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Chapter 1

Introduction

Nuclear physics is the study of atomic nuclei. The primary aim of nuclear physics
is to understand the force between nucleons, the structure of nuclei, and how nuclei
interact with each other and with other subatomic particles. These three questions
are, to a large extent, related to each other. It has been known for years that the
nucleus is a many-body system of protons and neutrons, the two lightest members
of the baryon family, that is held together by the strong nuclear force. Traditional
models of nuclei rely on the shell model, where it is assumed that both protons and
neutrons are moving independently in an average mean-field potential, which ex-
presses the interaction of the nucleon with the surrounding medium. The nucleons
then occupy the lowest single-particle levels up to the Fermi energy, whereas the
single-particle levels above the Fermi energy remain unoccupied. From systematic
investigations for a large number of target nuclei a richness of precise information
about the independent-particle wave functions and spectroscopic strengths was as-
sembled [1], and it turned out that many nuclear features could be explained within
this single-particle picture.

However, as nucleons in the nucleus interact with each other through the strong,
short-ranged interaction, a number of nuclear structure properties remains unex-
plained in the basic independent-particle model. An extensive amount of measure-
ments has made it clear that the occupancy of the single-particle level is substantially
smaller than what is expected in a naive independent-particle model. This observa-
tion has resulted in the conjecture that 2/3’s of the nucleons in the nucleus act as
independent quasi-particles, whereas the remaining ones are then correlated [1].

A full understanding of the nucleus can not be achieved without some knowledge
about the underlying mechanisms that are responsible for the strong nuclear force.
The strong nuclear force manifests itself as a result of the strongly interacting quark
and gluon constituents which build up the nucleon. A better understanding of
the quantum chromodynamics (QCD) theory which describes the strong interaction
between quarks and gluons, will most certainly lead to a better understanding of
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2 Chapter 1. Introduction

the strong nuclear force.
Electron scattering from nuclei provides us with an invaluable tool to probe the

wide variety of nuclear and nucleonic properties. Electron scattering is an ideal
way to study the limits of the independent single-particle model as it only interacts
very weakly (compared to the strong nuclear force) with the nucleus through the
electromagnetic interaction. This ensures that the mean free path of the electron
is large enough to probe the entire nuclear volume. A hadronic probe interacts
strongly with the nucleus and significantly disturbs the target object. Furthermore,
the electromagnetic interaction is well understood. Quantum electrodynamics, the
quantum field theory of electrons and photons, has produced predictions that are
in excellent agreement with experimental observations. Therefore, the uncertainties
in reaction modelling are restricted to the nuclear part of the reaction. In electron
scattering experiments one can also vary the transferred momentum ~q and energy ω
of the exchanged virtual photon independently from each other, as long as the virtual
photon is space-like (i.e. |~q|2 − ω2 > 0). This is a big advantage over experiments
using real photons as an electromagnetic probe.

In this work, we will focus on processes whereby the nucleus is struck by an
electron, with the result that one of its protons is ejected, and is detected by the
experimental setup. In the past, these exclusive A(e, e′p)B reactions have revealed
a wealth of important information on the structure of nuclei and nucleons.

At low values of the virtual photon’s four-momentum transfer Q2 = ~q2 − ω2

and, accordingly, large distance scales, the quasielastic A(e, e′p) reaction probes
the mean-field structure of nuclei and allows to test the limits of the independent
single-particle model.

At high Q2 and decreasing distance scales, the scope of exclusive (e, e′p) mea-
surements shifts towards other physics issues, including

• Short-range structure of nuclei : are there any hadronic components in the
nucleus that carry large momenta, or are the large momenta components in
the nuclear wave function carried by the partonic degrees of freedom ?

• Quenching disappearance and single-particle strength restoration : how do
spectroscopic factors evolve as Q2 is increased ? Is there some sort of scale
dependence in nuclear physics ?

• Stringent tests of constituent quark models : to what extent are nucleons
modified in the medium ?

• Nuclear transparency : are there any signatures for the onset of color trans-
parency, which is a genuine QCD effect ? Within the context of exclusive
(e, e′p) reactions, color transparency stands for the suggestion that at suffi-
ciently high values of Q2 the struck proton may interact in an anomalously
weak manner with the spectator nucleons in the target nucleus [2, 3, 4].



3

In this work, we will concentrate on A(e, e′p) reactions at intermediate and high Q2.
For all of the aforementioned physics issues, the interpretation of A(e, e′p) reactions
very much depends on the availability of realistic models that describe the final state
interactions.

The extraction of physical information from measured A(e, e′p)B cross sections
usually involves some theoretical modelling of which the major ingredients are the
initial (bound) and final (scattering) proton wave functions and the electromag-
netic electron-nucleus coupling. At lower values of Q2, most theoretical work on
(e, e′p) reactions was performed in the so-called distorted-wave impulse approxima-
tion (DWIA). The idea behind the DWIA approach is that the initial (bound) and
final (scattering) state of the struck nucleon can be computed in a potential model,
whereas for the electron-nucleus coupling an off-shell corrected electron-proton form
can be used. The wealth of high-quality (e, e′p) data that the electron-scattering ex-
periments have provided over the last 20 years, made sure that the DWIA models are
well tested against experimental data. For higher values of the energy and momen-
tum transfer [Q2≥1 (GeV/c)2], most theoretical work starts from the nonrelativistic
Glauber theory [5]. This theory is highly succesful in describing small-angle proton-
nucleus scattering at higher energies [6] and is conceived as a baseline for calculating
the effect of final state interactions in high-energy (e, e′p) reactions. Glauber theory
is a multiple-scattering extension of the standard eikonal approximation that relates
through a profile function the ejectile’s distorted wave function to the elastic proton
scattering amplitude [7, 8, 9, 10, 11]. The Glauber method has frequently been
shown to be reliable in describing A(p, p′) processes. Several nonrelativistic studies
[12, 13, 14] have formally investigated the applicability of the Glauber model for
describing A(e, e′p) reactions at higher energies and momentum transfers. These in-
vestigations were often hampered by the lack of A(e, e′p) data to compare the model
calculations with. Recently, the first high-quality data for 16O(e, e′p) cross sections,
separated structure functions and polarization observables became available [15].

Since relativistic effects are expected to become critical in the GeV energy do-
main, we explore the possibility of developing a fully relativistic model for describing
A(e, e′p) processes. Various alternative methods to deal with final state interactions
will be developed. In a first approach we will solve the relevant equations for the
final state wave function in the eikonal limit, thereby using the mean-field potentials
as they are obtained from bound state calculations. In a second step, we introduce
optical potentials, constructed from experimental nucleon-nucleus scattering data,
into the eikonal formalism in order to fully accomodate the effects of inelastic mech-
anisms in the A(e, e′p) scattering process. As we want to make a comparison of the
eikonal model and Glauber theory, we also present a relativistic generalization of
the Glauber multiple-scattering formalism.

The work presented here is a formulation of a fully relativistic model for the
description of A(e, e′p) reactions that bridges the gap between the low and interme-
diate energy regime. The model developed in this work can be formally applied in
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a wide Q2 range. As a matter of fact, we employ the relativistic eikonal method to
estimate the sensitivity of (e, e′p) observables in the few GeV regime to a number
of physical effects, including off-shell ambiguities, dynamical relativity and nuclear
transparency.

The outline of this work is as follows. In Sec. 2 we introduce the formalism
for the relevant A(e, e′p) observables and kinematics. Sec. 3 comprises the method
employed to determine the bound states. We adopt a relativistic mean-field ap-
proximation to the Walecka model [16] to determine the bound-state wave functions
and binding energies, as well as the nucleon and meson potentials. Results of these
calculations are also presented here for the 12C and 16O nuclei. The various forms
of the photon-nucleus interaction are introduced in Sec. 4. The different methods to
deal with final-state interactions are developed in Sec. 5. Both the eikonal and the
Glauber method are addressed, along with their relativistic and multiple-scattering
extensions. The major results of this work are presented in Secs. 6, 7, 8 and 9.
In Sec. 6 we compare A(e, e′p) predictions obtained with various prescriptions to
deal with the final-state interactions. In particular, we concentrate on the fully
relativistic eikonal method with complex scattering potentials and the relativistic
Glauber multiple-scattering method. In Sec. 7 we adopt different prescriptions for
the electron-nucleus coupling. By doing this, we estimate the sensitivity of the ob-
servables to the theoretical uncertainties that surround the choice of the off-shell
electron-proton vertex. It is often claimed that off-shell ambiguities decrease in
importance as the four-momentum transfer increases. Here we make an attempt
to quantify the relative importance of the off-shell effects for the (e, e′p) structure
functions by comparing results obtained with different off-shell electron-proton cou-
plings. Hereby we are primarily concerned with the question how big the uncertain-
ties remain when higher and higher four-momentum transfers are probed. In Sec. 8
we study the effects of the dynamical relativity that is introduced in the model by
evaluating the role of the lower components of the bound and scattering states. A
comparison with non-relativistic calculations is performed in order to estimate its
effects on the (e, e′p) observables in a wide Q2 range. In Sec. 9 we take a closer
look at the nuclear transparency in A(e, e′p) reactions. We present a brief overview
of the experimental and theoretical results up to now, and also show results of our
own calculations of the nuclear transparency in 12C. Our concluding remarks are
summarized in Sec. 10.



