenesis of the genomic sequence of RCD1 in the pDONR/Zeo vector followed 

by end-joining with In-Fusion (Clontech). The RCD1∆RST-HA variant was generated in 

the same vector by removal with a PCR reaction of the region corresponding to amino 

acid residues 462-589. The resulting construct was transferred to the pGWB13 binary 

vector by a Gateway reaction. To generate the RCD1-3xVenus construct, RCD1 cDNA 

was fused to the UBIQUITIN10 promoter region and to the C-terminal triple Venus YFP 

tag in a MultiSite Gateway reaction as described in (Siligato et al. 2016). The vectors 

were introduced in the rcd1-4 mutant by floral dipping. Homozygous single insertion 

Arabidopsis lines were obtained. They were defined as the lines demonstrating 1:3 

segregation of marker antibiotic resistance in T2 generation and 100 % resistance to the 

marker antibiotic in T3 generation.  

For HEK293T cell experiments codon-optimized N-terminal 3xHA-fusion of RCD1 and C-

terminal 3xmyc-fusion of ANAC013 were cloned into pcDNA3.1(+). Full-length ANAC017 

was cloned pcDNA3.1(-) in the Xho I/ Hind III sites, the double myc tag was introduced in 

the reverse primer sequence. The primer sequences used for the study are presented in 

the Supplemental table.  

Generation of the αRCD1 antibody 

αRCD1 specific antibody was raised in rabbit using denatured RCD1-6His protein as the 

antigen for immunization (Storkbio, Estonia). The final serum was purified using 

denatured RCD1-6His immobilized on nitrocellulose membrane, aliquoted and stored at 

-80 °C. For immunoblotting, 200 μg of total protein were loaded per well, the antibody 

was used in dilution 1 : 500. 

Inhibitor treatments 
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For PSII inhibition studies, leaf discs were let floating on Milli-Q water solution 

supplemented with 0.05 % Tween 20 (Sigma-Aldrich). Final concentration of AA and myx 

was 2.5 μM each, of SHAM – 2 mM. For transcriptomic experiments, plant rosettes were 

sprayed with water solution of 50 μM AA complemented with 0.01 % Silwet Gold (Nordisk 

Alkali). Stock solutions of these chemicals were prepared in DMSO, equal volumes of 

DMSO were added to control samples. Pre-treatment with chemicals was carried out in 

the darkness, overnight for MV, AA and myx, 1 hour for SHAM. After spraying plants with 

50 μM AA they were incubated in growth light for 3 hours. For chemical treatment in 

seedlings grown on MS plates, 5 mL of Milli-Q water with or without 50 µM MV were 

poured in 9-cm plates at the end of the light period. The seedlings were kept in the 

darkness overnight, and light treatment was performed on the following morning. For 

H2O2 treatment, the seedlings were incubated in 5 mL of Milli-Q water with or without 100 

mM H2O2 in light. 

DAB staining 

Plant rosettes were stained with 3,3′-diaminobenzidine (DAB) essentially as described in 

(Daudi et al., 2012) [Daudi, A. and O’Brien, J. A. (2012). Detection of Hydrogen Peroxide 

by DAB Staining in Arabidopsis Leaves. Bio-protocol 2(18): e263. DOI: 

10.21769/BioProtoc.263.]. After vacuum infiltration of DAB-staining solution in the 

darkness, rosettes were exposed to light (180 µmol m-2 s-1) for 20 min to induce 

production of chloroplastic ROS and then immediately transferred to the bleaching 

solution.   

Spectroscopic measurements of photosynthesis  

Chlorophyll fluorescence was measured by MAXI Imaging PAM (Walz, Germany). PSII 

inhibition protocol consisted of repetitive 1-hour periods of blue actinic light (450 nm, 80 

µmol m-2 s-1) each followed by a 20-min dark adaptation, then Fo and Fm measurement. 

PSII photochemical yield was calculated as Fv/Fm = (Fm-Fo)/Fm (Fig. 1 – figure 

supplement 2). To plot raw chlorophyll fluorescence kinetics under light (Fs) against time, 

the reads were normalized to dark-adapted Fo. For the measurements of photochemical 

quenching, Fm’ was measured with saturating pulses triggered against the background 

of activing light (450 nm, 80 µmol m-2 s-1), and the following formulae were used: qP = 

(Fm' - Fs)/(Fm'-Fo'), where Fo' ≈ Fo / (((Fm – Fo) / Fm) + (Fo / Fm')) (Oxborough and 

Baker 1997). The assays were performed in 96-well plates. In each assay, leaf discs from 
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at least 4 individual plants were analyzed. Each assay was reproduced at least three 

times. 

PSI (P700) oxidation was measured by DUAL-PAM-100 (Walz, Germany) as described 

(Tiwari et al., 2016). Leaves were pre-treated in 1 µM MV for 4 hours, then shifted to light 

(160 µmol m-2 s-1) for indicated time. Oxidation of P700 was induced by PSI-specific far 

red light (FR, 720 nm). To determine fully oxidized P700 (Pm), a saturating pulse of actinic 

light was applied under continuous background of FR, followed by switching off both the 

actinic and FR light. The kinetics of P700+ reduction by intersystem electron transfer pool 

and re-oxidation by FR was determined by using a multiple turnover saturating flash of 

PSII light (635 nm) in the background of continuous FR. 

Isolation, separation and detection of proteins and protein complexes  

Thylakoids were isolated as described in (Jarvi et al., 2016). Chlorophyll content was 

determined according to (Porra et al., 1989) and protein content according to (Lowry et 

al., 1951). For immunoblotting of total plant extracts, the plant material was frozen 

immediately after treatments in liquid nitrogen and ground. Total proteins were extracted 

in SDS extraction buffer [50 mM Tris-HCl (pH 7.8), 2 % SDS, 1 x protease inhibitor cocktail 

(Sigma-Aldrich), 2 mg/ mL NaF] for 20 min at 37 ºC and centrifuged at 18 000 x g for 10 

min. Supernatants were normalized for protein concentration and resolved by SDS-

PAGE. For separation of proteins, SDS-PAGE (10-12 % polyacrylamide) was used 

(Laemmli 1970). For thylakoid proteins, the gel was complemented with 6 M urea. To 

separate thylakoid membrane protein complexes, isolated thylakoids were solubilized 

with n-dodecyl β-D-maltoside (Sigma-Aldrich) and separated in BN-PAGE (5-12.5 % 

polyacrylamide) as described by (Jarvi et al. 2016). After electrophoresis, proteins were 

electroblotted to PVDF membrane and immunoblotted with specific antibodies. αSOT12 

antibodies have Agrisera reference number AS16 3943. For quantification of 

immunoblotting signal, ImageJ software was used (https://imagej.nih.gov/ij/).  

Analysis of protein thiol redox state by mobility shift assays  

Thiol redox state of 2-CPs in detached Col-0 and rcd1 leaves adapted to darkness or light 

(3 hours of 160 µmol m-2 s-1), was determined by alkylating free thiols in TCA-precipitated 

proteins with 50 mM N-ethylmaleimide in the buffer containing 8 M urea, 100 mM Tris‐HCl 

(pH 7.5), 1 mM EDTA, 2% SDS, and 1/10 of protease inhibitor cocktail (Thermo 

Scientific), reducing in vivo disulfides with 100 mM DTT and then alkylating the newly 

reduced thiols with 10 mM methoxypolyethylene glycol maleimide of molecular weight 5 
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kDa (Sigma-Aldrich), as described in (Nikkanen et al. 2016). Proteins were then 

separated by SDS-PAGE and immunoblotted with a 2-CP-specific antibody. 

