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Introduction and outline of the thesis 

Nuclear Medicine 

Diagnostic nuclear medicine is a specialized area that uses small amounts of 

radioactive substances to examine organ function. The substance or molecule that is 

being used is called the tracer or radiopharmaceutical, this is a pharmaceutical 

connected to an isotope. This isotope is unstable and emits gamma-rays. Mostly 

Technetium99m (Tc99m) is used because of its favorable physical characteristics. 

The pharmaceutical is especially designed to go to a specific place in the body where 

there could be a disease or abnormality. Several studies had been carried out so that 

the particular radiopharmaceutical is going to a well-known organ. The “bone”-agent 

(Tc99m -MDP) is a calcium analogue which is after injection being incorporated into 

the bone on spots where there is bone-formation. The image you get from “outside” 

the patient is not a skeleton but an image of metabolic function of the bone. As a 

consequence, you don’t see a fracture, you see the new bone formation around the 

fracture. The “cardiac”-agent (Tc99m -Sestamibi or Tc99m -Tetrofosmin) is being 

hold in a special part of the myocardial cell (mitochondria). When this is done, two 

things are certain: the molecule is being carried to the heart :the blood vessel 

(coronary) was patent, and the myocardial cell lives (no infarct).  

The radioactive part of the radiopharmaceutical emits radiation into the detector, 

called the gamma-camera. Here is the main difference with radiology, where the 

patient receives some external x-rays, absorbs some, while the remaining part is 

captured (usually) on the other side of the patient. In nuclear medicine, the patient 

radiates always while the camera doesn’t. (Figure 1) The same is true for the therapy 

conditions in nuclear medicine where the therapeutic dose (much higher than in 

diagnostic procedures) is being brought as close as possible to the “target” organ, this 

can be the thyroid in benign hyperthyroidism (Graves) or bone in skeletal metastases. 
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Figure 1 

 

There are several types of gamma-camera’s, small or large and single-, double- or 

triple headed. One head of the camera consists of a flat screen that is placed as close as 

possible to the patient. When the head of the camera is not moving, you get a planar 

acquisition or 2-dimensional image of the tracer distribution of that part of the body 

that is been studied. For the bone scan, there was soon some interest to scan 

dynamically from head to toe, the so called whole body scans, and the head of the 

camera starts at one side of the body and moves slowly to the other side, so that the 

full body could be displayed. Sometimes dynamic physiologic processes are scanned, 

e.g. vascularisation of hand or foot, excretion of kidneys, or transit and emptying of 

stomach. The head of the camera is then placed over the ROI and together with the 2-

dimensional tracer distribution, time is acquired and images are repeated after a 

certain predefined period. These are dynamic scans that are mainly carried out if some 

Radiology: 

(mostly) anatomical imaging 

Nuclear Medicine:  

functional imaging 

Radiotherapy is working with external radioactive sources 

the “machine” radiates the patient 

Nuclear Medicine is working with open and  

internal radioactive sources 

the patient “radiates” himself 

Diagnosis 

Therapy 
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organ functions seem too slow, e.g. a slower gastric emptying in a patient with 

diabetes. 

Nuclear Cardiology 

During decennia, a lot of attention went to imaging of the heart. Mainly two separate 

techniques were used, or the myocardial left ventricular (LV) wall or the myocardial 

cavity (blood pool or ventriculography) are studied.  

With limited spatial resolution, it was clear that mostly LV wall was studied when 

examining myocardial wall, since the right ventricular (RV) wall has smaller wall 

thickness, too small to have accurate measurements with conventional nuclear 

imaging techniques. During the first years, LV wall perfusion was studied in a planar 

mode, but later a three-dimensional technique was developed (so called SPECT 

technique). The radiopharmaceutical is brought to the heart through (open) cardiac 

blood vessels and being trapped in the (living) myocardial cells. Therefore, this 

technique is mainly used to study LV perfusion and/or metabolism. The cardiac PET 

technique was also developed, with the advantage of smaller spatial resolution, but 

with the disadvantage of requiring a dedicated PET camera, with high cost and limited 

availability of camera and radiopharmaceutical. 

The technique of studying the myocardial cavity is done by preventing the 

radiopharmaceutical to leave the blood vessels, and to make dynamic (or gated) scans 

of the cardiac chambers. The scan is dynamic because together with the blood pool 

activity, the ECG-signal of the patient is captured, in order to evaluate the kinetic 

information of the heart during one or several heart beats. The most important 

measurement from these type of scans is the LV ejection fraction, being the portion of 

blood pumped to the systemic circulation from the LV. The blood pool scan or 

ventriculography is mostly executed in the planar mode, so called planar 

ventriculography (PRV), with the gamma-camera positioned before the chest of the 

patient (anterior) with an angulation to the left side, to obtain an ideal separation of 

LV with other cardiac structures, e.g. RV and atrial cavities.  

Cardiac function studied in nuclear cardiology: why? 

The clinical relevance of measurements of cardiac function cannot be overemphasized. 

Based on scientific and clinical observations, measures of ventricular function provide 

information for most of the most critical diagnostic and therapeutic decisions. The LV 

has been most extensively studied because of its involvement in common disorders 
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such as hypertension or ischemic heart disease. Any dysfunction of the left side of the 

heart is mostly clinically obvious by some consequences in the systemic circulation. 

However, an increasing amount of data is available concerning right ventricular (RV) 

function in several disorders including pulmonary heart disease, congenital heart 

disease, valvular disorders and inferior myocardial infarction [1].  

Several methods are available to assess cardiac chamber function and include 

echocardiography, computed tomography, magnetic resonance imaging and 

radionuclide techniques with blood pool activity (ventriculography) and with 

myocardial activity (perfusion or viability). These various methods are based on 

different physical principles and contain complementary information. Each of them is 

characterized by some strengths and some pitfalls. It will therefore not be easy to  find 

an accurate “one-stop-shop” examination in cardiology [2] to cover all these items of 

clinical interest and to “scan” the heart in one single examination for perfusion, 

function, anatomy, valve status, pressure information, systolic and diastolic 

function,… 

The most innovative change in nuclear cardiology recently is the extensive validation 

and use of gated myocardial perfusion SPECT to examine perfusion and function in 

one examination. Together with observation of perfusion defects and its reversibility, 

evaluation of global and regional LV function is more and more done. By adding the 

“gated” modality to the SPECT-imaging technique, not only supplementary 

information was added to the description of the images, also the accuracy in 

differentiating a real perfusion defect, due to a coronary lesion, or an attenuation 

artifact was significantly increased. 

Planar ventriculography (PRV) is since long the gold standard for LVEF 

determination, although clinical use of this technique declined due to the success of 

echocardiography. Where the latter produces more parameters of LV function, 

morphology and information of valvular status, the interest in PRV is only for the 

determination of LVEF. If we have now the possibility to get three-dimensional 

information of the heart function in a satisfactory resolution (in space and time)  

without supplementary radiation of the patient and we have some quantitative results 

of LV and RV function, even if the latter is still investigational, I think it is worth to 

combine the SPECT technique with radionuclide ventriculography, tomographic 

radionuclide ventriculography (TRV). While the slower computer systems and smaller 

disk space was long an argument not to perform this technique, in most departments, 

this is not the case nowadays. Even a visual evaluation of the gated reconstructed 
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slices (visual inspection of the “three-dimensional beating heart”) of a 

ventriculography study can learn a lot more of global and even regional kinetic 

information of LV and RV, when the observer is experienced with the technique. 

Old against new methods to process TRV 

Fischmann reported in 1989 [3] : “Gated blood pool tomography: a technology whose 

time has come”. When he would mean that the technique of taking three-dimensional 

images of the radionuclide ventriculography is possible and useful, this is correct to 

my opinion. But more than 15 years later this technique isn’t used in clinical daily 

practice, and I think there are several reasons for this. First workstations in the early 

years were not fast enough and had not enough memory to process and store these 

images. Second, automatic software to process TRV is only available recently. For 

years until the publication of the first automatic algorithm [4] several attempts were 

made to process TRV, and (nearly) none of them became widespread and popular. In 

the years after the first paper of TRV from Moore [5] , TRV was acquired and 

reconstructed into short-axis, long-axis and four-chamber-view planes for visual 

evaluation [6]. They studied 15 patients with atrial septal defect or myocardial 

infarction and they could clearly demonstrate the superiority of TRV in assessing 

regional asynergy and dilatation of ventricles and atria. From then, several own 

manual techniques were used by different authors [7; 8] but it was clear that this time-

consuming way of analysis, could never become popular. Other methods of analysis 

used several slices which are summed after reconstruction to make one thick slice 

along the ventricular cavities [9; 10; 11] or “dual gated tomograms” where 2 SPECT 

scans are acquired, one at end-diastole and one end-systole [12; 13]. Others tried to 

map fourier phase analysis from TRV short axis slices onto a two-dimensional polar 

map [14], onto several slices of a reconstructed TRV [15] or onto a three-dimensional 

reconstructed skeleton of the bloodpool activity [16; 17]. More and more, the idea 

became accepted that for optimal analysis of TRV of LV and RV, only a three-

dimensional technique could give accurate results [18; 19] but it was only when 

automated three-dimensional were developed [4; 20; 21; 22], the interest in TRV and 

the number of published papers increased. Only, it was strange that many of these 

programs were distributed before a full validation, not only for LVEF, but also for LV 

and even more important RV end-diastolic and systolic volumes. 

So now we have some software programs available, but they seem to be 

undervalidated. 
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Outline of the thesis 

This thesis is focused on research on gated perfusion SPECT (GSPECT) and TRV, with 

two main questions: what are normal values for LV and RV function from GSPECT 

and TRV and what about validation of the technique and processing of TRV? 

In chapter 1 normal values for LV ejection fraction (EF) and LV end-diastolic volume 

(EDV) and end-systolic volume (ESV) were calculated in a population with low pre-

test likelihood for coronary artery disease (CAD). We looked for age- and gender-

dependent differences.  

From chapter 2 to chapter 9 we did research on TRV. We validated first TRV by 

different dynamic heart phantoms (part 2) before we tested TRV further in human 

experiments (part 3). 

In chapter 2 we developed a dynamic LV phantom because we wanted to know if it 

was possible to acquire planar and tomographic ventriculography scans from a 

dynamic volume, and to correctly measure volumes and ejection fractions from this 

volume. We looked for differences between planar and tomographic calculations. 

Moreover, with a special technique of (manually) calculating volumes from SPECT 

scans, region growing, we tried to identify the optimal cut-off when calculating 

volumes.  

During chapter 3 we used this phantom further to compare 10 commercially 

available software programs to process PRV and to calculate LVEF. When this would 

be possible, we had not only an interesting scientific tool for ventriculography studies, 

we would have possibility to use this LV phantom in software audits and quality 

assurance procedures.  

In chapter 4 we developed a dynamic biventricular heart phantom, with a LV and RV 

attached to each other. This would be a better resemblance of the real situation with 

respect to the normal proportion from LV to RV. We wanted to know if TRV was 

possible to correctly separate LV from RV. The ellipsoidal shape of LV and the more 

triangular shape of RV were taken into account. Septal thickening was also provided 

since the space between LV and RV was not active (radioactivity is kept in the 

ventricles) and the LV “mass” is kept constant (space was filled with gel). In contract 

to the first LV model, we tried an active filling and emptying trough the ventricles (in 

stead of passive filling and emptying through surrounding fuid alterations like the first 

model). We used here to process the images the software BP-SPECT [22] . 
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Next step was the development of a four-chamber dynamic cardiac model in chapter 

5. After simulation between both ventricles, attention went to a correct separation of 

ventricles from atria, for LV as well as RV. We used the four most used software 

programs nowadays to process TRV, QBS from the Cedars Sinai group, Los Angeles, 

USA [4], QUBE from the Free University of Brussels, Belgium [20], 4D-MSPECT from 

the University of Michigan, USA [21] and BP-SPECT, the software developed at the 

Columbia University, New York, USA [22]. 

From part 3 we started to test the different softwares in patients and volunteers. 

Chapter 6 was carried out in cooperation with the Division of Nuclear Medicine, 

Northwestern Hospital, Chicago, USA and the Division of Cardiology, Columbia 

University, New York, USA. Differences in modeling between QBS [4] and  BP-SPECT 

[22] was tested in 422 patients, 31 normal subjects and 16 phantom experiments. In 21 

patients, comparison with MRI could be made. The difference between a count-based 

method (BP-SPECT) was compared with a geometry-based method (QBS). 

We compared LVEF from the four mentioned software programs to process TRV with 

PRV in 166 patients in chapter 7. Furthermore, ventricular volumes from TRV (QBS, 

QUBE and 4D-MSPECT) were compared with those from BP-SPECT, the latter being 

the only method so long with a validation of ventricular volumes with MRI [22; 23].  

Since MRI is nowadays the standard for ventricular volumes validation, we had the 

opportunity to match TRV data from 28 patients from Columbia University with MRI 

data, with all four programs to process TRV in chapter 8. 

Finally, we set up in chapter 9 a prospective database of normal subjects of 51 

persons (29 men and 22 women) to provide normal values for LV and RV EF, EDV 

and ESV from TRV, processed with the available software algorithms. It was further 

interesting to study the gender differences in LV and RV function, and compare these 

findings with the GSPECT results from chapter 1. 
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SUMMARY 

The aim of this study was to determine normative volumetric data and ejection 

fraction values derived from gated myocardial single-photon emission tomography 

(SPECT) using the commercially available software algorithm QGS (quantitative gated 

SPECT). From a prospective database of 876 consecutive patients who were referred 

for a 2-day stress-rest technetium-99m tetrofosmin (925 MBq) gated SPECT study, 

102 patients (43 men, 59 women) with a low (<10%) pre-test likelihood of coronary 

disease were included (mean age 57.6 years). For stress imaging, a bicycle protocol 

was used in 79 of the patients and a dipyridamole protocol in 23. Left ventricular 

ejection fraction (LVEF) and end-diastolic and -systolic volumes (EDV and ESV) were 

calculated by QGS. EDV and ESV were corrected for body surface area, indicated by 

EDVi and ESVi. To allow comparison with previous reports using other imaging 

modalities, men and women were divided into three age groups (<45 years, ≥45 years 

but <65 years and ≥65 years). Men showed significantly higher EDVi and ESVi values 

throughout and lower LVEF values when compared with women in the subgroup ≥65 

years (P<0.05, ANOVA). Significant negative and positive correlations were found 

between age and EDVi and ESVi values for both women and men and between LVEF 

and age in women (P=0.01). LVEF values at bicycle stress were significantly higher 

than at rest (P=0.000, paired t test), which was the result of a significant decrease in 

ESV (P=0.003), a phenomenon which did not occur following dipyridamole stress 

(P=0.409). The data presented suggest that LVEF and EDVi and ESVi as assessed by 

QGS are strongly gender- specific. Although the physiological significance of these 

results is uncertain and needs further study, these findings demonstrate that the 

evaluation of cardiac function and volumes of patients by means of QGS should 

consider age- and gender-matched normative values.   
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INTRODUCTION  

Reduced left ventricular (LV) function is a potent predictor of cardiac events in 

patients with coronary or valvular heart disease, symptomatic heart failure and 

hypertension [24; 25; 26]. Estimation of left ventricular ejection fraction (LVEF) and 

end-diastolic and end-systolic volumes (EDV and ESV) from gated single-photon 

emission tomography (SPECT) myocardial perfusion images has recently become 

possible through the development of several software algorithms [27; 28; 29; 30; 31; 

32; 33; 34]. The most widespread method, quantitative gated SPECT, or QGS, 

developed at Cedars Sinai, is an automatic algorithm operating in three-dimensional 

space, based on asymmetric Gaussian fitting of count profiles across the myocardium 

and identification of endo- and epicardial surfaces . Currently however, the extent to 

which age, gender and type of stress test per se influence measures of LV function as 

estimated by QGS, independent of clinically apparent cardiovascular disease, is largely 

unknown. Therefore, this study set out to determine normative volumetric data and 

ejection fraction values using QGS for comparison of individual patients and for 

follow-up of global cardiac function.  

MATERIALS AND METHODS  

Between November 1998 and May 1999, we prospectively studied 876 consecutive 

patients referred to our stress laboratory for a 2- day stress-rest technetium-99m 

tetrofosmin gated SPECT study. From among this group, 102 normotensive patients 

with a pretest likelihood for coronary heart disease <10% and normal stress and rest 

perfusion images as determined by two experienced readers (P.D.B. and C.V.D.W.) 

were included in the study. None of the patients suffered from diabetes or presented 

with left or right bundle branch block or atrial fibrillation. Additionally none of the 

patients had a pacemaker. There were 43 men and 59 women, and their mean age was 

57.6 years. Men and women were divided into three age groups to allow comparison 

with previous reports using other imaging modalities for the assessment of normative 

cardiac functional parameters and to serve as reference values in routine clinical 

practice: men and women aged under 45 years of age, men and women older than 45 

but younger than 65 years of age and men and women above 65 years of age.  
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99m Tc-tetrofosmin gated SPECT 

99m Tc-tetrofosmin injections (925 MBq) were performed following overnight fasting 

during peak exercise of a bicycle protocol (number of patients (n) = 79) or intravenous 

pharmacological coronary vasodilatation with dipyridamole (0.142 mg/kg per minute 

infused over 4 min, n=23) and under resting conditions the day after. Data acquisition 

started at least 30 min following tracer injection in the supine position using a triple-

headed gamma camera equipped with low-energy high-resolution collimators (Prism 

3000, Marconi, Cleveland, Ohio). Imaging was performed over 360° (120 sectors of 

3°), with a total imaging time of 21 min. Data were stored in a 64x64 bit matrix. 

Acquisitions were gated for eight frames per cardiac cycle with a beat acceptance 

window set at 20% of the average R-R interval, calculated prior to image acquisition. 

Images were reconstructed using a low-pass filter with an order of 5.0 and a cut-off of 

0.21. Attenuation correction, background subtraction and beat rejection were not 

performed. The resulting transaxial image sets were reoriented into short-axis sets to 

which the automatic QGS algorithm was applied.  

Statistical analysis 

Data are expressed as mean±1 standard deviation. Comparisons between rest and 

exercise values were performed using Student’s t-test for paired or unpaired 

observations. Equality of variance was assessed by Levene’s test. Pearson’s correlation 

coefficient was used for statistical analysis of relationships between myocardial 

function and age. Analysis of variance was performed to identify differences between 

groups of individuals. A value of P<0.05 was considered statistically significant.  

RESULTS  

The values for volumes (with and without correction for body surface area) and 

ejection fraction at rest, as well as anthropometric patient data, are listed in Table 1.  
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Significant differences between men and women were found for all volumetric 

parameters in all age groups and for EF only in the subgroup ≥65 years of age. When 

normalised to body surface area (data indicated by EDVi and ESVi), differences in 

volumes between the genders and in EF in the subgroup ≥65 years were still evident, 

with the exception of the EDVi in the age group <45 years of age. Men showed 

significantly higher volume values throughout and lower EF values when compared to 

women in the subgroup ≥65 years. Within-gender differences in EF or volumetric 

parameters between the different age groups were found only in women of the ≥65 

year age group, who had significantly higher EF values and significantly lower EDV 

and ESV values (Table 2).  

 

Variable 
Overall group 

(n=102) 

Men 

(n=43) 

Women 

(n=59) 

Age (years) 57.6 ± 12.4 56.0 ± 13.0 58.8 ± 11.9 

BMI (g/m2) 27.2 ± 5.2 27.5 ± 5.6 27.0 ± 4.9 

BSA 1.8 ± 0.2 2.0 ± 0.2 1.7 ± 0.2 

EF (%) 62.8 ± 8.7 58.9 ± 6.2 65.6 ± 9.2 

EDV (mL) 88.1 ± 28.0 105.5 ± 25.1 75.4 ± 22.7 

ESV (mL) 34.4 ± 16.4 44.3 ± 14.4 27.3 ± 14.0 

EDVi (mL/m2) 47.5 ± 13.3 53.8 ± 13.6 43.0 ± 11.1 

ESVi (mL/m2) 18.5 ± 8.3 22.6 ± 7.9 15.5 ± 7.3 

 

Table 1 

Demographic and anthropometric findings at rest  

(BMI, Body mass index; BSA, body surface area; EF, ejection fraction; EDV, end-diastolic volume; 

ESV, end-systolic volume; EDVi, end-diastolic volume index; ESVi, end-systolic volume index) 
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On the other hand, significant negative and positive correlations were found between 

age and EDVi and ESVi values for both women and men and between EF values and 

age in women (Table 3).  

 

Variable Correlation coefficient (p-value) 

 All (n=102) Men (n=43) Women (n=59) 

EF (%) 0.42 (0.000) 0.18 (NS) 0.55 (0.000) 

EDV (mL) -0.45 (0.000) -0.46 (0.002) -0.46 (0.000) 

ESV (mL) -0.49 (0.000) -0.45 (0.003) -0.55 (0.000) 

EDVi (mL/m2) -0.41 (0.000) -0.39 (0.010) -0.42 (0.001) 

ESVi (mL/m2) -0.48 (0.000) -0.40 (0.009) -0.54 (0.000) 

 

Table 3 

Gender-specific relation of rest LV volumes and EF to age 

(EF = ejection fraction, EDV = end-diastolic volume, ESV = end-systolic volume, EDVi = end-diastolic 

volume index, ESVi = end-systolic volume index, NS = not significant) 
 

Variable Age 

 < 45 years  45 - < 65 years  ≥ 65 years 

 Men Women  Men Women  Men Women 

 (n=6) (n=8)  (n=25) (n=29)  (n=12) (n=22) 

Age (years) 36.3 ± 10.1 37.6 ± 5.5  53.2 ± 5.1 56.2 ± 6.1  71.8 ± 6.4 69.9 ± 4.9 

BMI (g/m2) 26.2 ± 5.8 26.7 ± 4.3  29.0 ± 6.2 27.8 ± 5.7  25.2 ± 3.3 26.0 ± 4.0 

BSA 2.0 ± 0.2 1.7 ± 0.1  2.0 ± 0.2 1.8 ± 0.2  1.9 ± 0.1 1.7 ± 0.1 

EF (%) 55.5 ± 5.2 57.5 ± 7.8  59.2 ± 6.0 63.8 ± 8.6  60.1 ± 6.9° 70.9 ± 7.7* 

EDV (mL) 
129.7 ± 

25.8° 
85.6 ± 13.3  

104.0 ± 

23.3° 
82.9 ± 26.3  96.6 ± 22.6° 61.9 ± 11.6* 

ESV (mL) 58.3 ± 15.1° 37.3 ± 11.7  43.4 ± 13.0° 31.2 ± 15.0  39.0 ± 13.4° 18.4 ± 7.1* 

EDVi 

(mL/m2) 
67.0 ± 17.8 49.4 ± 8.9  52.0 ± 12.4° 45.5 ± 12.7  51.1 ± 10.9° 37.3 ± 6.6 

ESVi 

(mL/m2) 
30.5 ± 10.1° 21.8 ± 6.7  21.6 ± 6.9° 17.0 ± 7.5  20.6 ± 7.0° 11.2 ± 4.4* 

 

Table 2 

Myocardial functional parameters assessed by QGS, by age and gender  

*P<0.05, ANOVA, within one gender °P<0.05, ANOVA, between genders  

 (BMI, Body mass index; BSA, body surface area; EF, ejection fraction; EDV, end-diastolic volume; 

ESV, end-systolic volume; EDVi, end-diastolic volume index; ESVi, end-systolic volume index) 
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Overall, EF values following stress were significantly higher than those obtained at 

rest: 64.7%±8.6% at stress versus 62.8%±8.7% at rest (P=0.03). When subdivided ac-

cording to type of stress testing, a significant difference between EF at rest versus 

stress was found following bicycle stress testing (62.0%±8.0% at rest versus 

64.7%±7.8% following stress, P=0.000) but not following pharmacological stress 

testing (64.5%±10.7% at rest versus 64.4%±11.2% following stress, P=0.478). The 

increase in EF following bicycle test when compared to dipyridamole stress testing 

was the result of a significant decrease in ESV following bicycle stress (36.2±18.9 mL 

at rest versus 33.15±17.9 mL following stress, P=0.003) which did not occur following 

dipyridamole stress (24.8±13.4 mL at rest versus 29.5± 14.1 mL following stress, 

P=0.409). 

DISCUSSION 

Comparison with other non-invasive imaging modalities  

Age- and gender-specific differences in myocardial function have been previously 

reported using echocardiography [35; 36; 37; 38; 39; 40] and magnetic resonance 

imaging (MRI) [41; 42; 43; 44; 45; 46; 47; 48; 49]. Most of these studies have been 

limited to a small number of patients and have included individuals with a younger 

mean age, on average±30 years, than that of patients with cardiac disease. Mean 

values for EF, EDV and ESV at rest in these series range, respectively, from 62.1%–

69.9%, 108–130 mL and 35–49.3 mL using MRI and from 58.1%–60%, 95–112 mL 

and 35–38.6 mL using echocardiography. Whereas results for EF in the present series 

are comparable (mean 62.3%; SD 8.7%) to those previously reported, values obtained 

for EDV and ESV were lower, at 88.1 mL (SD 27.9 mL) and 34.4 mL (SD 16.4 mL), 

respectively. Although the higher mean age in our series may have been at least partly 

responsible for the lower EDV and ESV values found, methodological problems should 

also be considered. As shown by Nakajima et al. using a mathematical digital 

phantom, the limited resolution of the gamma camera may result in underestimation 

of the LV volume by 15% for a volume of 101 mL, 25% for a volume of 52 mL and 50% 

for a volume of 37 mL [50]. Also, count subtraction with varying LV cavity background 

activity may be insufficient to correct for spill-over from systolic counts from opposing 

myocardial walls into one another and into the LV cavity in smaller hearts, thus 

contributing to LV underestimation at systole [51]. Comparable differences in volumes 
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and in EF as measured by MRI, echocardiography and radionuclide angiography were 

recently reported by Bellenger et al. [52]. On the basis of these and our own findings, it 

may be concluded that volumetric myocardial values and EF values assessed by 

different imaging modalities, including SPECT and QGS, are not clinically 

interchangeable.  