Chapter 2

Reaction Observables and
Kinematics

The fundamental theory of QED has produced predictions that are in excellent
agreement with experimental observations. When considering electron scattering
from nucleons and nuclei, the leptonic part of the process can be assumed to be well
under control. Therefore, the uncertainties in the reaction modelling are restricted
to the nuclear part of the reaction, namely, the electron-nucleon (nucleus) vertex
and the physics governing the structure and the dynamics of the nucleon (nucleus).
Furthermore, the electromagnetic coupling, characterized by the fine-structure con-
stant α ≡ e2/h̄c ≈ 1/137, is relatively small, and, consequently, one only needs to
consider the lowest order electromagnetic processes involved. This lowest order one-
photon-exchange approximation is generally conceived to be sufficiently accurate.
In this work we will only consider one-photon-exchange contributions together with
plane wave electrons, the so-called plane wave Born approximation, (PWBA), as is
commonly done. The more general case, which implies the use of distorted ingoing
and outgoing electron waves, has been the subject of intensive investigations in the
past [17, 18, 19, 20]. For light target nuclei, upon which we focus here, the effect of
these so-called Coulomb distortion effects is rather small. Corrections from higher-
order photon exchange contributions, can also be considered [21, 22, 23], but it has
been shown that these corrections are roughly inversely proportional to the incident
electron energy, and should not be considered a problem in the intermediate to high
energy range [Q2 > 1(GeV/c)2]. A formal separation of the coincidence cross section
into the different structure functions is only feasible when adopting a plane wave
framework for the electron waves.

Historically, electron scattering experiments were performed with unpolarized
beams, simply because the technology required to polarize and measure electron
beams was lacking. With unpolarized electron beams, two form factors can be
extracted from p(e, e′) cross sections. They correspond to the longitudinal and
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6 Chapter 2. Reaction Observables and Kinematics

transverse polarization of the absorbed photon, respectively. This separation is well
known as the Rosenbluth decomposition [24]. Exclusive reactions from composite
systems in which one or more particles are detected in coincidence with the scat-
tered electron, allow to extract additional information about the target system. At
present, the availability of high-duty electron facilities make these coincidence ex-
periments involving the analysis of polarization degrees of freedom much easier than
in previous times.

In discussing A+ e→ B+ e′+ p processes, one faces the possibility of polarizing
the incident and scattered wave, as well as the hadrons in the initial and final
channel. In this work we will follow the conventions for the A(~e,~e′~p)B kinematics
and observables introduced by Donnelly and Raskin in Refs. [25, 26].

The four-momenta of the incident and scattered electron are labeled as Kµ(ε,~k)
and K

′µ(ε′, ~k′). The electron momenta ~k and ~k′ define the scattering plane. The
four-momentum transfer is given by qµ = Kµ − K ′µ = Kµ

A−1 + Kµ
f − K

µ
A, where

Kµ
A and Kµ

A−1 are the four-momenta of the target and residual nucleus, respectively,
while Kµ

f is the four-momentum of the ejected nucleon. Also, qµ = (ω, ~q), where

the three-momentum transfer ~q = ~k − ~k′ = ~kA−1 + ~kf − ~kA, and the energy transfer
ω = ε − ε′ = EA−1 + Ef − EA, are defined in the standard manner. The xyz
coordinate system is chosen such that the z-axis lies along the momentum transfer
~q, the y-axis lies along ~k× ~k′ and the x-axis lies in the scattering plane; the reaction
plane is then defined by ~kf and ~q, as in Fig. 2.1.

We now discuss processes in which a polarized electron with helicity h impinges
on a nucleus and induces the knockout of a single nucleon, leaving the residual
nucleus in a specific discrete state. The Feynman diagram corresponding to this
process is shown in Fig. 2.2. The Bjorken-Drell convention [27] for the γ matrices
and Dirac spinors is followed. Accordingly, the normalization condition for the Dirac
plane waves, characterized by a four-momentum Kµ and spin-state Sµ, is

ū(Kµ, Sµ)u(Kµ, Sµ) = 1 . (2.1)

The electron charge is denoted by −e, and the virtual photon is represented by the
propagator DF (Q)µν = −gµν/Q2, with Q2 ≡ −qµqµ ≥ 0.

The differential scattering cross section in the laboratory frame can then be
written as [25, 26, 27] :

dσ =
1

β

me

ε

∑

if

|Mfi|2
me

ε′
d3~k′

(2π)3
MA−1

EA−1

d3~kA−1
(2π)3

Mf

Ef

d3~kf
(2π)3

×(2π)4δ(4)(Kµ +Kµ
A −K ′µ −Kµ

A−1 −K
µ
f ), (2.2)

where β = |~k|/ε = |~ve| and where
∑

corresponds to the appropriate average over
initial states and sum over final states as will be discussed below. The corresponding
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scattering plane

reaction plane

K' ( ',k')µ ε →

K ( ',k)µ ε →

h=- 1+ q ( ,q )µ ω →

θfθe

φf

e
→

y

ex
→

ez
→

K (E ,k )µ
f f

→
f

K (E ,k )A-1 A-1 A-1
µ →

Figure 2.1 Kinematics for the exclusive A(~e,~e′~p)B scattering process. The scattering plane

is defined by the electron momenta ~k and ~k′, and the xyz coordinate system is chosen such
that the z-axis lies in the direction of the momentum transfer ~q, the y-axis lies along ~k× ~k′

and the x-axis lies in the scattering plane; the reaction plane is then defined by ~kf and
~q. The electron helicity h = +1 and h = −1 corresponds to the direction parallel and
antiparallel to the electron beam, respectively.
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e'

u (K',S')e

-ieγµ

u (K,S)e

e

iD (Q)F µν

KA

Kf

KA-1

ieJ (K ,Kf,K )ν
A-1 A

p

 >f

 >i

Figure 2.2 Lowest order Feynman diagram for the exclusive A(~e,~e′~p)B scattering process.
Jν denotes the matrix element of the electromagnetic nuclear current operator between the
initial and final hadronic states.

invariant matrix elementMfi reads

Mfi =
ie

Q2

(

εε′

m2e

)1/2

je(K
′, S′;K,S)µJ

µ(KA−1,Kf ;KA)fi , (2.3)

with the electromagnetic current for the electron

je(K
′, S′;K,S)µ = −e

(

m2e
εε′

)1/2

ūe(K
′, S′)γµue(K,S) . (2.4)

In the impulse approximation the nuclear electromagnetic current in momentum
space Jµ(KA−1,Kf ;KA)fi = Jµ(Q)fi can be written as

Jµ(Q)fi =< KfSf |Ĵµ|KiSi >= ūfΓ
µ(Kf ,Ki)ui , (2.5)

with Γµ the electromagnetic vertex function for the nucleon and ui (uf ) the nucleon
(distorted) spinors.