Non-aqueous fractionation (NAF) 

Leaves of Arabidopsis plants were harvested in the middle of the light period and snap-

frozen in liquid nitrogen. Four grams of fresh weight of frozen plant material was ground 

to a fine powder using a mixer mill (Retsch), transferred to Falcon tubes and freeze-dried 

at 0.02 bar for 5 days in a lyophilizer, which had been pre-cooled to −40 °C. The NAF-

fractionation procedure was performed as described in (Krueger et al., 2011, Arrivault et 

al., 2014, Krueger et al., 2014) except that the gradient volume, composed of the solvents 

tetrachloroethylene (C2Cl4)/ heptane (C7H16), was reduced from 30 mL to 25 mL but with 

the same linear density. Leaf powder was resuspended in 20 mL C2Cl4/ C7H16 mixture 

66:34 (v/v; density ρ = 1.3 g cm-3), and sonicated for 2 min, with 6 × 10 cycles at 65 % 

power. The sonicated suspension was filtered through a nylon net (20 μm pore size). The 

net was washed with 30 mL of heptane. The suspension was centrifuged for 10 min at 3 

200 x g at 4 °C and the pellet was resuspended in 5 mL C2Cl4/ C7H16 mixture 66:34. The 

gradient was formed in 38 mL polyallomer centrifugation tube using a peristaltic gradient 

pump (BioRad) generating a linear gradient from 70 % solvent A (C2Cl4/ C7H16 mixture 

66:34) to 100 % solvent B (100 % C2Cl4) with a flow rate of 1.15 mL min-1, resulting in a 

density gradient from 1.43 g cm-3 to 1.62 g cm-3. Five mL suspension containing the 

sample was loaded on top of the gradient and centrifuged for 55 min at 5 000 x g at 4 °C 

using a swing-out rotor with acceleration and deceleration of 3:3 (brakes off). Each of the 

compartment-enriched fractions (F1 to F8) were transferred carefully from the top of the 

gradient into a 50-mL Falcon tube, filled up with heptane to a volume of 20 mL and 

centrifuged at 3 200 x g for 10 min. The pellet was resuspended in 6 mL of heptane and 

subsequently divided into 6 aliquots of equal volume (950 μL). The pellets had been dried 

in a vacuum concentrator without heating and stored at −80 °C until further use. 

Subcellular compartmentation of markers or the metabolites of our interest was calculated 

by BestFit method as described in (Krueger et al. 2011, Krueger et al. 2014). Percentage 

values (% of the total found in all fractions) of markers and metabolites have been used 

to make the linear regressions for subcellular compartments using BestFit. 

Marker measurements for non-aqueous fractionation 

Before enzyme and metabolite measurements, dried pellets were homogenized in the 

corresponding extraction buffer by the addition of one steel ball (2-mm diameter) to each 
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sample and shaking at 25 Hz for 1 min in a mixer mill. Enzyme extracts were prepared 

as described in (Gibon et al., 2004) with some modifications. The extraction buffer 

contained 50 mM HEPES-KOH (pH 7.5), 10 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM 

benzamidine, 1 mM ε-aminocaproic acid, 0.25 % (w/v) BSA, 20 μM leupeptin, 0.5 mM 

DTT, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 % (v/v) Triton X-100, 20 % glycerol. 

The extract was centrifuged (14 000 rpm at 4 °C for 10 min) and the supernatant was 

used directly for the enzymatic assays. The activities of adenosine diphosphate glucose 

pyrophosphorylase (AGPase) and phosphoenolpyruvate carboxylase (PEPC) were 

determined as described in (Gibon et al. 2004) but without using the robot-based platform. 

Chlorophyll was extracted twice with 80 % (v/v) and once with 50 % (v/v) hot ethanol/ 10 

mM HEPES (pH 7.0) followed by 30-min incubation at 80 °C and determined as described 

in (Cross et al., 2006). Nitrate was measured by the enzymatic reaction as described in 

(Cross et al. 2006). 

Incubation of Arabidopsis leaf discs with [U-14C] glucose 

For the light experiment, leaf discs were incubated in light in 5 mL 10 mM MES-KOH (pH 

6.5), containing 1.85 MBq/ mmol [U-14C] glucose (Hartmann Analytic) in a final 

concentration of 2 mM. In the dark experiment, leaf discs were incubated under green 

light for 150 min. Leaf discs were placed in a sieve, washed several times in double-

distilled water, frozen in liquid nitrogen, and stored at −80 °C until further analysis. All 

incubations were performed in sealed flasks under green light and shaken at 100 rpm. 

The evolved 14CO2 was collected in 0.5 mL of 10 % (w/v) KOH. 

Fractionation of 14C-labeled tissue extracts and measurement of metabolic fluxes 

Extraction and fractionation were performed according to (Obata et al., 2017). Frozen leaf 

discs were extracted with 80 % (v/v) ethanol at 80 °C (1 mL per sample) and re-extracted 

in two subsequent steps with 50 % (v/v) ethanol (1 mL per sample for each step), and the 

combined supernatants were dried under an air stream at 35 °C and resuspended in 1 

mL of water (Fernie et al., 2001). The soluble fraction was subsequently separated into 

neutral, anionic, and basic fractions by ion-exchange chromatography; the neutral fraction 

(2.5 mL) was freeze-dried, resuspended in 100 μL of water, and further analyzed by 

enzymatic digestion followed by a second ion-exchange chromatography step (Carrari et 

al., 2006). To measure phosphate esters, samples (250 μL) of the soluble fraction were 

incubated in 50 μL of 10 mM MES-KOH (pH 6.0), with or without 1 unit of potato acid 

phosphatase (grade II; Boehringer Mannheim) for 3 hours at 37 °C, boiled for 2 min, and 
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analyzed by ion-exchange chromatography (Fernie et al. 2001). The insoluble material 

left after ethanol extraction was homogenized, resuspended in 1 mL of water, and 

counted for starch (Fernie et al. 2001). Fluxes were calculated as described following the 

assumptions detailed by Geigenberger et al (Geigenberger et al., 1997, Geigenberger et 

al., 2000). Unfortunately, the discontinued commercial availability of the required 

positionally radiolabeled glucoses prevented us from analyzing fermentative fluxes more 

directly. 

Preparation of crude mitochondria 

Crude mitochondria were isolated from Arabidopsis rosette leaves as described in (Keech 

et al., 2005). 

Measurements of AOX capacity in vivo  

Seedling respiration and AOX capacity were assessed by measuring O2 consumption in 

the darkness using a Clark electrode as described in (Schwarzlander et al., 2009).  

Metabolite extraction 

Primary metabolites were analyzed with GC-MS according to (Roessner et al., 2000). 

GC-MS analysis was executed from the plant extracts of eight biological replicates 

(pooled samples). Plant material was homogenized in a Qiagen Tissuelyser II bead mill 

(Qiagen, Germany) with 1-1.5 mm Retsch glass beads. Soluble metabolites were 

extracted from plant material in two steps, first with 1 mL of 100 % methanol (Merck) and 

second with 1 mL of 80 % (v/v) aqueous methanol. During the first extraction step, 5 µL 

of internal standard solution (0.2 mg mL-1 of benzoic-d5 acid, 0.1 mg mL-1 of glycerol-d8, 

0.2 mg mL-1 of 4-methylumbelliferone in methanol) was added to each sample. During 

both extraction steps, the samples were vortexed for 30 min and centrifuged for 5 min at 

13 000 rpm (13 500 × g) at 4 °C. The supernatants were then combined for metabolite 

analysis. The extracts (2 mL) were dried in a vacuum concentrator (MiVac Duo, Genevac 

Ltd, Ipswich, UK), the vials were degassed with nitrogen and stored at -80 °C prior to 

derivatization and GC-MS analysis.  

Dried extracts were re-suspended in 500 µL of methanol. Aliquot of 200 µL was 

transferred to a vial and dried in a vacuum. The samples were derivatized with 40 µL of 

methoxyamine hydrochloride (MAHC, Sigma-Aldrich) (20 mg mL-1) in pyridine (Sigma-

Aldrich) for 90 min at 30 °C at 150 rpm, and with 80 µL N-methyl-N-(trimethylsilyl) 

trifluoroacetamide with 1 % trimethylchlorosilane (MSTFA with 1 % TMCS, Thermo 
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Scientific) for 120 min at 37 °C at 150 rpm. Alkane series (10 µL, C10–C40, Supelco) in 

hexane (Sigma-Aldrich) and 100 µL of hexane was added to each sample before GC-MS 

analysis.  

Metabolite analysis by gas chromatography-mass spectrometry  

The GC-MS system consisted of Agilent 7890A gas chromatograph with 7000 Triple 

quadrupole mass spectrometer and GC PAL autosampler and injector (CTC Analytics). 