Gender-related differences  

In terms of gender-specific differences, significantly higher EDV and significantly 

lower EF values, the latter limited to the subgroup ≥65 years old, were found in men 

compared to women. Normalisation to body surface area (BSA) did not eliminate 

these differences. These findings are in contrast to those obtained by Sandstede et al. 

[49] and Lorenz et al. [41]. Sandstede et al., using cine MRI with breathholding, found 

that following normalisation to BSA, significant differences between men and women 

in LV volumes were eliminated. Lorenz et al., using cine MRI in a series of 75 patients, 

also found gender independence for EF when corrected for BSA. Possibly, the non-

linear underestimation of myocardial volumes using gated SPECT as suggested by 

Nakajima et al., with increasing underestimation at smaller volumes, may have 

resulted in over-reduction of EDVi and ESVi in women when compared to men [50].  

Age-related differences  

Data on age-related differences in EF and EDV and ESV are conflicting. Whereas De 

Simone et al. demonstrated an increase in LV chamber size in older women [39], 

Merino et al. found no differences in EDV, ESV or EF in two groups of volunteers aged 

22±1 and 70±4 years [40]. On the other hand, Sandstede et al. showed a significant 

decrease in systolic and diastolic LV volumes with increasing age. In this series, 

however, EF values remained nearly unchanged [39]. Comparable results were 

obtained by Slotwiner et al., who found a slight but significant increase in LVEF and a 

decrease in chamber size with age in a large series of 464 clinically normal adults aged 

16–88 years [53]. Gender differences in this series were, however, not directly 

assessed. Instead, these authors used partial correlation coefficients, ac-counting for 

gender. From their data it is nevertheless unclear how this dichotomous variable was 

incorporated in the statistical analysis. In the present series, using analysis of 

variance, age-related differences were only noted in the group of women aged ≥65 

years, who showed significantly lower EDV and ESV and significantly higher EF 

values. On the other hand, using correlation analysis, significant negative and positive 

correlations were found between age and EDV and ESV for both women and men and 
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between EF values and age in women, in agreement with the findings reported by 

Slotwiner et al. and Sandstede et al. [49]. Thus, the absence of an age-related 

significant difference in the three groups of men and in the groups of women below 65 

years of age may have been the result of the relatively small number of patients per 

group, not allowing a significant difference to emerge.  

Effect of stress type on functional parameters 

In keeping with previous findings of Kumita et al. [54], bicycle testing resulted in a 

significant increase in EF and a significant reduction in ESV due to an increase in 

cardiac inotropism. Lack of this effect during dipyridamole stress explains why no 

significant difference in EF was found at rest and following dipyridamole 

administration.  

Study limitations  

Due to ethical considerations, coronary angiography could not be performed to 

confirm the absence of significant coronary artery disease. Also, the effect of true 

obesity on EF and volume calculation could not be assessed owing to the limited 

number of patients with a body mass index (BMI) >30.  

CONCLUSION  

In summary, using QGS, we observed significant changes in both chamber volumes 

and EF with increasing age. Furthermore, volumes and EF as assessed by QGS seem 

strongly gender-specific. Although the physiological significance of these results is 

uncertain and needs further study, the findings demonstrate that the evaluation of 

cardiac function and volumes of patients by means of gated SPECT and QGS should 

consider age- and gender-matched normative values.  
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Part 2: Gated Bloodpool SPECT, phantom experiments 
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SUMMARY 

While there is growing interest in the automatic processing of tomographic 

radionuclide ventriculography (TRV) studies, the validation of these programs is 

mainly limited to a comparison of TRV results with data from planar radionuclide 

ventriculography (PRV) or gated perfusion single photon emission computed 

tomography (SPECT). The aim of the study was, therefore, to use a dynamic physical 

cardiac phantom for the validation of ejection fraction (EF) and volumes from PRV 

and TRV studies. A new dynamic left ventricular phantom was constructed and used 

to acquire 21 acquisitions in the planar and tomographic mode. The directly measured 

volumes and ejection fractions of the phantom during the acquisitions were 

considered as the gold standard for comparison with TRV and PRV. Ejection fractions 

were calculated from PRV by background-corrected end-diastolic and end-systolic 

frames. Volumes and ejection fractions were calculated from TRV by region growing 

with different lower thresholds to search for the optimal threshold. EF from PRV 

correlated significantly with the real EF (r=0.94, p=0.00). The optimal threshold 

value for volume calculation from TRV in 336 cases was 50% (r=0.98, p=0.00) 

yielding the best slope after linear regression. When considering these calculated end-

diastolic and end-systolic volumes, EF highly correlates (r=0.99, p=0.00) with the real 

EF, and this correlation was significantly (p=0.04) higher compared to EF from PRV.  

Our experiments prove that EF measured from TRV yields more accurate results 

compared with PRV in dynamic cardiac phantom studies. 

INTRODUCTION 

Planar radionuclide ventriculography (PRV) is a well validated, widely used, 

straightforward and highly reproducible technique for the assessment of left 

ventricular ejection fraction [1]. Nevertheless, this technique suffers from the fact that 

two-dimensional (2D) compressions of three-dimensional data are used and 

important structures in planar acquired cardiac images may be hidden or masked by 

objects in front of or behind them, introducing uncertainties in ejection fraction (EF) 

calculation. To resolve the limitations associated to this 2D technique, several 

automatic or semi-automatic methods have been developed that allow assessment of 

volumes (and hence left ventricular cardiac function) from tomographic radionuclide 
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ventriculography (TRV) data [2-4]. When compared to PRV, these techniques provide 

a more accurate separation of the cardiac chambers leading to supplementary 

information on biventricular volumes, wall motion and regional ejection fraction [5]. 

In general, the clinical usefulness of these algorithms has been established through 

direct comparison with data derived from PRV, but most of these algorithms have 

never been validated against a dynamic cardiac phantom [3,4]. Although cardiac 

phantom studies oversimplify cardiac anatomy and should not be considered as 

clinically gold standards, they have the advantage of absolute control over variables 

and accurate knowledge of the parameters under study. This study reports on the 

validation of PRV and TRV for measuring left ventricular volume and ejection fraction 

by using a newly developed dynamic physical cardiac phantom. 

MATERIALS AND METHODS 

Phantom description 

A Plexiglas reservoir (the atrium) was connected to an ellipsoidal model ventricle, 

made from silicone rubber and surrounded by a fluid-filled tank (Figure 1-2). 

Ventricular filling and emptying was achieved by means of a piston pump that 

withdraws/adds water from/into the water tank yielding a sinusoidal filling and 

emptying pattern. Pump rate was controlled such that a constant heart rate of about 

65 beats/min was obtained (mean 64.7, range 62 – 68).  
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An electrical contact generated a voltage peak when the piston pump reached its 

outmost position (end-diastolic volume of ventricular cavity) to simulate the patient’s 

ECG-trigger. Stroke volumes were adjusted by changing the stroke length of the 

plunger of the piston pump. The ventricular end-diastolic volume was changed by 

altering the volume of water in the surrounding tank.  

True volumes were determined by measuring the contents of the phantom in end-

diastolic (ED) and end-systolic (ES) position. To calculate the volumes in the frames 

other than ED and ES, the following formula (1) was applied: 
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with y = actual volume, fr = frame number and nfr = total number of frames (16) 
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Figure 1  

The phantom in the reservoir (upper right corner) positioned on a three-headed gamma camera 

(IRIX, Marconi-Phillips, Cleveland Ohio). 



VALIDATION OF LEFT VENTRICULAR PHANTOM 

 39 

Thus obtained volumes were used as the gold standard. 

 

 

 

Data acquisition 

Atrium and ventricle were filled with Tc99m with a concentration varying between 10 

and 14 mCi/l, the background varied from 0.3 to 2 mCi/l. Twenty-one different raw 

data sets were acquired for PRV and TRV covering a wide range of ventricular end-

diastolic volumes (27 – 290 mL, mean 122 mL) and stroke volumes (22 – 59 mL, 

mean 42 mL) in order to obtain a wide range of EF (7 – 66 %, mean 35%). 

Planar imaging 

PRV data were acquired over a 5 minute period, in 16 electrocardiographic gated 

frames, 64 x 64 matrix, zoom 1.333 (pixel size 7 mm) and with a beat acceptance 

window at 20 % of the average R-R interval calculated just before the acquisition was 

started. One projection was obtained with 1 head of a three-headed gamma camera 

(IRIX, Marconi-Phillips, Cleveland Ohio). The low energy high resolution collimator 

was positioned perpendicular to the surface of the phantom, in order to obtain a 

Left ventricle 

Fluid-filled Perspex tank 

Background activity 

Open Perspex reservoir (atrium) 

Lead shield 

 

Figure 2 

Design of the phantom-setup 
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projection view of a long vertical axis of the ventricle. FWHM  (Full width at half-

maximum) at 10 cm distance of the camera used is 7.6 mm. Counts/pixel in all 

summed frames varied in the left ventricle from 2236 to 9990 (mean 5769) and in the 

background from 415 to 3965 (mean 1796). In each frame, counts were calculated in 

the LV volume with a lower threshold of 50%. A rectangular region was drawn outside 

the LV to calculate the background activity/pixel and this correction was applied to the 

LV counts. The frame with the highest counts corresponded with the ED frame, those 

with the lowest counts, the ES one. EF was calculated with the formula (2):  

(2) 
( )

100×
−

=
EDcounts

EScountsEDcounts
EF  

Tomographic imaging 

TRV data were acquired using the same camera, equipped with the same collimators. 

Parameters of acquisition were as follows: 360° step-and-shoot rotation, 40 stops per 

head, 30 seconds per stop, 64 x 64 matrix, zoom 1.422 (pixel size 6.5 mm), 16 time 

frames and with a beat acceptance window at 20 % of the average R-R interval. The 

projection data were reconstructed by filtered backprojection using a Butterworth 

filter (cutoff frequency: 0.5 cycles/cm; order: 5). Transverse slices of every time frame 

were used as input for the MultiModality software (Nuclear Diagnostics, Hermes 

version 3.6, 1999). In total 336 transverse reconstructed studies were used to calculate 

volumes applying region growing (RG) on reconstructed slices. This method delineates 

three dimensional (3D) volumes using a threshold without an edge weight. A seeding 

point was positioned in the voxel containing the maximum counts in the ventricle. 

Different growing limits (46%, 48%, 50%, 52%, 54%) were applied in order to define 

the optimal threshold. After detection of the optimal threshold, ED volume and ES 

volume were defined for each study and EF was calculated using the above mentioned 

formula, with ED and ES volumes (V) in stead of counts. 

Statistical Analysis 

Correlations between calculated and true values were expressed as the Pearson 

coefficient for the volume data (n=336) and Spearman rank coefficient for the EF data 

(n=21). Variability about the regression line was expressed as the standard error of the 

estimate (SEE). The significance of the differences between various thresholds used 

was determined by analysis of variance using Bonferroni correction. Bland-Altman 

analysis of differences versus means of paired values was used to search for trends and 
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systematic errors. Statistical significance was defined as p<0.05. 

RESULTS 

Results of volume calculation are shown in Table 1 and expressed by linear regression 

and Bland-Altman analysis for the different thresholds.  

 

 

An excellent correlation was found for all chosen thresholds (46%, 48%, 50%, 52% and 

54%) and differences between the volumes obtained by various thresholds were not 

statistically significant. However, as the 50% threshold yielded the best slope after 

linear regression and the smallest mean percentage error as determined by Bland-

Altman analysis, this value was defined as the optimal threshold (Figure 3.). 

A highly significant correlation was found between the calculated PRV EF and the real 

EF (r=0.94, p=0.00; Figure 3.) as well as between TRV EF and actual EF (r=0.99, 

p=0.00; Figure 4.). The correlation was significantly higher for TRV compared to PRV 

(p=0.04). Bland-Altman analyses of differences versus mean calculated EF and actual 

EF demonstrated no significant trends or biases (Figure 3 and 4). 

 Linear regression Bland-Altman analysis 

 Equation SEE r p  
Mean difference 

(RG – actual) 

Standard deviation of 

difference 

RG 46 y = 0.79 + 1.07 x 0.79 1.00 0.00  9.41 7.27 

RG 48 y = -0.81 + 1.04 x 0.76 1.00 0.00  4.14 6.29 

RG 50 y = -2.33 + 1.01 x 0.75 1.00 0.00  -1.12 5.73 

RG 52 y = -3.57 + 0.98 x 0.71 1.00 0.00  -6.09 5.66 

RG 54 
y = -4.65 + 0.95 

x 
0.71 0.99 0.00  -11.15 6.21 

 

Table 1 

(SEE = standard error of the estimate) 
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Figure 3  

Linear regression (A) and Bland-Altman (B) analysis for volume determination with a threshold 

of 50% (TRV RG50) against the real volumes. 
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Figure 4  

Linear regression (A) and Bland-Altman (B) analysis for EF calculations with PRV against 

the real EF 
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Linear regression (A) and Bland-Altman (B) analysis for EF calculations with TRV against the 

real EF 
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The most common criterion used to define a volume with SPECT (as is also the case in 

the study presented) is a count threshold or the inclusion of all voxels within a selected 

percentage of the maximum counts as being within the volume. A number of factors is 

known to influence the accuracy of estimation of volumes when adopting this 

methodology. The most influential factors are the source size relative to the system 

spatial resolution and the source shape. As shown by King et al. [6], the use of a 50% 

threshold to determine the location of the edge along the axis of cylindrical and 

spherical sources leads to a systematic and progressive underestimation of the source 

volume for diameter/FWHM ratios smaller than 6 which is more important for sphere 

shaped volumes than for cylindrical ones. Once the ratio decreases below 2.0 the edge 

starts to move back out and eventually the volume is overestimated as the ratio 

decreases further. In contrast, for bar shaped sources, the estimated location of the 

edge is essentially equal to the actual location of the edge until the width of the object 

has decreased below 2 times the FWHM. In the presented data series, the smallest 

volume included was 27 mL, corresponding to a diameter of approximately 36 mm. 

Taking into account the system spatial resolution of 7.6 mm, this results in a minimal 

ratio of 4.7, with the vast the majority of volumes included in this study exceeding a 

ratio of 6.0. Furthermore, the ellipsoidal shape of the phantom ventricle approximates 

more closely cylindrical than spherical shapes, thus further reducing the degree of 

underestimation. 

DISCUSSION 

The optimal threshold of 50% defined in the presented data series is in agreement 

with previous data obtained by Tauxe et al. [7] using seven ellipsoidal static phantoms 

(y = 1.96 + 0.979 x, r=0.997) with increasing volumes (range : 53 – 5047 mL), despite 

the fact that in our study  “low-count” reconstructed slices were used originating from 

gated tomographic data. The robustness of this value  - despite the presence of 

surrounding activity and the inclusion of attenuation and scatter within the phantom - 

suggests that the latter factors are of minor importance when compared to the shape 

and size of the volume relative to the system spatial resolution. Although the use of a 

number of thresholds (as suggested by Faber et al. [8]) may theoretically provide 

overall more accurate results, particularly for smaller volumes, this procedure is 

impractical and difficult to implement in routine clinical practice.  

We used a Butterworth filter with the characteristics based on recent guidelines [9] 
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and publications [3,4]. As the filter choice defines the edge, it will codefine the optimal 

threshold value to be used for region growing. In this regard, restoration filters (e.g. 

Wiener filter) or smoothing filters (e.g. Hann or Hamming filters), require lower 

threshold values as confirmed by Chin et al. [10] and Front et al. [11]. Chin et al. 

placed a static cardiac phantom with a fixed volume in a torso phantom, reconstructed 

the projection data with a Wiener filter and found an optimal threshold of 37%. Front 

et al. used a Hanning filter and found a threshold of 43% to be optimal for volume 

calculation from SPECT, with a regression line given as y = -3.2 + 1.061 x  (r= 0.99).  

To the best of our knowledge, dynamic cardiac phantom experiments for radionuclide 

ventriculography have only been described twice by Pretorius et al. [12] and Simon et 

al. [13]. Only the latter group used a real physical dynamic cardiac phantom for the 

evaluation of ventricular volumes. They, unfortunately, performed only planar 

acquisitions. Pretorius et al. validated ventricular volume calculations from TRV with 

a mathematical cardiac torso phantom (MCAT). The correlation for 360° projection 

data of the left ventricle without attenuation correction varied between 0.967 and 

0.984, and the SEE values varied between 5.44 and 9.78. However, using their 

mathematical model and a count-based method, they found significant 

overestimations for ESV. Simon et al. adopted the technique described by Links et al. 

[14] for volume determination taking into account the counts from a “blood” sample, 

radioactive decay, background and attenuation. When comparing different imaging 

distances (9 cm vs. 5 cm), the accuracy of volume determinations declined with 

increasing distance, resulting in a systematic underestimation of true volumes (y = 

15.25 + 0.88x; SEE = 3.38 at 9 cm). A similar progressive underestimation of true 

volumes with increasing distance was described by Fearnow et al. using a single 

hollow acrylic sphere filled with aqueous 99mTc in a elliptical torso phantom and 

ascribed to excessive background subtraction. Due to the physical limitation of our 

phantom which was placed in a tank and the property of a tomographic acquisition, 

the imaging distance in our study was about 20 cm. The excellent results that we 

obtained despite this remote distance suggests that background correction is of less 

influence when deriving volumes form TRV. 

Study limitations 

No scatter and attenuation correction was applied during the reconstruction of our 

phantom studies. The phantom could not be placed in a torso phantom because of 

physical limitations. Although these corrections could theoretically have a significant 
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impact on the volume-calculations this was not supported by the excellent results 

obtained. No asymmetric ventricles (similar to the right ventricle) or respiratory 

motion was applied in this experiment. Our model offers potential for this, but the aim 

of the current study was to validate the volume calculation from a simplified 

ventricular volume as a first step, and now we can further develop a multiple cardiac 

chamber model, with more realistic shaped cardiac and mediastinal structures. 

CONCLUSION 

To the best of our knowledge, this is the first study to use a physical dynamic 

ventricular model for validation of PRV and TRV studies. Both techniques yielded 

good results for EF calculation, with more accurate results for TRV compared to PRV, 

and also for volume measurements. This model may serve as standard to study the 

influence of parameters included in commercially available algorithms to process 

TRV. Future experiments will include a right and left ventricle with a realistic 

geometry, the use of a volume-curve generator and the incorporation of the model in a 

torso phantom. 
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SUMMARY 

Automatic and semi-automatic algorithms to calculate ejection fraction (EF) from 

planar radionuclide ventriculography (PRV) are being used for years in nuclear 

medicine. Validation of these algorithms is scarce and often performed on outdated 

versions of the software. Nevertheless, clinical trials where PRV is being used as the 

golden standard for EF are numerous. Because of the importance attributed to the EF 

calculated by these programs, the accuracy of the resulting EF was assessed with a 

dynamic left ventricular physical phantom.A dynamic left ventricular phantom was 

used to simulate 21 combinations of various ejection fractions (7 – 66 %) and end-

diastolic volumes (27 – 290 mL). For each combination,  a planar radionuclide 

ventriculography was acquired, converted to an interfile format and transferred into 

processing stations with 10 different contemporarily-available commercial algorithms. 

The golden standard was the “real” EF of the phantom, derived from the exact volume 

of the ventricle in end-diastolic and end-systolic position. Correlation and Bland-

Altman analysis was performed between the real EF and the calculated EF. The 

correlation for all data was excellent (r = 0.98), the mean difference was very 

acceptable (0.98 %). Nevertheless, Bland-Altman analysis showed a significant trend 

in the difference between real and calculated EF, with a growing underestimation for 

higher ranges of EF, due to an overestimation of background in larger volumes 

compared to smaller ones. EF from PRV, calculated with commercially available 

algorithms correlates closely to the real EF of a dynamic left ventricular phantom. This 

phantom can be used in the development and validation of algorithms of PRV studies, 

in software audits and in quality assurance procedures. 

INTRODUCTION 

Planar radionuclide ventriculography (PRV) is well established and since years 

generally accepted as the golden standard for the calculation of left ventricular 

ejection fraction (EF) [1,2]. The technique is simple, robust and easy to perform. 

Nearly all manufacturers of nuclear medicine equipment provide workstations with 

available processing software for PRV. Most of these programs provide some 

references about the methods used to calculate EF, but information about the 

development and the clinical validation of the algorithm is mostly limited or absent. 
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Therefore, the aim of this study is to investigate the general accuracy of ten such 

commercially available programs  for the calculation of LVEF with a dynamic 

ventricular phantom. 

MATERIALS AND METHODS 

Dynamic phantom 

The development of the phantom used for this study was previously described [3]. In 

short, a thin-walled ellipsoidal silicone ventricle was suspended in a water-filled 

Perspex tank and contraction and relaxation were simulated by adding and 

withdrawing water from the tank with a piston pump. Twenty-one acquisitions were 

performed, covering a wide range of ventricular end-diastolic volumes (27 – 290 mL, 

mean 122 mL) and stroke volumes (22 – 59 mL, mean 42 mL) in order to obtain a 

wide range of EF (7 – 66 %, mean 35%). Atrium and ventricle were filled with a 

solution of Tc99m pertechnetate in water, with a concentration varying between 10 

and 14 mCi/l, the background varied from 0.3 to 2 mCi/l. An electrical contact 

generated a voltage peak when the piston pump reached its outmost position (end-

diastolic volume of ventricular cavity) to simulate the patient’s ECG-trigger. 

Data acquisition 

PRV data were acquired over a 5 minute period, in 16 electrocardiographic gated 

frames, 64 x 64 matrix, zoom 1.333 (pixel size 7 mm) and with a beat acceptance 

window at 20 % of the average R-R interval calculated just before the acquisition was 

started. An acquisition was obtained with 1 head of a three-headed gamma camera 

(IRIX, Marconi-Phillips, Cleveland Ohio). The low energy high-resolution collimator 

was positioned perpendicular to the surface of the phantom, in order to obtain a 

projection view of a long vertical axis of the ventricle. 
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Processing 

The acquisitions were converted to an interfile format and stored digitally. The 

programs that were used in this study are designated a to e and are summarised in 

table 1.  

The first three programs (a,b,c) were available on-site. Programs (d) and (e) were 

 Name Workstation/ 

Company 

Address Version Type of background ROI 

definition and correction 

Ref. 

(a) Multi-Gated 

Analysis 

Odyssey/Philps 

Medical Systems 

Best, The 

Netherlands 

march 

2001 

FBS, CDBS and CDDA yes 

(b) Gated Heart 

Analysis 

(FUGA) 

Hermes/Nuclear 

Diagnostics 

Hägersten, 

Sweden 

june 

2000 

FBS and CDBC yes 

(c) Gated Blood 

Pool (GBP) 

Vision/ GE 

Medical Systems 

Milwaukee, 

USA 

march 

2000 

FBS yes 

(d) Gated 

Bloodpool 

Icon/ Siemens Munich, 

Germany 

NA NA NA 

(e) Gated 

Bloodpool 

Toshiba Medical 

Systems 

Zoetermeer, 

The 

Netherlands 

Version 

5.3 

FBS: Between 3 and 6 

o’clock, 2 pixels wide and 

2 pixel from diastolic ROI 

NA 

(f) EF Analysis 

Protocol 

eNTEGRA/ GE 

Medical Systems 

Milwaukee, 

USA 

may 

2000 

FBS: Between 1 and 6 

o’clock, 4 pixels wide and 

1 pixel from systolic ROI 

no 

(g) Gated 

Bloodpool 

Mirage / Segami 

Corporation 

Paris, 

France 

v 5 NA no 

(h) Ejection 

Fraction 

(Planar) 

NuQuest/ 

Alphanuclear 

Buenos Aires, 

Argentina 

2.0 FBS: manually drawn ROI 

outside LV at end diastole 

no 

(i) Heart Gated Windows/ 

Medicimaging 

Ljubljana, 

Slovenia 

2002, 

v 1.0 

FBS: manually drawn ROI 

outside LV 

NA 

(j) xt_erna Vision/ GE 

Medical Systems 

Milwaukee, 

USA 

NA FBS: manually or 

automatically drawn ROI 

outside LV at end diastole 

NA 

 

 

 

Table 1 

(NA: not available; FBS: Fixed Background Subtraction; CDBS: Cycle-Dependent Background 

Subtraction: correction of non-ventricular counts, being pulled into the space that is occupied by the 

left ventricle during contraction (Wall Motion Region); CDDA: Cycle-Dependent Diskinetic Addition: 

correction for ventricular counts in end-systole, being outside the ROI drawn for end-diastole 
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available in resp. the Department of Nuclear Medicine, Algemeen Ziekenhuis Zusters 

van Barmhartigheid, Ronse, Belgium and in the Department of Nuclear Medicine, 

Breda, The Netherlands. The other programs (f-j) were obtained from the 

manufacturer. All acquisitions, on-site as well as off-site, were processed blindly, 

without knowledge of the real EF and all scans were first processed without operator 

interference (automatic algorithm). If the automatic option failed to detect the correct 

end-diastolic and end-systolic region, there was a manual intervention based on the 

amplitude and phase image. Misplacement of the left ventricular ROI was mostly due 

to an inclusion of the left atrium into the ROI. In all cases, defining a new centre in the 

left ventricle was enough to let the program define a new and correct region of interest 

(ROI). All results were sent back to Ghent University, were the statistical analysis was 

performed.  

Statistical Analysis 

χ2 analysis was used to test whether data were normally distributed. Results were 

reported as mean values ± 1 standard deviation (SD). Correlations between calculated 

and true (measured) values were expressed as the Pearson coefficient. Variability 

about the regression line was expressed as the standard error of the estimate (SEE). 

Bland-Altman analysis of differences versus means of paired values was used to search 

for trends and systematic errors. Statistical significance was defined as p<0.05. 