In the actual measurements, the momentum of the recoiling nucleus is not mea-
sured, while those of the electron and the ejected proton are. The recoil momentum
can be eliminated from Eq. (2.2) through integration over ~kA−1. This results in the
following fivefold differential cross section :

d5σ

dε′dΩe′dΩf
=
m2eMfMA−1

(2π)5MA

k′kf
k
f−1rec

∑

if

|Mfi|2 , (2.6)
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where frec is the hadronic recoil factor

frec =
EA−1
EA

∣

∣

∣

∣

∣

1 +
Ef
EA−1

(

1− ~q · ~kf
k2f

)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 +
ωkf − qEf cos θf

MAkf

∣

∣

∣

∣

∣

, (2.7)

with θf the angle between ~kf and ~q (see Fig. 2.1). The squared invariant matrix
elementMfi can be written as

∑

if

|Mfi|2 =
(4πα)2

(Q2)2
ηe(K

′, S′;K,S)µνW
µν(Q)fi, (2.8)

where the electron tensor ηe(K
′, S′;K,S)µν is defined by

ηe(K
′, S′;K,S)µν ≡
∑

if

[

ūe(K
′, S′)γµue(K,S)

]? [
ūe(K

′, S′)γνue(K,S)
]

, (2.9)

and the nuclear tensor W µν(Q)fi, which contains all of the nuclear structure and
dynamics information, is given by

Wµν(Q)fi ≡
∑

if

Jµ?(Q)fiJ
ν(Q)fi. (2.10)

As it is more difficult to measure the polarization of the scattered electron than
it is to prepare a polarized electron beam, we will only consider the latter case from
here on. Then, the differential cross section contains two terms :

(

d5σ

dε′dΩe′dΩf

)h

fi

= Σfi + h∆fi , (2.11)

where h reduces to the electron helicity in the extreme relativistic limit (ERL, εÀ
me) for a longitudinally polarized beam. The first term Σfi is independent of the
electron’s polarization, and, would also occur if no polarizations were considered;
the second term ∆fi occurs only if the initial beam is polarized.

In the most general case, the contraction of the electron tensor ηµν with the
nuclear one W µν results in an expression of the form [25]

4m2eηe(K
′, S′;K,S)µνW

µν(Q)fi = v0
∑

K

VKRKfi, (2.12)

where the label K takes on the values L, T , TT , TL, T ′, TL′, TT , TL and TL′.
These labels refer to the longitudinal and transverse components of the virtual pho-
ton polarization, and hence correspond to the nuclear electromagnetic components

with respect to the direction of ~q. The RTT
fi , R

TL
fi and RTL

′

fi terms do not vanish
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for longitudinally polarized electron beams, but are suppressed by a factor me/ε.
Accordingly, these terms can be safely ignored. The various RK

fi are the nuclear
response functions which contain all of the nuclear structure and dynamics informa-
tion; the factor v0 ≡ (ε+ε′)2−q2 and the VK are electron kinematics and polarization
factors. In the ERL for the electrons, it can be shown [25, 26] that the differential
cross section for the scattering of longitudinally polarized electrons from nuclei is
given by

(

d5σ

dε′dΩe′dΩf

)h

fi

=
MMA−1kf
8π3MA

f−1recσM

[

(vLRL + vTRT + vTTRTT + vTLRTL)

+ h (vT ′RT ′ + vTL′RTL′)
]

, (2.13)

where σM is the well known Mott cross section

σM =

(

α cos θe/2

2ε sin2 θe/2

)2

, (2.14)

with θe the angle between the incident and the scattered electron. The electron
kinematics is contained in the kinematical factors

vL =

(

Q2

q2

)2

, (2.15)

vT =
1

2

(

Q2

q2

)

+ tan2
θe
2
, (2.16)

vTT = −1

2

(

Q2

q2

)

, (2.17)

vTL = − 1√
2

(

Q2

q2

)

√

(

Q2

q2

)

+ tan2
θe
2
, (2.18)

vT ′ = tan
θe
2

√

(

Q2

q2

)

+ tan2
θe
2
, (2.19)

vTL′ = − 1√
2

(

Q2

q2

)

tan
θe
2
. (2.20)

As for the contraction of the nuclear tensor with the electron tensor, we have that
J0(~q)fi = ρ(~q)fi, the Fourier transform of the transition charge density < f |ρ̂(~r)|i >,
while

~J(~q)fi =
∑

m=0,±1

J(~q;m)fi~e
?(~q; 1,m) , (2.21)
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is the expansion of the Fourier transform of the transition three-current in terms of
the standard unit spherical vectors ~e(~q; 1,m) defined by

~e(~q; 1, 0) = ~ez (2.22)

~e(~q; 1,±1) = ∓ 1√
2
(~ex ± i~ey). (2.23)

Furthermore, current conservation imposes that only three components of the four-
current Jµ are independent :

qµJ
µ(~q)fi = ωρ(~q)fi − qJ(~q; 0)fi = 0 , (2.24)

so that J(~q; 0)fi = (ω/q)ρ(~q)fi. The unpolarized structure functions are then defined
in a standard fashion as

RLfi = |ρ(~q)fi|2 , (2.25)

RTfi = |J(~q; +1)fi|2 + |J(~q;−1)fi|2 , (2.26)

RTTfi = 2Re {J?(~q; +1)fiJ(~q;−1)fi} , (2.27)

RTLfi = −2Re {ρ?(~q)fi(J(~q; +1)fi − J(~q;−1))fi} . (2.28)

Similarly, for the polarized structure functions we have

RT ′

fi = |J(~q; +1)fi|2 − |J(~q;−1)fi|2 , (2.29)

RTL′fi = −2Re {ρ?(~q)fi(J(~q; +1)fi + J(~q;−1))fi} . (2.30)

From here on one can proceed and perform a multipole expansion for the electro-
magnetic transition operators. At higher momentum transfer this method becomes
cumbersome as a large amount of multipoles has to be considered. Therefore, we will
not consider these expansions here, and proceed with the full transition operators.





Chapter 3

Relativistic Bound State Wave
Functions

For many years, nuclear structure and the nucleon-nucleon interaction have been
studied thoroughly within the context of the nonrelativistic Schrödinger framework.
In this non-relativistic many-body theory, nuclei are regarded as bound states of nu-
cleons interacting via two- and three-body potentials. The modern nucleon-nucleon
potentials accomodate the exchange of mesons, as well as relativistic effects. Over
the years, complex models for the structure of nuclei have been developed. Some of
these models provide an accurate description of the ground-state properties of nuclei
throughout the mass table.

There are a number of good arguments to prefer a relativistic description of nuclei
above a nonrelativistic one. Firstly, in a field-theoretic approach the mesonic degrees
of freedom can be implemented right at the start of the development of the model.
Furthermore, causality, retardation, and relativistic kinematics can be incorporated
in the most natural fashion. Note that the mean velocity of nucleons in a nucleus
is approximately 25% of the velocity of light. The spin-orbit interaction, which
is inserted by hand in non-relativistic approaches, emerges naturally in relativistic
theories.

There are also less obvious benefits to be gained from a relativistic model. In
Ref. [28] it is demonstrated that the one-pion contribution to the two-body potentials
in the nonrelativistic approach is reduced severely by the nonlocalities, inherent to a
relativistic description, which in turn has its effects on pion exchange currents. Fur-
thermore, the boost interactions, which are naturally incorporated in a relativistic
description, are proven to be responsible for over one third of the phenomenological
part of the three-nucleon interaction needed in nonrelativistic Hamiltonians. There
are also indications that the small nuclear binding energies arise from a cancellation
between large Lorentz scalar and vector components. Since these potentials are com-
parable to the nucleon mass, it becomes essential to adopt a relativistic treatment.

13



14 Chapter 3. Relativistic Bound State Wave Functions

A Dirac formalism based on these scalar and vector potentials, makes it possible to
maintain a distinction between them.

Various relativistic models with varying degrees of accuracy have been developed
up until now [29, 30, 31, 32, 33, 34]. One such an approach is based on a relativis-
tic quantum field theory, where nucleons interact with one another by exchanging
mesons, and was originally introduced by Walecka in Ref. [35].