Splitless injection (1 µL) was employed using a deactivated single tapered splitless liner 

with glass wool (Topaz, 4 mm ID, Restek). Helium flow in the column (Agilent HP-5MS 

Ultra Inert, length 30 m, 0.25 mm ID, 0.25 μm film thickness combined with Agilent 

Ultimate Plus deactivated fused silica, length 5 m, 0.25 mm ID) was 1.2 mL min-1 and 

purge flow at 0.60 min was 50 mL min-1. The injection temperature was set to 270 °C, MS 

interface 180 °C, source 230 °C and quadrupole 150 °C. The oven temperature program 

was as follows: 2 min at 50 °C, followed by a 7 °C min-1 ramp to 260 °C, 15 ºC min-1 ramp 

to 325 ºC, 4 min at 325 °C and post-run at 50 °C for 4.5 min. Mass spectra were collected 

with a scan range of 55-550 m/z.  

Metabolite Detector (versions 2.06 beta and 2.2N) (Hiller et al., 2009) and AMDIS (version 

2.68, NIST) were used for deconvolution, component detection and quantification. Malate 

levels were calculated as the peak area of the metabolite normalized with the peak area 

of the internal standard, glycerol-d8, and the fresh weight of the sample.  

Measurements of NADPH-MDH activity 

From light-adapted plants grown for 5 weeks (100-120 µmol m-2 s-1 at an 8-hour day 

photoperiod), total extracts were prepared as for non-aqueous fractionation in the 

extraction buffer supplemented with 250 µM DTT. In microplates, 5 µL of the extract 

(diluted x 500) were mixed with 20 µL of activation buffer (0.1 M Tricine-KOH (pH 8.0), 

180 mM KCl, 0.5 % Triton X-100). Initial activity was measured immediately after, while 

total activity was measured after incubation for 2 hours at room temperature in presence 

of additional 150 mM DTT.  Then assay mix was added consisting of 20 µL of assay buffer 

[0.5 M Tricine-KOH (pH 8.0), 0.25 % Triton X-100, 0.5 mM EDTA], 9 µL of water, and 1 

µL of 50 mM NADPH (prepared in 50 mM NaOH), after which 45 µL of 2.5 mM 

oxaloacetate or water control was added. The reaction was mixed, and light absorbance 

at 340-nm wavelength was measured at 25 ºC.   
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Analysis of rcd1 misregulated genes in microarray experiments related to 

chloroplast or mitochondrial dysfunction 

Genes with misregulated expression in rcd1 were selected from our previous microarray 

datasets (Brosche et al. 2014) with the cutoff, absolute value of logFC < 0.5. These genes 

were subsequently clustered with the rcd1 gene expression dataset together with various 

Affymetrix datasets related to chloroplast or mitochondrial dysfunction from the public 

domain using bootstrapped Bayesian hierarchical clustering as described in (Wrzaczek 

et al., 2010).  Affymetrix raw data (.cel files) were normalized with Robust Multi-array 

Average normalization, and manually annotated to control and treatment conditions, or 

mutant versus wild type. 

Affymetrix ATH1-121501 data were from the following sources: Gene Expression 

Omnibus https://www.ncbi.nlm.nih.gov/geo/, AA 3 hours (in figures labelled as 

experiment 1), GSE57140 (Ivanova et al., 2014); AA and H2O2, 3 hour treatments (in 

figures labelled as experiment 2), GSE41136 (Ng et al. 2013); MV 3 hours, GSE41963 

(Sharma et al., 2013); mterf6-1, GSE75824 (Leister and Kleine 2016); prors1-2, 

GSE54573 (Leister et al., 2014); H2O2 30 min, GSE43551 (Gutierrez et al., 2014); high 

light 1 hour (in figures labelled as experiment 1), GSE46107 (Van Aken et al., 2013); high 

light 30 min in cell culture, GSE22671 (Gonzalez-Perez et al., 2011); high light 3 hours 

(in figures labelled as experiment 2), GSE7743 (Kleine et al., 2007); oligomycin 1 and 4 

hours, GSE38965 (Geisler et al., 2012); norflurazon – 5 day-old seedlings grown on 

plates with norflurazon, GSE12887 (Koussevitzky et al., 2007); msh1 recA3 double 

mutant, GSE19603 (Shedge et al., 2010). AtGenExpress oxidative time series, MV 12 

and 24 hours, 

http://www.arabidopsis.org/servlets/TairObject?type=expression_set&id=1007966941. 

ArrayExpress, https://www.ebi.ac.uk/arrayexpress/: rotenone, 3 and 12 hours, E-MEXP-

1797 (Garmier et al., 2008); alx8 and fry1, E-MEXP-1495 (Wilson et al. 2009); ndufs4, E-

MEXP-1967 (Meyer et al., 2009).   

Quantitative PCR 

Quantitative PCR was performed essentially as described in (Brosche et al. 2014). The 

data were normalized with three reference genes, PP2AA3, TIP41 and YLS8. Relative 

expression of the genes RCD1, AOX1a, UPOX, ANAC013, At5G24640 and ZAT12 was 

calculated in qBase+ 3.2 (Biogazelle, https://www.qbaseplus.com/). The primer 

sequences and primer efficiencies are presented in the Supplemental table. 

https://www.ncbi.nlm.nih.gov/geo/
http://www.arabidopsis.org/servlets/TairObject?type=expression_set&id=1007966941
https://www.ebi.ac.uk/arrayexpress/
https://www.qbaseplus.com/
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Identification of interacting proteins using IP/MS-MS  

Immunoprecipitation experiments were performed in three biological replicates as 

described previously (De Rybel et al., 2013), using 3 g of rosette leaves from p35S: 

ANAC013-GFP and 2.5 g of rosette leaves from pUBI10: RCD1-3xVenus transgenic 

lines. Interacting proteins were isolated by applying total protein extracts to αGFP-

coupled magnetic beads (Milteny Biotech). Three replicates of p35S: ANAC013-GFP or 

pUBI10: RCD1-3xVenus were compared to three replicates of Col-0 controls. Tandem 

mass spectrometry (MS) and statistical analysis using MaxQuant and Perseus software 

was performed as described previously (Wendrich et al., 2017).  

HEK293T human embryonic kidney cell culture and transfection 

HEK293T cells were maintained at 37 °C and 5 % CO2 in Dulbecco’s Modified Eagle’s 

Medium F12-HAM, supplemented with 10 % fetal bovine serum, 15 mM HEPES, and 1 

% penicillin/ streptomycin. Cells were transiently transfected using GeneJuice (Novagen) 

according to the manufacturer’s instructions. 

For co-immunoprecipitation experiments, HEK293T cells were co-transfected with 

plasmids encoding HA-RCD1 and ANAC013-myc or ANAC017-myc. Forty hours after 

transfection, cells were lysed in TNE buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 5 

mM EDTA, 1 % Triton X-100, 1 x protease inhibitor cocktail, 50 µM proteasome inhibitor 

MG132 (Sigma-Aldrich)]. After incubation for 2 hours at 4 ºC, lysates were cleared by 

centrifugation at 18 000 x g for 10 min at 4 ºC. For co-immunoprecipitation, cleared cell 

lysates were incubated with either αHA or αmyc antibody immobilized on agarose beads 

overnight at 4 ºC. Beads were washed six times with the lysis buffer. The bound proteins 

were dissolved in SDS sample buffer, resolved by SDS-PAGE, and immunoblotted with 

the specified antibodies. 

Protein expression and purification  

The C-terminal domain of RCD1 for NMR study was expressed as GST-fusion protein in 

E.coli BL21 (DE3) Codon Plus strain and purified using GSH-Sepharose beads (GE 

Healthcare) according to the manufacturer’s instruction. Cleavage of GST tag was 

performed with thrombin (GE Healthcare, 80 units per mL of beads) for 4 hours at room 

temperature and the C-terminal domain of RCD1 was eluted from the beads with PBS 

buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4). The 

protein was further purified by gel filtration with HiLoad 16/600 Superdex 75 column (GE 
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Healthcare) equilibrated with 20 mM sodium phosphate buffer (pH 6.4), 50 mM NaCl at 4 

ºC. 

Peptide synthesis  

ANAC013 peptides of > 98 % purity for surface plasmon resonance and NMR analysis 

were purchased from Genecust, dissolved in water to 5 mM final concentration and stored 

at -80 ºC before analyses.  