RESULTS 

All values of EF were normally distributed. For all data (Figure.1.), an excellent 

correlation was calculated (r = 0.98), the mean difference was very acceptable (0.98 

%) and a significant trend was seen in the Bland-Altman analysis with a growing 

underestimation for the calculated EF for higher EF. Calculated EF correlated highly 

with true values for all algorithms (from r = 0.95 till r = 0.99) (Figure 2.). With the 

exception of algorithm b, all regressions showed a significant slope < 1. In Bland-

Altman analysis (Figure 3.), only the slopes of algorithms c, g, and j differed 

significantly from 0, showing a trend for these algorithms to underestimate higher 

EF’s. 
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DISCUSSION 

From the early 1970s, PRV has been extensively studied and validated. The first 

reports compared scintigraphic and radiographic EF [4,5]. Correlation coefficients 

were found from 0.72 to 0.95. As the technique got more and more automated, PRV 

became the golden standard for measuring global left ventricular function. The first 

paper, dating back from 1985, gave an overview of different commercial computer 

programs for analysis of PRV. Reiber et al. compared 8 algorithms, and did a 

correlation study with contrast angiography for 5 algorithms [6]. Over the years, 

processing algorithms have not changed substantially, but they have been adapted and 

modified to newer and faster computer systems. The validation of these programs was 

not of primary importance to the manufacturers, and their results were incontestably 

accepted. Moreover, the result of PRV is these days even used to validate EF calculated 

from gated myocardial perfusion SPECT and gated blood pool SPECT. A phantom 

validation, mathematical or physical, of the available software is often suggested in 

literature, but only rarely done, which explains the primary aim of this particular 

study. 

The best correlation for all algorithms is seen in the lower range of EF, which is of 

higher clinical importance than the higher range of EF. The larger variation and higher 

underestimation in determining EF in the higher range is in our opinion due to the 

high degree of absorption in the wall of the Perspex tank. Because the absorption 

coefficient of Perspex is much higher compared to the mixture of muscle, bone, fat, 

and skin, the attenuation of photons in our experiment is higher than in the human 

body. Without absorption correction, LV volume values were underestimated by a 

factor of 3.6 on average [7]. Another reason for underestimating higher ejection 

fractions is due to the oversubtraction of background [8]. Using larger volumes usually 

attained high ejection fractions. The amount of background anterior and posterior to 

the left ventricle in our model is inversely proportional to the volume of the ventricle. 

By using a constant background, larger volumes are oversubtracted compared to 

smaller ones.  

The type of background correction was available in eight of ten algorithms (table 1.). 

Most of the algorithms use a fixed background, automatically or manually drawn, 

mostly a few pixels wide and between 3 and 6 o’clock away from the end-diastolic 
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region of interest (ROI). Other types of background correction were seen in algorithm 

(a) and (b), particularly a correction for non-ventricular counts, being pulled into the 

ventricular ROI (CDBS: Cycle-Dependent Background Subtraction) and a correction 

for ventricular counts being pushed outside the ventricular ROI during contraction 

(CDDA: Cycle-Dependent Dyskinetic Addition). Although being appropriate in some 

clinical situations, these different types of background correction can’t be the cause of 

the different trends, which are seen for the different algorithms. 

A limitation of the dynamic cardiac phantom used in this study is the absence of the 

right heart and the left atrium. The background activity was constant in all directions 

from the left ventricle. Consequently, only an estimation of the global accuracy to 

correctly identify the end-diastolic and end-systolic region and to calculate EF with the 

available programs could be assessed. 

CONCLUSION 

EF from planar radionuclide ventriculography, calculated with commercially available 

algorithms correlates closely to the real EF of a dynamic left ventricular phantom. This 

dynamic left ventricular phantom can help to develop algorithms to calculate EF from 

planar radionuclide ventriculography studies. Furthermore, these data can also be 

used in quality assurance procedures and to analyse interobserver and 

interdepartmental variability, like being performed during software audits. 
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SUMMARY 

We have developed a biventricular dynamic physical cardiac phantom to test gated 

blood pool (GBP) SPECT image processing algorithms. Such phantoms provide 

absolute values against which to assess accuracy of both right and left computed 

ventricular volume and ejection fraction (EF) measurements. Two silicon-rubber 

chambers driven by two piston pumps simulated crescent-shaped right ventricles 

wrapped partway around ellopsoidal left ventricles. Twenty experiments were 

performed at Ghent University, for which right and left ventricular true volume and 

EF ranges were 65-275 mL and 55-165mL, and 7-49% and 12-69%, respectively. 

Resulting 64x64 simulated GBP-SPECT images acquired at 16 frames per R-R interval 

were sent to Columbia University, where 2 observers analysed images independently 

of each other, without knowledge of true values. Algorithms automatically segmented 

right ventricular activity volumetrically from left ventricular activity. Automated valve 

planes, mid-ventricular planes and segmentation regions were presented to observers, 

who accepted these choices or modified them as necessary. One observer repeated 

measurements > 1 month later without reference to previous determinations.  Linear 

correlation coefficients of the mean of the 3 GBP-SPECT observations versus true 

values for right and left ventricles were 0.80 and 0.94 for EF and 0.94 and 0.95 for 

volumes, respectively. Correlations for right and left ventricles were 0.97 and 0.97 for 

EF and 0.96 and 0.89 for volumes for interobserver agreement, and 0.97 and 0.98 for 

EF and 0.96 and 0.90 for volumes, respectively, for intraobserver agreement. No 

trends were detected, though volumes and RVEF were significantly higher than true 

values. Overall, GBP-SPECT measurements correlated strongly with true values. The 

phantom evaluated shows considerable promise for helping to guide algorithm 

developments for improved GBP-SPECT accuracy. 

INTRODUCTION 

Gated blood pool (GBP) single photon emission computed tomography  (SPECT) 

offers several potential advantages over conventional equilibrium radionuclide 

angiography (planar-ERNA). It has been shown that GBP-SPECT assesses left 

ventricular (LV) ejection fraction (EF) more accurately than does planar-ERNA. [1] In 

addition, separating the ventricles and atria provides supplementary information 
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regarding biventricular volumes, regional wall motion and regional EF. [2] Several 

automatic or semi-automatic methods have been developed that allow assessment of 

LV systolic function from GBP-SPECT data. [2-6] 

However, relatively few GBP-SPECT studies have dealt explicitly with validating right 

ventricular (RV) measurements. [3-7] Yet, RV functional parameters may prove to be 

clinically quite important, considering that evidence has been mounting that RVEF 

may be a more sensitive predictor of adverse events than LVEF for some cardiac 

diseases, including congestive heart failure. [8,9] Nevertheless, there have not yet 

been any reports published concerning the use of dynamic physical phantoms to 

evaluate algorithms that compute RV functional parameters. Therefore, we developed 

a dynamic cardiac biventricular phantom with which to evaluate new image 

processing algorithms for the calculation of LVEF, RVEF, left ventricular volumes 

(LVV) and right ventricular volumes (RVV) derived from GBP-SPECT data. 

MATERIALS AND METHODS 

Phantom Description (Figure 1) 
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The phantom included two ventricular chambers. The left ventricle consisted of 2 

concentric ellipsoids forming inner and outer walls (Figure 1B). The space between the 

2 ellipsoids was filled with ultrasound acoustic gel, yielding a varying free wall and 

septal wall thickness varying between 0.5 and 1.5 cm. The gel is injected into the septal 

RV 
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Figure 1 

Development and description of the phantom. 

A. Ventricles were cut off at the atrioventricular border 

B. A single-walled right ventricle was attached to a double-walled left ventricle 

C. Horizontal long axis slice (upper left), short axis slice (upper right) and vertical long axis slice 

(down) of the activity distribution in the  phantom. 

D. Detail of the biventricular model. Valves 1 are used to fill the septal wall with gel; valves 2 to de-

aerate the tubings, to inject the tracer, and to empty the ventricles for volume measurements. Valves 

3 are the in- and outgoing tubes to the ventricles. 

E. Overview of the experimental model, with the piston pump in the back, the membranes in the 

middle and the ventricular model at front. 
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wall via 2 stopcocks embedded in the latex model. By keeping the injected volume of 

gel constant between the walls, ventricular wall thickness increased at systole (due to 

decrease of the ventricular inner volume) and decreased at diastole, thereby 

approximating systolic wall thickening. A realistic approximation of this situation is 

necessary for the evaluation of the possibility for the algorithm to separate both 

ventricles correctly during processing of the images. The relatively thinner (2mm) 

single-walled crescent-shaped right ventricle was attached to the outer septal LV wall 

and wrapped partway around the LV. Ventricles were cut off at the atrioventricular 

border, at the point at which the chambers were supplied by varying amounts of water 

from connecting plastic tubes to simulate LV and RV filling and emptying. An activity 

concentration of 10 mCi/L of Tc-99m in water was used in the chambers, with no 

background activity. Two separate piston pumps were used to supply the water to each 

ventricle, for which different stroke volume settings for both ventricles produced a 

wide range of simulated ejection fractions and end-diastolic (ED) volumes. To set the 

end-diastolic volumes, the piston pump was fixed in its end-diastolic position. Valve 3 

in Figure 1D was closed and volume was added/withdrawn to increase or decrease 

end-diastolic volume. By changing the stroke length of the piston pump, stroke 

volumes could be controlled. Following each individual experiment, volumes of both 

ventricles were measured at ED and at end-systole (ES) by suctioning out and 

measuring the contents of both ventricular chambers. In order to limit the necessary 

amount of radioactive tracer and not to contaminate the complete circuit, the 

ventricles were separated from the pump by 2 membranes, encapsulated in a plexiglas 

housing (Figure 1E).  

Data Acquisition, Reconstruction and Reorientation 

Twenty experiments were performed at Ghent University, for which RV and LV true 

volume and EF ranges were 65-275 mL and 55-165mL, and 7-49% and 12-69%, 

respectively. GBP-SPECT data were acquired using a three-detector gamma camera 

(IRIX, Marconi-Phillips, Cleveland Ohio) with low energy high-resolution collimators. 

Parameters of acquisition were as follows: 360° step-and-shoot rotation, 40 stops per 

head, 30 seconds per stop, 64 x 64 matrix, zoom 1.422 (pixel size 6.5 mm), and 16 time 

bins per R-R interval, with a beat acceptance window at 20% of the average R-R 

interval. An R-wave simulator synchronized with the pistons supplied R-wave triggers. 

Projection data were pre-filtered using a Butterworth filter (cutoff frequency: 0.5 

cycles/cm; order: 5) and reconstructed by filtered backprojection using an x-plane 

ramp filter. Data were then reoriented into gated short axis tomograms. Rectangular 
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regions of interest, with outside masking, were drawn in the vicinity of simulated 

ventricles so that only ventricular structures and small portions of connecting tubes 

were visible. The resulting gated short axis data sets then were copied to a CD-ROM, 

which was shipped to Columbia University.  

GBP-SPECT Algorithms 

Processing was performed at Columbia University by two independent observers, who 

analysed data without reference to each other’s results, and who had no knowledge of 

true phantom values. One observer reprocessed data > 1 month after his initial 

analyses without reference to his previous computations. 

The algorithms used gated short axis tomograms as input data. Algorithms ran 

automatically, and their first display to the observer was of a simultaneous view of RV 

volume curves, functional parameters, and computed outlines superimposed on all 

short axis and horizontal long axis tomographic sections shown as a continuous cine 

loop. To produce these RV calculations, the programs first identified RV mid-planes 

by searching for maximum count areas in volumetric regions likely occupied by these 

chambers. Counts above a 35% threshold of global maximum counts of the entire set 

of collected data were used to segment the RV from the LV. The same count threshold 

was used for both the RV and LV. The specific 35% count threshold value was chosen 

because it had been used successfully in previous studies to derive myocardial surfaces 

from myocardial perfusion gated SPECT, and from GBP-SPECT. [7,10] Systolic count 

change images and Fourier phase images were used to estimate ED and ES tricuspid 

and pulmonary valve planes volumetrically. When presented with phantom data, the 

algorithms identified the posterior RV wall as the tricuspid valve plane and the 

anterior RV wall as the pulmonary valve plane. Moving tricuspid and pulmonary valve 

planes were interpolated from ED and ES valve planes for all other gating intervals. 

These planes were used to limit, in the posterior direction, the number of short axis 

slices included in subsequent volume calculations. ED and ES vertical long axis section 

count profiles were used to define moving pulmonary valve planes, so as to limit 

maximum heights of short axis outlines. 

Observers were free to accept all RV results or to modify intermediate choices. To 

allow this, observers reviewed identified mid-RV planes, indicated as boxes framing 

estimated mid-plane locations projected onto simultaneous cines of short axis and 

vertical long axis projections. ED and ES vertical long axis and ED short axis RV 

profile estimates were displayed, which observers could accept or redraw as necessary, 
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until satisfied that generated RV outlines conformed to the visual impression of the 

size, shape and motion of the RV throughout the heart cycle. 

All RV counts were then subtracted from the 3D gated volume of count data, leaving 

primarily LV counts. These were handled by algorithms similar to those described 

above for the RV, again using 35% count threshold segmentation criteria. 

Automatically determined LV outlines superimposed on all short axis and horizontal 

long axis sections were then shown to an observer as an endless cine loop. As with the 

RV processing, observers were free to redraw ED and ES vertical long axis and ED 

short axis LV profiles, until satisfied that outlines conformed to the LV throughout the 

heart cycle. In general, for both RV and LV processing manual interventions were 

rarely required for choices of ED or ES frames, but usually needed for VLA outlines for 

those simulations for which septal curvature was substantial, which was the case for 

over half of the simulations. Volumes were computed geometrically from the number 

of 3D voxels corresponding to counts above the 35% count threshold, while EF’s were 

computed from changes in counts summed over all included ventricular voxels. This 

“hybrid” approach was adopted as it had previously been found to provide optimal 

accuracy of calculations when compared to correlative MRI studies. [11] These steps 

were accomplished using platform-independent computer-programming software 

(“IDL,” Research Systems Inc., Boulder, CO) implemented on a commercially 

available computer system (ICON, Siemens Medical Systems, Chicago, IL). 

Statistical Analysis 

Chi-square analysis was used to test whether data were normally distributed. 

Numerical results were reported as mean values ± 1 SD. In comparing algorithmic 

output to real phantom values, mean computed values were tabulated from three 

measurements: one each for the two observers, along with the one observer’s repeated 

measurements. In comparing computed volumes to true values, ED and ES volumes 

were considered together to form LVV and RVV data sets. Correlations between 

calculated and true values were expressed as the Pearson coefficient. Linear regression 

equations were calculated for all data pairs. Variability about the regression line was 

expressed as the standard error of the estimate (SEE). Bland-Altman analysis of 

differences of paired values versus true values was used to search for trends and 

systematic errors. The limit of statistical significance was defined as probability 

p<0.05 for all tests. 
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RESULTS 

Calculation of Volumes 

All values of both calculated and real EF and volume values were found to be normally 

distributed. Calculated ES and ED ventricular volumes of the two observers’ three 

analyses were averaged and correlated highly with real values  (r = 0.95; p < 0.0001, n 

= 40 and r = 0.93; p < 0.0001, n = 40, for left and right ventricle respectively) (Figure 

2).  
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Figure 2 

Linear regression and Bland-Altman analysis of mean calculated left and right ventricular volumes (MLVV 

and MRVV) versus real left and right ventricular volumes (RLVV and RRVV) 
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Bland-Altman analysis showed that while slopes of trends were not statistically 

significant for left or right volumes (Figure 2), nonetheless calculated LVV was 

statistically significantly higher than real LVV, and that calculated RVV was 

statistically significant higher than real RVV. This was confirmed by paired t-test 

results for both left volumes (109 mL ± 38 mL versus 77 mL ± 34 mL, p < 0.001, n = 

40) and for right volumes (143 mL ± 54 mL versus 129 mL ± 50 mL, p < 0.01, n = 40). 

Sub-analyses of ED volumes and ES volumes alone, rather than both ED and ES 

volumes analysed together, yielded essentially the same results. 

Calculation of EF 

Calculated LVEF and RVEF correlated highly with real values (r = 0.94; p < 0.0001, n 

= 20 and r = 0.80; p < 0.0001, n = 20, respectively) (Figure 3).  
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The difference in strengths of association (r = 0.80 for RVEF but r = 0.94 for LVEF) 

was not statistically significant for this sample size (n = 20). Bland-Altman analysis 

showed that slopes of trends were not statistically significant for LVEF or RVEF 

(Figure 3). However, paired t-test results showed that while calculated LVEF was the 

same as real LVEF (40% ± 16% versus 40% ± 16%, p = NS, n = 20), calculated RVEF 

was significantly higher than real RVEF (38% ± 15% versus 33% ± 12%, p < 0.0001, n 

= 20).  

Data Processing Reproducibility 

Correlations for LV and RV were 0.97 and 0.97 for EF and 0.89 and 0.96 for volumes 

for interobserver agreement (Figure 4), and 0.98 and 0.97 for EF and 0.90 and 0.96 

for volumes for intraobserver agreement (Figure 5). All correlations were statistically  

y  = 0.92x + 3 .27

r = 0.94

SEE = 3 .43

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

RLVEF (%)

M
L
V
E
F
 (
%
)

y  =  1 .03x + 4.28

r = 0.80

SEE = 6.44

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

RRVEF (%)

M
R
V
E
F
 (
%
)

1 2 .65

0.41

-1 1 .82
y  = -0.08x + 3 .03

r = 0.22

SEE =  6.1 2
-40

-30

-20

-10

0

10

20

30

40

0 10 20 30 40 50 60 70 80

RLVEF (%)

M
L
V
E
F
 -
 R
L
V
E
F
 (
%
)

23 .58

4.56

-14.46
y  = -0.01x + 4.95

r = 0.01

SEE =  9.7 5
-40

-30

-20

-10

0

10

20

30

40

0 10 20 30 40 50 60 70 80

MRVEF (%)

M
R
V
E
F
 -
 R
R
V
E
F
 (
%
)

Figure 3 

Linear regression and Bland-Altman analysis of mean calculated left and right ventricular ejection fraction 

(MLVEF and MRVEF) versus real left and right ventricular ejection fraction (RLVEF and RRVEF) 
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significant (p < 0.0001). These values were consistent with those found in a previous 

validation of this algorithm against cardiac magnetic resonance measurements [7]. 

 

Sub-analyses of each of the two observers’ three measurements were not statistically 

different from analysis of the means of the three measurements, as expected, given the 

strengths of associations for interobserver and intraobserver agreement. 
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Interobserver variability shown by linear regression of left and right ventricular ejection 

fraction and volumes measurements of two different observers 
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DISCUSSION 

Overall, excellent correlation was obtained between computed versus real values for 

all measured parameters. However, the 6.4% RVEF SEE errors were larger than the 

3.4% LVEF SEE errors. One factor contributing to this difference was that the 

phantom RV is wrapped around the LV for a greater degree of septal curvature than 

had been observed previously when applying the algorithms to patient data. 

Consequently, it was more challenging to the algorithms, and to the observers, to 

match regions to count thresholds for phantoms with the greatest amount of septal 

curvature. This may also have contributed to the larger RV volume SEE of 9 mL 

compared to 5 mL for LV volumes, although the larger range of real volume values 

(65-275 mL for RV but 55-165mL for LV; Figure 2) undoubtedly contributed to the 

finding. 

Computed volumes were significantly larger than real volume values. This may have 
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Intraobserver variability shown by linear regression of left and right ventricular ejection fraction and 

volumes measurements of two observations for the same observer 
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been due in part to the use of the 35% count threshold. Previous experiments by our 

group with dynamic ventricular phantoms showed that a count threshold of 50% 

yielded optimally accurate results, when experiments were performed with a variable 

background activity. [12] It is possible that a threshold of 35% may produce better 

agreement with MR for patient data, even though a higher threshold produces better 

agreement with phantom values, considering that the phantom lacked atria and a 

pulmonary outflow tract. Processing with a 50% count threshold should in general 

produce lower volume values than use of a 35% count threshold, which in the context 

of the current investigation may have produced computed volumes in closer 

agreement with phantom values. Other investigators have found that the optimal 

threshold value for volume calculations derived from SPECT data can depend on the 

source shape; King, et. al., found that the use of a 50% threshold to determine the 

location of the edge of cylindrical and spherical sources lead to a systematic, 

progressive underestimation of source volumes for ratios of diameter/FWHM < 6. [13] 

That was the case in our experiments, and considering that the smallest RV 

dimensions of our phantom were 8 x 1.5 x 1.5 cm, partial volume effects undoubtedly 

were an important factor in our experiments. [14,15] Thus, it may well be that there is 

a need for using different thresholds for the RV compared to LV, given the different 

geometrical shape of the RV compared to LV. Consequently, more realistic cardiac 

phantoms are warranted to clarify some issues, along with further correlative clinical 

studies with other imaging modalities, such as cardiac MR and x-ray contrast 

angiography. 

There were several limitations to the study. Using algorithms developed for use with 

clinical data in phantom experiments can only give an estimate of the accuracy of the 

algorithms. Inclusion of background activity, use of different count thresholds, and of 

different imaging parameters (e.g., different collimators, different image filters, 180° 

versus 360° reconstructions) all may influence GBP-SPECT volume computations. No 

corrections were applied for scatter or attenuation, which also may influence GBP-

SPECT calculations. The phantom itself was a simplified model of both cardiac 

ventricles, without atrial or vascular structures, background counts, or non-cardiac 

scattering media. Identifying valve planes is an important part of processing GBP-

SPECT data, but this aspect of data processing was not realistically tested by the 

phantom used for this study. Nevertheless, this is the first published report of the use 

of a dynamic physical phantom to evaluate the ability of GBP-SPECT approaches to 

assess the right ventricle, and as such demonstrates that GBP-SPECT algorithms can 
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indeed produce realistic values of both right ventricular volumes and ejection 

fractions.   

CONCLUSION 

We have demonstrated that the calculation of left and right ventricular ED and ES 

volumes of a dynamic cardiac phantom can be performed automatically by new GBP-

SPECT algorithms. Use of dynamic physical phantoms can help define the advantages 

and limitations of new algorithms that seek to measure both left and right ventricular 

functional parameters. 
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SUMMARY 

Different automatic algorithms are now being developed to calculate left (LV) and 

right (RV) ventricular ejection fraction (EF) from tomographic radionuclide 

ventriculography (TRV). Four of these algorithms were tested on their performance in 

estimating LV and RV volume and EF using a dynamic four-chamber cardiac 

phantom. Methods: We developed a realistic physical dynamic four-chamber cardiac 

phantom and performed 25 TRV acquisitions within a wide range of end-diastolic 

(EDV), end-systolic (ESV) and stroke volumes. Four different algorithms (QBS, 

QUBE, 4DM-SPECT and BP-SPECT) were tested on their assessment to calculate left 

(LVV) and right ventricular volumes (RVV) and EF’s. Results: For the LV, the 

correlations between reference and estimated volumes (0.93; 0.93; 0.96 and 0.93 

respectively; all P<0.001) and EF’s (0.90; 0.93; 0.88 and 0.92; all P<0.001) were 

good, although an underestimation for the volumes was seen for all algorithms (mean 

difference ± 2SD from Bland-Altman analysis (-39.83 ± 43.12; -33.39 ± 38.12; -33.29 

± 40.70 and -16.61 ± 39.64 mL respectively). QBS, QUBE, 4DM-SPECT showed also a 

growing underestimation for higher volumes. QBS, QUBE, and BP-SPECT could also 

be tested for the RV. Correlations were good for the volumes (0.93; 0.95 and 0.97; all 

P<0.001). In terms of absolute volume estimation, mean difference ± 2SD from 

Bland-Altman analysis was -41.28 ± 43.66; 11.13 ± 49.26 and -13.11 ± 28.20 mL. 

Calculation of RVEF correlated well with true values (0.84; 0.92 and 0.94; all 

P<0.001), although an overestimation was seen for higher EF. Conclusion: TRV based 

calculation of LVEF and RVEF is accurate for all tested algorithms. All algorithms 

show an underestimation for the calculation of LVV, calculation of RVV seems more 

difficult with different results for each algorithm. The more irregular shape and 

inclusion of a relative hypokinetic right ventricular outflow tract in the right ventricle 

seems to be the cause that delineation of the right ventricle is more difficult, compared 

to the left side. 

INTRODUCTION 

The accurate estimation of right ventricular ejection fraction (RVEF) has been 

challenging for years. In nuclear medicine, different isotopes and injection techniques 

have been extensively studied [1-6]. The “first-pass technique” of a radioactive bolus 
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through the right heart circulation was often used but became unpopular because its 

success grossly depends on a perfect bolus injection, introducing operator dependency 

and limiting the application to experienced people. Planar radionuclide 

ventriculography (PRV) for the calculation of RVEF was not optimal because of the 

important overlap of atrial with ventricular activity with the camera in the left anterior 

oblique position. Tomographic radionuclide ventriculography (TRV) seems to 

overcome this problem by offering a three-dimensional image of the vascular 

structures of the heart. Initially, software was developed based on manual or semi-

automatic contour detection [4;7] but these procedures were time-consuming, still 

needed experienced people to process the images and brought uncertainties about 

reproducibility. It has become clear that a good algorithm has to be accurate, 

automatic and fast. Nowadays, new automatic algorithms, like “QBS” [8], “QUBE” [9], 

“4D-MSPECT” [10] have become available. The validation of these programs is limited 

to a comparison of LVEF from PRV with LVEF from TRV. To our knowledge, 

validation studies for the calculation of left (LVV) and right ventricular volumes (RVV) 

and RVEF are lacking. There is only one program called “BP-SPECT” [11] with 

validation data for the right ventricle. The aim of this study was therefore to test these 

four algorithms, using a physical dynamic four-chamber cardiac phantom. 

MATERIALS AND METHODS 

Phantom Description  

Our realistic cardiac phantom includes 2 ventricles and 2 atria (Figure. 1).  The 

chamber walls are about 2 mm thick and are made of a silicone-elastomer (Wilsor 

Kunstharsen, Biddinghuizen, The Netherlands). The atrioventricular valve plane, 

however, is made of a membrane of 1-2 mm thick. Both ventricles are filled and 

emptied through the outflow tracts respectively. The atria are filled through tubes, 

connected at the base of the model. The atrioventricular valve plane itself is hung up in 

a PVC ring, which allows the cardiac model to move during the contraction in the long 

axis direction. The interventricular septum is constructed from a 15 mm thick 

synthetic spongy material. Both ventricles are covered with an external membrane, 

which makes it possible to achieve a septal thickening during end-systole. As the right 

ventricular outflow tract is relatively hypokinetic, it has been modelled with a stiff  
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PVC tube. The outflow tract of the RV is responsible for only 15% of the RV stroke 

volume [12] and it has also been shown that the amplitude of the right ventricular 

outflow tract on images of tomographic radionuclide angiography is very low [13], this 

was in a population of patients suffering from Wolff Parkinson White syndrome, 

where a delay in phase is known in this region but not necessarily a decrease in 

amplitude. 