3.1 Formalism

A relativistic quantum field theory for nucleons (ψ) interacting with scalar mesons
(φ) through a Yukawa coupling ψ̄ψφ and with neutral vector mesons (Vµ) that couple
to the conserved baryon current ψ̄γµψ, can be described through a lagrangian density
of the type [16, 29, 36]

L0 = ψ̄(ı6 ∂ −M)ψ +
1

2
(∂µφ∂

µφ−m2sφ2)−
1

4
GµνG

µν

+
1

2
m2vVµV

µ − gvψ̄γµψV µ + gsψ̄ψφ , (3.1)

withM ,ms andmv the nucleon, scalar meson and vector meson masses, respectively,
and Gµν ≡ ∂µV ν − ∂νV µ the vector meson field strength. The scalar and vector
fields may be associated with the σ and ω mesons. The model can be extended to
include also π and ρ mesons, as well as the coupling to the photon field. Then, the
corresponding lagrangian has the form

L = L0 +
1

2
(∂µ~π · ∂µ~π −m2π~π · ~π)− ıgπψ̄γ5~τ · ~πψ −

1

4
~Bµν · ~Bµν

+
1

2
m2ρ
~bµ ·~bµ −

1

2
gρψ̄γµ~τ ·~bµψ −

1

4
FµνF

µν − eAµ[ψ̄γµ
1

2
(1 + τ3)ψ

+(~bν × ~Bνµ)3 + (~π × (∂µ~π + gρ(~π ×~bµ)))3] . (3.2)

Here ~π, ~bµ and Aµ are the pion, rho and Maxwell fields, respectively, while ~Bµν ≡
∂µ~bν − ∂ν~bµ − gρ(~bµ ×~bν) is the ρ meson field strength and Fµν is the electromag-
netic field strength. In the lagrangian of Eq. (3.2), higher order electromagnetic
corrections and non-linear meson terms are omitted.

As discussed by Walecka in Ref. [35], the complete quantum field theory, which is
a non-trivial problem, can be approximated by replacing the meson field operators
with their expectation values at high densities. In infinite matter one then takes
< φ >≡ φ0 and < V µ >≡ δµ0V0. This model can be extended to include the
interactions of pions and ρ mesons [37]. The resulting mean-field theory may then
be solved exactly.

In the relativistic Hartree approximation under study here, use is made of a
coordinate-space Green’s function approach to derive the relevant equations of mo-
tion (for details, see Refs. [16, 29]). Eventually one arrives at a theory similar in
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content to the mean-field theory of Walecka, except that one is now working in a
finite system. Hence, it can be shown that, when starting from the langrangian of
Eq. (3.2), the following (static) Dirac equation for the baryon field Ψα results [16] :

[

i~α · ~∇+ γ0M + γ0ΣH(~r)
]

ψα(~r) ≡ Ĥψα(~r) = εαψα(~r) , (3.3)

where the self-energy ΣH(~r) is defined according to

ΣH(~r) = −gsφ0(~r) + gvγµV
µ(~r) + gπγ5ταπ

α(~r) +
1

2
gργµταb

µα(~r)

+
1

2
γµ(1 + τ3)A

µ(~r) , (3.4)

and again only static field solutions were taken into consideration. Assuming further
that the nuclear ground state is spherically symmetric and a parity eigenstate, it can
be shown that the pion field does not enter in the Hartree approximation. Further-
more, the meson fields only depend on the radius r, and only the time component
of the vector fields survives [16].

The general solutions to a Dirac equation with spherically symmetric potentials
have the form

ψα(~r) ≡ ψnκmt(~r) =
[

ıGnκt(r)/r Yκmηt
−Fnκt(r)/r Y−κmηt

]

, (3.5)

where n denotes the principal, κ andm the generalized angular momentum and t the
isospin quantum numbers. The Y±κm are the well-known spin spherical harmonics
and determine the angular and spin parts of the wavefunction :

Yκm =
∑

mlms

< lml
1

2
ms|l

1

2
jm > Yl,ml

χ 1

2
ms

,

j = |κ| − 1

2
, l =

{

κ, κ > 0
−(κ+ 1), κ < 0 .

(3.6)

The Hartree approximation yields the following set of coupled equations for the
different fields :

d2

dr2
φ0(r) +

2

r

d

dr
φ0(r)−m2sφ0(r) = −gsρs(r)

≡ −gs
∑

αocc

(

2jα + 1

4πr2

)

[

|Gα(r)|2 − |Fα(r)|2
]

,

d2

dr2
V0(r) +

2

r

d

dr
V0(r)−m2vV0(r) = −gsρB(r)

≡ −gv
∑

αocc

(

2jα + 1

4πr2

)

[

|Gα(r)|2 + |Fα(r)|2
]

,
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Meson Mass Coupling constant

ms = mσ = 520 MeV g2s = 109.6

mv = mω = 783 MeV g2v = 190.4

mρ = 770 MeV g2ρ = 65.23

Table 3.1 Meson masses and coupling constants, as taken from Ref. [16].

d2

dr2
b0(r) +

2

r

d

dr
b0(r)−m2ρφ0(r) = −

1

2
gρρ3(r)

≡ −1

2
gρ
∑

αocc

(

2jα + 1

4πr2

)

[

|Gα(r)|2 + |Fα(r)|2
]

(−1)tα−1/2 ,

d2

dr2
A0(r) +

2

r

d

dr
A0(r) = −eρP (r)

≡ −e
∑

αocc

(

2jα + 1

4πr2

)

[

|Gα(r)|2 + |Fα(r)|2
]

(tα +
1

2
) ,

d

dr
Gα(r) +

κ

r
Gα(r)− [Eα − gvV0(r)− tαgρb0(r)

−(tα +
1

2
)eA0(r) +M − gsφ0(r)]Fα(r) = 0 ,

d

dr
Fα(r)−

κ

r
Fα(r) + [Eα − gvV0(r)− tαgρb0(r)

−(tα +
1

2
)eA0(r)−M + gsφ0(r)]Gα(r) = 0 ,

∫ ∞

0
dr (|Gα|2 + |Fα|2) = 1 , (3.7)

where ρs(r), ρB(r), ρ3(r) and ρP (r) are the scalar, baryon, rho and proton densi-
ties, respectively. The above set of equations constitute the basis of the relativistic
Hartree approach to the lagrangian of Eq. (3.2). This set depends on the meson
and nucleon masses and coupling constants. Some of these can be taken directly
from experiments (Mp, Mn, mv = mω, mρ, and e2), others can be calculated by
requiring that when the Dirac-Hartree equations are solved in the limit of infinite
matter, relevant empirical equilibrium observables are reproduced. For all bound
state wave functions that will be used in this work we have adopted the values
quoted by Horowitz et al. in Ref. [16]. Table 3.1 shows the values for the coupling
constants and meson masses quoted in this work.

3.2 Results

A new computer program to solve the set of coupled nonlinear differential equations
of Eq. (3.7) was developed. Starting from an initial guess for the scalar and vector
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12C 16O

proton neutron proton neutron

1s1/2 36.47 MeV 39.98 MeV 35.09 MeV 39.22 MeV

1p3/2 11.58 MeV 14.72 MeV 15.29 MeV 19.13 MeV

1p1/2 - - 7.94 MeV 11.67 MeV

B.E./nucl. 4.90 (7.42) MeV 5.85 (7.72) MeV

Table 3.2 Single particle energies in 12C and 16O for all occupied proton and neutron
levels. The theoretical average binding energy per nucleon is compared to the experimental
energy (in brackets).

potential in a Woods-Saxon form, the Dirac equations can be solved iteratively
using a shooting point method, where one first integrates outward from small r to a
chosen match radius rm (the so-called shooting point), and then integrates inward
from large r to rm. Analytic solutions to the equations in the regions of large and
small r allows one to impose the proper boundary conditions. The solutions are
scaled so that Gα is continuous at the shooting point rm, and the wave function is
then normalized to unity. The discontinuity in Fα is then used to adjust the energy
eigenvalue according to

δEα = −MGα(rm)[Fα(r
+
m)− Fα(r−m)] . (3.8)

This shooting procedure is repeated until |δEα| is less than a predefined tolerance.
Once the nucleon wave functions are obtained, the densities and the meson fields can
be reevaluated. Boundary conditions of exponential decay at large r, and vanishing
slope for the fields at the origin were imposed.

For the 12C and 16O nuclei, the newly developed C-code SOR performed all in-
tegrations for a radial extension of the nucleus of 20 fm and a stepsize of 0.01 fm.
The coupled Dirac equations were solved for a shooting point lying at 2 fm using
a fourth-order Runge-Kutta algorithm. As a convergence criterion we imposed a
tolerance level as small as 0.001 MeV on all single-particle energy levels.