Surface plasmon resonance 

The C-terminal domain of RCD1 was covalently coupled to a Biacore CM5 sensor chip 

via amino-groups. 500 nM of ANAC013 peptides were then profiled at a flow rate of 30 

µL min-1 for 300 s, followed by 600 s flow of running buffer. Analysis was performed at 25 

ºC in the running buffer containing 10 mM HEPES (pH 7.4), 150 mM NaCl, 3 mM EDTA, 

0.05 % surfactant P20 (Tween-20). After analysis in BiaEvalution (Biacore) software, the 

normalized resonance units were plotted over time with the assumption of one-to-one 

binding. 

NMR spectroscopy  

NMR sample production and chemical shift assignment have been described in 

(Tossavainen et al. 2017). A Bruker Avance III HD 800 MHz spectrometer equipped with 

a TCI 1H/ 13C/ 15N cryoprobe was used to acquire spectra for structure determination of 

RCD1468-589. Peaks were manually picked from three NOE spectra, a 1H, 15N NOESY-

HSQC and 1H, 13C NOESY-HSQC spectra for the aliphatic and aromatic 13C regions. 

CYANA 2.1 (Lopez-Mendez and Guntert 2006) automatic NOE peak assignment – 

structure calculation routine was used to generate 300 structures from which 30 were 

further refined in explicit water with AMBER 16 (Case et al., 2005). Assignments of three 

NOE peaks were kept fixed using the KEEP subroutine in CYANA. These NOE peaks 

restrained distances between the side chains of W507 and M508 and adjacent helices 1 

and 4, respectively. Fifteen lowest AMBER energy structures were chosen to represent 

of RCD1468-589 structure in solution. 

Peptide binding experiment was carried out by preparing a sample containing of RCD1468-

589 and ANAC013235-284 peptide in an approximately 1:2 concentration ratio, and recording 

a 1H, 15N HSQC spectrum. Amide peak positions were compared with those of the free 

RCD1468-589.   
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Figure 1. RCD1 controls tolerance of photosynthetic apparatus to ROS.  

(A) MV treatment results in PSII inhibition under light, which is suppressed in the rcd1 

mutant. PSII Photochemical yield (Fv/Fm) was measured in rosettes pre-treated 

overnight in darkness with 1 μM MV and then exposed to 3 hours of continuous light 

(80 µmol m-2 s-1). Representative false-color image of Fv/Fm is shown.  

(B) MV access to electron-acceptor side of PSI is unaltered in rcd1. Treatment with MV 

led to similar changes in kinetics of PSI oxidation in Col-0 and rcd1. Oxidation of PSI 

reaction center (P700) was measured using DUAL-PAM. Leaves were first adapted 

to far-red light that is more efficiently used by PSI than PSII. In these conditions PSI 

is producing electrons at a faster rate than they are supplied by PSII, thus P700 is 

oxidized. Then a flash of orange light was provided that is efficiently absorbed by PSII 

(orange arrow). Electrons generated by PSII transiently reduced PSI, after which the 

kinetics of PSI re-oxidation was followed. Note the progressive decrease in the effect 

of the orange flash occurring in Col-0 at later time points, which suggests deterioration 

in PSII function. This was not observed in rcd1. Three leaves from three individual 

plants were used for each measurement. The experiment was repeated three times 

with similar results.  

 (C) Redox state of the chloroplast enzyme 2-Cys peroxiredoxin (2-CP) assessed by thiol 

bond-specific labeling in Col-0 (left) and rcd1 (right). Total protein was isolated from 

leaves incubated in darkness (D), or under light (L). Free sulfhydryls were blocked 

with N-ethylmaleimide, then in vivo thiol bridges were reduced with DTT, and finally 

the newly exposed sulfhydryls were labeled with methoxypolyethylene glycol 

maleimide of molecular weight 5 kDa. The labeled protein extracts were separated 

by SDS-PAGE and immunoblotted with α2-CP antibody. DTT (-) control contained 

predominantly unlabeled form. Unlabeled reduced (red), singly and doubly labeled 

oxidized forms and the putative dimer were annotated as in (Nikkanen et al. 2016). 

Apparent molecular weight increment after the labeling of one thiol bond appears on 

SDS-PAGE higher than 10 kDa because of steric hindrance exerted on branched 

polymers during gel separation (van Leeuwen et al., 2017). The experiment was 

repeated three times with similar results.  
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Figure 2. RCD1 protein is sensitive to chloroplastic ROS.  

(A) The rcd1: RCD1-HA complementation line was used to assess RCD1-HA 

abundance. It gradually decreased in response to chloroplastic ROS. Leaf discs from 

plants expressing HA-tagged RCD1 were treated with 5-hour growth light (150 µmol 

m-2 s-1), high light (1 300 µmol m-2 s-1), MV (1 µM) in light, or H2O2 (100 mM). The 

levels of RCD1-HA were monitored by immunoblotting with αHA at indicated time 

points. Rubisco large subunit (RbcL) detected by amido black staining is shown as a 

control for equal protein loading. The “0” time point of the MV time course represents 

dark-adapted leaf discs pre-treated with MV overnight. The experiment was 

performed four times with similar results. 

(B) Chloroplastic ROS caused oligomerization of RCD1-HA. Total protein extracts from 

the plants treated as in panel (A) were separated by non-reducing PAGE and 

immunoblotted with αHA antibody. Reduced (red) and oxidized (ox) forms of the 

protein are labeled. To ascertain that all HA-tagged protein including that forming 

high-molecular-weight aggregates has been detected by immunoblotting, the 

transfer to a membrane was performed using the entire SDS-PAGE gel including 

the stacking gel and the well pockets. The experiment was performed four times 

with similar results. 
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Figure 3. Altered energy metabolism of rcd1. Deduced metabolic fluxes in light- and 

dark- adapted Col-0 and rcd1 rosettes were assessed by fractionation of the extracts of 

leaves treated with [U-14C] glucose. Increased respiration flux and higher amount of total 

metabolized glucose (Fig. 3 supplemental dataset 1) in rcd1 suggest a more active 

glycolytic pathway. Higher cell wall metabolic flux in rcd1 provided indirect support of 

increased operation of the oxidative pentose phosphate pathway which is required for 

generating pentoses used in cell wall biosynthesis (Ap Rees 1978). Mean ± SE are 

presented. Asterisks indicate values significantly different from the wild type, **P value < 

0.01, *P value < 0.05, Student’s t-test. Source data and statistics are presented in Figure 

3 – supplemental dataset 2. 
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Figure 4. Mitochondrial AOXs affect energy metabolism of rcd1 and alter response 

to chloroplastic ROS. Source data and statistics are presented in Figure 4 – 

supplemental dataset 1.  

(A) Expression of AOXs is induced in rcd1. Abundance of AOX isoforms in mitochondrial 

preparations was assessed by immunoblotting with αAOX antibody that recognizes 

AOX1a, -b, -c, -d, and AOX2 isoforms. 100 % corresponds to 15 μg of mitochondrial 

protein. 

(B) Two mitochondrial respiratory pathways (red arrows) and sites of action of 

mitochondrial inhibitors. KCN inhibits complex IV (cytochrome c oxidase). 

Salicylhydroxamic acid (SHAM) inhibits AOX activity. Antimycin A (AA) and 

myxothiazol (myx) block electron transfer through complex III (ubiquinol-cytochrome 

c oxidoreductase), creating ROS-related mitochondrial retrograde signal.  

(C) AOX capacity is significantly increased in rcd1. Oxygen uptake by seedlings was 

measured in the darkness in presence of KCN and SHAM. Addition of KCN blocked 

respiration through complex IV, thus revealing the capacity of the alternative 

respiratory pathway through AOXs. Data is presented as mean ± SD, asterisks 

denote selected values that are significantly different (P value < 0.001, one-way 

ANOVA with Bonferroni post hoc correction). Each measurement was performed on 

10-15 pooled seedlings and repeated at least three times.  

(D) Inhibitors of mitochondrial complex III increase plant tolerance to chloroplastic ROS. 

Effect of pre-treatment with 2.5 μM AA or 2.5 μM myx on PSII inhibition (Fv/Fm) by 

MV. For each experiment, leaf discs from at least four individual rosettes were used. 

The experiment was performed four times with similar results. Mean ± SD are shown. 

Asterisks indicate selected treatments that are significantly different (P value < 0.001, 

Bonferroni post hoc correction). AOX abundance in the leaf discs treated in the same 

way was quantified by immunoblotting (Fig. 4 – figure supplement 1). 