Two separate double acting piston pumps are connected to the cardiac phantom by 

means of reinforced perspex pipes and are used to supply the chamber with water and 

thereby simulating filling and emptying of the chambers. The ejection of both pumps 

supplied both ventricles, while the suctioning at the other side of the pistons in the 

pumps was used to empty both atria. In this way, during the opposite movement both 

ventricles were emptied and atria were filled, resulting in all four cardiac chambers 

having the same stroke volume. This stroke volume was easily adjustable, by changing 

the length of the piston (range 25.74 – 73.99 mL). An activity of 74 MBq/L (2 mCi/L) 

of 99mTc in water was used in the chambers, with no background activity. Volume 

variation in the phantom was sinusoidal. 

To set the reference end-systolic volumes in each of the 4 chambers, the pistons were 

moved to their end-systolic positions. After that, the chamber was emptied and the 

predefined end-systolic volume was added through a tap on the connecting tubes 

between the phantom and the pumps. The ranges of volumes and ejection fractions 

used in this experiment were for LVEDV 51-196 mL, for LVESV 17-162 mL, for LVEF 

Figure 1 

A. (top right) Four-chamber cardiac phantom 

(top left) Overview of the cardiac model, during the image acquisition 

(bottom left) End-systolic image (ventricles uncovered) 

(bottom right) End-diastolic image (ventricles uncovered) 

B. At top are images of cardiac phantom, processed with QBS: horizontal long axis slice (down left), 

short axis slice (upper row) and vertical long axis slice (down right) 

At bottom are the 3D images of the cardiac phantom, processed with QBS: end-diastolic image (upper 

row) and end-systolic image (lower row) showing LV (red maze), RV (blue maze), atria and vascular 

structures (grey shaded) 

C. Vertical long axis slice through the RV of the phantom after processing with BP-SPECT (top left), 

QUBE (middle left) and QBS (down left) 

Comparison with vertical long axis slice through the RV of a patient after processing with BP-SPECT 

(top right), QUBE (middle right) and QBS (down right) 
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17-70%, for RVEDV 60-209 mL, for RVESV 26-175 mL and for RVEF 16-70%. 

Data Acquisition 

Twenty-five experiments were performed. TRV data were acquired using a three-

headed gamma camera (IRIX, Marconi-Phillips, Cleveland, Ohio) with low energy 

high-resolution collimators. Parameters of acquisition were as follows: 360° step-and-

shoot rotation, 40 stops per head, 30 seconds per stop, 64 x 64 matrix, zoom 1.422 

(pixel size 6.5 mm), and 16 time bins per R-R interval, the latter being fixed on 60 

beats/min. An R-wave simulator synchronized with the pistons supplied R-wave 

triggers. Projection data were pre-filtered using a Butterworth filter (cutoff frequency: 

0.5 cycles/cm; order: 5) and reconstructed by filtered backprojection using a ramp 

filter. Data were then reoriented into gated short axis tomograms. The resulting gated 

short axis data sets were then used as input for the four algorithms.  

Processing 

“QBS” [8] (Figure 1B)  

This method is primarily a gradient-based method. A deformable ellipsoid is used to 

approximate the LV endocardium, followed by a sampling (not further clarified) to 

compute the endocardial surface for each gating interval. This sampling is used to 

generate a second surface to represent the RV endocardium. A correction is performed 

to locate the pulmonary valve. Separation of the RV from the pulmonary artery is 

achieved by truncating the RV surface with a plane. It is, however, not clear how this 

plane is being positioned during reconstruction. 

“QUBE” [9]  

The left ventricular cavity at end-diastole is delineated by segmentation using an 

iterative threshold technique. An optimal threshold is reached when the 

corresponding isocontour best fits the first derivative of the end-diastolic count 

distribution. This optimal threshold is then applied to delineate the left ventricular 

cavity on the other time bins. Left ventricular volumes are determined using a 

geometry-based method and are used to calculate the ejection fraction.  

“4D-MSPECT” [10]  

4D-MSPECT utilizes gradient and segmentation operators in conjunction with phase 

analysis to track the surface contours of the left ventricle through the cardiac cycle.  
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4D-MSPECT calculates only LVEF and LVV. Calculation of RV parameters is not yet 

available. There is up to now only one abstract available about the use of 4D-MSPECT 

in TRV.   

“BP-SPECT” [11]  

BP-SPECT is based on the use of threshold from % of maximum count in each cavity. 

After maximum activity in the RV is located, the algorithm automatically defines 

ventricular regions as those pixels with counts > 35% threshold of maximum ED 

counts over the entire cardiac volume. Bi-ventricular EF’s are computed from systolic 

count changes within voxels inside identified ED and ES ventricular surfaces. All 

calculations are count-based, not geometric. For analyzing the right ventricle, the 

pulmonary valve plane is defined as high as necessary to include all structures for 

which counts are detected by the algorithms to increase in synchrony with LV count 

increases. 

Statistical Analysis 

χ2 analysis was used to test whether data were normally distributed. Results were 

reported as mean values ± 1 standard deviation (SD). Correlations between calculated 

and true (measured) values were expressed as the Pearson coefficient. Variability 

about the regression line was expressed as the standard error of the estimate (SEE). 

Bland-Altman analysis of differences between pairs of estimated and reference values 

was used to search for trends and systematic errors. Statistical significance was 

defined as p<0.05. 

RESULTS  

Calculation Of Volumes 

All values of both calculated and real EF and volume values were normally distributed. 

Correlation coefficients between the calculated and real volumes of the LV for QBS, 

QUBE, 4D-MSPECT and BP-SPECT were 0.93; 0.93; 0.96 and 0.93 respectively, all 

P<0.001. (Figure 2).  
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Figure 2 Linear regression and Bland-Altman analysis of left ventricular volume calculation (EDV and 

ESV) for the four methods (QBS, QUBE, 4DM and BP-SPECT) 
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There was a global underestimation for the calculated volumes (mean difference ± 

2SD: -39.83 ± 43.12; -33.39 ± 38.12; -33.29 ± 40.70 and -16.61 ± 39.64 mL 

respectively).and this underestimation was growing for higher volumes (slope of the 

regression line in the Bland-Altman was significantly different from zero for QBS, 

QUBE and 4D-MSPECT). QBS, QUBE, and BP-SPECT were also used to calculate RVV 

(Figure 3).  

 

Figure 3 Linear regression and Bland-Altman analysis of right ventricular volume calculation (EDV and 

ESV) for the three methods (QBS, QUBE and BP-SPECT) 
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Correlation coefficients between reference and estimated RVV were within the same 

range as for the LV (0.93; 0.95 and 0.97 respectively; all P<0.001). QBS and BP-

SPECT showed a significant underestimation of RVV (mean difference ± 2SD: -41.28 

± 43.66 and -13.11 ± 28.20 mL respectively), whereas QUBE showed a significant 

overestimation (mean difference ± 2SD: 11.13 ± 49.26 mL respectively). The 

underestimation of RVV in QBS and the overestimation of RVV in QUBE increased 

with increasing EF. 

Calculation Of Ejection Fractions 

The correlation between the calculated and reference LVEF for the four programs was 

very acceptable (0.90; 0.93; 0.88 and 0.92 respectively; all P<0.001) (Figure 4).  
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Figure 4 Linear regression and Bland-Altman analysis of left ventricular ejection fraction calculation 

for the four methods (QBS, QUBE, 4DM and BP-SPECT) 
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Mean differences ± 2SD were 4.46 ± 20.19; 3.03 ± 15.94; -2.72 ± 16.44 and 0.91 ± 

20.16 % respectively and only the BP-SPECT program showed a significant trend to 

overestimate the LVEF with increasing EF. For RVEF good correlations were seen for 

QUBE and BP-SPECT (0.92 and 0.94 respectively; all P<0.001) with a slightly lower 

correlation coefficient for QBS (0.84; P<0.001) (Figure 5). 

 

 

Figure 5  Linear regression and Bland-Altman analysis of right ventricular ejection fraction calculation 

for the three methods (QBS, QUBE and BP-SPECT) 
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QBS, QUBE and BP-SPECT overestimated RVEF (mean difference ± 2SD: 8.08 ± 

34.20; 7.98 ± 26.24 and 3.67 ± 17.36 %. respectively) and this overestimation 

increased with increasing EF for all three methods.  

DISCUSSION 

We have demonstrated that QBS, QUBE, 4D-MSPECT and BP-SPECT provide 

accurate calculations of left and right ventricular EF. For the LV volume calculation, 

all algorithms underestimated volumes, an observation for which we have no clear 

answer. A partial inclusion of atrial activity in the ventricular region could be an 

explanation, but this was not visually confirmed. On the contrary, we previously 

reported an overestimation of LV volume with BP-SPECT, calculating the LV volumes 

in a biventricular cardiac model [14].  In this model, however, the LV consisted of 

double concentric walls (inner and outer walls), mimicking the LV myocardium. For 

the measurement of the exact volume of the LV, the inner wall was suctioned through 

the entrance at the atrioventricular border, and this was not an ideal situation since 

the outer wall together with the inner one moved inside during this operation (space 

between the walls was kept constant) and no visual check could be made whether the 

LV was perfectly emptied. It is our experience, that this four-chamber model, provided 

with single ventricular walls and an improved pump experimental setup, causes fewer 

deviations in correct volume measurements. It is also our experience that making 

phantom models to measure absolute parameters (eg. volumes) is far more difficult 

than constructing phantoms to measure relative parameters (eg. EF). All four 

algorithms were developed to calculate volumes in human organs, taking into account 

the influence of attenuation and scatter of nearby structures. In this paper, as in the 

previous report, no background activity was used, no scatter and attenuation 

correction was performed and no thoracic phantom was used. Because we used an 

isolated heart phantom, the count threshold differed to that used in human 

examinations [14]. 

The potential added value of TRV over other routine cardiac imaging modalities is the 

accurate measurement of RVV and RVEF in a fast and simple way. The gold standard 

for these calculations is nowadays magnetic resonance imaging (MRI). Nevertheless, 

the MRI procedure and calculations are still time-consuming, operator-dependent and 

don’t take into account the numerous trabeculae, which turn the endocardium of the 

RV into a very irregular surface. Unfortunately, our 4-chamber phantom contains 
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ferromagnetic material, and could not be tested in the MRI setting. An additional 

problem of calculating correct RV volumes with TRV is the difficult delineation of the 

RV outflow tract. This relatively hypokinetic structure contains a part of the volume of 

the RV but does not really participate in its contraction. Furthermore, the exact 

localization of the pulmonary valve is far more difficult than the aortic valve. 

There is little literature on the validation of TRV for the calculation of RVV and RVEF. 

To our knowledge, of the four tested algorithms, validation studies have been done 

only for BP-SPECT [11]. Correlation values between MRI and BP-SPECT RVV and 

RVEF calculations were comparable to our results, and the underestimation of RVV 

found in our experiments were consistent with their results. 

Our results indicate that, compared to QUBE and BP-SPECT, QBS yields slightly lower 

correlation coefficient for the calculation of RVEF and underestimates RVV. We 

believe that this is due to the fact that QBS locates the end of the outflow tract of the 

right ventricle more towards the apex of the RV (Figure. 1C). For QUBE and BP-

SPECT, which yielded more accurate RVV calculations, a larger RVV is delineated 

including distal parts in the RV outflow tract. Therefore, we paid special attention in 

our model to manufacture the distal part of the RV outflow tract from non-compliant 

PVC tubes, in order to test if the software was able to find the exact border of the RV. 

BP-SPECT is the only algorithm without a significant trend for its volume calculations, 

for LV as well as RV. The trend seen in the other algorithms is not only significant, but 

play a major role in dilated hearts. As cardiac volume measurements are important 

diagnostic and prognostic tools in the workup of cardiovascular disease, BP-SPECT is 

the method of choice, when reporting TRV with volume calculations.  

CONCLUSION 

We have shown, using a dynamic 4-chamber phantom model, that QBS, QUBE, 4D-

MSPECT and BP-SPECT provide accurate estimates of RVEF and LVEF. When 

calculating RV volumes, the software codes need to take into account the relative 

hypokinetic RV outflow tract, which has to be included in the RVV. The more irregular 

shape and inclusion of a relative hypokinetic right ventricle outflow tract in the right 

ventricle seems to be the cause that delineation of the right ventricle is more difficult 

than the left ventricle. 
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Part 3: Gated Bloodpool SPECT, human experiments 
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SUMMARY 

Calculational differences between various gated blood pool SPECT (GBPS) algorithms 

may arise due to different modeling assumptions. Little information has been 

available yet regarding differences for right ventricular (RV) function calculations, for 

which GBPS may be uniquely well suited. Measurements of “QBS” (Cedars-Sinai 

Medical Center, Los Angeles, CA) and “BP-SPECT” (Columbia University, New York, 

NY) algorithms were evaluated. QBS and BP-SPECT left ventricular (LV) ejection 

fraction (EF) correlated strongly with conventional planar-GBP LV EF for 422 patients 

(r=0.81 versus r=0.83). QBS correlated significantly more strongly with BP-SPECT for 

LV EF than for RV EF (r=0.80 versus r=0.41). Both algorithms demonstrated 

significant gender differences for 31 normal subjects. BP-SPECT normal LV EF 

(67±9%) was significantly closer to the magnetic resonance imaging (MRI) literature 

(68±5%) than QBS (58±9%), but both algorithms underestimated normal RV EF 

(52±7% and 50±9%) compared to the MRI literature (64±9%). For 21 patients, QBS 

correlated similarly to MRI as BP-SPECT for LV EF (r=0.80 versus r=0.85), but RV 

EF correlation was significantly weaker (r=0.47 versus r=0.81). For 16 dynamic 

phantom simulations, QBS LV EF correlated similarly as BP-SPECT (r=0.81 versus 

r=0.91), but QBS RV EF correlation was significantly weaker (r=0.62 versus r=0.82). 

Volumes were lower by QBS than BP-SPECT for all data types. Both algorithms 

produced LV parameters that correlated strongly with all forms of image data, but all 

QBS RV relationships were significantly different from BP-SPECT RV relationships. 

Differences between the two algorithms were attributed to differences in their 

underlying ventricular modeling assumptions.     

INTRODUCTION 

Many imaging methods produce reliable left ventricular (LV) ejection fraction (EF) 

results, including x-ray contrast angiography, echocardiography, cardiac magnetic 

resonance imaging (MRI), planar gated blood pool (planar-GBP) imaging, and 

myocardial perfusion gated SPECT [29; 55]. Planar-GBP has long been considered the 

“gold standard” for LV EF, the extension of which to GBP-SPECT (GBPS) represents 

the next logical step, having the potential to provide complete regional LV EF and 

regional LV motion assessment [3-6], and a more direct means of measuring LV 
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volumes than by planar-GBP volume methods [7]. However, GBPS algorithms have 

become commercially available only recently [8,9], so that these approaches are only 

now beginning to be applied on a widespread basis. For any given imaging modality, 

dissimilar ventricular modeling assumptions can produce disparity in computed 

variables and in normal limits, as has been found in comparing different algorithms 

that analyze gated myocardial perfusion tomograms [1,2,10].  Therefore, it is timely to 

enquire whether different means of computing LV and right ventricular (RV) 

functional parameters from GBPS data yield different results.  

Two distinctly different approaches have emerged for computing GBPS cardiac 

parameters, being primarily count-based methods [8,11,12], or primarily gradient-

based methods [9].  

Differences between separate models have been examined only recently, primarily for 

the left ventricle [11]. Modelling the right ventricle is considerably more difficult 

because of its eccentric shape even in normal individuals, yet GBPS may be uniquely 

well suited for analysis of RV size and function [5,12]. Little information has been 

available previously regarding comparisons among nuclear cardiology approaches to 

RV function computations [13,14]. Therefore the aim of this investigation was to 

evaluate relationships between calculations of two distinctly different GBPS 

approaches: QBS (Cedars-Sinai Medical Center, Los Angeles, Calif), based primarily 

on gradient searches [9], and BP-SPECT (Columbia University, New York, NY), based 

primarily on count thresholds [12]. The latter technique was designed specifically for 

RV analyses for patients with primary arterial hypertension (PAH) and tetralogy of 

Fallot (TOF), for whom right heart structures often are markedly abnormal. We sought 

to compare calculations of these methods, given the same common input of a wide 

spectrum of clinical and phantom data, and to determine whether observed 

differences could be understood on the basis of underlying assumptions of the two 

different approaches. 

MATERIALS AND METHODS 

Patient Population 

Between 9/1/01 and 2/1/03, 486 patients (age = 52±17 years, 61% male) were referred 

to Columbia University and St. Francis Medical Center for measurement of LV EF by 

conventional planar-GBP imaging. Of these, it was necessary to eliminate 64 studies for 
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technical reasons (given below), leaving 422 studies for subsequent analysis. 

Specifically, patients were referred for status evaluation following heart transplantation 

(28%), for congestive heart failure (27%), evaluation following the beginning of 

chemotherapy for cancer (26%), PAH (11%), benign hypertension (2%), cardiomyopathy 

(2%), or for “other” reasons (4%). GBPS data also were acquired for these same patients. 

All images and patient information collected at St. Francis Medical Center were 

transmitted to Columbia University for this investigation. 

During that same time period, 31 patients (age = 54±18 years, 58% male) also were 

evaluated by planar-GBP imaging and GBPS prior to beginning chemotherapy for 

cancer. None of the 31 patients in this group were among the 486 clinical cases 

described above. These patients had a low likelihood of coronary artery disease, and no 

history of cardiac disease. GBPS studies were analysed for these patients to provide a 

reasonable estimate of normal limits of RV and LV values for both GBPS algorithms, 

short of having data from normal volunteers. Height and weight information for these 

subjects were used to estimate body surface area for indexing of volume values, to permit 

comparisons to recent MRI literature of RV and LV functional parameters normal limits.  

Planar-GBP Studies 

Conventional planar-GBP was performed for all patients in the left anterior oblique 

projection that optimised septal separation of RV from LV counts. For adults, injected 

Tc-99m-pertechnetate activity was 925 MBq (25 mCi), following injection of 5 

milligrams of pyrophosphate. For patients under 18 years of age whose body weight 

was less than 70 kg (n=24), these injections were scaled linearly downward for body 

weight. Clinical data were acquired at both institutions with the same commercially 

available gamma cameras (“Vertex,” ADAC Corporation, Milpitas, CA). As these were 

dual-detector gamma cameras, no caudal tilt was used in positioning patients for 

planar-GBP. A 20% energy window centered on 140 keV was used for data acquisition, 

with low energy general-purpose (LEGP) collimation. Images were acquired as 64x64 

matrices at 3.0 mm/pixel, gated for 24 frames per R-R interval for 10 minutes.  

Planar-GBP images were transmitted to a Pegasys computer system (Picker 

Corporation, Cleveland, OH), where processing was performed with commercially 

available software typical of processing used for planar-GBP data [16,17]. For LV EF 

assessment, observers drew initial LV outlines, primarily guided by their visual 

impression of the LV shape as seen at end-diastole (ED), aided by Fourier amplitude 

and phase maps [5]. For all time intervals of the complete planar-GBP study, 
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algorithms generated regions automatically based on the limiting ED region, which 

observers reviewed and modified as necessary. Planar-GBP algorithms have recently 

been shown to be highly accurate and reproducible, using dynamic physical phantom 

data [17]. 

GBPS Data Acquisition 

Immediately following planar-GBP image collection, all patients then underwent gated 

blood pool SPECT. A dual detector gamma camera (“Vertex,” ADAC Corporation) was 

used to collect images at 64 projections over a 180° circular arc. 64x64 tomograms 

with a pixel size of 3.8 mm were acquired with LEGP collimators for 20 seconds per 

projection. Tomograms were acquired with patients at rest, at 8 frames per R-R 

interval, using a 100% R-wave window. The rationale for these data collection 

parameter choices was to guarantee collection of adequate tomographic count density 

per R-R interval, at the expense of limiting the spatial and temporal resolution of 

collected image data, as is done routinely in performing gated myocardial perfusion 

3D quantitation. 

All data sets from all sites were sent to Columbia University, where they were reviewed 

for any confounding imaging artifacts. Butterworth (cutoff = .45 of Nyquist frequency, 

power = 5.0) pre-filters were used for gated tomograms, followed by ramp filtering in 

Figure 1 

The RV and LV outlines generated by QBS algorithms are shown for a 45 year-old female patient with 

breast cancer evaluated following chemotherapy, for whom RV volumes were judged to be enlarged based 

on visual assessment of the GBPS images. The upper row displays end-diastolic short-axis tomographic 

sections from apex to base; the bottom row shows vertical long-axis sections from right posterior to left 

lateral walls. QBS calculations were: LV EF = 59%, LV EDV = 85 mL, LV ESV = 35mL; RV EF = 37%, RV 

EDV = 151 mL and RV ESV = 96 mL. Planar-GBP LVEF was 60%. 
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the transaxial plane. Images were reoriented into short axis sections using manual 

choices of approximate LV symmetry axes, using a commercially available computer 

system (“ICON,” Siemens Medical Solutions, Inc., Chicago, IL). 

QBS Methodology 

The QBS approach was based primarily on gradient searches. An ellipsoidal 

coordinate system for the LV was found automatically and used to compute a static 

endocardial surface from relative counts and count density gradients. A dynamic 

endocardial surface was computed for each gating interval by way of temporal Fourier 

analysis of volumetric count density information. LV volumes were computed for each 

gating interval, with EF computed from end-diastolic and end-systolic volumes [9]. In 

this sense, QBS EF calculations were geometric, not count-based. It was observed that 

the pulmonary valve plane was defined in such a manner that it rarely extended more 

than 1-2 pixels above the anterior wall or below the inferior wall of the identified LV 

limits (see Figure 1).  

There were 3 ways to run the Siemens Esoft implementation of QBS: (1) completely 

automatically, (2) semi-automatically, by first reselecting suggested mid-LV and mid-

RV planes and reselecting apex-to-base heart limits, and (3) manually re-centering 

and re-sizing ellipses to define the LV as seen in mid-short axis and mid-horizontal 

long axis (HLA) planes to establish boundaries for searching for the LV (but not for 

the RV). All three methods were run for each data set, and measurements recorded for 

the one particular method for an individual data set for which observers perceived 

optimal agreement of computed outlines with their visual impression of both 

ventricles. The rationale for this experimental design was to emulate as realistically as 

possible the manner in which we believed QBS would actually be used in standard 

clinical practice, as it is inevitable that observers will use those regions that agree most 

closely with their visual impression of actual ventricular locations and limits. No 

means were provided by QBS to permit adjustments to outlines after the point at 

which computed outlines were displayed superimposed on tomographic sections 

(Figure 1).  

BP-SPECT Methodology 

BP-SPECT algorithms were based primarily on the use of % thresholds of maximum 

volumetric counts. Mid-ventricular locations were determined automatically by 

searching for maximum activity in likely RV locations in SA, HLA and vertical long-
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axis (VLA) orientations. The algorithm automatically defined ventricular regions as 

corresponding to those contiguous regions that contained counts ≥ 35% threshold of 

maximum ED counts over the entire cardiac volume. This particular 35% threshold 

value has been used by nuclear medicine investigators in defining endocardial and 

epicardial surfaces derived from myocardial perfusion images [18], and in methods 

applied to GBPS data [11]. ED volumes were computed from the number of voxels (i.e., 

3D pixels) within these limits, while end-systolic (ES) volumes were computed by 

combining end-diastolic volume (EDV) with EF values. This convention had been 

found previously to yield the most accurate end-systolic volume (ESV) values [16]. Bi-

ventricular EF’s were computed from systolic count changes within voxels inside 

identified ED and ES ventricular surfaces. Thus, BP-SPECT EF calculations were 

count-based, not geometric. For analysing the right ventricle, the pulmonary valve 

plane was defined to extend as high as necessary to include all volumes for which 

counts were detected by the algorithms to increase in synchrony with LV count 

increases. No constraints were imposed on RV or LV stroke volumes. In cases in which 

automated algorithms failed to produce pulmonary valve planes sufficiently high by 

these criteria, users altered the included RV territories to reflect their visual 

perceptions.  

There were three ways to influence the size and shape of regions used to segment 

ventricles: (1) re-selecting mid-chamber planes, (2) manually redrawing valve planes 

in mid-RV and mid-LV planes, or (3) editing ED and ES individual regions for any and 

all HLA slices, as deemed necessary (Figure 2).  
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This combination of software “tools” meant that it was always possible for observers to 

produce RV and LV outlines that agreed with their visual impression of actual 

ventricular edges.  

Correlative MRI Studies 

To date, there have been no published reports comparing QBS calculations to MRI 

data. To gain some insight as to absolute accuracy of the two algorithms when 

presented with the same input data, QBS algorithms also were applied to clinical 

GBPS images for 28 patients with PAH or TOF who also had correlative MRI 

evaluations, for which RV calculations of BP-SPECT algorithms have been previously 

reported [12]. None of the 28 patients in this group were among the 486 clinical cases 

described above.  

Cardiac gated gradient-echo cine MRI evaluations were acquired using a 1.5 Tesla 

scanner using a “Spoiled Gradient Recall” non-breath-hold technique (TR Min TE 13, 

Figure 2 

Ventricular outlines generated by BP-SPECT algorithms are shown for the same patient as in 

Figure 1, for the same tomographic sections. RV outlines are shown in the upper two rows and LV 

outlines in the lower 2 rows. BP-SPECT calculations were: LV EF = 64%, LV EDV = 123 mL, LV 

ESV = 44 mL; RV EF = 48%, RV EDV = 194 mL and RV ESV = 101 mL. Note that the RV outlines 

reach down further to the inferior wall and higher towards the pulmonary valve plane than do the 

QBS RV outlines. 