In Table 3.2 the calculated neutron and proton single-particle energies in 12C and
16O are presented. A comparison of single-particle energy levels with experimental
data is very ambiguous, so we only compare the average binding energy per nucleon
with the empirical binding energies. The total energy of the system E is given by

E =
∑

αocc

εα(2jα + 1)− 1

2

∫

d~r [−gsφ0(r)ρs(r)

+gvV0(r)ρB(r) +
1

2
gρb0(r)ρ3(r) + eA0(r)ρP (r)] . (3.9)

The computed densities for the 12C and 16O nuclei are depicted in Fig. 3.1. We
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Figure 3.1 The calculated scalar (ρs), baryon (ρB) and proton (ρP ) density distributions
in the 12C and 16O nuclei. The rho density (ρ3) is not depicted as it is several orders of
magnitudes smaller.
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have verified that these results are comparable to those produced by the TIMORA

code [16], which is widely used to solve the set of Eq. (3.7).
The scalar potential is entirely governed by the scalar meson field (σ meson),

and is responsible for the attractive force that keeps the nucleons bound within the
nucleus. The repulsive vector potential has contributions from the vector (ω and
ρ) meson fields and the Maxwell field. It should be noted that the contributions
from the ρ meson field and the Maxwell field are several orders of magnitude smaller
than the contribution from the ω meson field. Since the potential experienced by
the neutrons differs only from the one experienced by the protons in these two
minor terms, the total scalar and vector potentials for protons and neutrons are
almost exactly the same. That is why we have only depicted the proton potentials
in Fig. 3.2. These very same potentials will be used in Sec. 5 to derive the eikonal
scattering states.

A point of high interest in nuclear physics are the nucleon spectral functions
and momentum distributions. In calculating these contributions, we closely follow
the method outlined in Ref. [38]. In free space the nucleon’s motion is governed
by the free particle solution of the Dirac equation. These plane wave states with
momentum ~k and energy εk =

√
k2 +M2 are given by

φ~k,s(~r) =

√

εk +M

2M

[

1
1

E+M ~σ · ~k

]

eı
~k·~rχ 1

2
ms

. (3.10)

Since the Dirac-Hartee potentials are spherically symmetric, we expand this free
space solution in terms of the spin-spherical harmonics of Eq. (3.6) :

φ~k,s(~r) =

√

εk +M

2M

∑

κmml

4π(+ı)l < lml
1

2
ms|l

1

2
jm >

Y ?
lml

(Ω~k)

kr

×
[

ıgκ(kr) Yκm
−fκ(kr) Y−κm

]

, (3.11)

where the usual spherical harmonics Ylml
are given in terms of the associated Leg-

endre polynomials Pml

l :

Ylml
(θ, φ) =

√

(2l + 1)

4π

(

(l −ml)!

(l +ml)!

)

(−1)mleımlφPml

l (cos θ) . (3.12)

The radial components of the wave function are written in terms of Ricatti-Bessel
functions (these are the spherical Bessel functions times their argument) :

gκ(kr) = ĵl(kr)

fκ(kr) =
±k

εk +M
ĵl∓1(kr) , (3.13)
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Figure 3.2 The radial dependence of the scalar and vector proton potentials as obtained
from relativistic Hartree calculations for 12C and 16O. The neutron potentials are quasi
identical to those of the proton’s and have not been plotted.
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where the positive (negative) sign corresponds to κ > 0 (κ < 0). The overlap
between a free plane wave spinor characterized by a momentum ~k and the mean-
field eigenstates of Eq. (3.5), summed over all spin projections, is then given by

ρ~k,ε,κ ≡
∑

ms,m

∣

∣

∣

∣

∫

d~r φ†~k,s
(~r)ψεκm(~r)

∣

∣

∣

∣

2

. (3.14)

Making use of the following identity :

j
∑

m=−j

Y†
κmYκ′m =

(

2j + 1

4π

)

δκκ′ , κ′ = ±κ , (3.15)

we finally arrive at the following expression for the nucleonic momentum distribution
:

ρ~k,ε,κ = (2j + 1)

(

1

2π2k2

)(

εk +M

2M

)

|Gεκ(k) + Fεκ(k)|2 , (3.16)

where

Gεκ(k) =

∫ ∞

0
dr Gεκ(r)gκ(kr) ,

Fεκ(k) =

∫ ∞

0
dr Fεκ(r)fκ(kr) , (3.17)

are the Fourier transforms of the radial components of the bound state wave function.
Eq. (3.16) can be seen as the relativistic generalization of the nucleon momentum
distribution.

Fig. 3.3 shows the momentum distributions for all occupied levels in 12C and
16O. Since the proton and neutron results can be hardly distinguished from each
other, the latter are not shown.

The nucleon momentum distributions are subject to sizeable corrections when
correlations beyond the mean-field Hartree approach are implemented. In an uncor-
related Fermi gas all states up to the Fermi momentum kF are occupied, and the
states above kF remain empty. In a correlated system, states below the Fermi surface
become partially depleted and states above the Fermi surface get a non-vanishing
occupation probability. The nucleon-nucleon correlations are mainly induced by the
short-range and tensor components of the nucleon-nucleon interaction. Evidence for
the depletion of the single-particle states was obtained from the analysis of (e,e’p)
reactions for a large number of target nuclei [1].

Another possible source for the fragmentation of the single-particle strength is
the mixing between the positive and negative energy states, or, equivalently, between
particles and antiparticles [38]. For small values of the momenta (k < 300 MeV/c), it
has been shown that the nucleon spectral function is dominated by positive energy
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Figure 3.3 The proton momentum distributions for the different single particle states in
the 12C and 16O nuclei. The neutron momentum distributions are almost identical, and are
not shown.
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Figure 3.4 Nucleon momentum distributions for 16O including (solid line) and neglecting
(dashed line) the contribution from negative-energy states. This picture was taken from
Ref. [38].

states close to the Fermi energy. In contrast, the high momentum components
(k > 500 MeV/c) are driven almost entirely by high-lying excitations located 1-2
GeV away from the Fermi surface. The presence of these negative energy states gives
rise to high momentum components that are four orders of magnitude larger than
would have otherwise been in the absence of negative energy states. The nucleon
momentum distributions for 16O calculated in such a way, is represented in Fig. 3.4.





Chapter 4

Off-Shell Electron-Proton
Coupling

The scattering process of an electron on a free (or, on-shell) nucleon can be com-
puted in a model-independent fashion. The electromagnetic coupling on a bound
(or, off-shell) nucleon, on the other hand, is not free of ambiguities. For one, it is
believed that the electromagnetic vertices for off-shell nucleons have a more compli-
cated structure than for free nucleons. This elusive feature is known as the Gordon
ambiguity and there has been a string of papers that have addressed this issue
[39, 40, 41, 42] resulting in a number of recipes for the form of the off-shell electron-
proton coupling.

Another equally important issue, that is closely related to the Gordon ambiguity,
is the gauge invariance of the electromagnetic current in many-body systems. This
topic is closely related to the condition that the electromagnetic current should be
conserved. In trying to describe the nuclear reaction by means of the free electro-
magnetic current, one is forced to make certain assumptions. These assumptions
lead the off-shell nucleons to affect the nuclear current in such a way that current
conservation is lost. As discussed in many works [41, 42, 43, 44, 45], some arbi-
trariness, often referred to as the “off-shell ambiguity”, surrounds the choice for
the functional form of the electromagnetic vertex function Γµ for a bound nucleon.
There exists no uniquely defined procedure to remedy this unphysical feature and
one is forced to introduce ad hoc prescriptions to restore current conservation, as
will be discussed below.

We express the matrix elements of the nucleon current in the usual form

< KfSf |Jµ|KiSi >= ūfΓ
µ(Kf ,Ki)ui , (4.1)

where Γµ is the electromagnetic vertex function for the nucleon and ui (uf ) are the
nucleon spinors. For a free nucleon, Γµ can be expressed in several fully equivalent

25
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forms

Γµcc1 = GM (Q2)γµ − κ

2M
F2(Q

2)(Kµ
i +Kµ

f ) , (4.2)

Γµcc2 = F1(Q
2)γµ + ı

κ

2M
F2(Q

2)σµνqν , (4.3)

Γµcc3 =
1

2M
F1(Q

2)(Kµ
i +Kµ

f ) + ı
1

2M
GM (Q2)σµνqν , (4.4)

where F1 is the Dirac, F2 the Pauli form factor and κ is the anomalous magnetic mo-
ment. The relation with the Sachs electric and magnetic form factors is established
through the relations GE = F1 − τκF2 and GM = F1 + κF2, with τ ≡ Q2/4m2.