(E) AOX inhibitor SHAM decreases plant tolerance to chloroplastic ROS. 1-hour pre-

treatment with 2 mM SHAM inhibited tolerance to 1 μM MV both in Col-0 and rcd1 as 

measured by Fv/Fm. SHAM stock solution was prepared in DMSO, thus pure DMSO 

was added in the SHAM-minus controls. For each experiment, leaf discs from at least 

four individual rosettes were used. The experiment was performed four times with 

similar results. Mean ± SD are shown. Asterisks indicate significant difference in the 
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treatments of the same genotype at the selected time points (P value < 0.001, 

Bonferroni post hoc correction). 

  



Figure 5

 n
m

ol
  m

in
   

g 
  F

W
-1

   
-1

0.6

1.0

1.4

1.8

0 20 40 60

Col-0
rcd1
Col-0
rcd1

MV

MV plus
SHAM

no
rm

al
iz

ed
 c

hl
or

op
hy

ll 
flu

or
es

ce
nc

e

minutes under light

A

40
0

80
120
160

NADPH-MDH 
initial activity

500
0

1000
1500
2000

NADPH-MDH
total activity

0.02
0

0.04
0.06
0.08

NADPH-MDH
activation state

B

C
** **

*

0
20
40
60
80 malate

Col-0 rcd1

ar
bi

tra
ry

 u
ni

ts
ar

bi
tra

ry
 u

ni
ts

***
** light

MV in light
dark

Col-0
rcd1



46 
 

Figure 5. Altered electron transfer between the organelles in rcd1.  

 (A) Leaf discs were pre-treated with 1 μM MV or MV plus 2 mM SHAM for 1 hour in the 

darkness. Then light was turned on (80 µmol m-2 s-1) and chlorophyll fluorescence 

under light (Fs) was recorded by Imaging PAM. Application of the two chemicals 

together caused Fs rise in rcd1, but not Col-0, suggesting increase in the reduction 

state of the chloroplast ETC in rcd1. For analysis of photochemical quenching see 

Fig. 5 – figure supplement 1.  

(B) Malate levels are significantly decreased in Col-0 but not in rcd1 after MV treatment 

in light. Malate level was measured in extracts from Col-0 and rcd1 seedlings that 

were pre-treated overnight with 50 μM MV or water control and collected either dark-

adapted or after exposure to 4 hours of light. Mean ± SE are shown. Asterisks indicate 

values significantly different from those in the similarly treated wild type, ***P value < 

0.001, **P value < 0.01, Student’s t-test). For statistics see Fig. 5 – supplemental 

dataset 1. 

(C) NADPH-MDH activity is increased in rcd1. To measure the activity of chloroplastic 

NADPH-MDH, plants were grown at 100-120 µmol m-2 s-1 at an 8-hour day 

photoperiod, leaves were collected in the middle of the day and freeze-dried. The 

extracts were prepared in the buffer supplemented with 250 μM thiol-reducing agent 

DTT, and initial activity was measured (top left). The samples were then incubated 

for 2 hours in the presence of additional 150 mM DTT, and total activity was measured 

(top right). The activation state of NADPH-MDH (bottom) is presented as the ratio of 

the initial and the total activity. Mean ± SE are shown. Asterisks indicate values 

significantly different from the wild type, **P value < 0.01, *P value < 0.05, Student’s 

t-test. For statistics see Fig. 5 – supplemental dataset 1. 
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Figure 6. RCD1 is involved in mitochondrial dysfunction, chloroplast ROS and PAP 

signaling pathways.  

(A) Regulation of rcd1 mis-expressed genes under perturbations of organellar functions 

in the selected subset of genes. A complete list of rcd1-misexpressed genes is 

presented in Fig. 6 – figure supplement 1. Similar transcriptomic changes are 

observed between the genes differentially regulated in rcd1 and the genes affected 

by disturbed chloroplastic or mitochondrial functions. Mitochondrial dysfunction 

stimulon (MDS) genes regulated by ANAC013/ ANAC017 transcription factors, are 

labeled green. 

(B) Sulfotransferase SOT12 encoded by an MDS gene accumulated in rcd1 under 

standard growth conditions, as revealed by immunoblotting with the specific antibody.  

(C) Phenotype of the rcd1 sal1 double mutant under standard growth conditions (12-hour 

photoperiod with white luminescent light of 220-250 µmol m-2 s-1).   
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Figure 7. RST domain of RCD1 binds to ANAC transcription factors and is 

necessary for RCD1 function in vivo. Source data and statistics are presented in Fig. 

7 – supplemental dataset 4.  

(A) Biochemical interaction of ANAC013 with the RST domain of RCD1 in vitro. 

Superimposed 1H, 15N HSQC spectra of the C-terminal domain of RCD1 acquired in 

absence (blue) and presence (red) of approximately two-fold excess of the 

ANAC013235-284 peptide. Interaction of RCD1468-589 with ANAC013235-284 caused 

peptide-induced chemical shift changes in the 1H, 15N correlation spectrum of RCD1, 

which were mapped on the structure of the RST domain (inset). Inset: RSTRCD1 

structure with highlighted residues demonstrating the largest chemical shift 

perturbations (Δδ ≥ 0.10 ppm) between the free and bound forms (details in Fig. 7 – 

figure supplement 3C), which probably corresponds to ANAC013-interaction site. 

(B) Stable expression in rcd1 of the HA-tagged RCD1 variant lacking its C-terminus under 

the control of the native RCD1 promoter does not complement rcd1 phenotypes. In 

the independent complementation lines RCD1ΔRST-HA was expressed at the levels 

comparable to those in the RCD1-HA lines (upper panel). However, in rcd1: 

RCD1ΔRST-HA lines abundance of AOXs (middle panel) was similar to that in rcd1. 

(C) Tolerance of PSII to chloroplastic ROS was similar in the rcd1: RCD1ΔRST-HA lines 

and rcd1. For each PSII inhibition experiment, leaf discs from at least four individual 

rosettes were used. The experiment was performed three times with similar results. 

Mean ± SD are shown. 
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Figure 8. Developmental, chloroplast- and mitochondria-related phenotypes of 

rcd1 are partially mediated by ANAC017. Source data and statistics are presented in 

Fig. 8 – supplemental dataset 1.  

(A) Introducing anac017 mutation in the rcd1 background partially suppressed the curly 

leaf phenotype of rcd1.  

(B) The anac017 mutation partially suppressed tolerance of rcd1 to chloroplastic ROS. 

PSII inhibition by ROS was measured in rcd1 anac017 double mutant by using 0.25 

μM or 1 μM MV (left and right panel, accordingly). For each experiment, leaf discs 

from at least four individual rosettes were used. The experiment was performed three 

times with similar results. Mean ± SD are shown. Asterisks denote values significantly 

different from those in the similarly treated wild type at the last time point of the assay 

(P value < 0.001, two-way ANOVA with Bonferroni post hoc correction). 

(C) The anac017 mutation partially suppressed mitochondrial phenotypes of rcd1. Total 

AOX protein levels were lowered in rcd1 anac017 double mutant as compared to rcd1 

both after the overnight treatment with 2.5 μM AA and in the untreated control.  

(D) Oxygen uptake by rcd1 anac017 seedlings was measured in the darkness in presence 

of mitochondrial respiration inhibitors as described in Fig. 4C. The rcd1 anac017 

mutant demonstrated lower KCN-insensitive AOX respiration capacity than rcd1. 

Each measurement was performed on 10-15 pooled seedlings and repeated at least 

three times. Mean ± SD are shown. Asterisks denote selected values that are 

significantly different (P value < 0.001, one-way ANOVA with Bonferroni post hoc 

correction).  
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Figure 9. The hypothetical role of RCD1 in organelle signaling and energy 

metabolism. RCD1 is the direct suppressor of ANAC transcription factors that is itself 

subject to redox regulation. Chloroplastic ROS likely affect RCD1 protein redox state and 

abundance. Inactivation of RCD1 leads to induction of ANAC-controlled MDS regulon. 