MODEL DEPENDENCE OF BLOODPOOL SPECT 

 107 

FA 30, Matrix 256 x 128, FOV 30-41, NEX 1, Sl Thickness 8, gap 0) or a breath-hold 

technique (TR Min TE min full, FA 15, Matrix 256 x 128, FOV 30-41, NEX 1, Sl 

thickness 8, gap 0). 8-mm-thick tomographic sections were acquired for 16-20 

intervals/R-R. Further details regarding the MRI acquisitions are provided in 

reference 12. 

Dynamic Phantom Experiments 

To date, there have been no published reports comparing QBS calculations to 

phantom data. To help understand the implications of methodological differences 

between the two algorithms, QBS algorithms also were run on bi-ventricular dynamic 

phantom data for 20 phantom simulations, for which results of BP-SPECT 

calculations have been reported previously [19]. For these phantom data, it was 

necessary to run the QBS algorithms by manually setting all regions and limits, as 

described above.  

Statistical Analysis  

All results are reported as mean values ± 1 standard deviation. Differences among EF 

values are reported in absolute EF units, not as percentages of EF’s. Paired t-tests were 

used to assess whether means of calculations were different between two methods. 

Unpaired t-tests were used to determine whether values found by the two GBPS 

algorithms for low likelihood subjects differed from those reported in the MRI literature. 

Linear regression analyses were used to compare calculations of ventricular volumes and 

EF’s between QBS and BP-SPECT, to compute the standard error of the estimate (SEE) 

values indicative of the “spread” of values to be expected for each method given the 

results of the other, and in conjunction with Bland-Altman plots of differences versus 

means to search for trends and systematic errors. Statistical significance of differences 

between pairs of different regression analyses was assessed by the Fisher z-test. For all 

tests p < 0.05 was considered statistically significant.  

RESULTS 

Software Region Generation 

For clinical data, 64 of 486 patients (13%) showed obvious evidence of serious 

ventricular tracking problems for QBS, regardless of the manner in which algorithms 

were run (see above). This was consistent with previously reported QBS automation 
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success rates of 70%-85% [9]. To permit a fair and realistic comparison between the 

two algorithms for clinical images the questionable cases were eliminated, leaving 422 

clinical studies, thereby censoring studies in the same fashion used by previous 

investigator [9]. Reasons for censoring data due to QBS algorithm failure were: failure 

for unknown reasons to identify the LV (15% of discarded cases) or RV (18%) or both 

LV and RV (7%), pericardial effusion resulting in LV’s at ES being obviously much too 

small (30%), misidentification of spleen, liver or aortal counts as ventricular counts 

(24%), and incorrect tracking of high background counts (6%). 

For MRI correlative studies previously reported for BP-SPECT [12], QBS outlines were 

considered to be usable for 21 of 28 subjects with PAH or TOF, so that a comparable 

success rate of 75% was found in applying QBS to MRI data, as had been reported 

previously by other investigators for clinical data [9]. The major factor causing failure 

of QBS region generation was unusually large and/or unusually eccentric RV’s, 

sometimes causing QBS to produce LV regions that intruded substantially into RV 

regions. Of 20 dynamic phantoms for which BP-SPECT calculations previously were 

reported [19], QBS algorithms were able to process 16 data sets, yielding a success rate 

of QBS algorithms of 75%, again similar to success rates reported by previous 

investigators [9]. 

Clinical Data  

Linear regression least-squares fitted curves comparing QBS against BP-SPECT values 

are shown in Figures 3  and 4. 
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Figure 3  

Linear regression curves for QBS versus BP-SPECT left ventricular (LV) ejection fraction (EF) 

(top), and Bland-Altman curves of differences versus means of LV EF for both methods (bottom). 
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Figure 4  

Linear regression curves for QBS versus BP-SPECT right ventricular (RV) ejection fraction (EF) 

(top), and Bland-Altman curves of differences versus means of RV EF for both methods (bottom).  
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Linear regression least squares fitted curves comparing QBS against BP-SPECT values 

are shown in Figures 3 and 4. For these clinical data, all QBS parameters for both 

ventricles were significantly correlated with BPSPECT values, although correlation for 

each LV relationship was significantly stronger (P = .05) than for each corresponding 

RV relationship. QBS LVEDV values were significantly lower than BP-SPECT LVEDV 

values (regression analysis: y = -13 mL + 0.90x, r = 0.85, P < .0001, SEE = 33 mL; 

Bland-Altman analysis: y=-31 mL + 0.06x, r = 0.11, P = not significant), but LVESVs 

were not different (regression analysis: y = 1 mL + 1.04x, r = 0.89, P < .0001, SEE = 

26 mL; Bland-Altman analysis: y = -6 mL + 0.19x, r = 0.41, P < .0001, SEE = 24 mL), 

resulting in QBS LVEF being significantly lower by 11% than BP-SPECT LVEF values 

(Table 1). 

  

Because 90% of LV ESV values were < 100 mL, a sub-analysis was performed for LV 

ESV’s < 100 mL, demonstrating statistically significant but significantly weaker 

correlation (r=0.65; y = 8 mL + 0.81x; SEE = 19 mL) than r=0.89, probably due to a 

smaller range of ESV values.  

For the right ventricle, linear regression analysis findings for QBS versus BP-SPECT 

EDV were as follows: y = 31 mL + 0.52x, r = 0.74, P < .0001, SEE = 30 mL; and for 

RVESV, findings were as follows: y = 19 mL + 0.49x, r = 0.66, P < .0001, SEE = 26 

mL. Bland-Altman analyses demonstrated that QBS RV volumes had a strong 

tendency to underestimate BP-SPECT RV volumes, to a greater extent as mean volume 

increased (RVEDV: y = 10 mL - 0.39x, r = 0.46, P < .0001, SEE = 37 mL; RVESV: y = -

1 mL + 0.25x, r = 0.27, P < .0001, SEE = 34 mL), the net result of which was to 

produce QBS RVEF values significantly higher by 5% than BP-SPECT values for this 

patient population (Table 1). QBS correlated significantly more strongly with BP-

 LV EDV LV ESV LV EF RV EDV RV ESV RV EF 

QBS 96±68 mL* 52±62 mL 53±17%*# 112±46 mL* 61±38 mL* 49±11%* 

BP-SPECT 122±60 mL 49±51 mL 64±17%# 144±60 mL 78±47 mL 45±12% 

Planar-GBP - - 59±14% - - - 

 

Table 1 

Paired T-test results for clinical data for 422 patients. 

* = p<0.05 for QBS versus BP-SPECT 

# = p<0.05 versus planar-GBP LV EF 
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SPECT values for LVEF (r = 0.80) (Figure 3) than for RVEF (r = 0.41) (Figure 4). 

For the 422 clinical studies, both QBS and BP-SPECT correlated significantly with 

planar-GBP LV EF (r=0.81 versus r=0.83) (Figures 5 and 6),  
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Figure 5 

Linear regression curves for QBS versus conventional planar gated blood pool (GBP) LV 

EF (top), and Bland-Altman curves of differences versus means of LV EF for both methods 

(bottom). 

 



CHAPTER 6 

114 

 

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Planar-GBP LVEF

Q
B
S
 L
V
E
F

y =-5% + 0.98x

r=0.81 ; p<0.0001

SEE =  1 0%

mean = -6

mean + 2SD = 

1 4

mean - 2SD =  

-26

-50%

-25%

0%

25%

50%

0% 100%

Mean LVEF

Q
B
S
 -
 P
la
n
a
r 
L
V
E
F

y =-1 7% +  0.1 8x

r=0.28; p<0.0001

SEE = 9%

Figure 6 

Linear regression curves for BP-SPECT versus conventional planar gated blood pool (GBP) LV EF 

(top), and Bland-Altman curves of differences versus means of LV EF for both methods (bottom). 
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with no difference in strengths of association. Mean QBS LV EF was significantly 

lower by 6% than mean planar-GBP LV EF (59±14%), and mean BP-SPECT LV EF was 

significantly higher by 5% than planar-GBP LV EF values (Table 1). 

Low likelihood subjects 

Overall, these same methodological trends and differences were reflected in values 

found for the 31 low likelihood subjects (Table 2),  

 

 QBS 

All 

BP-SPECT 

All 

QBS 

Males 

BP-SPECT 

Males 

QBS 

Females 

BP-SPECT 

Females 

LVEDV 91±35 mL* 117±39 mL 106±33 mL* 135±35 mL 71±28 mL* 92±29 mL 

LVESV 41±22 mL 39±25 mL 50±21 mL 48±28 mL 29±18 mL 27±12 mL 

LVEF 58±9%* 67±9% 54±10%* 66±11% 62±10%* 71±7% 

RVEDV 109±29 mL* 129±29 mL 120±28 mL* 136±32 mL 93±26 mL* 120±23 mL 

RVESV 55±20 mL 61±18 mL 64±21 mL 66±17 mL 44±13 mL 53±16 mL 

RVEF 50±9%* 53±8% 48±10%* 51±6% 53±6%* 56±9% 

 

Table 2 

Left ventricular functional parameters for subjects at low likelihood for coronary artery disease. 

* = p<0.05 for QBS versus BP-SPECT 

 

with all QBS volume values significantly smaller than BP-SPECT volumes, and QBS 

LV EF values significantly lower by 9%. The only exception to the relationships 

observed between the two methods in the 422 clinical studies was that RV EF was not 

different, probably because RV EF values were predominantly between 40%-60% for 

these normal subjects, in which range the least RV EF differences between the two 

methods were observed (Figure 6). For both methods, all volume values were 

significantly larger, and EF values lower, for males than for females (Table 2), 

reflecting gender differences found previously in analysing myocardial perfusion gated 

SPECT data.,,  

Although all linear correlations between QBS and BP-SPECT measurements were 

statistically significant, they were significantly weaker for the 31 low likelihood 

patients than for the 422 clinical studies (r = 0.61, slope = 0.64; r = 0.61, slope = 0.55; 

and r = 0.75, slope = 0.67 for LV EF, EDV and ESV, respectively, and r = 0.22, slope = 

0.25; r = 0.73, slope = 0.73; and r = 0.62, slope = 0.71 for RV EF, EDV and ESV). This 

was likely due to the considerably smaller sample size and much smaller ranges of 
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EF’s and volume values being compared. 

Functional parameters for the low likelihood subjects were compared to the most 

recent normal limits reported in the cardiac MRI literature. 

 

 MRI literature QBS BP-SPECT 

LV EDVi 72 mL/m2 57 mL/m2  *# 75 mL/m2  # 

LV ESVi 31 mL/m2 32 mL/m2 35 mL/m2 

LV EF 58% 40% *# 50% 

RV EDVi 84 mL/m2 60 mL/m2 *# 70 mL/m2 # 

RV ESVi 41 mL/m2 33 mL/m2 36 mL/m2 

RV EF 46% 32% # 39% # 

 

Table 3 

Lower limits of ejection fraction and upper limits of volumes indexed to body surface area for 

subjects at low likelihood for coronary artery disease. 

* = p<0.05 for QBS versus BP-SPECT by paired t-test 

# = p<0.05 versus MRI literature by unpaired t-test 

 

 

The patients studied for our investigation were reasonably similar to those cited in this 

MRI literature, as those subjects (N=36; 50% males) were between the ages of 22-74 

(mean age = 44±16 years) and were composed of normotensive volunteers with no 

history of cardiac disease. BP-SPECT EDV values indexed to body surface area (45±15 

mL/m2) were significantly closer to the MRI literature (58±12 mL/m2) than were QBS 

values (35±11 mL/m2). Both QBS and BP-SPECT yielded EDV-indexed values lower 

than for MRI for the RV (42±9 mL/m2 and 50±10 mL/m2 versus 60±12 mL/m2). 

However, both QBS and BP-SPECT produced similar ESV-indexed values as MRI for 

the LV (16±8 mL/m2 and 15±10 mL/m2 versus 19±6 mL/m2) and for the RV (21±6 

mL/m2 and 25±6 mL/m2 versus 23±9 mL/m2). Consequently, BP-SPECT normal LV 

EF (67±9%) was significantly closer to the MRI literature (68±5%) than QBS (58±9%), 

and both algorithms underestimated normal RV EF (52±7% and 50±9%) compared to 

MRI literature (64±9%). The lower limits for normal EF and the upper limits for 

normal volumes for all methods are provided in Table 3. That the lower limit for 

normal LVEF was 40% for QBS and 50% for BP-SPECT is a reflection of the finding 

described above for the 422 clinical studies of significantly lower QBS LV EF values.   
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Patients with MRI Validations 

For the separate group of 21 patients with MRI validations, BP-SPECT measurements 

reported in reference 12 were compared to QBS and to MRI measurements. Mean BP-

SPECT values were not significantly different from MRI values, but for QBS LV EF and 

LV EDV were significantly lower than MRI values and BP-SPECT values (Table 4).  

 
 LV EDV LV ESV LV EF RV EDV RV ESV RV EF 

QBS 83±68 mL*# 45±43 mL 50±16%*# 129±53 mL 73±44 mL 47±16% 

BP-SPECT 107±59 mL 42±41 mL 65±13% 148±75 mL 84±49 mL 44±10% 

MRI 101±64 mL 42±41 mL 62±12% 133±56 mL 79±37 mL 41±10% 

 

 Table 4 

Paired T-test results for data for 21 patients with correlative MRI validations. 

* = p<0.05 for QBS versus BP-SPECT 

# = p<0.05 versus MRI 
 

 

Correlations of QBS to MRI for LV EF and volumes were quite similar to those of BP-

SPECT versus MRI, but all QBS RV correlations were significantly weaker (Table 5).  

 

 QBS versus MRI BP-SPECT versus MRI 

LV EDV r=0.84; y=-8mL+0.90x; SEE=39mL r=0.89; y=24mL+0.82x; SEE=28mL 

LV ESV r=0.89; y=6mL+0.92x; SEE=12mL r=0.95; y=3mL+0.94x; SEE=14mL 

LV EF r=0.80; y=-8%+0.94x; SEE=12% r=0.85; y=9%+0.91x; SEE=7% 

RV EDV r=0.71*; y=40mL+0.68x; SEE=39mL r=0.83; y=-2mL+1.13x; SEE=43mL 

RV ESV r=0.66*; y=11mL+0.79x; SEE=34mL r=0.78; y=2mL+1.04x; SEE=32mL 

RV EF r=0.47*; y=16%+0.74x; SEE=13% r=0.81; y=12%+0.78x; SEE=6% 

 

Table 5 

Linear regression results for data for 21 patients with TOF or PAH with MRI validations 

* = p<0.05 for strength 
 

Thus, these findings for clinical MRI data confirmed the same trends found in 

comparing results for normal subjects to the MRI literature, namely that QBS LV EF’s 

and volumes were lower than MRI values, while BP-SPECT LV measurements were 

closer to MRI results (Table 3).  
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Bi-ventricular Physical Phantoms 

In the 16 phantom simulations, QBS measurements were compared to true phantom 

values and BP-SPECT values. For LV EF QBS, BP-SPECT and true phantom 

measurements were similar, but QBS LV volumes were significantly lower than BP-

SPECT or phantom LV volumes; BP-SPECT overestimated LV phantom volumes 

(Table 6). All QBS RV measurements were significantly different from BP-SPECT and 

phantom RV values, while all BP-SPECT RV measurements were similar to phantom 

RV values (Table 6).  

 LV EDV LV ESV LV EF RV EDV RV ESV RV EF 

QBS 42±22 mL*# 25±16 mL*# 44±14% 69±25 mL*# 39±32 

mL*# 

54±22%*# 

BP-SPECT 122±20 mL# 77±23 mL# 44±13% 167±44 mL 111±49 mL 40±16% 

Phantoms 88±22 mL 51±22 mL 44±14% 153±39 mL 103±47 mL 35±13% 

 

Table 6 

Paired T-test results for data for 16 physical phantoms. 

* = p<0.05 for QBS versus BP-SPECT 

# = p<0.05 versus phantoms 
 

 

Linear regression analysis showed that all QBS and BP-SPECT LV measurements 

correlated significantly, and similarly, with true phantom LV values (Table 7), but all 

QBS RV measurements correlated significantly less strongly with phantom RV values 

than did the BP-SPECT RV values. All QBS RV correlations were weaker than QBS LV 

correlations (Table 7).   
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 QBS versus Phantoms BP-SPECT versus Phantoms 

LV EDV r=0.84; y=-8mL+0.90x; SEE=39mL r=0.89; y=24mL+0.82x; SEE=28mL 

LV ESV r=0.89; y=6mL+0.92x; SEE=12mL r=0.95; y=3mL+0.94x; SEE=14mL 

LV EF r=0.81; y=10%+0.77x; SEE=8% r=0.91; y=6%+0.85x; SEE=6% 

RV EDV r=0.10*; y=60mL+0.07x; SEE=26mL r=0.89; y=16mL+0.99x; SEE=21mL 

RV ESV r=0.29*; y=19mL+0.20x; SEE=32mL r=0.93; y=12mL+0.95x; SEE=18mL 

RV EF r=0.62*; y=19%+1.02x; SEE=18% r=0.82; y=4%+1.04x; SEE=10% 

 

Table 7 

Linear regression results for data for 16 physical phantoms. 

* = p<0.05 for strength of association of QBS versus phantoms compared to BP-SPECT versus 

phantoms 

 

DISCUSSION 

For clinical data, normal subjects, MRI and phantom data, QBS and BP-SPECT LV 

parameters correlated strongly with one another, but all QBS RV relationships were 

significantly weaker than all QBS LV relationships. QBS algorithm region generation 

success rates also were quite similar for all data types. Another finding in common 

across all data types was that QBS LV EF’s and LV EDV’s were significantly lower than 

BP-SPECT values and the other imaging modalities’ LV values. 

The latter finding was consistent with the result that QBS normal limits were 

significantly lower than BP-SPECT or MRI normal limits. The relevance of this 

clinically is that it would be necessary to apply different normal limits to MRI than to 

scintigraphic images [15] as well as separate normal limits to QBS or BP-SPECT 

calculations, in interpreting measurements. This is comparable to the documented 

necessity of applying different normal limits for different myocardial perfusion gated 

SPECT algorithms [10]. The fact that the standard error for MRI LV EF is smaller (5%) 

than for our patient population (9%) for normal limits may be due to differences in 

populations studied [15] as well as the fact that it is unlikely that scintigraphic 

methods can be as precise or reproducible as MRI measurements. 

Differences between QBS and BP-SPECT are most striking for RV measurements. QBS 

volumes may have systematically underestimated both BP-SPECT and MRI volumes 

because it was observed that QBS often included considerably less of the RV toward 

the pulmonary outflow tract and toward the RV apex (compare Figure 1 to Figure 2). 

That is predictable, since QBS is a gradient method, but at ED there is rarely any 

identifiable pulmonary valve plane. Rather, RV and pulmonary artery counts can 



CHAPTER 6 

120 

appear to be continuous at ED, whereas observing the evolution of counts as 

ventricular chambers contract in these questionable territories distinguishes RV 

counts from those of the pulmonary artery. In addition, QBS was more prone to miss 

perceived apical RV counts when the RV was narrow. Partial volume effects 

undoubtedly reduced observed radioactivity concentrations under those conditions, 

which would compromise calculations of both gradient and count-threshold 

approaches.  

With regard to QBS for the LV, the mitral valve plane occasionally was placed further 

forward than as perceived by observers, causing computed LV EDV’s to be smaller 

than expected. The BP-SPECT methodology was by no means perfect, either. When 

inadequate, the first attempt was to reselect planes and make no other changes. If 

insufficient, observers then redrew outlines on VLA ED, VLA ES and SA ED images, 

and if still inadequate, then observers modified individual HLA ED and ES outlines for 

any and all slice levels. Consequently, whereas observers could not alter QBS outlines 

to better match perceived chamber limits, BP-SPECT calculations had the 

disadvantage of likely introducing interobserver errors. It is likely that the ability to 

manually alter regions to reflect users’ perceptions of actual ventricular volumes was 

an important difference between QBS and BP-SPECT algorithms. The reproducibility 

of QBS has only recently been explored and reported [24]. 

 

Study Limitations 

It would have been preferable to use more direct “gold standards,” such as the animal 

cast studies that have been performed to validate MRI RV measurements [25]. 

Drawbacks of the correlative studies that were available for this investigation 

included: that planar-GBP is compromised by overlap of cardiac structures; that more 

realistic dynamic phantoms would have been preferable; and that the clinical MRI 

studies were performed on patients likely to have very enlarged RV volumes and/or 

very depressed RV EF’s. 

Data were collected in a manner intended to maximize the likelihood of collecting 

adequate counts in all clinical studies, at the expense of sacrificing temporal and 

spatial resolution, just as is done routinely in performing gated myocardial perfusion 

studies. GBPS distributes counts over 8-10 tomographic sections compared to planar-

GBP, reducing count densities by 1/8th to 1/10th per slice, potentially presenting a 

challenge to algorithms, especially in patients with significant attenuation due to 
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enlarged hearts or large body habitus. It would be preferable to collect at least 16 

frames per R-R cycle so as to obtain additional information regarding ventricular 

filling and emptying parameters, but only if sufficient counts can be acquired routinely 

for this purpose. The optimal GBPS acquisition parameters have not yet been studied 

systematically and are not known at this time, nor is it known whether attenuation 

corrections or improved tomographic reconstruction techniques would produce more 

accurate GBPS measurements.  

It is likely that QBS underestimated all phantom volumes because the phantom 

included no background counts [19]. However, it should be noted that neither QBS nor 

BP-SPECT algorithms were designed to process phantom data. Instead, both algorithms 

expected to find left and right atria, neighbouring lung counts and pulmonary outflow 

tracts. It is likely that both QBS and BP-SPECT GBPS algorithms will produce values 

closer in agreement with actual phantom parameters when presented with more 

realistic physical simulations. In this regard, the phantom data used in this investigation 

provided valuable insights into how the algorithms respond to clinical data for patients 

with small atria and/or unusually low neighbouring tissue cross talk counts, such as 

occurs with pericardial effusion and excess pericardial fat.  

Normal limits used for this investigation were obtained for patients with cancer but no 

known cardiac disease. It is possible that values obtained for age-matched normal 

volunteers could be different. Future studies will be needed to document ventricular 

function parameters generated by GBPS algorithms in various distinct subgroups, 

such as normal volunteers and patients with CHF and/or CAD, who also have direct 

correlative cardiac MRI studies. This will be necessary in order to determine the actual 

limits of accuracy in specific groups, and to provide information required to improve 

the agreement of algorithms with other imaging modalities. 

 

CONCLUSION 

Both QBS and BP-SPECT produced LV volume and EF values that correlated strongly 

with planar-GBP, cardiac MRI and phantom values. However, all LV parameters 

correlated more strongly than did the corresponding RV values, and all BP-SPECT RV 

measurements correlated significantly more strongly with MRI and phantom data 

than did QBS values. Overall, QBS gradient-method RV measurements were 

substantially different from values obtained by the BP-SPECT count-threshold 
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method. 
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SUMMARY 

Left and right ventricular ejection fractions (LVEF and RVEF) and end-diastolic and 

end-systolic volumes (LVEDV, RVEDV, LVESV and RVESV) can be calculated from 

tomographic radionuclide ventriculography (TRV). We wanted to validate and 

compare these parameters from four different TRV software’s (QBS, QUBE, 4D-

MSPECT and BP-SPECT). We compared LVEF from planar radionuclide 

ventriculography (PRV) with LVEF from TRV from the four different software’s in 166 

patients. Furthermore, ventricular volumes from TRV (QBS, QUBE and 4D-MSPECT) 

were compared with those from BP-SPECT, the latter being the only method with a 

validation of ventricular volumes in literature. Correlation for LVEF between PRV and 

TRV was good for all methods, being 0.81 for QBS, 0.79 for QUBE, 0.71 for 4D-

MSPECT and 0.79 for BP-SPECT. Mean difference ± standard deviation (SD) was 3.16 

± 9.88, 10.72 ± 10.92, 3.43 ± 11.79 and 2.91 ± 10.39 respectively. Correlation for RVEF 

between BP-SPECT and QUBE and QBS was poor, being 0.33 and 0.38 respectively. 

LV volumes calculated from QBS, QUBE and 4D-MSPECT correlated well with those 

from BP-SPECT (0.98, 0.90 and 0.98 respectively) with mean difference ± SD being 

7.31 ± 42.94, -22.09 ± 36.07, -40.55 ± 39.36 respectively, whereas RV volumes 

correlated worse between QBS and BP-SPECT and between QUBE and BP-SPECT 

(0.82 and 0.57 respectively). 

LVEF calculated from TRV correlates well with those from PRV but is not 

interchangeable with values from PRV. Volume calculations, for LV and RV, and 

RVEF need further validation before it can be used in clinical practice. 

 

INTRODUCTION 

Recently, different programs are being developed to process tomographic radionuclide 

ventriculography (TRV) [1-4]. These programs are fast, provide left (LVV) and right 

ventricular volume (RVV) and ejection fractions (EF), but the validation of these 

parameters, mostly of the RV, remains scarce. We therefore wanted to compare LVEF 

calculated from planar radionuclide ventriculography (PRV) with values from TRV, 

calculated by four different programs, QBS [2], QUBE [3], 4D-MSPECT [4] and BP-

SPECT[1]. For LVV and RVV calculations, we compared values from QBS, QUBE and 
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4D-MSPECT with those of BP-SPECT, the latter being the only algorithm with MRI-

validation of volumetric parameters in literature[1,5]. For the algorithm 4D-MSPECT, 

only parameters of the LV were available. Furthermore, we wanted to compare LV and 

RV stroke volumes, calculated from TRV from QBS, QUBE and BP-SPECT, as a 

method of validation of LV and RV volumetric parameters. 