When considering bound (or, “off-shell”) nucleons, however, the above vertex
functions can no longer be guaranteed to produce the same results. As a matter
of fact, explicit current conservation is rather an exception than a rule in most
calculations that deal with (e, e′p) reactions from finite nuclei. In nuclear physics,
the most widely used procedure to “effectively” restore current conservation is based
on modifying the longitudinal component of the nuclear vector current using the
substitution

J3 →
ω

q
J0 . (4.5)

The four-current then becomes

Jµ = (J0, J1, J2,
ωJ0
q

) . (4.6)

This procedure is partly inspired on the observation that meson-exchange and isobar
terms enter the charge current operator in a higher relativistic order than they used
to do for the vector current. There exist several other prescriptions which are meant
to restore current conservation. Along similar lines, the charge operator can be
replaced by

J0 →
q

ω
J3 , (4.7)

and the four-current can be rewritten as

Jµ = (
qJ3
ω
, J1, J2, J3) . (4.8)

In other recipes one adds a term proportional to qµ to obtain a divergence free
current [46] :

Jµ → Jµ +
Jνq

ν

Q2
qµ . (4.9)
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One can also construct a vertex function that garantuees current conservation for
any initial and final nucleon state. This can be achieved for example by adding an
extra term to the vertex [47]

ΓµDON = F1(Q
2)γµ + ı

κ

2M
F2(Q

2)σµνqν + F1(Q
2)
6 qqµ
Q2

, (4.10)

which is also equivalent to the Eqs. (4.2) - (4.4) in the free nucleon case. An operator
derived from the generalized Ward-Takahashi identity reads [44]

ΓµWT = γµ − ı κ
2M

F2(Q
2)σµνqν + [F1(Q

2)− 1]
6 qqµ +Q2γµ

Q2
. (4.11)

We now proceed with putting the above-mentioned recipes in a more fundamental
context. We write the transition matrix element corresponding with the electron
scattering process in the general form

M = jµΠµνJ
ν , (4.12)

where Πµν is the photon propagator and jµ the electron current. The explicit form
of the propagator is gauge dependent, and, consequently, so is the matrix element.
In the covariant class of gauges one has that

MLorentz =
ı

Q2

(

jµJ
µ + (1− ξ)(qµJ

µ)(qµj
µ)

Q2

)

, (4.13)

where ξ is a free gauge parameter.
Usually one works in the so-called Feynman gauge, where ξ is set equal to 1. In

this case, the matrix element reduces to

MFeynman =
ı

Q2
jµJ

µ . (4.14)

The equation (4.14) holds always true in a covariant Lorentz gauge since the electron
current j is conserved. A choice of one or another gauge should have no effect on the
results. In calculations dealing with finite nuclei however, the occurence of current
non-conserving terms cannot be excluded, so that the different gauge possibilities
may eventually affect the predictions. We will now show that the prescriptions of
Eqs. (4.5), (4.7) and (4.9) are connected to different gauge choices.

In the frequently adopted Coulomb gauge, which is a noncovariant gauge, the
matrix element of Eq. (4.12) is written as

MCoulomb =
ı

~q2
j0J0 −

ı

Q2

(

~j · ~J − (~q · ~J)(~q ·~j)
~q2

)

. (4.15)
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This is the same matrix element one would obtain in the Feynman gauge when
using the replacement given in Eq. (4.5). Another noncovariant gauge, the Weyl, or
temporal, gauge defines the matrix element as

MWeyl = −
ı

Q2

(

~j · ~J − (~q · ~J)(~q ·~j)
ω2

)

. (4.16)

Similarly, this expression is obtained from Eq. (4.14) upon replacement of Eq. (4.7).
The substitution of Eq. (4.9) is simply obtained by setting the gauge parameter ξ
equal to zero in Eq. (4.13); this is the so-called Landau gauge. And again, the same
expression is found upon substituting the recipe of Eq. (4.9) into Eq. (4.14). For the
prescription of Eq. (4.10) there is no deeper-lying justification on the basis of the
most general covariant expression of Eq. (4.13).

The electromagnetic vertex function of Eq. (4.11) is based on the following. It is
shown in Ref. [44] that the electromagnetic interactions of any two-body system (i.e.
electron-proton system) described by a relativistic two-body equation will always
conserve current provided that the following conditions are met

• the electromagnetic currents for the interacting off-shell nucleons (and mesons)
satisfy the appropriate Ward-Takahashi identity

• the interacting incoming and outgoing two-body system satisfies the same two-
body relativistic equation

• the interaction current is built up from the relativistic kernel by coupling the
virtual photon to all possible places (or possible orders) in the kernel

It is obvious that in a many-body calculation not all of these conditions can be met,
so that the occurence of current non-conserving terms becomes almost unavoidable.
In analogy with the CC1 and CC2 current operators, we have chosen to restore
current conservation by means of the recipes of Eqs. (4.5) and (4.7).

In Sec. 7 we will focus on the uncertainties induced by the off-shell effects and
quantify the importance of these ambiguities for the description of the A(e, e′p)
process at various energy scales.

Another issue of current interest related to the off-shellness of nucleons, is the
question whether the electromagnetic form factors are modified by the presence of
a nuclear medium. In Ref. [40] variations due to the off-shellness of the proton
were found up to 10 % relative to the on-shell form factors for intermediate energy
kinematics. When going off-shell the magnitudes of the form factors are generally
increased, and, consequently so are the cross sections. On the other hand it was
found that the ratio of the form factors GM/GE was rather insensitive to off-shell
effects.



29

0 1 2 3 4 5
Q

2
 (GeV

2
)

0

0.5

1

Q
2 F

2/
F

1

0.5

1

µ pG
E
/G

M

Diquark 
RCQM 
Cloudy Bag 
VMD 

a)

b)

Figure 4.1 The upper panel shows the ratio µpGEp
/GMp

from the experiment of Ref. [48],
compared with theoretical calculations. The lower panel shows the ratio Q2F2p

/F1p
com-

pared to the same calculations and world data (non-black symbols). This figure was taken
from Ref. [48].

Perhaps more important when studying high energy (e, e′p) reactions is the Q2

evolution of this ratio. It has long been thought that the ratio µpGEp/GMp equals
1. With the advent of high duty facilities and the powerful technique of polariza-
tion transfer, measurements of nucleonic form factors have been performed with
unprecedented accuracy. One such measurement of the free proton’s form factors
was performed at JLAB [48] and the results are contained in Fig. 4.1. The most
important feature of the data is the sharp decrease of the ratio µpGEp/GMp as Q2

increases, which indicates that GEp falls more rapidly with Q2 than GMp . The
Q2F2p/F1p ratio indicates a continuing increase with Q2, also in contradiction with
earlier observations. Some QCD-based quark models are able to sustain this Q2

evolution of the form factors, and it is hoped that these measurements may shed
some light on the problem of nucleon spin.





Chapter 5

The Eikonal Final State

In the description of photoinduced breakup reactions, semi-classical methods become
useful whenever the de Broglie wavelength λ = h/k of the ejected particle with
momentum k is sufficiently short compared with the distance in which the potential
varies appreciably. The eikonal approximation, which finds its origins in optics,
belongs to the class of semi-classical methods. If the potential varies smoothly and
has a range a, this short wavelength condition is equivalent to the requirement that
ka À 1. Referring to the potentials of Fig. 3.2, it is clear that the potentials vary
smoothly and have an approximate range of 2-3 fm. The condition to be fulfilled
can then be written as k À 500 MeV/c, what will be the case in our discussion of
the performed calculations.

For A(e, e′p) reactions with proton kinetic energies Tp ≥ 500 MeV/c a rela-
tivistic description is a prerequisite. Originally, the gap between the low and the
intermediate/high energy range was bridged by a distorted wave formalism, where
a broad basis of Dirac eigenstates are joined in a coherent manner to construct the
final distorted scattering state [49, 50, 51]. In principle, this method allows to solve
the Dirac equation for the scattered particle exactly. As already mentioned in the
introduction of this work this method can no longer be applied at higher energies,
say a few GeV. As one goes higher in energies, one needs an increasingly larger base
of plane wave solutions to reach a certain point of convergence, and, unfortunately,
this procedure gets increasingly more tedious and the numerical stability gets out
of hand. Since we want to develop a relativistic model that makes use of (optical)
scattering potentials, and still remains valid for higher values of Q2, we need another
way to describe the scattering problem.