Expression of MDS genes is possibly feedback-regulated via the PAP retrograde 

signaling (purple). Resulting activation of mitochondrial AOXs and other MDS 

components is likely to affect electron flows (red) and ROS signaling in mitochondria and 

in chloroplasts. Putative competition of AOX-directed electron transfer with the formation 

of ROS at PSI is labeled with an asterisk.  
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Supplementary Information 

Figure 1 - supplemental dataset 1. Source data and statistics. 

Figure 2 - supplemental dataset 1. Source data and statistics. 

Figure 3 – supplemental dataset 1. Metabolic analyses. 

Distribution of radioactive label was analyzed after feeding plants with 14C-labeled 

glucose. Metabolic fluxes in light- and dark-adapted Col-0, rcd1, rcd1 aox1a, and aox1a 

plants were deduced. 

Figure 3 – supplemental dataset 2. Source data and statistics. 

Figure 4 – supplemental dataset 1. Source data and statistics. 

Figure 5 – supplemental dataset 1. Source data and statistics. 

Figure 6 - supplemental dataset 1. Source data and statistics. 

Figure 7 – supplemental dataset 1. In vivo interaction partners of ANAC013. 

From Arabidopsis line expressing ANAC013-GFP, ANAC013-GFP and associated 

proteins were purified with αGFP antibody and identified by mass spectrometry. Identified 

proteins (Perseus analysis, ANAC013) and mapped peptides (peptide IDs) are shown.  

Figure 7 – supplemental dataset 2. In vivo interaction partners of RCD1.  

From Arabidopsis line expressing RCD1-3xVenus, RCD1-3xVenus and associated 

proteins were purified with αGFP antibody and identified by mass spectrometry. Identified 

proteins (Perseus analysis, RCD1) and mapped peptides (peptide IDs) are shown.  

Figure 7 – supplemental dataset 3. NMR constraints and structural statistics for the 

ensemble of the 15 lowest-energy structures of RCD1 RST. 

Figure 7 – supplemental dataset 4. Source data and statistics.  

Figure 8 – supplemental dataset 1. Source data and statistics. 

Supplemental table. Primers used in the study. 
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Figure 1 – figure supplement 1. Inverse correlation of RCD1 abundance with 

tolerance to chloroplastic ROS.  

(A) Several independent rcd1 complementation lines were generated in which HA-

tagged RCD1 was reintroduced under the RCD1 native promoter. Immunoblotting of 

protein extracts from these lines with αHA antibody revealed different levels of 

RCD1-HA under standard light-adapted growth conditions. This was presumably 

due to different transgene insertion sites in the genome. Line “a” was described in 

(Jaspers et al. 2009). Rubisco large subunit (RbcL) detected by amido black 

staining is shown as a control for equal protein loading. 

(B) An antibody was raised against the full-size RCD1 protein. This allowed comparing 

abundance of RCD1 in independent rcd1: RCD1-HA complementation lines 

described in the panel (A) versus Col-0 (two rcd1: RCD1-HA lines with the lowest 

and two with the higher levels of RCD1-HA are shown). In the complementation 

lines the RCD1 signal was detected at higher molecular weight due to the triple HA 

tag. The rcd1: RCD1Δ7Cys-HA line will be addressed below. 

(C) Expression of RCD1 gene was measured by real time quantitative PCR in Col-0 and 

in four independent complementation lines described in the panel (A), two with the 

lowest and two with the higher levels of RCD1-HA. Results in panels (B) and (C) 

demonstrated that the levels of RCD1 protein and mRNA were about 10 times 

higher in the high-expressing complementation lines than in Col-0. Relative 

expression was calculated from three biological repeats and the data is scaled 

relative to Col-0. Source data is presented in Figure 6 – supplemental dataset 1. 

(D) Sensitivity of PSII to chloroplastic ROS in the rcd1 complementation lines was 

assessed using time-resolved analysis described in Figure 1 – figure supplement 2. 

For that, leaf discs were pre-treated with 0.25 μM MV overnight in the darkness. 

PSII photochemical yield after two 1-hour light cycles was plotted against 

abundance of RCD1-HA in the individual lines as determined in panel (A). Line “a” 

was described in (Jaspers et al. 2009). Five individual plants were taken per each 

line. The experiment was repeated three times with similar results. Source data and 

statistics are presented in Figure 1 – supplemental dataset 1. 
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Figure 1 – figure supplement 2. The Imaging PAM protocol developed to monitor 

kinetics of PSII inhibition by repetitive 1-hour light cycles. Plants dark-adapted for 

at least 20 min were first exposed to a saturating light pulse to measure Fm. Then the 

blue actinic light (450 nm, 80 µmol m-2 s-1) was turned on for 1 hour, over which time 

chlorophyll fluorescence under light (Fs) was followed by measuring flashes given once 

in 2 minutes. Then the actinic light was turned off to allow for 20-min dark adaptation, 

after which Fo and Fm were measured. Following the Fm measurement, the next light 

cycle was initiated. Saturating light pulses to measure Fm are depicted by blue arrows, 

actinic light periods by blue boxes, and dark adaptation by black boxes. PSII 

photochemical yield was calculated as Fv/Fm = (Fm-Fo)/Fm. To study different levels of 

MV tolerance, different concentrations of MV were employed throughout the study, as 

indicated in the figures or figure legends. 
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Figure 1 – figure supplement 3. Accumulation of hydrogen peroxide in Col-0 and 

rcd1 during illumination of MV-pre-treated rosettes. Col-0 and rcd1 rosettes were pre-

treated with 1 μM MV overnight in the darkness. Then they were exposed to light for 

indicated time. After this, the rosettes were infiltrated with DAB staining solution and 

exposed to 20 minutes of light (180 µmol m-2 s-1). Similar initial increase in H2O2 

production was observed in MV-pre-treated dark-adapted Col-0 and rcd1. During longer 

incubation under light the production of H2O2 further increased in Col-0, but decreased in 

rcd1. The experiment was performed three times with similar results. 
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Figure 1 – figure supplement 4. Altered resistance of rcd1 photosynthetic 

apparatus to chloroplastic ROS.  

(A) Protein extracts from Col-0 and rcd1 leaves pre-treated with 1 μM MV and exposed 

to light for indicated time, were separated by SDS-PAGE followed by immunoblotting 

with antibodies against the PSII subunit D1 and the PSI subunit PsaB. No significant 

differences in stoichiometry of photosystems were detected.  

(B) Thylakoid protein complexes isolated from leaves treated as above were separated 

by native PAGE. Immunoblotting with αD1 antibody revealed PSII species of diverse 

molecular weights that were annotated as in (Jarvi et al., 2011). The largest of the 

complexes corresponds to PSII associated with its light-harvesting antennae complex 

(LHCII) while the smallest are the PSII monomers (top panel). Incubation under light 

in presence of MV led to destabilization of PSII-LHCII complexes in Col-0, but not in 

rcd1. At the same time, immunoblotting with αPsaB antibody showed no changes in 

PSI complex (bottom panel).   
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Figure 1 – figure supplement 5. Components of photosynthetic electron transfer 

and chloroplast ROS scavenging; abundance and distribution of NAD+/ NADH and 

NADP+/ NADPH redox couples in Col-0 and rcd1.  

(A) Abundance of proteins related to photosynthetic electron transfer or chloroplast ROS 

scavenging was assessed by separating Col-0 and rcd1 protein extracts (in dilution 

series) by SDS-PAGE and immunoblotting with specific antibodies, as indicated. 100 

% corresponds to 20 μg of thylakoid protein. No difference was observed between 

Col-0 and rcd1.  

(B) Abundance of nucleotides NAD+, NADP+, NADH and NADPH in total leaf extracts 

isolated from Col-0 and rcd1 (mean ± SE). No difference was observed between the 

genotypes. Source data and statistics are presented in Figure 1 – supplemental 

dataset 1. 

(C) Distribution of NAD+/ NADH and NADP+/ NADPH redox couples in various cellular 

compartments of Col-0 and rcd1 was assessed by non-aqueous fractionation 

metabolomics (mean ± SE, an asterisk indicates the value significantly different from 

that in the corresponding wild type, *P value < 0.05, Student’s t-test). In brief, the 

light-adapted rosettes were harvested in the middle of the light period, freeze-dried, 

homogenated and separated on non-aqueous density gradient, which allowed for 

enrichment in specific membrane compartments. No major difference was detected 

between Col-0 and rcd1. Note that the method does not allow for separation of 

apoplastic and vacuolar compartments or reliable definition of the mitochondria 

(Fettke et al., 2005). Source data and statistics are presented in Figure 1 – 

supplemental dataset 1. 
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Figure 2 – figure supplement 1. Characterization of the rcd1: RCD1Δ7Cys-HA lines.  