 

MATERIALS AND METHODS 

Data acquisition 

All images were acquired on two three-headed gamma camera’s (IRIX and Prism 

3000, Marconi-Philips, Cleveland, Ohio) equipped with low energy high-resolution 

collimators. PRV data were acquired over a 5 minute period, in 16 

electrocardiographic gated frames, 64 x 64 matrix, zoom 1.333 (pixel size 7 mm) and 

with a beat acceptance window at 20 % of the average R-R interval calculated just 

before the acquisition was started. The gamma camera was positioned in left anterior 

oblique projection in order to obtain the best “septal view”. Parameters of TRV 

acquisition were as follows: 360° step-and-shoot rotation, 40 stops per head, 30 

seconds per stop, 64 x 64 matrix, zoom 1.422 (pixel size 6.5 mm), and 16 time bins per 

R-R interval, with a beat acceptance window at 20% of the average R-R interval. 

Projection data were pre-filtered using a Butterworth filter (cutoff frequency: 0.5 

cycles/cm; order: 5) and reconstructed by filtered backprojection using an x-plane 

ramp filter. Data were then reoriented into gated short axis tomograms. The resulting 

gated short axis data sets were then used as input for the four algorithms.  

From a database of 203 patients, who underwent PRV and TRV between 2001 and 

2004, 37 patients were excluded because the best septal view in left anterior oblique 

position was not reached during PRV, and these were all patients after heart 

transplantation. None of the patients had proven intracardiac or intrapulmonary 

shunting. 

From the remaining 166 patients (100 men, 66 women) clinical indications were pre-

chemotherapy (55, 33%), post-chemotherapy (67, 40%), heart failure (8, 5%), acute 

myocardial infarction (7, 4%), pulmonary hypertension (3, 2%), congenital heart 

diseases (2, 1%) and other (24, 14%).  

Processing 
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For the processing of the images, we used four software’s: QBS (Quantitative 

Bloodpool SPECT software from Cedars-Sinai Medical Center, Los Angeles, USA), 

QUBE (Free University of Brussels, Brussels, Belgium), 4D-MSPECT (University of 

Michigan Medical Center in Ann Arbor, Michigan, USA) BP-SPECT (algorithms from 

Columbia University, New York, USA). 

For the validation of LVEF, we used PRV as the gold standard. PRV was processed 

with Multi-Gated Analysis, version march 2001, on an Odyssey workstation, Philips 

Medical Systems, The Netherlands. For the comparison of LVV and RVV, we 

compared data from QBS, QUBE and 4D-MSPECT with BP-SPECT, since this 

program is the only one available with validation of volumetric parameters. 

Statistical Analysis 

Results were reported as mean values ± 1 standard deviation (SD). Correlations (r) 

between the different methods to calculate LVEF, LVV, RVEF and RVV were 

expressed as the Pearson coefficient. Variability about the regression line was 

expressed as the standard error of the estimate (SEE). Bland-Altman analysis of 

differences versus means of paired values was used to search for trends and systematic 

errors. Statistical significance was defined as p<0.05. Histograms and Box and 

whisker diagrams were used to show the distribution of the stroke volume index for 

the different techniques. 

 

RESULTS 

Global results 

All gated short axis tomograms were processed on a pc, Pentium 4, 1.8 GHz, 512 Mb 

RAM.  

Mean processing times were 105 sec, 18 sec, 19 sec and 15 sec for QBS, QUBE, 4D-

MSPECT and BP-SPECT respectively. 

The automatic option for all programs was first performed, followed by a visual 

inspection of the delineation of both ventricles. This was done by reviewing the 

dynamic images, slices into short, horizontal long and vertical long axis images with 

the calculated outlines of both ventricles superimposed on it. 

QBS could successfully process the images automatically in 130 patients. From the 
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other 36 patients, only 6 could be corrected by the manual option. The manual option 

for QBS is defining a ROI around the LV. After trying the automatic and manual 

option, in 3 patients there could be no satisfactory delineation of the LV and in 16 

cases for the RV. For 11 patients, no result could be calculated at all. 

For QUBE, 114 patients were correctly processed by the automatic option. The manual 

intervention included masking, defining RV limit, condense number of gates or define 

septum and this revealed a good LV and RV delineation in 51 patients. Only in 1 

patient, no result could be achieved for both ventricles. 

Seventy-one patients could be processed correctly with the automatic program of 4D-

MSPECT, in 85 patients, the atrioventricular border has to be adjusted manually, or a 

ROI around the LV had to be drawn. In 10 patients, no result could be calculated. No 

results for the RV were available. 

BP-SPECT could process the images completely automatic in 99 patients, whereas in 

the other 67 scans a satisfactory result could be achieved by drawing an end-diastolic 

and an end-systolic ROI in the vertical long axis slice through the RV and LV together 

with one ROI through the short axis of both chambers. 

Validation of LVEF 

Mean ± SD for LVEF from PRV and TRV are displayed in Table 1.  

 PRV TRV 

  QBS QUBE 4D-MSPECT BP-SPECT 

LVEF 51.95±15.81 55.87±16.53* 62.87±17.40* 55.47±15.14* 54.86±16.01* 

LVEDV  129.55±81.43** 114.92±72.95** 88.10±63.16** 141.53±77.66 

LVESV  65.20±72.65 50.28±67.40** 44.12±55.74** 70.40±71.82 

RVEF  51.35±11.87** 47.47±13.51**  55.57±12.71 

RVEDV  133.96±40.92 141.81±55.39**  138.23±47.65 

RVESV  66.06±28.86 76.33±41.09**  62.85±32.44 

 

Table 1  

Mean ± SD for PRV and TRV for all programs with paired T-test results for TRV compared to PRV. 

*: significant (p<0.05) difference compared to PRV 

**: significant (p<0.05) difference compared to BP-SPECT 
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Figure 1 

Linear regression and Bland-Altman analysis of left ventricular ejection fraction calculation 

QBS compared with LVEF from PRV. 
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Figure 2 

Linear regression and Bland-Altman analysis of left ventricular ejection fraction calculation 

QUBE compared with LVEF from PRV. 
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Figure 3  

Linear regression and Bland-Altman analysis of left ventricular ejection fraction 

calculation QUBE compared with LVEF from PRV. 
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Figure 4 

Linear regression and Bland-Altman analysis of left ventricular ejection fraction calculation 

BP-SPECT compared with LVEF from PRV. 
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Values of LVEF from all the methods to process TRV were significantly higher 

(P<0.001) compared to PRV. Furthermore, LVEF from QUBE was significantly higher 

(P<0.001) compared to the other methods of TRV. Regression and Bland-Altman 

analysis were performed for LVEF calculated with the four methods, compared to PRV 

(Figure 1-4).  

Correlation between PRV and TRV was good for all methods, being 0.81 for QBS, 0.79 

for QUBE, 0.71 for 4D-MSPECT and 0.79 for BP-SPECT. The standard error of the 

estimate (SEE) was smallest for QBS (9.86) and BP-SPECT (9.79), somewhat larger 

for QUBE (10.79) and for 4D-MSPECT (12.18). From Bland-Altman analysis, no 

significant trend was seen for all methods across the range of LVEF. 

Validation and comparison of LVV, RVV and RVEF 

Mean ± SD for LVEDV, LVESV, RVEDV and RVESV from TRV are displayed in Table 

1. Regression and Bland-Altman analysis were performed for LVV calculated with 

QBS, QUBE and 4D-MSPECT, compared to LVV from BP-SPECT (Figure 5-7). LVV 

calculations from QBS, QUBE and 4D-MSPECT correlated well (0.98, 0.90 and 0.98) 

with values from BP-SPECT. All calculations of LVV, LVEDV and LVESV, showed the 

smallest values with 4D-MSPECT and largest with BP-SPECT. The values of LVEDV 

and LVESV from all the software’s differed significantly (P<0.001) with every other 

technique, except LVESV from QBS compared to BP-SPECT. In the Bland-Altman 

analysis, no significant trend was observed between LVV calculated by QBS and BP-

SPECT, but there was between QUBE and BP-SPECT and even more obvious between 

4DM-SPECT and BP-SPECT, with a growing underestimation of LVV for QUBE and 

4D-MSPECT for larger volumes. Furthermore, a lot of outliers were observed, 

especially between 4D-MSPECT and BP-SPECT and especially for larger volumes, and 

the variation of all methods depended strongly on the magnitude of measurements, by 

means that for large volumes difference between the two methods is often lying 

outside the 95% confidence interval (Figure 2). 
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Figure 5  

Linear regression and Bland-Altman analysis of left ventricular volume calculation with QBS 

compared with LVV from BP-SPECT. 
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Figure 6 

Linear regression and Bland-Altman analysis of left ventricular volume calculation with 

QUBE compared with LVV from BP-SPECT. 
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Figure 7  

Linear regression and Bland-Altman analysis of left ventricular volume calculation with 4D-

MSPECT compared with LVV from BP-SPECT. 
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For RVV, correlation was slightly lower for QBS (0.82), but with an acceptable mean 

difference and confidence interval on Bland-Altman plot, and much lower for QUBE 

(0.57) compared to the values found by BP-SPECT (Figure 8-9). When considering 

RVEDV, no significant difference was found between QBS, QUBE and BP-SPECT, 

whereas for RVESV, only significant higher values were found for QUBE, compared to 

QBS and BP-SPECT, and not between values of QBS and BP-SPECT. 
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Figure 8 

Linear regression and Bland-Altman analysis of right ventricular volume calculation with QBS 

compared with RVV from BP-SPECT.
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Figure 9  

Linear regression and Bland-Altman analysis of right ventricular volume calculation with 

QUBE compared with RVV from BP-SPECT.
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Figure 10  

Linear regression and Bland-Altman analysis of right ventricular ejection fratcion 

calculation with QBS compared with RVEF from BP-SPECT.
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Figure 11  

Linear regression and Bland-Altman analysis of right ventricular ejection fratcion 

calculation with QBS compared with RVEF from BP-SPECT.
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 and between QUBE and BP-SPECT and a poor correlation was found, 0.38 and 0.33 

respectively (Figure 10-11). 

Since the stroke volume (SV) is equal in LV and RV, proportion of stroke volumes 

(stroke volume index, SVI) has to be ideally 1. Histogram and Box and whisker 

diagrams with the distribution of the SVI for the different techniques are shown in 

Figure 12. Mean SVI ± SD for BP-SPECT, QBS and QUBE were 1.01 ± 0.43, 0.99 ± 

0.38 and 1.11 ± 0.51 respectively. Half of the patients show a difference between LVSV 

and RVSV more then 40% for BP-SPECT, 39% for QBS and 54% for QUBE.  
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DISCUSSION  

QBS is a very straightforward program but with only very limited possible manual 

intervention. After automatic processing, the visual interpretation of the delineation of 

the ventricles is not optimal in 22% of the patients, this is mostly the case in the lateral 

wall of the left ventricle and in the inferior wall of both ventricles. Another error seen 

was the inclusion of atrial structures in the LV or RV. Only in 17% of these cases, the 

manual option (defining LV in short axis, horizontal long axis and vertical long axis) 

resulted in a satisfactory result, mostly for the LV. Nevertheless, this program is easy 

to use and the result page is visually attractive, with display of bull’s eye analysis of 

wall motion, similar to the well-known gated myocardial perfusion analysis software, 

QGS [6].   

QUBE is more validated [3,7-9] and is nowadays distributed by Segami corporation. 

The reconstruction software is directly linked to the software itself, with the obvious 

advantage of easily making corrections in realignment of the short axis images, 

zooming, masking and condensing 16 time frames into 8. The manual options gave 

satisfactory results in nearly all the cases, for LV as well as for RV. Additional results 

are presented like 3D phase analysis and RV fraction shortening, but these items 

remain unvalidated. 

4D-MSPECT is known for its analysis of gated myocardial perfusion [10], and it also 

includes a possibility to process TRV. At the moment of analysis, only the option of 

processing LV was available. The manual intervention is very fast and accurate in most 

of the cases, and the program is very flexible and open, which makes it possible to 

create own databases of normal patients and to export every parameter to a text-file to 

create an extensive and quantitative report. Wall motion is not only directly calculated 

in a predefined bull’s eye (3, 5, 9, 13, 17, 19 or 20 segment polar map), but can be 

scored as well as normal, mild hypokinesis, moderate hypokinesis, severe hypokinesis, 

akinesis or dyskinesis by predefined cut-offs. Only, there is a subjective impression 

that wall motion in the apex is relatively underestimated, compared to visual analysis 

of the images. Most of the scans needed manual intervention (51%), but this was easily 

done by adjusting the valve plane in end-diastolic and end-systolic position. The way 

these programs define the valve plane is a critical point and influences volume 

calculations extensively. The method used to detect the valve plane is not described by 

the manufacturers and can be completely automatically in one program and not 

adjustable (e.g. QBS), and visually less accurate and easily adjustable in another 
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program (e.g. 4D-MSPECT). 

BP-SPECT is the only software with validation of LVV and RVV [1,5] which is 

absolutely necessary for this kind of software. During processing, RV results are first 

calculated and when these are accepted, LV delineation is done. Drawing ROI’s in end-

diastolic and end-systolic images for RV as well as LV, was successful in all clinical 

cases where the automatic program couldn’t define the ventricular outline properly. 

For the calculation of LVEF, all programs supply good results with correlation 

coefficients between 0.71 and 0.81. These values are lower than those mentioned in 

other publications about comparison of LVEF between PRV and TRV (Table 2.), 

although consistent with the finding that LVEF from TRV is higher compared to LVEF 

from PRV, probably because of atrial overlap with LV in PRV [11].  
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 year 
N° 

pts 
Software Corr 

Linear Regression 

y = TRV; x = PRV 

Highest 

value 
SEE Ref. 

QBS 0.81 y = 0.86x + 10.51 TRV 9.1 

QUBE 0.79 y = 0.87x + 17.18 TRV 9.7 

4D-MSPECT 0.71 y = 0.67x + 20.66 TRV 11.5 
Our results 166 

BP-SPECT 0.79 y = 0.80x + 13.46 TRV 9.8 

 

QBS 0.81 y = 0.98 x + 5 PRV 10 
Nichols 2004 422 

BP-SPECT 0.83 y = 0.95 x + 7 TRV 9 
[25] 

NuSMUGA (M) 0.90  TRV  
Slart 2004 22 

NuSMUGA (A) 0.88  PRV  
[15] 

Wright 2003 50 QBS 0.80  -  [16] 

Ficaro 2002 56 4D-MSPECT 0.97 y = 1.06 x – 1.58 - - [10] 

QBS 0.99 y = 0.92 x TRV 6.8 

TMUGA 0.98 y = 0.82 x TRV 8.1 Daou 2001 29 

M 0.98 y = 0.84 x TRV 8.4 

[17] 

Groch 2001 178 NuSMUGA 0.92 y = 1.04 x + 6.1 TRV 5.4 [18] 

Vanhove 2001 53 QUBE 0.78 y = 0.94 x + 6.33 
TRV (for EF 

> 50%) 
8.8 [3] 

Vanhove 2001 92 QUBE 0.82 y = 1.04 x – 4.75 TRV 8.8 

   QBS 0.80 y = 0.98 x + 4.42 PRV 9.4 
[8] 

Daou 2004 29 QBS 0.62  TRV  [19] 

Van 

Kriekinge 
1999 89 QBS 0.89 y = 1.01x + 2.00 TRV  [2] 

Chin 1997 18 M 0.96  TRV 6.7 [20] 

Bartlett 1996 23 
Reprojection 

image 
0.89 y = 1.4 x - 8 TRV 8 [11] 

Mariano-

Goulart 
1998 30 TMUGA 0.93 y = 0.99 x + 4.17 TRV 5.9 [13] 

 

Table 2 

Comparison of LVEF from PRV with TRV in literature 
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A larger correlation is mainly found in papers with smaller patient groups, which 

makes it less representative for a large group of clinical patients or is found with a 

relative manual or semi-automatic technique, like the programs NuSMUGA [12] and 

TMUGA [13]. Like NuSMUGA, drawing LV ROI’s is all short axis slices in every time 

bin can derive accurate volume measurements when using an optimal cutoff, but you 

need an experienced user and it is clear that such a way of processing is very time-

consuming and will not be popular in clinical practice. Moreover, there is to our 

knowledge no possibility to process the RV with NuSMUGA in contrast to TMUGA, 

with even a comparison of LV and RV cardiac output measurements from TRV 

compared with the thermodilution method [13]. The more the software is automatic 

(and reproducible), the more errors it produces and on the contrary, the more manual, 

the more time-consuming it is.  

For LVV calculations, the difference between the program with smallest values (4D-

MSPECT) and largest values (BP-SPECT) is almost double. The difference between 

4D-MSPECT and BP-SPECT in volume calculation was also shown in a four-chamber 

cardiac phantom experiment (submitted) whereas BP-SPECT overestimated LVV in 

another biventricular cardiac phantom experiment [14].  

The discussion about what technique gives the exact EF is inferior to the fact that TRV 

gives additional information, like each tomographic examination gives more 

information then a planar one. In this view it is also important to stress that, when 

describing a TRV, visual analysis of global and regional kinetic function of both 

ventricles should be included, even before delineation of ventricular volumes, without 

the influence of any (computerized) calculation. There were patients included in this 

study with a lower LVEF on PRV who showed a good contractility on TRV, and this is 

probably the cause of the “overestimation” of LVEF on TRV compared to PRV, but 

analysis of the gated reconstructed short axis slices showed a perfect contractility. 

Limitations 

Using PRV as gold standard for LVEF is acceptable but validation of TRV, a technique 

that can produce volumes and EF of both ventricles, is better done by MRI, but this 

was not available in our database of patients.  

The relatively limited number of patients with impaired LV function (73% were cancer 

patients studies pre- and post chemotherapy) should also be stressed. 
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CONCLUSION 

LVEF calculated from TRV with the four described methods correlate well with those 

from PRV and can be applied in clinical practice, although the values are not 

interchangeable with other techniques and even not within the same technique with 

other types of software.  

Volume calculations from TRV, especially from the RV, need further validation, 

mainly with other techniques, such as MRI, before they can be applied in clinical 

practice  
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SUMMARY 

Background: Different algorithms are now being distributed to process tomographic 

radionuclide ventriculographic (TRV) data, but for some of them there is little 

literature regarding validations. Therefore, we compared left ventricular (LV) and 

right ventricular (RV) volumes and ejection fraction (EF’s) computed by two different 

unvalidated TRV algorithms (QUBE and 4D-MSPECT) that use a surface-gradient 

approach against magnetic resonance imaging (MRI), the gold standard for 

ventricular volumes, and against two other TRV algorithms for which MRI validations 

have previously been reported (QBS, another surface-gradient approach, and BP-

SPECT, a count-threshold approach).  

Methods and Results: Twenty-eight patients with primary arterial hypertension (PAH) 

or tetralogy of Fallot (TOF) were evaluated with planar radionuclide ventriculography 

(PRV), tomographic radionuclide ventriculography (TRV) and MRI. LV volumes were 

compared between MRI, QUBE, 4D-MSPECT, QBS and BP-SPECT, while LVEF was 

compared among those methods and PRV. RV volumes were compared among MRI, 

QUBE, QBS and BP-SPECT methods, while RVEF was compared among those 

methods and PRV. By ANOVA, there were significant differences among LVEF and 

RVEF values, with values being significantly lower than MRI LVEF’s for QBS and 

PRV, and significantly higher for QUBE. An underestimation was found for LVV 

calculations from QBS, QUBE and 4DM-SPECT compared to MRI. PRV significantly 

underestimated RVEF compared to MRI. An underestimation of RVV calculations was 

seen for QBS, whereas QUBE overestimated RVV.  

Conclusions: TRV surface-gradient methods that computed volumes, and that derived 

EF’s from volumes, were found to be sub-optimal, compared to the BP-SPECT count-

threshold method. 
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INTRODUCTION 

Currently, several different algorithms are commercially distributed to analyze 

tomographic radionuclide tomographic (TRV) data. Among these, three surface-

gradient method (QBS [1], QUBE [2], 4D-MSPECT [3]) and one count-threshold 

method (BP-SPECT [4]) were recently described with validation studies against planar 

radionuclide ventriculography (PRV) [1;2], gated myocardial perfusion SPECT [3] 

and/or cardiac phantom studies [5;6]. Of the various computational methods, only the 

QBS and BP-SPECT algorithms have been validated against magnetic resonance 

imaging (MRI) data, for both the left ventricle (LV) and for the right ventricle (RV) 

[4;7]. Those validation studies were performed for 28 patients with primary arterial 

hypertension (PAH) or tetralogy of Fallot, for whom RV EF was expected to be 

abnormally low and/or RV volumes abnormally large so that only MRI validations 

were considered to be the only reliable method of comparison. The aim of this study 

was to use QUBE and 4D-MSPECT to process these data for the same 28 patients, as 

QUBE and 4D-MSPECT have not previously been validated against MRI data, and to 

compare RV and LV measurements among all TRV methods, PRV and MRI. 

MATERIALS AND METHODS 

The patient data were collected between 1st September 2001 and 1 st February 2003, at 

Columbia University. There were 16 men and 12 women, mean age ± standard 

deviation (SD) was 28 ± 14 years. 15 patients suffered from PAH and 13 from TOF. All 

nuclear and MR imaging procedures were performed within 1 month of one another 

(mean interval = 10±10 days). No patient experienced any significant cardiac event 

between studies, and none had changes in medical or surgical therapy. 

Magnetic Resonance Imaging 

 A 1.5 Tesla scanner ("LX" or "Signa Horizon," General Electric Medical 

Systems, Inc., Milwaukee, WI) with a body phased array surface coil was used for 

cardiac gated gradient-echo cine MRI data acquisitions. The cine images were 

acquired using a "Spoiled Gradient Recall" (SPGR) non-breath-hold technique (n=8) 

(TR Min TE 13, FA 30, Matrix 256 x 128, FOV 30-41, NEX 1, Sl Thickness 8, gap 0) or 

a breath-hold technique (n=20) (TR Min TE min full,  FA 15, Matrix 256 x 128, FOV 

30-41, NEX 1, Sl thickness 8, gap 0). Data were acquired gated at 16-20 frames/R-R 
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interval. Gated short axis slices spanned the entire heart, from beneath the apex to 

above the AV valves.   

 Semi-automated algorithms ("Cardiac Analysis" software from General Electric 

Medical Systems, Inc., Milwaukee, WI) were used for the segmentation of left and 

right ventricles for all short axis sections at ED and ES. Automatically-generated 

outlines were visually reviewed and manuualy altered as necessary, to coform to the 

oberver’s visual impression of endocardium. Trabeculation were manually excluded. 

EV and ES volumes were obtained by summing short axis slices by Simpson’s rule. 

PRV Studies 

Conventional PRV was performed for all patients in the left anterior oblique projection 

that optimized septal separation of the RV from the LV. For adults, injected Tc-99m-

pertechnetate activity was 925 MBq (25 mCi), following injection of 5 milligrams of 

pyrophosphate. For patients under 18 years of age whose body weight was less than 70 

kg, these injections were scaled linearly downward for body weight. Clinical data were 

acquired at both institutions with the same commercially available gamma cameras 

("Vertex," ADAC Corporation, Milpitas, CA). As these were dual-detector gamma 

cameras, no caudal tilt was used in positioning patients for PRV. A 20% energy 

window centered on 140 keV was used for data acquisition, with low energy general-

purpose (LEGP) collimation. Data were acquired as 64x64 matrices, gated for 24 

frames per R-R interval for 10 minutes.  

TRV Data Acquisition 

Immediately following PRV data collection, all patients then underwent TRV data 

acquisition. A dual detector gamma camera ("Vertex," ADAC Corporation Milpitas, CA, 

USA) was used to collect images at 64 projections over a 180° circular arc.  64x64 

tomograms with a pixel size of 3.8 mm were acquired with LEGP collimators for 20 

seconds per projection. Tomograms were acquired with patients at rest, at 8 frames 

per R-R interval, using a 100% R-wave window. Eight frames per R-R interval were 

used, as opposed to a larger number, to guarantee routine collection of sufficient 

tomographic counts per R-R interval. 

All data sets were reviewed for any confounding imaging artifacts. Butterworth pre-

filters (cutoff = .45 of Nyquist frequency, power = 5.0) were used for gated 

tomograms, followed by ramp filtering in the transaxial plane. Images were reoriented 

into short axis sections using manual choices of approximate LV symmetry axes, using 
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a commercially available computer system ("ICON," Siemens Medical Solutions, Inc., 

Chicago, IL). 

TRV Data Processing 

Data processing with QBS and BP-SPECT were performed at Columbia University and 

with algorithms QUBE and 4D-MSPECT at Ghent University Hospital. The version of 

QBS distributed by Siemens Medical Systems, Inc., was executed on a Siemens Esoft 

computer, while BP-SPECT was run on a Siemens "ICON" computer. QUBE and 4D-

MSPECT were run on a conventional laptop PC running the Windows XP operating 

systems (Microsoft Corp., Redmond, WA, USA). All algorithms used gated short axis 

images for import in DICOM format. A description of the modelling assumptions and 

modes of operation of the algorithms is given at length elsewhere [6], but briefly, QBS, 

QUBE and 4D-MSPECT are primarily based on a surface-gradient approach [1], [2], 

[3], whereas  BP-SPECT is primarily a count-threshold method [4]. All 4 TRV methods 

computed LVEF, LVEDV and LVESV values. QUBE, QBS and BP-SPECT also 

computed RVEF, RVEDV and RVESV values, but 4D-MSPECT did not. In the process 

of running these algorithms on the TRV data, it was impossible to get QBS to process 

data for the patient with the largest LVEDV (with an MRI value of 344 mL). All other 

algorithms were able to process that data, and all other data. 

TRV regional wall motion assessment 

Both QUBE and 4D-MSPECT provide displays of parameters relevant to regional wall 

motion. In the case of QUBE, this program uses several views of the LV to display 

regional EF, using a 10% color bar scale, whereas 4D-MSPECT displays wall motion in 

units of mm on a polar map. Neither QBS nor BP-SPECT displayed information in this 

fashion. To assess the degree to which QUBE and 4D-MSPECT calculations reflect 

visual observations, an expert observer (PDB) graded his impression of wall motion on 

a 5-point scale (0: Normal, 1: Mild Hypokinesis, 2: Moderate Hypokinesis, 3: Severe 

Hypokinesis, 4: Akinesis, 5: Dyskinesis) as perceived by the observer when reviewing 

TRV endless cine loops. To simplify the process of performing these comparisons, only 

apical visual scores were compared to QUBE regional EF and 4D-MSPECT wall 

motion values. 