Fortunately, an alternative is offered by the eikonal method, and its multiple-
scattering extension, which was developed by Glauber [5]. This technique is pri-
marily based on the observation that at high energies, pp reactions become highly
diffractive, implying that they are extremely forwardly peaked.

In this chapter, we will first briefly review the relativistic distorted wave impulse

31
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approximation (RDWIA). Next, we will introduce a consistent relativistic model for
the description of A(e, e′p) processes in the eikonal approximation. With the term
“consistent” we refer to a procedure in which the bound and scattering states are
derived from the same Dirac equation. The consistent approach possesses the virtue
of obeying orthogonality and unitarity constraints but will soon be observed to
provide poor descriptions of the experimental data. In a next step, we will improve
our model by implementing complex optical potentials for the description of proton
distortion in the final state. Finally, we develop a scheme that allows to perform fully
relativistic and unfactorized A(e, e′p) calculations in a Glauber multiple-scattering
framework.

5.1 The Relativistic Distorted Wave Approximation

We will now briefly outline the RDWIA scheme to solve the Dirac equation of
Eq. (3.3). Within a relativistic framework the bound state wave functions with
well defined angular quantum numbers κ and m were of the form

ψnκm(~r) =

[

ıGnκt(r)/r Yκm
−Fnκt(r)/r Y−κm

]

. (5.1)

These solutions are eigenstates of the total Hamiltonian and the total angular mo-
mentum with eigenvalue j = |κ| − 1/2,

Yκm =
∑

mlms

< lml
1

2
ms|l

1

2
jm > Yl,ml

χ 1

2
ms

,

j = |κ| − 1

2
, l =

{

κ, κ > 0
−(κ+ 1), κ < 0 .

(5.2)

The wave function for the outgoing proton Ψf is a scattering solution of the same
Dirac equation of Eq. (3.3). In the RDWIA approach it is obtained as a partial wave
expansion in configuration space [17, 18, 52, 53],

Ψf (~r) = 4π

√

Ef +M

2M

∑

κ,m,ml

e−ıδ
∗
κ < lml

1

2
ms|l

1

2
jm > Y ∗

lml
(k̂f )ψκm(~r) . (5.3)

The phase shifts δκ are calculated with a procedure as for example outlined in
Ref. [54]. Basically, one expresses the incident, or bound, wave as a sum of partial
waves and one can then compare the asymptotic radial functions of Eq. (5.3) with
this plane wave expansion to determine the phase-shifts.
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5.2 A Consistent Approach to Final State Interactions

To construct the scattering states for the ejected nucleons, we start from the Hamil-
tonian that was already used to calculate the bound state wave functions

Ĥ ≡ −ı~α · ~∇+ γ0M + γ0ΣH(r) , (5.4)

where the self-energy ΣH(r) is determined by

ΣH(r) = −gsφ0(r) + gvγ0V
0(r) + 1

2gργ0ταb
0α(r) +

1
2eγ0(1 + τ3)A

0(r) , (5.5)

and where the pion terms have been dropped. With the formal substitutions

Vs(r) ≡ −gsφ0 ,

Vv(r) ≡ gvV0(r) +
1

2
gρb0(r)(−1)tα−1/2 + eA0(r)(tα +

1

2
) , (5.6)

the time independent Dirac equation for a projectile with relativistic energy E =√
k2 +M2 and spin state s, can be cast in the form

ĤΨ
(+)
~k,s

= EΨ
(+)
~k,s

= [~α · ~p+ βM + βVs(r) + Vv(r)]Ψ
(+)
~k,s

, (5.7)

where we have introduced the notation Ψ
(+)
~k,s

for the unbound Dirac states. Af-

ter some straightforward manipulations, a Schrödinger-like equation for the upper
component can be obtained

[

− h̄
2∇2
2M

+ Vc + Vso(~σ · ~L− ı~r · ~p)
]

u
(+)
~k,s

=
k2

2M
u
(+)
~k,s

, (5.8)

where the central and spin orbit potentials Vc and Vso are defined as

Vc(r) = Vs(r) +
E

M
Vv(r) +

Vs(r)
2 − Vv(r)2
2M

,

Vso(r) =
1

2M [E +M + Vs(r)− Vv(r)]
1

r

d

dr
[Vv(r)− Vs(r)] . (5.9)

In computing the scattering wave functions, we use the scalar and vector potentials as
they are determined in the iterative bound state calculations. As a result the initial
and final state wave functions are orthogonalized and no spurious contributions are
expected to enter the calculated cross sections.

Since the lower component is related to the upper one through

w
(+)
~k,s

=
1

E +M + Vs − Vv
~σ · ~p u(+)~k,s

, (5.10)
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Figure 5.1 The 500 MeV p-40Ca elastic scattering cross section at Tp = 500 MeV, calcu-
lated using the Dirac eikonal method of Ref. [57] (solid line) compared to that using a Dirac
partial wave code (dashed line). This picture was taken from Ref. [57].

the solutions to the equation (5.8) determine the complete relativistic eigenvalue
problem.

So far no approximations have been made. Various groups [17, 18, 55] have
solved a Dirac equation of the type (5.8) for the final scattering state using Dirac
optical potentials derived from global fits to elastic proton scattering data [56].
Not only are global parametrizations of Dirac optical potentials usually restricted
to proton kinetic energies Tp ≤ 1 GeV, calculations based on exact solutions of the
Dirac equation frequently become impractical at higher energies. This is particularly
the case for approaches that rely on partial-wave expansions in determining the
transition matrix elements. To overcome these complications, we solve the Dirac
equation (5.8) in the eikonal limit [57, 58, 59, 60]. In intermediate-energy proton
scattering (Tp ≈ 500 MeV) the eikonal approximation was shown to reproduce fairly
well the exact Dirac partial wave results as can been seen from Fig. 5.1 [57].

Following the discussion of Ref. [57], we define the average momentum ~K and
the momentum transfer ~q in terms of the projected initial (~ki) and final momentum
(~kf ) of the ejectile

~q = ~kf − ~ki , (5.11)

~K =
1

2
(~kf + ~q) . (5.12)
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In the eikonal, or, equivalently, the small-angle approximation (q À ki), the following
operatorial substitution is made in computing the scattering wave function

p2 = [(~p− ~K) + ~K]2 −→ 2 ~K · ~p−K2 . (5.13)

After introducing this approximate relation, the Dirac equation for the upper com-
ponent (5.8) becomes

[−ı ~K · ~∇−K2 +M(Vc + Vso[~σ · (~r × ~K)− ı~r · ~K])]u
(+)
~k,s

= 0 , (5.14)

where the momentum operators in the spin orbit and Darwin terms are substituted
by ~K. Remark that the above equation is now linear in the momentum operator.
In the eikonal limit, the scattering wave functions take on the form

u
(+)
~k,s

= eı
~k·~reıS(~r)χ 1

2
ms

. (5.15)

Inserting this into Eq. (5.14), yields an expression for the eikonal phase [59]. Defining
the z-axis along the direction of the average momentum ~K, this phase can be written
in an integral form as

ıS(~b, z) = −ıM
K

∫ z

−∞
dz′ [Vc(~b, z

′) + Vso(~b, z
′)[~σ · (~b× ~K)− ıKz′]], (5.16)

where we have introduced the notation ~r ≡ (~b, z). The scattering wave function,
which is proportional to

ψ
(+)
~k,s
∼
[

1
1

E+M+Vs−Vv
~σ · ~p

]

eı
~k·~reıS(~r)χ 1

2
ms

, (5.17)

is normalized such that

lim
~r→−∞

φ
(+)
~k,s

= φPWIA
~k,s

(~r) =

√

E +M

2M

[

1
1

E+M ~σ · ~p

]

eı
~k·~rχ 1

2
ms

. (5.18)

The scattering wave function from Eq. (5.17) differs from the plane wave solution in
two respects. First, the lower component exhibits the dynamical enhancement due
to the combination of the scalar and vector potentials. Second, the eikonal phase
eıS(~r) accounts for the interactions that the struck nucleon undergoes in its way out
of the target nucleus.