(A) Domain structure of RCD1 with the positions of cysteine residues shown with circles. 

Interdomain cysteines mutated in the RCD1Δ7Cys-HA lines (RCD1Δ7Cys = RCD1 

C14A-C37A-C50A-C175A-C179A-C212A-C243A) are shown in yellow. 

(B) The rcd1 complementation line expressing the RCD1Δ7Cys-HA variant under the 

control of the native RCD1 promoter was treated with high light, MV or H2O2 as 

described in Fig. 2. In this line accumulation of high-molecular-weight RCD1 

aggregates observed in RCD1-HA line (Fig. 2B) was largely abolished. Reduced 

(red) and oxidized (ox) forms of the protein are labeled. To ascertain that all HA-

tagged protein including that forming high-molecular-weight aggregates has been 

detected by immunoblotting, the transfer to a membrane was performed using the 

entire SDS-PAGE gel including the stacking gel and the well pockets. The 

experiment was performed three times with similar results. 

(C) Independent single-insertion homozygous rcd1 complementation lines expressing 

RCD1Δ7Cys-HA were compared to those expressing RCD1-HA as described in Fig. 

1 – figure supplement 1D. In all the tested lines, RCD1Δ7Cys-HA accumulated to 

higher amounts than the wild-type RCD1-HA as revealed by immunoblotting with αHA 

antibody. MV tolerance of the RCD1Δ7Cys-HA lines was not different from that of the 

RCD1-HA lines or Col-0. Source data and statistics are presented in Figure 2 – 

supplemental dataset 1.  

(D) Expression of RCD1-regulated genes was measured by real time quantitative PCR in 

Col-0, rcd1, two rcd1: RCD1-HA lines expressing high levels of RCD1-HA and two 

lines expressing RCD1Δ7Cys-HA. No difference in expression of the selected RCD1-

regulated genes AOX1a (AT3G22370), UPOX (AT2G21640), or the stress-induced 

gene ZAT12 (AT5G59820) was detected in the rcd1: RCD1Δ7Cys-HA line as 

compared to rcd1: RCD1-HA or Col-0. For MV treatment detached rosettes were 

soaked in 1 μM MV overnight in the darkness and then exposed to 1 hour of white 

luminescent light of 220-250 µmol m-2 s-1. Note that inactivation of RCD1 prevented 

induction of a general stress marker gene ZAT12 in response to MV.  Five rosettes 

were pooled together for each sample. The experiment was repeated twice with 

similar results. Source data and statistics are presented in Figure 2 – supplemental 

dataset 1. 
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Figure 4 – figure supplement 1. Effect of mitochondrial complex III inhibitors on 

expression of AOXs in Col-0 and rcd1.  

(A) Changes in AOX abundance after overnight pre-treatment of leaf discs with 2.5 μM 

AA or 2.5 μM myx (C – control treatment with no inhibitor). Notably, rcd1 aox1a double 

mutant accumulated AOXs other than AOX1a, including putative AOX1d (Konert et 

al., 2015) (labeled with asterisk).  

(B) Quantification of αAOX immunoblotting signal after pre-treatment with 2.5 μM AA or 

myx. To avoid saturation of αAOX signal in rcd1, a dilution series of protein extracts 

was made. Quantification was performed using ImageJ. Mean ± SD are shown, 

asterisks denote selected values that are significantly different (P value < 0.001, 

Bonferroni post hoc correction, for source data and statistics see Figure 4 – 

supplemental dataset 1). 
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Figure 4 – figure supplement 2. Effect of mitochondrial complex III inhibitors on 

abundance and redox state of the RCD1 protein.    

(A) Chemical induction of mitochondrial dysfunction signaling did not alter abundance of 

the RCD1 protein. Leaf discs were treated with 2.5 μM AA or 2.5 μM myx overnight. 

Then total protein extracts were isolated and separated in SDS-PAGE. Levels of 

RCD1-HA and of AOXs were assessed by immunoblotting with the specific antibodies 

as indicated.  

(B) Redox state of RCD1 protein was only very mildly altered by mitochondrial complex 

III inhibitors or by MV in the darkness. Treatment with AA or myx was performed as 

in panel (A). MV, D – leaf discs after overnight pre-treatment with 1 µM MV in the 

darkness; MV, L – leaf discs after overnight pre-treatment with MV followed by 30 min 

of illumination; H2O2 – leaf discs after 30 min of incubation in presence of 100 mM 

H2O2 under light. Reduced (red) and oxidized (ox) forms of the protein are labelled.  
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Figure 4 – figure supplement 3. Specificity of inhibitor treatments. All chlorophyll 

fluorescence analyses are presented as mean ± SD, for source data and statistics see 

Fig. 4 – supplemental dataset 1. 

(A) Interaction of AA with cyclic electron flow through binding to chloroplastic protein 

PGR5 (Sugimoto et al., 2013) is not the reason of AA-induced ROS tolerance. 

Possible off-target effect of AA was assessed by using the pgr5 mutant. Pre-treatment 

with 2.5 μM AA made both pgr5 and its background wild type gl1 equally more tolerant 

to chloroplastic ROS. For each experiment leaf discs from at least four individual 

rosettes were used. The experiment was performed three times with similar results.  

(B) SHAM treatment results in only slight PSII inhibition both in Col-0 and rcd1. Fv/Fm 

was monitored under light after 1-hour pre-treatment with 2 mM SHAM. No significant 

difference was detected between Col-0 and rcd1. SHAM stock solution was prepared 

in DMSO, thus pure DMSO was added in the SHAM-minus controls. For each 

experiment leaf discs from at least four individual rosettes were used. The experiment 

was performed three times with similar results.  

(C) PTOX, plastid terminal oxidase analogous to AOX, is not involved in the SHAM-

induced decrease of ROS tolerance. To exclude possible involvement of PTOX in 

MV-induced PSII inhibition, green sectors of the ptox mutant leaves were treated with 

2 mM SHAM, 1 μM MV, or both chemicals together. ptox mutant was responsive to 

SHAM treatment similarly to Col-0. For each experiment leaf discs from at least four 

individual rosettes were used. The experiment was performed twice with similar 

results.  
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Figure 4 – figure supplement 4. Irrelevance of AOX1a isoform for MV tolerance. All 

chlorophyll fluorescence analyses are presented as mean ± SD, for source data and 

statistics see Fig. 4 – supplemental dataset 1. 

(A) Abundance of total AOX in the AOX1a-overexpressor line (AOX1a-OE) as assessed 

by immunoblotting was comparable to that in rcd1 (m – molecular weight marker; AA 

– overnight treatment with 2.5 μM AA).  

(B) Increased expression of AOX1a isoform is not sufficient to provide ROS tolerance. 

MV-induced PSII inhibition in the AOX1a-OE and aox1a lines was monitored by 

Fv/Fm. No significant difference was observed between AOX1a-OE and aox1a at any 

time point of the experiment.  

(C) AOX1a isoform is not necessary for chloroplastic ROS tolerance. MV-induced PSII 

inhibition in rcd1 aox1a double mutant was monitored by Fv/Fm. No significant 

difference was detected between rcd1 aox1a and rcd1. 
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Figure 5 – figure supplement 1. Alternations in chloroplast electron transfer 

induced by MV and SHAM. During the first 20 minutes of light exposure, MV-pre-treated 

Col-0 and rcd1 experienced transient decrease in PSII photochemical quenching (qP). 