Statistical Analysis 

All statistical analyses were performed by “SPSS 13.0” statistical software (SPSS, Inc., 

Chicago, IL, USA). Χ2 analyses were used to test whether data were normally 
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distributed. Results are reported below as mean values ± 1 standard deviation. 

ANOVA was used to test for differences among all values considered together, and 

Bonferoni post hoc tests were performed to identify differences between pairs of 

values. Correlations between TRV and MRI values were expressed as the Pearson 

correlation coefficient (r). Variability about the regression line was expressed as the 

standard error of the estimate (SEE). Bland-Altman analyses of differences between 

pairs of estimated and reference values were used to search for trends and systematic 

errors. Rank correlation was used to computed Spearman’s rho coefficient for QUBE 

LV and RV apical regional EF values and 4D-MSPECT LV regional wall motion values 

versus visual motion scores. Differences between strengths of correlation were 

assessed by the F-test. Statistical significance was defined as p<0.05 for all tests but 

ANOVA, for which p<0.05/(υ-1) was considered significant. 

RESULTS 

All results for LV and RV were normally distributed and summarized in table 1. 

Figures 1 – 6 display linear regression and Bland-Altman curves for LVEF, LVEDV, 

LVESV, RVEF, RVEDV and RVESV.  

Left Ventricle 

ANOVA showed significant differences among methods for LVEF (p = 0.000) and 

LVEDV (p = 0.000) and for LVESV (p = 0.000). LVEF values were significantly lower 

than MRI for QBS and PRV, and significantly higher for QUBE (Table 1).  

 

 LV EDV LV ESV LV EF RV EDV RV ESV RV EF 

 (mL) (mL) (%) (mL) (mL) (%) 

MRI 92±36 36±23 63±12 143±94 87±63 41±10 

QUBE 76±32 # 21±15 # 73±17 # 189±119 # 102±77 48±17 # 

4D-MSPECT 62±28 # 24±13 # 61±11    

QBS 80±46 50±41 43±20 # 143±81 86±66 44±16 

BP-SPECT 101±34 86±66 64±13 163±107 # 96±74 44±11 

PRV   57±13 #   34±12 # 

 

Table 1 

# = p<0.05 versus MRI 
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QBS LVEF values were significantly lower than MRI (p = 0.004), QUBE (p = 0.000), 

4D-MSPECT (p = 0.011) and BP-SPECT (p = 0.002), but not for PRV (p = 0.110). 

QUBE, on the contrary, produced significantly higher LVEF values than QBS (p = 

0.000) and PRV (p = 0.009). 

By the F-test, LVEF correlations versus MRI were not significantly different (p=0.09) 

for PRV (r=0.72; p=0.00), BP-SPECT (r=0.77; p = 0.00), QUBE (r=0.50; p = 0.01), 

4D-MSPECT LVEF (r=0.48; p = 0.01) or QBS LVEF (r=0.40; p = 0.02). The 

underestimation of QBS and overestimation of QUBE was such that their mean 

differences were –20% and +10%, respectively. The standard error of the estimate 

(SEE) was lower for BP-SPECT and 4D-MSPECT (8% and 13%) and higher for QUBE 

and QBS (18% and 26%). Bland-Altman analysis demonstrated a significant trend only 

for 4D-MSPECT (p = 0.01), with an overestimation for lower values of LVEF and an 

underestimation for higher values of LVEF (Figure 1). 

LVEDV and LVESV values were significantly lower than MRI for QUBE and 4D-

MSPECT (Table 1).  Among TRV methods, only BP-SPECT and 4D-MSPECT LVEDV 

values differed from one another (p= 0.001). For LVESV, the calculations from QUBE 

and 4D-MSPECT were significantly lower than any other methods of processing TRV. 



CHAPTER 8 

162 

 

 
 

 

 
Figuur 1: Comparison of TRV LVEDV with MRI LVEDV 
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Figuur 1: Comparison of PRV LVEF and TRV LVEF with MRIFigure 1 
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Figuur 2: Comparison of TRV LVEDV with MRI LVEDVFigure 2 
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Figuur 3: Comparison of TRV LVESV with MRI LVESVFigure 3 
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QBS LVEDV and LVESV values were not significantly correlated to MRI values 

(r=0.38; p = 0.06 and r=0.38; p = 0.06 respectively) (Figures 2-3). Also, LVEDV and 

LVESV linear correlations were significantly weaker (p<0.02) versus MRI for QBS 

than for 4D-MSPECT (0.85; p = 0.00 and 0.79, p = 0.00) and BP-SPECT (0.66; p = 

0.00 and 0.79; p = 0.00). A significant trend toward a greater degree of 

underestimation for higher values of LVEDV was found for QUBE (p = 0.00), 4D-

MSPECT (p = 0.00), QBS (p = 0.05) and BP-SPECT (p = 0.03) (Figures 2-3). For 

LVESV, this trend was seen only for QUBE (p = 0.03).  

Right ventricle 

ANOVA found significant differences among methods for RVEF (p = 0.023), but not 

for RVEDV (p = 0.457) or RVESV (p = 0.848). Among the radionuclide methods that 

computed RV parameters, PRV RVEF was significantly lower only compared to QUBE 

RVEF (p = 0.040). RVEF was significantly lower than MRI measurements only for 

PRV (Table 1).  

For RVEF, the lowest correlation versus MRI was found for QBS (0.44; p = 0.03), 

which was significantly weaker (p=0.04) than BP-SPECT (r=0.79; p = 0.00), but not 

lower than QUBE (r=0.60; p = 0.00). The RVEF correlation between PRV and MRI 

was r=0.77, p = 0.00. No significant Bland-Altman RVEF trends were found for any of 

the techniques (Figure 4). 
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Figure 4   

Comparison of PRV and TRV (QBS, QUBE and BP-SPECT) RVEF to MRI RVEF. 
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Figure 5  

Comparison of TRV (QBS, QUBE and BP-SPECT) RVEDV to MRI RVEDV 
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Linear regression correlations for RVEDV and RVESV were 0.85 and 0.82 for QBS, 

0.90 and 0.87 for QUBE, and 0.91 and 0.91 for BP-SPECT (Figures 5-6). A significant 

trend of underestimation at higher RVEDV volume values was found only for QBS (r = 

0.52, p = 0.01). No significant trends were found for RVESV for any of the 3 TRV 

algorithms. 
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Figure 6  

Comparison of TRV (QBS, QUBE and BP-SPECT) RVESV to MRI RVESV. 
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Visual score LV Patients QUBE RLVEF 4D-MSPECT wall motion 

 n (%) (mm) 

0 18 56.7 9.5 

1 6 50.8 9.1 

2 1 35.0 5.6 

3 1 15.0 3.8 

4 1 5.0 1.5 

5 1 -10.0 2.4 

 

Table 2 

Mean regional LVEF calculated by QUBE and mean wall motion calculated by 4D-MSPECT in the LV 

apex, compared with visual analysis. 

Visual score (0: Normal, 1: Mild Hypokinesis, 2: Moderate Hypokinesis, 3: Severe Hypokinesis, 4: 

Akinesis, 5: Dyskinesis) 
 

 

 

TRV regional wall motion assessment  

In table 2 are tabulated regional kinetic information of the LV apex derived from 

visual analysis as compared to values of regional EF from QUBE and 4D-MSPECT for 

patients grouped according to visual wall motion scores. By rank correlation analysis, 

QUBE regional EF correlated to visual scores as r = -0.494, P = 0.010, while 4D-

MSPECT correlated to visual scores as r = -0.237, P = 0.219. In the group of normal 

ventricular function (i.e., those with a score of “0”) 9/20 (45%) patients showed a 

regional ejection fraction of less than 50% (QUBE), but all patients who were scored 

visually as “1” in the LV apex (mild hypokinesis) had wall motion values equal or 

higher than 8 mm (4D-MSPECT), which is considered to be a normal value in the apex 

[8]. Thus, the apical wall motion of the LV was often underestimated by QUBE and 

overestimated by 4D-MSPECT. 



CHAPTER 8 

170 

 

Table 3 displays apical regional RV EF from QUBE for patients grouped according to 

visual wall motion scores. By rank correlation analysis, QUBE regional RVEF 

correlated to visual scores as r =  -0.790, P = 0.000. In the RV, overestimation of 

regional kinetic information was found to be most pronounced in hypokinetic apical 

regions. That is, 5/10 (50%) patients who were scored visually as exhibiting severe 

hypokinesis were reported by QUBE to have regional RVEF values exceeding 50%.  

DISCUSSION 

Conventional planar radionuclide ventriculography values of LVEF correlated 

significantly with MRI values, but PRV significant underestimated LVEF. It is likely 

that for the patient population, characterized by impaired RV function, dilated right 

ventricles overlapped other cardiac structures to some extent, including the LV. This 

would give rise to misinterpretation of LV and RV outlines in the left anterior oblique 

projection, as some RV counts would be expected to “shine through” the LV under 

those imaging conditions [9]. Given this likelihood, PRV performed well for LVEF, and 

surprisingly well for RVEF.  

QUBE and 4D-MSPECT demonstrated an underestimation for the calculation of LVV 

to the greatest degree of all of the algorithms, particularly at end-diastole. Regression 

and Bland-Altman graphs of LVV were similar to those reported by us [6], in that 

previously we found for dynamic 4-chamber phantom experiments the same degree of 

underestimation of LVV compared to true values, with mean difference values 

Visual score RV Patients QUBE RRVEF 

 n (%) 

0 6 80.8 

1 1 100.0 

2 2 40.0 

3 10 53.0 

4 3 21.7 

5 6 23.0 

 

Table 3  

Mean regional RVEF calculated by QUBE in the LV apex, compared with 

visual analysis. 

Visual score (0: Normal, 1: Mild Hypokinesis, 2: Moderate Hypokinesis, 3: 

Severe Hypokinesis, 4: Akinesis, 5: Dyskinesis) 
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between -16.61 mL for BP-SPECT and -39.83 mL for QBS. The reason for this 

underestimation is not entirely clear. It is possible that a sub-optimal percentage of 

gradient threshold definition for ventricular segmentation could contribute to this 

finding for QBS and 4D-MSPECT. Use of a fixed threshold value, either for a count-

threshold method or for a gradient-surface method, may necessarily produce errors 

for both smaller and larger volumes than for average-sized volume values [10]. 

For larger RV’s, QBS underestimated RVV compared to MRI, consistent our with 

previous phantom experiments for the algorithms QBS and BP-SPECT [6], while 

QUBE overestimated RVV. These findings strengthen the impression, stated 

previously [7], that QBS has some difficulty in defining the correct plane of the RV 

outflow tract in clinical data, resulting in RV volume underestimation. QUBE RV 

volume overestimation could be due to the fact that QUBE places the pulmonary valve 

and the tricuspid valve in a single plane, as we have observed in some cases as seen on 

the vertical long axis trough the RV (arrow in Figure 7.) 
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Figure 7 

Upper: RV outline in horizontal long axis (upper row), vertical long axis (middle row) and short 

axis (lower row) in end-diastolic position 

Lower: RV outline in horizontal long axis (upper row), vertical long axis (middle row) and short 

axis (lower row) in end-systolic position 
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Limitations 

For the LVV calculations, QBS had the lowest correlation. This finding was influenced 

by the fact that for the scan with largest LVEDV on MRI (344 mL), the data could not 

be processed by QBS, which instead resulted in an error message, thereby yielding a 

smaller range of volume values, for which r-values are consequently lower [11]. Also, 

the patient population used for this investigation is unusual, in that primary 

pulmonary arterial hypertension is a very rare condition, as is tetralogy of Fallot. 

Further experience in comparing TRV to MRI calculations in a wider variety of 

patients, particularly those with CHF and those with no known cardiac disease, would 

be very helpful in clarifying methodological differences for more typical clinical 

settings.  

CONCLUSION 

TRV has the potential to evaluate biventricular kinetic information, regional wall 

motion, and volumetric parameters in addition to global ejection fraction. However, 

careful review of computed endocardial walls, and visual comparison to actual 

perceived wall locations, is essential in interpreting volume calculations for the 

different algorithms, considering that most TRV algorithms underestimate LVV but 

overestimate RVV. Therefore, it is our opinion that ventricular volume calculation 

necessitates a critical review of the underlying mechanisms of the TRV algorithms. 

Based on the overall higher correlation of BP-SPECT to MRI RV and LV values, 

smaller SEE values, and closer agreement to mean MRI values, BP-SPECT currently 

represents the method of choice when reporting TRV volume calculations in 

conjunction with reporting RV and LV ejection fractions. 
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SUMMARY 

Background: Different algorithms are developed to process tomographic  (T) 

radionuclide ventriculographic (RV) studies. The aim of the study was to determine 

gender-related normal values for left ventricular (LV) ejection fraction (EF), right 

ventricular (RV) EF and LV and RV end-diastolic volumes (EDV) and end-systolic 

volumes (ESV) in a prospective normal database. 

Methods and Results: 51 healthy volunteers (29 men and 22 women) were 

prospectively studied.  All subjects had a normal electrocardiogram, a normal 

echocardiographic examination and underwent a planar RV and TRV acquisition. 

Four different algorithms were used to process the TRV: QBS, QUBE, 4D-MSPECT 

and BP-SPECT. Higher values of LVEF were found in TRV, compared to PRV. No 

significant differences were found in calculating LVEF and RVEF between men and 

women. Most of the software packages however could demonstrate significant higher 

ventricular volumes in men, compared to women. Most of the volume differences 

could not be eliminated after correction for Body surface area (BSA). Normal LV and 

RV EF and volumes were comparable with other cardiac imaging techniques. 

Conclusions: Gender-specific normative values for LV and RV EF and volumes are 

important when evaluating cardiac function with TRV. Men show higher ventricular 

volumes compared to women. Higher LVEF was found with TRV, compared to PRV. 
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INTRODUCTION 

Gender-related differences in normal left ventricular (LV) ejection fraction (EF), right 

ventricular (RV) EF and LV and RV end-diastolic volumes (EDV) and end-systolic 

volumes (ESV) have proven to be useful and are described for several cardiac imaging 

techniques (1-10). Different software programs have being developed to calculate 

LVEF, RVEF and LV and RV EDV and ESV  from tomographic radionuclide 

ventriculography (TRV) [1; 2; 3; 4]. We wanted to set up a prospective normal 

database, from healthy volunteers, with left and right volumetric values for men and 

women separately and compare these values with other techniques in literature. 

MATERIALS AND METHODS 

51 healthy volunteers (29 men and 22 women) were prospectively studied.  All 

individuals had no previous history of cardiovascular disease, hypertension or 

diabetes.  All individuals had a normal electrocardiogram, a normal echocardiographic 

examination and were in sinus rhythm.  Informed consent was signed by all 

volunteers. 

Acquisition of tomographic radionuclide scintigraphy 

All images were acquired on two three-headed gamma camera’s (IRIX and Prism 

3000, Marconi-Philips, Cleveland, Ohio) equipped with low energy high-resolution 

collimators. PRV data were acquired over a 5 minute period, in 16 

electrocardiographic gated frames, 64 x 64 matrix, zoom 1.333 (pixel size 7 mm) and 

with a beat acceptance window at 20 % of the average R-R interval calculated just 

before the acquisition was started. The gamma camera was positioned in left anterior 

oblique projection in order to obtain the best “septal view”. Parameters of TRV 

acquisition were as follows: 360° step-and-shoot rotation, 40 stops per head, 30 

seconds per stop, 64 x 64 matrix, zoom 1.422 (pixel size 6.5 mm), and 16 time bins per 

R-R interval, with a beat acceptance window at 20% of the average R-R interval. 

Projection data were pre-filtered using a Butterworth filter (cutoff frequency: 0.5 

cycles/cm; order: 5) and reconstructed by filtered backprojection using an x-plane 

ramp filter. Data were then reoriented into gated short axis tomograms. The resulting 

gated short axis data sets were then used as input for the four algorithms.  
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Processing of tomographic radionuclide scintigraphy 

For the processing of the images, we used four software’s: QBS (Quantitative 

Bloodpool SPECT software from Cedars-Sinai Medical Center, Los Angeles, USA), 

QUBE (Free University of Brussels, Brussels, Belgium), 4D-MSPECT (University of 

Michigan Medical Center in Ann Arbor, Michigan, USA) and BP-SPECT (algorithms 

from Columbia University, New York, USA). The development and validation of these 

algorithms are being described elsewhere. [3; 5; 2; 6; 7; 8; 9; 1] 

Statistical Analysis 

Results were reported as mean values ± 1 standard deviation (SD). Comparison 

between men and women was performed using Student’s t-test for paired 

observations. Analysis of variance (ANOVA) with Bonferoni post hoc tests was 

performed to identify differences between groups. A value of p < 0.05 was considered 

statistically significant. 

RESULTS 

Demographic findings of the group of volunteers is described in table1.  

 

 
 Overall group 

(n=51) 

Men 

(n=29) 

Women 

(n=22) 

Age (years) 49.6 ± 16.0 48.7 ± 16.6 50.7 ± 15.5 

BMI (g/m2) 24.5 ± 3.8 25.3 ± 3.3 23.6 ± 4.3 

BSA 1.9 ± 0.2 2.0 ± 0.2 1.7 ± 0.2 

 

Table 1 

 

Results for ventricular EF, ventricular volumes and ventricular volumes corrected for 

BSA for the different techniques are listed in table 2.  
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 PRV  TRV: QBS TRV: QUBE TRV: 4D-MSPECT TRV: BP-SPECT 

            Men          Women         Men       Women         Men        Women         Men       Women         Men      Women 

LVEF 62 ± 8 60 ± 6 64 ± 8 65 ± 9 * 72 ± 7 * 72 ± 9 * 62 ± 6 65 ± 7 66 ± 7 * 65 ± 7 * 

LVSV - - 82 ± 20 # 60 ± 16 70 ± 18 66 ± 16 53 ± 13 # 41 ± 13 83 ± 23 # 65 ± 24 

LVEDV - - 130 ± 33 # 96 ± 31 97 ± 25 93 ± 23 85 ± 21 # 62 ± 17 127 ± 34 # 100 ± 30 

LVESV - - 48 ± 19 # 35 ± 18 27 ± 13 27 ± 13 33 ± 10 # 22 ± 6 44 ± 16 # 35 ± 10 

LVEDVi - - 66 ± 16 # 56 ± 16 49 ± 12 55 ± 11 44 ± 12 # 36 ± 8 65 ± 17 59 ± 18 

LVESVi - - 24 ± 9 20 ± 9 14 ± 6 16 ± 7 17 ± 6 # 13 ± 4 23 ± 8 21 ± 7 

RVEF - - 50 ± 10 52 ± 12 45 ± 7 48 ± 13 - - 62 ± 6 63 ± 9 

RVSV - - 78 ± 21 # 63 ± 20 73 ± 19 # 60 ± 14 - - 101 ± 24 # 77 ± 25 

RVEDV - - 159 ± 35 # 122 ± 32 161 ± 38 # 130 ± 31 - - 165 ± 30 # 122 ± 33 

RVESV - - 81 ± 16 # 59 ± 23 88 ± 26 # 75 ± 36 - - 64 ± 20 # 45 ± 14 

RVEDVi - - 66 ±16 # 70 ± 15 82 ± 20 77 ± 19 - - 85 ± 22 # 72 ± 19 

RVESVi - - 24 ± 9 34 ± 13 45 ± 14 44 ± 21 - - 33 ± 10 # 27 ± 9 

 

Table 2  

Differences between men and women 

(* P< 0.05 for TRV versus PRV; # P < 0.05 for men versus women) 
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The lowest LVEF were found in PRV, for men as well as women. The higher LVEF 

from TRV were significant for QBS in women, and for QUBE and BP-SPECT in both 

sexes. 

No significant difference was found between men and women, in calculating LVEF or 

RVEF from PRV or TRV. For QBS, all ventricular volume calculations had higher 

values in men, except for LV and RVESVi. For QUBE, LVV showed no significant 

difference between men and women. On the contrary, for the RV, higher non-

corrected volumes were calculated. In the case of 4D-MSPECT, all LV volumes were 

significant higher in men compared to women. This was also the case in BP-SPECT, 

for LV as well as RV, except for corrected LV volumes. 

Differences between different algorithms to process TRV (table 3 and 4) 

 

 

LVV measurements in men were significant smaller with QUBE and 4D-MSPECT 

compared to QBS and BP-SPECT (table 3). This resulted in a significant high LVEF 

  Bonferoni Post Hoc Tests 

 ANOVA 

sign. 

Between 

groups 

QBS -

QUBE 

QBS –  

4D-MSPECT 

QBS –  

BP-SPECT 

QUBE - 

4D-

MSPECT 

QUBE - 

BP-SPECT 

BP-SPECT 

- 4D-

MSPECT 

LVEF 0.000 0.000  NS NS 0.000 0.003 NS 

LVSV 0.000 NS 0.000 NS 0.004 0.034 0.000 

LVEDV 0.000 0.000 0.000 NS NS 0.000 0.000 

LVESV 0.000 0.000 0.001 NS NS 0.000 0.017 

LVEDVi 0.000 0.000 0.000 NS NS 0.000 0.000 

LVESVi 0.000 0.000 0.001 NS NS 0.000 0.020 

RVEF 0.000 NS - 0.000 - 0.000 - 

RVSV 0.000 NS - 0.000 - 0.000 - 

RVEDV NS NS - NS - NS - 

RVESV 0.002 NS - 0.040 - 0.002 - 

RVEDVi NS NS - NS - NS - 

RVESVi 0.002 NS - 0.041 - 0.002 - 

 

Table 3 

 Anova and Bonferoni post hoc tests of calculated values in men between different algorithms to process 

TRV 
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(mean 72%) in men with QUBE compared to the three other methods. For 4D-

MSPECT, a significant low LVSV (mean 53 mL) resulted in a mean LVEF (62%), 

comparable with the values from QBS and BP-SPECT. For women, LVV calculations 

were significant smaller in 4D-MSPECT, compared to QBS, QUBE and BP-SPECT 

(table 4). No significant difference was found in the LVV measurements from QBS 

compared with BP-SPECT, for both sexes. 

 

 

Normal RVEF had significant higher values with BP-SPECT (mean for men 62%, for 

women 63%) compared to QBS (50% and 52 % respectively) and QUBE (45% and 48% 

respectively). This was clearly the result of a significant lower RVESV (and a higher 

RVSV) with BP-SPECT compared to the other two algorithms. No significant 

differences were found in RVEDV calculations between the three algorithms. 

DISCUSSION 

Most of the LVEF calculated by TRV was significant higher compared to PRV, which is 

  Bonferoni Post Hoc Tests 

 ANOVA 

sign. 

Between 

groups 

QBS -

QUBE 

QBS - 4D-

MSPECT 

QBS - BP-

SPECT 

QUBE - 4D-

MSPECT 

QUBE - 

BP-

SPECT 

BP-SPECT - 

4D-

MSPECT 

LVEF 0.007 0.034 NS NS 0.026 0.022 NS 

LVSV 0.000 NS 0.003 NS 0.000 NS 0.000 

LVEDV 0.000 NS 0.000 NS 0.001 NS 0.000 

LVESV 0.001 NS 0.005 NS NS NS 0.004 

LVEDVi 0.000 NS 0.000 NS 0.000 NS 0.000 

LVESVi 0.001 NS 0.005 NS NS NS 0.001 

RVEF 0000 NS - 0.012 - 0.000 - 

RVSV 0.017 NS - NS - 0.022  

RVEDV NS NS - NS - NS - 

RVESV 0.002 NS - NS - 0.001 - 

RVEDVi NS NS - NS - NS - 

RVESVi 0.003 NS - NS - 0.002 - 

 

Table 4  

Anova and Bonferoni post hoc tests of calculated values in women between different algorithms to 

process TRV 
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in agreement with other papers [12]. Only 4D-MSPECT didn’t show higher values of 

LVEF, due to relatively small, and probably underestimated LVEDV, and this is also 

demonstrated by a validation study of TRV with MRI (submitted). Additionally, 4D-

MSPECT shows small ventricular volumes, compared to other techniques (Figure 4). 

All mean values of LVEF of all techniques range from 59% (lowest) to 72 % (largest), a 

range that doesn’t permit to exchange values from one technique to another, this is 

also consistent with other findings in literature [7]. The relatively large SD found in 

this series, however, can cause problems when defining patient examinations as 

normal or abnormal. It is not unlikely that a few patients would be categorized as 

normal, when they are not.  

Values of normal RVEF are scarce in literature, especially gender-specific values. Only 

recently some papers have published results for MRI [4-6]. Our results for BP-SPECT, 

with higher values of RVEF compared to the other three algorithms seems to be more 

in relation to these MRI papers. The relatively large RVEDV and small RVESV are 

responsible for the high RVEF processed with BP-SPECT. On the contrary, high values 

for RVESV found with QUBE, are responsible for low RVEF, for men as well as for 

women. With larger volumes for the RV and a fixed stroke volume for the LV and RV, 

a slightly lower RVEF is very likely, but mean values < 50% are not found in literature 

for other techniques, so our results for QBS and QUBE seems to underestimate the 

real normal RVEF. 

Nuclear techniques, like GSPECT and TRV, seem to result in smaller values for LVV 

compared to MRI. The underestimation of LVV was also demonstrated in other papers 

[10]. The partial volume effect and subsequently underestimated LVESV, like 

demonstrated in small hearts especially in women in gated perfusion SPECT, could be 

also play a major role why small LVESV is found with TRV, compared with other 

cardiac imaging techniques. For the RVV on the contrary, mean values of different 

techniques were much more comparable. Nevertheless, the higher values of RVV 

found with QUBE and BP-SPECT are consistent with a dynamic phantom study [18]. 

One of the differences between QUBE and BP-SPECT is the calculation of RVESV, 

which is much larger with QUBE, compared to BP-SPECT. 