Within the next hour, photosynthesis recovered in rcd1 to the level observed in the non-

treated control, while only very mild recovery was observed in Col-0. In rcd1, the recovery 

was significantly inhibited by co-application of SHAM together with MV. Leaf discs were 

pre-treated with MV and SHAM for 1 hour in the darkness. SHAM stock solution was 

prepared in DMSO, thus pure DMSO was added in the SHAM-minus controls. To 

calculate qP, Fs was recorded as in Fig. 5A; saturating pulses were introduced every 10 

minutes to measure Fm’. Data is presented as mean ± SD, for source data and statistics 

see Fig. 5 – supplemental dataset 1. 
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Figure 5 – figure supplement 2. Distribution of malate in subcellular compartments 

of Col-0 and rcd1. Distribution of malate was assessed by non-aqueous fractionation 

metabolomics as described in Fig. 1 – figure supplement 5C. Mean values ± SE are 

presented. For source data and statistics see Fig. 5 – supplemental dataset 1. 
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Figure 6 – figure supplement 1. Clustering analysis of genes mis-regulated in rcd1 

(with cutoff of logFC < 0.5) in published gene expression data sets acquired after 

perturbations of chloroplasts or mitochondria. Mitochondrial dysfunction stimulon 

(MDS) genes are labeled green. Enrichment of the ANAC013/ ANAC017 cis-element 

CTTGNNNNNCA[AC]G (De Clercq et al. 2013) in promoter regions is shown by shaded 

boxes next to the gene names. Notably, MDS genes represent only a subclass of all 

genes whose expression is affected by RCD1. For example, a cluster of genes that have 

lower expression in both rcd1 and sal1 mutants and are mostly associated with defense 

against pathogens did not have enrichment of ANAC motif in their promoters. This is likely 

a consequence of interaction of RCD1 with about forty different transcription factors 

belonging to several families (Jaspers et al. 2009).  
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Figure 6 – figure supplement 2. Induction of MDS genes in rcd1 and rcd1 

complementation lines. To address the role of RCD1 in transcriptional response to AA, 

plant rosettes were sprayed with water solution of 50 μM AA (or of DMSO as the control). 

Noteworthy, even though this concentration of AA has been widely used for the studies 

in mitochondria, AA ≥ 20 μM was shown to cause side effects including inhibition of 

chloroplast cyclic electron flow (Watanabe et al. 2016). Thus, the obtained results should 

be interpreted with caution. After 3-hour incubation under growth light, relative expression 

of the selected MDS genes was measured by real time quantitative PCR. Similar 

induction of AOX1a or ANAC013 was observed in rcd1, Col-0, rcd1: RCD1-HA, and rcd1: 

RCD1Δ7Cys-HA lines. Interestingly, induction of another tested MDS gene, UPOX, was 

suppressed in the rcd1: RCD1-HA lines expressing higher levels of RCD1 and in the rcd1: 

RCD1Δ7Cys-HA lines. Analogous effect was observed for the MDS gene At5G24640, 

although with low statistical power. Suppressed MDS induction in the lines with higher 

levels of RCD1 was in line with the observation that RCD1 abundance in vivo inversely 

correlated with different tolerance of plants to MV (Figure 1 – figure supplement 1). Four 

rosettes were pooled together for each sample. Relative expression was calculated from 

three biological repeats and the data was scaled relative to control Col-0. Source data 

and statistics are presented in Figure 6 – supplemental dataset 1.  
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Figure 6 – figure supplement 3. Tolerance of PSII to chloroplastic ROS in sal1 

mutants. MV-induced PSII inhibition was tested in 2.5-week rosettes. The single sal1 

mutant was more tolerant to MV than the wild type (left panel). The double rcd1 sal1 

mutant was more tolerant to MV than rcd1 (right panel). Note different concentrations of 

MV used in the two panels. For source data and statistics see Fig. 6 – supplemental 

dataset 1. 
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Figure 7 – figure supplement 1. Biochemical interaction of RCD1 with ANAC013/ 

ANAC017 transcription factors in human embryonic kidney (HEK293) cells. HA-

RCD1 was co-expressed with ANAC013-myc (A) or ANAC017-myc (B) (IP – eluate after 

immunoprecipitation).  

(A) Co-immunoprecipitation of HA-RCD1 with αmyc antibody (top) and of ANAC013-

myc with αHA antibody (bottom) indicated complex formation between HA-RCD1 

and ANAC013-myc.  

(B) Co-immunoprecipitation of HA-RCD1 with αmyc antibody (top) and of ANAC017-

myc with αHA antibody (bottom) indicated complex formation between HA-RCD1 

and ANAC017-myc. 
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Figure 7 – figure supplement 2. Structure of the RST domain of RCD1. Structure of 

the C-terminal domain of RCD1 (residues G468-L589) was determined by NMR 

spectroscopy. The first 38 N-terminal and the last 20 C-terminal residues are devoid of 

any persistent structure, hence only the structure of the folded part (residues P506-P570) 

is shown. The ensemble of 15 lowest-energy structures is on the left and a ribbon 

representation of the lowest-energy structure is on the right. The folded part represented 

by the RST domain is entirely α-helical and consists of four α-helices, F510-I517, E523-

R537, R543-V554 and D556-L566. The structured region ends at position N568, which 

corresponds to the necessary C-terminal part for the interaction with transcription factors 

(Jaspers et al. 2010). The structure of the beginning of the first helix is dispersed in the 

ensemble due to sparseness of distance restraints. This arises from several missing 

amide chemical shift assignments (Tossavainen et al. 2017) as well as the presence of 

four proline residues in this region (P503, P506, P509 and P511), which severely 

hindered distance restraint generation. The many conserved hydrophobic residues 

(Jaspers et al. 2010), shown in stick representation, form the domain’s hydrophobic core. 

Mutagenesis experiments identified hydrophobic residues L528/I529 and I563 as critical 

for RCD1 interaction with DREB2A (Vainonen et al. 2012). I529 and I563 are constituents 

of the hydrophobic core, and substitution of these residues probably disrupts the core of 

the RST domain thus abolishing the interaction. The atomic coordinates and structural 

restraints for the C-terminal domain of RCD1468-589 have been deposited in the Protein 

Data Bank with the accession code 5N9Q. 
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Figure 7 – figure supplement 3. Analysis of interaction of the ANAC013-derived 

peptides with the RST domain of RCD1. 

(A) According to yeast two-hybrid data (O'Shea et al. 2017), ANAC013 residues 205-299 

are responsible for interaction with RCD1. To narrow down the RCD1-interacting 

domain, three overlapping peptides ANAC013205-258, ANAC013235-284, ANAC013251-

299 were designed and tested for their binding to RCD1 by surface plasmon 

resonance.  

(B) Surface plasmon resonance interaction analysis of three ANAC013-derived peptides 

with the C-terminal domain of RCD1. The strongest binding was detected for 

ANAC013 peptide 235-284 (red in panel A), which was further used for the NMR 

titration experiment with the purified C-terminal domain of RCD1 (RCD1468-589). 

(C) Histogram depicting the changes in 1H and 15N chemical shifts in RCD1468-589 upon 

addition of the ANAC013235-284 peptide. Changes were quantified according to the 

“minimum chemical shift procedure”. That is, each peak in the free form spectrum 

was linked to the nearest peak in the bound form spectrum. An arbitrary value -0.005 

ppm was assigned to residues for which no data could be retrieved. The largest 

changes (Δδ ≥ 0.10 ppm) were found for residues located on one face of the domain, 

formed by the first and last helices and loops between the first and the second, and 

the third and the fourth helices. These residues probably representing the peptide 

interaction site are highlighted on the RSTRCD1 structure in Fig. 7A inset. In addition, 

relatively large perturbations were observed throughout the RST domain, and 

notably, in the unstructured C-terminal tail, which might originate from a 

conformational rearrangement in the domain induced by ligand binding. 

  



Figure 8 – figure supplement 1

AT3G22370
(AOX1a)

AT2G21640 
(UPOX)

Col-0
rcd1-4
rcd1-1
anac017
rcd1-1 anac017

control AA 50 μM

0

5

10

15

20

25

0

1

2

3

4

5

0

5

10

15

20

0

20

40

60

80

AT1G32870
(ANAC013)

At5G24640 

control AA 50 μM

re
la

tiv
e 

ge
ne

 e
xp

re
ss

io
n

re
la

tiv
e 

ge
ne

 e
xp

re
ss

io
n



70 
 

Figure 8 – figure supplement 1. Induction of MDS genes in anac017 and rcd1 

anac017 mutants. Expression of the selected MDS genes was assessed in rosettes 3 

hours after spraying them with 50 μM AA, as described in Figure 6 – figure supplement 

2. The anac017 mutation strongly suppressed induction of MDS genes in rcd1 both under 

control conditions and after AA treatment. Relative expression was calculated from three 

biological repeats and the data was scaled relative to control Col-0. Source data is 

presented in Figure 6 – supplemental dataset 1. 
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