Normal values of LVEF in men and women for TRV are higher compared to gated 

perfusion SPECT but more in relation to other papers with other techniques. It is 

nevertheless very important to determine normal values for each technique separately. 

Not only can normal LVEF or LVV from MRI not be compared to normal  values from 

TRV, even within one single technique, values from one type of software (or 
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department) cannot be interchanged by another software. This implies that different 

nuclear cardiology laboratories need to set up their own normal values, and this for 

each technique they use. 

For the RVEF, we found in men and women 62 ± 6 % and 63 ± 9 % respectively, 

calculated with TRV and processed with BP-SPECT. These values are the lowest values 

for RVEF, compared with other imaging techniques, but in a correct proportion to the 

LV, since larger volumes in the RV and an identical stroke volume, result in a lower 

RVEF, compared to the LVEF . Especially RVEDV seems to be higher compared with 

MRI values for RVEDV. Gated perfusion SPECT is not suitable to calculate RV 

volumes, processing RV parameters from planar ventriculography is far from ideal 

[19] and measuring RV diameters from echocardiography is even more questionable. 

MRI is the only technique which is suitable to compare with. And even then, TRV and 

MRI are suffering from disadvantages to calculate accurate RV volumes, e.g. very 

irregular endocardial surface (trabeculae), relatively low contraction amplitude in 

inflow and especially outflow tract, and the relatively large tricuspid ring, making it 

hard to separate correctly right atrium from RV.  Calculating volumes and ejection 

fraction of the RV is since years a challenging item and is has even recently proven to 

be of clinically important [20] . Although, finding the exact borders of the RV remains 

a challenging item and will be a topic of research and discussion for years. 

About normalization for body surface area (BSA), which could eliminate the 

different body habitus between men and women, results from different papers are 

conflicting.  BSA normalization for ventricular volumes eliminated gender 

differences in one study [6] , whereas in the other paper [21] BSA normalization 

didn’t remove the gender differences but normalization for weight did. One author 

[22] is even suggesting that correction for BSA of LV volumes could make it 

possible to use one (corrected) normal volume range for men and women together, 

and even to make volume ranges from one technique comparable with another 

technique, something we could not demonstrate. 

Limitations 

The relatively large SD found in this series can cause problems when defining patient 

examinations as normal or abnormal. Probably a higher number of patients is needed 

to refine these limits of agreement.  



C
H
A
P
T
E
R
 9
 

18
6
 

Figure 1  

Normal LVEF in men, derived with different techniques. (bold: mean values, other: ± 2SD) 
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Figure 2  

Normal LVEF in women, derived with different techniques. (bold: mean values, other: ± 2SD) 
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Figure 3a  

Normal RVEF in men, derived with different techniques. (bold: mean values, other: ± 2SD) 
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Figure 3b  

Normal RVEF in women, derived with different techniques. (bold: mean values, other: ± 2SD) 
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Figure 4 

Normal LVV in men, derived with different techniques. (solid line: EDV, dashed line:  ESV, bold: mean values, other: ± 2SD) 
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Figure 5 

Normal LVV in women, derived with different techniques. (solid line: EDV, dashed line:  ESV, bold: mean values, other: ± 2SD) 
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Figure 6 

Normal RVV in men, derived with different techniques. (solid line: EDV, dashed line:  ESV, bold: mean values, 

other: ± 2SD) 
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Figure 7   Normal RVV in women, derived with different techniques. (solid line: EDV, dashed line:  ESV, 

bold: mean values, other: ± 2SD) 
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CONCLUSION 

We calculated gender-specific normative values of LVEF, LVEDV, LVESV, RVEF, 

RVEDV and RVESV for four algorithms processing TRV. LVEF calculated from TRV 

reveals higher values than calculated with PRV. There are statistically differences 

between the four algorithms studied, and these has to be further clarified in other 

validation studies in larger populations.  
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General Discussion 
 

Phantom experiments for tomographic radionuclide ventriculography 

(TRV): why? 

GSPECT has undergone a profound scientific validation before it was used in clinical 

practice, an evaluation what is still ongoing. This is different with the TRV technique. 

Although the technique of performing tomography during a ventriculography study 

exist since many years, it is only recently that automatic software programs to 

calculate LV and RV volumes and EF. Most of them underwent a validation of LVEF, 

but there was a lack of validation of volumes, especially of the RV. When observating 

these programs, several questions could be asked:  

1. Are these programs capable to correctly define the ventricular volume? 

The left ventricular phantom was designed. 

2. Are these programs capable to correctly separate left from right ventricle? 

The biventricular phantom was designed. 

3. Are these programs capable to correctly define the atrioventricular valve plane 

in each ventricle? 

The 4-chamber cardiac phantom was designed. 

 

Left ventricular heart phantom. 

We developed the first physical dynamic heart phantom that could be used to study 

planar and tomographic ventriculography. We could demonstrate that an ejection 

fraction, calculated from (end-diastolic and end-systolic) volumes was more accurate 

than an ejection fraction, calculated from (end-diastolic and end-systolic) counts. In 

this model we included background-activity, which was not possible anymore in the 

following heart model, due to physical restrictions. The ventricle was “activated” 

through volume changes in the surrounding tank. 

This phantom was also used to compare different available algorithms to process 

planar ventriculography studies and they closely correlated to the “real” ejection 

fraction, measured directly from the heart phantom. 

Left and right ventricular heart phantom 

BP-SPECT was used to calculate with success volumes and ejection fractions from the 
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left and right ventricle  in our biventricular heart model. Not only accuracy of volume 

determination was studied, also inter- and intraobserver variability was studied. Here, 

the program was able to detect the ventricular boundaries and to correctly separate 

left from right ventricle. In this model, left and right heart was filled and emptied 

through the atrioventricular border, while these were directly connected to filling and 

emptying tubes. The model itself was constructed so that the volume of the septal wall 

was kept constant and systolic thickening was simulated. 

Dynamic four-chamber heart phantom 

We developed a more realistic shape of the RV in our dynamic four-chamber heart 

phantom. The main goal of this study was to evaluate if the programs, QBS, QUBE, 

4D-MSPECT and BP-SPECT, and see if they were able to correctly separate ventricular 

from atrial counts, in order to measure correct volumes in both ventricles. All 

programs provided accurate estimates of LV and RV EF, but in the calculation of RV 

volumes, a large difference was found between the several programs and a trend 

together with an underestimation or overestimation was seen. Most of the programs 

need to reconsider the analysis of the RV. 

 

Normal values for LV and RV function determined by gated perfusion 

SPECT and gated bloodpool SPECT. 

We found for normal LVEF in men and women 62 ± 8 % and 60 ± 6 % for planar 

ventriculography[1], 59 ± 6 % and 66 ± 9 % for gated myocardial perfusion SPECT [2] 

and 66 ± 7 % and 65 ± 7 % for gated bloodpool SPECT, processed with BP-SPECT.  

Especially the low LVEF in men, found with gated perfusion SPECT is remarkable and 

is the lowest values of LVEF in normal adults, found in literature. A reason for this, is 

that in our population of patients with a low likelihood of coronary artery disease 

(CAD) , there were a certain amount of unknown cases with decreased LV function. In 

our last paper (chapter 9) , we used a population of normal volunteers, who underwent 

all normal physical examination, electrocardiography and echocardiography, all 

supervised by an experienced cardiologist.  

Normal values of LVEF in men and women for gated bloodpool SPECT are higher 

compared to gated perfusion SPECT but more in relation to other papers with other 

techniques. It is nevertheless very important to determine normal values for each 

technique separately. Not only can normal LVEF or LVV from MRI not be compared 
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to normal  values from Gated bloodpool SPECT, even within one single technique, 

values from one type of software (or department) cannot be interchanged by another 

software. This implies that different nuclear cardiology laboratories need to set up 

their own normal values, and this for each technique they use. 

For the RVEF, we found in men and women 62 ± 6 % and 63 ± 9 % respectively, 

calculated with gated bloodpool SPECT and processed with BP-SPECT [1]. These 

values are the lowest values for RVEF, compared with other imaging techniques, but 

in a correct proportion to the LV, since larger volumes in the RV and an identical 

stroke volume, result in a lower RVEF, compared to the LVEF [3]. Especially RVEDV 

seems to be higher compared with MRI values for RVEDV. Gated perfusion SPECT is 

not suitable to calculate RV volumes, processing RV parameters from planar 

ventriculography is far from ideal [4] and measuring RV diameters from 

echocardiography is even more questionable. MRI is the only technique which is 

suitable to compare with. And even then, gated bloodpool SPECT and MRI are 

suffering from disadvantages to calculate accurate RV volumes, e.g. very irregular 

endocardial surface (trabeculae), relatively low contraction amplitude in inflow and 

especially outflow tract, and the relatively large tricuspid ring, making it hard to 

separate correctly right atrium from RV.  Calculating volumes and ejection fraction of 

the RV is since years a challenging item and is has even recently proven to be of 

clinically important [3]. Although, finding the exact borders of the RV remains a 

challenging item and will be a topic of research and discussion for years. 

 

Influence of gender 

Our normal values for LVV were higher in men compared to women, for GSPECT as 

well as for TRV. For LVEF, only a significant higher value could be found in women 

compared to men with GSPECT, not with TRV. It is possible that there were certain 

men in our GSPECT population with unknown decreased LV function. Nevertheless, 

there are some papers using GSPECT [5; 6] that found higher LVEF in women 

compared to men, due to lower LVV. This gender-difference of volumes and EF is in 

agreement with other papers, who used MRI to quantify LV function  [7-9]. It is 

possible that morphologic parameters (like volumes) can show differences between 

genders, whereas functional parameters (like EF) could be more independent from age 

and gender [7-9].  Wong et al found that LVEDV and LVESV were > 25% greater in 

men than in women using echocardiography, a value which we could detect in our 

TRV-study as well.  
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About normalization for body surface area (BSA), which could eliminate the different 

body habitus between men and women, results from different papers are conflicting.  

In our GSPECT study, volume differences still existed after BSA correction, in our TRV 

study, values of LV and RV in men were still higher in men after correction, but not 

anymore significant. The latter is obvious, since the same relative difference between 

two absolute numbers has lower chance to be significant if the absolute value of the 

numbers is low (like BSA-corrected volumes). BSA normalization for ventricular 

volumes eliminated gender differences in one study [7], whereas in the other paper [9] 

BSA normalization didn’t remove the gender differences but normalization for weight 

did. One author [8] is even suggesting that correction for BSA of LV volumes could 

make it possible to use one (corrected) normal volume range for men and women 

together, and even to make volume ranges from one technique comparable with 

another technique, something we could not demonstrate. Very important when 

comparing different studies in this matter is each definition of “normalcy”, the latter is 

varying from “low likelihood for coronary artery disease” [2;5], “no history of cardiac 

disease” [7;9], “free of overt cardiovascular disease and no hypertension” [8], “a 

normal Bruce stress test” [6]  to “no history of cardiovascular disease, no 

hypertension, no diabetes, normal ECG and normal echocardiogram” [1]. Since the 

prevalence of cardio-vascular disease is remarkable in a symptom-free population, 

some of the differences between several studies could also be explained by this factor. 

Differences in ventricular volumes between genders are also described for the RV 

[1;7], there is no reason why ventricular volume differences between men and women 

should be different for the LV and the RV, but since these papers are scarce, more 

investigation is needed from techniques with an accurate RV volume assessment. 

 

Influence of age 

Only our first paper with GSPECT is dealing with the influence of age on volumetric 

parameters. We found, using analysis of variance, lower LVV and higher LVEF in the 

group of women > 65 years, compared to the 2 younger groups. Using correlation 

analysis, we found significant negative correlation between LV volumes and age in 

men and women, and significant positive correlation between LVEF and age in 

women. An important point in this discussion is the underestimation of small volumes 

by GSPECT. Nakajima [10] has nicely shown that this underestimation is growing 

increasingly with smaller volumes, which were calculated as 15% underestimation in a 

101 ml model, 25 % in a 52 ml model, 50% in a 37 ml model and even 93% in a 14 ml 
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model. It is clear that with this varying influence, effect on LVESV will be much larger 

then on LVEDV, resulting in an increase in LVEF for small volumes. This partial 

volume effect is also seen in the software QBS to process TRV, and mentioned in their 

own validation paper [11] . When getting more and more experienced in processing 

and evaluating TRV, it is not uncommon to calculate LVEF and RVEF’s close to 100% 

with undetectable activity or even no activity at ES, which is of course not 

physiological. So this underestimation seems to be an inherent negative point of 

GSPECT as well as TRV, so the difference between EF of 55% or 65% or 75% or even 

higher has probably  no physiologic implication and is due to a technical shortcoming 

of GSPECT and TRV. I should therefore recommend that all values of EF > 55% are 

normal (it makes no sence that an EF of 75% is more “normal” than 60%) and that 

with calculated volumes < 20 ml one would be extremely cautious when this value is 

used in the calculation of other parameters, like EF. 

Age itself has its effect on myocardial morphology and function, only data for this 

point is conflicting again. Most of the age-related papers have used other techniques 

than these from nuclear cardiology. The reason for this is that age causes a complex 

series of modifications, morphologic as well as functional. A lot of papers give a 

prominent role to change of myocardial mass in the elderly heart. Although some 

nuclear cardiology studies could quantify myocardial mass, the method they use is 

questionable and most studies on the effect of age are performed with 

echocardiography or MRI. Together with the relation between LV mass and increased 

risk in cardiovascular events [12] , there was a positive relation between LV volumes 

and fractional shortening (systolic function) with age in women [13] . Together with an 

increase in atrial natriuretic factor and a decrease in plasma renin activity, this would 

suggest plasma volume expansion, increase in cardiac preload and this may contribute 

to the increase in LV mass in older women [13] . This may contribute to the partial loss 

of cardiovascular protection among older women. Others found no relation between 

LVV, LVEF and age in healthy subjects [14] . An increase in wall thickness is described 

[7;15] together with a decrease of diastolic function in the elderly [15] . The effect of 

this on LV volumes and LVEF is not clear. 
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Pro’s and contra’s of different algorithms to process gated bloodpool 

SPECT 

 
 QBS QUBE 4D-MSPECT BP-SPECT 

Ease of use 3 4 4 3 

Speed 3 3 4 3 

Value of references in literature 2 2 2 4 

Automaticity 4 4 4 3 

Manual intervention possibilities 0 4 3 4 

Pure manual processing possibilities NA 4 NA NA 

Supplementary processing options NA 4 NA NA 

Accuracy for LV parameters (compared 

with MRI) 

1 2 2 3 

Accuracy for RV parameters (compared 

with MRI) 

1 2 NA 3 

 

Table 1 

Subjective impression of software to process gated bloodpool SPECT,  

scored (0 = very poor, 1 = poor, 2 = moderate, 3 = good, 4 = excellent) 

 

 

QBS [1;11;16-21] 

(http://www.cedars-sinai.edu/5854.html) 

QBS is a very straightforward program developed by Cedars-Sinai Medical Center, 

who developed very popular software to process gated perfusion SPECT (QGS and 

QPS). QBS uses gated short axis images, processed by standard nuclear medicine 

software. Mostly, QBS is being sold separately from this standard processing-software. 

The layout of QBS is very similar to this of QGS. The processing time is acceptable 

(mostly bellow 30 sec.) and the display is easily changed between 3D volumes with or 

without isocontour, dynamic slices and results. Results are displayed in bulls eyes, 

comparable to the bulls eyes generated with gated perfusion SPECT. They give the wall 

motion of LV and RV, expressed in millimeters, displayed in a circle and half a circle 

respectively. The latter describing wall motion of the anterior, free lateral, apical and 

inferior wall of the RV, since the authors don’t believe it is useful to display results for 

the septal wall, since these are displayed on the left side of the LV bulls eye. We are not 

convinced of this, since septal wall thickens during contraction and shows different 

motion, seen from the left or the right side of the heart. LV and RV values of EF, EDV 

and ESV are always simultaneous given. Most errors in the delineation of both 



GENERAL DISCUSSION 

 205 

ventricles were seen in the basal and inferior part of the LV and in the inferior region 

of the RV. Manual processing is possible, but only the LV can be positioned during this 

option. We experienced no satisfactory result after manual processing, nor for LV nor 

for RV. If the user want additional masking, zooming or reorienting, this has to be 

done back in the standard nuclear medicine software and is not incorporated into the 

program itself. The overall accuracy of LV and especially RV values, compared to MRI 

values, is relatively low. 

QUBE [1 ;17 ;20 ;22-24] 

(http://www.segamicorp.com/) 

QUBE is developed by the Free University of Brussels (Belgium), and is now being 

incorporated in the Segami software. For this research, a full working demo version of 

the software was made available from this company. The package is not a stand-alone 

package and both raw gated bloodpool SPECT data as well as reconstructed short axis 

bloodpool SPECT data can be the input files of the program. Before automatic 

detection of ventricular cavities, the program asks the ventricle to be zoomed and 

reoriented properly. The direction of reorientation is indicated and this is easily done. 

The zooming can be chosen freely, but in our experience, has to be rather small, 

otherwise the program fails to detect the proper border of LV and RV. If the automatic 

processing give no satisfactory results, and this can as an experienced reader easily be 

evaluated on the dynamic slices with the ventricular delineation superimposed, several 

options can be chosen: condensing the heart cycle (in our case from 16 to 8 heart 

beats/cycle), to position septum, to point the RV outflow tract and to mask every 

disturbing activity around the myocardium. These supplementary options were 

considered as very useful in some conditions.  

Recently, a manual option is added to the more automatic “QUBE” processing, based 

on the watershed algorithm, developed by Dr Mariano-Goulart [84; 85] from the 

University of Montpellier. This option could however not be tested anymore to our 

four chamber cardiac phantom and our patient data. However, in our laboratory we 

had only limited experience with this program (with the dynamic left ventricle 

phantom) and this program seems to have a lot of possibilities but is semi-automatic 

(and not fully automatic) and time-consuming. The way of defining ventricular 

cavities, and even atria, based on this watershed algorithm is nevertheless a very 

valuable tool to define volumes on the relatively low count slices of a gated bloodpool 

SPECT scan. The program performs a segmentation of all the separate time bins 
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SPECT slices, so in our studies this was done on 16 different SPECT data. All these 

segmentations has to be reviewed very carefully and adjusted if one segmented slice 

has assigned a region to another volume, based on the colours in the successive slices. 

4D-MSPECT [27-29] 

(http://www.4dmspect.com/) 

The 4D-MSPECT software application was developed at the University of Michigan 

Medical Center under the direction of James Corbett and Edward Ficaro. The software 

development and support is now being done by a new company, CF Imaging Solutons 

LLC, a spin-off company of the University. It was Dr Ficaro’s effort that also this 

software was installed on our pc and could be used freely for research purposes. This 

software handles both gated and non-gated myocardial perfusion data and bloodpool 

SPECT data in a single package. The users manual is extensive, very clear and 

comprehensible and contains references to (own) validation data. The software is very 

flexible, in that way that all parameters can be adjusted to the own requirements of the 

laboratory or hospital. Own normal databases are easily configured and stored. 

Automatic scoring system is provided and cut-offs for values (normal, equivocal, 

hypokinetic, akinetic and dyskinetic) can be adjusted if necessary. The software 

provides to create a report and contains the option to export all values of wall motion 

values (in mm) and wall motion scores (0 to 4) to a text file, which can then be 

exported to other software. Multiple patients can be selected at one time and the speed 

of processing is very acceptable and is the best, compared with all other packages. At 

the time of processing, no option of calculating right ventricle volumes and ejection 

fraction was available.  

BP-SPECT [1;20;21;30-33] 

(http://www.syntermed.com/gatedblood.htm) 

This program is being developed by Ken Nichols, while he was working at the 

Columbia University, NY. It is now being distributed by Syntermed, Inc. This program 

has the strongest validation data, which shows the best correlation with phantom data 

and MRI data, for left ventricle as well as for right ventricle. BP-SPECT was developed 

using Research Systems, Inc. (RSI)  Interactive Data language® (IDL). BP-SPECT was 

made available onsite by Dr Nichols. The program is fast and performs an analysis of 

the right ventricle first. The automatic processing can be accepted or rejected when 

visual inspection is not satisfactory. The latter is easy when you are an experience 

gated bloodpool SPECT data reader, but this is the case in all programs processing 
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gated bloodpool SPECT. When the automatic processing is rejected, manual 

processing is performed and several supplementary options can be chosen like 

reorienting, masking, smoothing… if necessary.  

Schould we use gated bloodpool SPECT (TRV) in clinical routine or 

not? 

With the fast computers nowadays, the big capacity hard drives, no special hardware 

needed (like camera) and no supplementary radiation of the patient, I think there is 

little argument not to do it. A little learning curve is needed before reporting and only 

giving “an estimation” of ventricular volumes is preferred when they are visually 

correctly identified by the software used. The visual interpretation of “the ventricle 

seems enlarged” or “there is an impression of moderate hypokinesis in the 

inferolateral wall” is better than giving absolute contents of the ventricles in mL, and 

not knowing the exact accuracy of that measurement. In other words, nuclear 

medicine is (still) in the majority of cases based on visual interpretation, and even 

nowadays, the gold standard in many papers, despite sophisticated en fast software, is 

still the visual scoring or interpretation. 

Future in nuclear cardiology 

All these chapters are mainly based on technical optimalisation of existing techniques 

within nuclear cardiology. It is my opinion however, that the real future in nuclear 

medicine is the radiopharmacy. Unfortunately, it is remarkable that during the last 10 

years, almost no new molecules are introduced into the nuclear cardiology 

laboratories, although the developments in radiopharmaceuticals are the cornerstone 

of nuclear medicine. Most of the papers and abstracts recently published and 

presented are dealing with the use of SPECT and PET in prediction and prognosis, in 

certain subgroups of patients (like diabetes), special procedures (stem cells), advances 

in software (like bloodpool SPECT) or some technical or hardware advances 

(PET/CT). This evolution is ongoing and contributes to the non-invasive diagnosis of 

functional and morphological changes in the human heart.  

I think with the gated myocardial SPECT and gated bloodpool SPECT, we have two 

techniques we can use in clinical practice to give insight in some of the aspects of 

perfusion and function of the heart. A little “upgrade” from PRV to TRV gives a lot 

more of information, if it is interpreted with caution. 
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Conclusion 

 

Normal values for left ventricle (LV) and right ventricle (RV) ejection fraction (EF) 

and end-diastolic and end-systolic volumes (EDV and ESV) are not interchangeable 

between different techniques (nuclear cardiology, MRI, echocardiography, 

angiography) and even not within one technique processed with different software 

packages.  

Normal values for LV and RV EF, EDV and ESV has to be gender- and (probably) age-

specific. It has clinically no sense to produce values in a gender-mixed population. 

Men have larger ventricular volumes compared to women. Women have smaller 

ventricles, especially at older age. LVEF can be higher in women, probably due to 

smaller ventricles at ES. 

We have developed a dynamic heart phantom with 1, 2 and 4 chambers, which can be 

used to develop software, perform quality controls and organize software audits. 

It is possible to calculate absolute volumes from single photon emission tomography 

(SPECT) reconstructed slices. Without background, we found an optimal cut-off for 

region growing of 50%. 

Phantom experiments show that ejection fraction calculation with three-dimensional 

volumes  is more accurate than with two-dimensional counts. 

The programs to process Tomographic radionuclide ventriculography (TRV) have the 

capability the correctly define the interventricular septum and the atrioventricular 

valve plane. 

The RV has a very complex shape: triangular, irregular surface (many trabeculae) and 

a relative hypokinetic outflow tract, which makes it difficult to exactly measure the 

exact volume. TRV or bloodpool SPECT could have advantage over other imaging 

modalities since the ventricular counts are directly proportionate to the exact volume 

and no endocardial surface has to be traced. Nevertheless, even TRV has some 

possibilities to exact delineate ventricular surface, but refinements and adjustments is 

needed of the different software packages. 
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Besluit 
 

Normaalwaarden van linker (LV) en rechter ventrikel (RV) ejectie fractie (EF) en van 

eind-diastolische (EDV) en eind-systolische volumina (ESV) zijn niet uitwisselbaar 

tussen verschillende technieken (nucleaire cardiologie, NMR, echocardiografie, 

angiografie) en zelfs niet binnen dezelfde techniek met verschillende methoden 

(software) gemeten. 

Normaalwaarden van LV en RV EDV en ESV moeten geslacht-specifiek zijn, het heeft 

klinisch gezien geen zin om normaalwaarden te bepalen in een gemengde populatie. 

Mannen hebben grotere ventrikels in vergelijking met vrouwen. Vrouwen hebben 

kleinere ventrikels, vooral op hogere leeftijd. LVEF kan hoger zijn bij vrouwen, door 

kleinere ventrikels in eind-systole. 

Wij hebben een dynamisch hart fantoom ontworpen met 1, 2 en 4 kamers. Deze kan 

worden gebruik in het ontwikkelen van software, om kwaliteits-audits uit te voeren en 

om software audits te organiseren. 

Het is mogelijk om van de single photon emission tomography (SPECT) 

gereconstrueerde beelden, volumes te kwantificeren. Zonder background vonden we 

een optimale cut-off van 50% bij “region growing”. 

Fantoom experimenten hebben aangetoond dat LVEF accurater zijn wanneer ze drie-

dimensionaal berekend zijn, in vergelijking met de  twee-dimensionale berekening. 

Software om TRV te berekenen kunnen het interventriculair septum en de 

atrioventriculaire overgang in fantoomexperimenten goed definieren. 

Verschillende software programma’s zijn nu op de markt om bloodpool SPECT te 

verwerken, ze hebben alle hun voor en hun nadelen en de meeste van hen hebben nog 

een kritische bijsturing nodig, voornamelijk voor de analyse van het RV. De RV heeft 

een zeer complexe vorm en oppervlak, wat ze moeilijk maakt bij berekening van 

ventriculaire volumes. TRV heeft het voordeel dat ze met counts werken en dat deze 

counts rechtevenredig zijn met het echte volume in het ventrikel, er moet geen 

endocardiale aflijning worden getraced of getekend.  
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