It is worth noting that the eikonal wave function does not exhibit the correct
asymptotic behaviour for ~r → +∞ :

lim
~r→+∞

ψ
(+)
~k,s

(~r) =

√

E +M

2M

[

1
1

E+M ~σ · ~p

]

eı
~k·~re

−ıM
K

∫ +∞

−∞
dz′[Vc+Vso~σ·(~b× ~K)]

χ 1

2
ms
.(5.19)



36 Chapter 5. The Eikonal Final State

q/2
D

kf

K

q incident
direction

Figure 5.2 Illustration of the vectors involved in the eikonal trajectory.

As a matter of fact, this feature is generally not considered as a serious deficiency.
Indeed, the transition matrix elements, which involve bound state wave functions,
are only sensitive to the radial range in which the potentials are non-vanishing.

Another point of concern is the angular range in which the eikonal method is
a valid approximation. In Eq. (5.16) the eikonal phase is calculated by performing
a straight line integration along the direction of the average momentum ~K, as in
Fig. 5.2. A more accurate evaluation of the scattering wave function would in fact
involve the calculation of its phase along the actual curved classical trajectory. This
is exactly the small-angle approximation that was imposed. It must be remembered
that the semi-classical approximation is not valid for large scattering angles. But, as
already mentioned, high energy pA scattering is diffractive and extremely forwardly
peaked.

The calculation of the eikonal phase of Eq. (5.16) involves a transformation to
a reference frame other than the usual laboratory or center-of-mass frame, namely
the frame where the average momentum is pointing along the z axis. As the eikonal
phase has to be reevaluated for every (~b, z) point in space, the Dirac eikonal (e, e′p)
calculations are very demanding as far as computing power is concerned. In evalu-
ating the matrix elements, the radial integrations were performed on a 0.1 fm mesh.

5.3 Optical Potentials and the Eikonal Method

The potentials that are used in relativistic Hartree calculations are real potentials.
This results in a purely imaginary eikonal phase (that is, apart from a tiny contri-
bution in the spin-orbit channel). Although this consistent treatment minimizes the
effects of spurious states, it can also only take elastic contributions into account. In
general, strength from the incident beam is drained into other inelastic channels,
and one needs to incorporate this local absorption in the description of the reaction
process. This is commonly done in DWIA by adopting a complex or optical po-
tential that is able to describe elastic scattering accompanied by absorption. With
such potentials one obtains an eikonal phase that contains both an imaginary and
real part. This reflects the fact that part of the strength will be removed from the
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elastic channel into the inelastic ones.
For several years now Dirac phenomenology has been used to determine global

nucleon-nucleus optical potentials which cover proton kinetic energies up to 1 GeV
[56, 61, 62]. This phenomenology, which uses the Dirac equation to describe the
dynamics of the nucleon, naturally accomodates the major characteristics of the
nonrelativistic nuclear optical potentials, namely, its central and spin-orbit terms.
Moreover, the use of relativistic kinematics is undoubtedly required for kinetic ener-
gies exceding intermediate energies. In our calculations we have adopted the global
relativistic optical potential model of Cooper et al. [56]. By fitting proton elastic
scattering data in the energy range of 20 - 1040 MeV, Cooper et al. succeeded in
obtaining a set of energy-dependent potentials for the target nuclei 12C, 16O, 40Ca,
90Zr and 208Pb. The general form for their scalar and vector optical potentials is

U(r, E,A) = V V (E,A)fV (r, E,A) + V S(E,A)fS(r, E,A)

+iW V (E,A)gV (r, E,A)

+iWS(E,A)gS(r, E,A) , (5.20)

where the superscripts V and S refer to volume and surface peaked terms. The
geometries are parametrized as :

fV and gV =
cosh[R(E,A)/a(E,A)]− 1

cosh[R(E,A)/a(E,A)] + cosh[r/a(E,A)]− 2
, (5.21)

fSand gS =
(cosh[R(E,A)/a(E,A)]− 1)(cosh[r/a(E,A)]− 1)

(cosh[R(E,A)/a(E,A)] + cosh[r/a(E,A)]− 2)2
. (5.22)

The energy and mass dependence of the potentials are then parametrized in terms
of a set of polynomials of the form

V V (E,A) = v0 +
4
∑

m=1

vmx
m +

3
∑

n=1

vn+4y
n + v8xy

+v9x
2y + v10xy

2 , (5.23)

where x = 1000/E and y = A/(A + 20). An equivalent expression is used for the
other potentials and for the R(E,A) and a(E,A) variables. Such a model provides a
set of 264 parameters, which are determined by requiring that the above functional
dependencies describe the data as accurately as possible.

As an illustration, we present potentials for the target nuclei 12C and 16O. In
Figs. 5.3 and 5.4 the Cooper potentials are presented for three values of the proton
kinetic energy (expressed in the laboratory frame). As a reference, the energy-
independent potentials as obtained from the bound state calculations on the basis
of Eq. (3.7) are also shown.
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Figure 5.3 The real and imaginary parts of the Cooper optical potentials for the 12C
target nucleus, at three values of the proton kinetic energy : 100 MeV (solid line), 500 MeV
(dashed line) and 1000 MeV (dotted line). The upper panel depicts the real parts of the
Dirac vector and scalar potentials, while the middle panel does the same for the imaginary
parts. In the bottom panel, the dot-dashed line shows the sum of the scalar and vector
potential as obtained from the relativistic Hartree calculations as outlined in Sec. 3.
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Figure 5.4 As in Fig. 5.3, but now for the 16O target nucleus.
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5.4 The Glauber Approach

Glauber theory is a multiple-scattering extension of the standard (non-relativistic)
eikonal approximation that relates the ejectile’s distorted wave function to the proton
elastic scattering data through the introduction of a profile function. In the past,
Glauber theory has been highly succesful in describing small-angle proton-nucleus
scattering in the energy domain Tp > 500 MeV [6, 9]. It has been suggested that
Glauber theory may also provide a good starting basis for the description of the
final state interactions in A(e, e′p) reactions at high energies.

5.4.1 Non-relativistic Glauber theory

In deriving the non-relativistic eikonal wave function, one starts from the time-
independent Schrödinger equation

(

− h̄2

2m
~∇2 + V (~r)

)

Ψ(~r) = EΨ(~r) , (5.24)

for a particle with mass m moving in the field of a potential V (~r). As in Sec. 5.2,
one arrives, after some straightforward manipulations, at the following eikonal wave
function [63] :

ΨE
~kf
(~r) = (2π)−3/2exp

[

i~kf · ~r −
i

2kf

∫ z

−∞
dz′U(x, y, z′)

]

, (5.25)

where U(~r) ≡ 2mV (~r)/h̄2 is the reduced potential. The scattering amplitude is
formally written as

fE = −2π2 < Φ~ki |U |Ψ
E
~kf
> , (5.26)

with Φ~ki a plane wave corresponding to the momentum ~ki. Inserting the eikonal
wave of Eq. (5.25) into Eq. (5.26) leaves us with the following expression :

fE = − 1

4π

∫

d~r ei(
~kf−~ki)·~r U(~r) exp

[

− i

2kf

∫ z

−∞
U(x, y, z′)dz′

]

. (5.27)

Since only small-angle scattering is considered here, on the basis of Fig. 5.2 one can
write that

(~kf − ~ki) · ~r ' (~kf − ~ki) ·~b = ~∆ ·~b . (5.28)

The integration over the variable z is straightforward. With the aid of Eq. (5.28)
the eikonal scattering amplitude can be rewritten as

fE =
ikf
2π

∫

d~b exp(i~∆ ·~b)Γ(kf ,~b) (5.29)
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where we defined the profile function

Γ(kf ,~b) = 1− exp[iχ(kf ,~b)] . (5.30)

The eikonal phase-shift function is determined through the following expression :

χ(kf ,~b) = −
1

2kf

∫ +∞

−∞
U(~b, z)dz . (5.31)

In standard Glauber theory the phase shifts are not calculated on the basis
of potentials, but are directly extracted from proton-proton and proton-neutron
scattering data. To cut a long story short, on the basis of Eq. (5.29) one manages
to determine the profile function directly from elastic nucleon scattering data. In
what follows, this procedure will be outlined in far more detail.

The analysis of pp and pn scattering observables in which at most one of the
hadrons is polarized, can be done on the basis of the following general structure for
the scattering amplitude [6]

fpN (~∆) = f cpN (∆) + f spN (∆)~σ · ~n , (N = p, n) , (5.32)

where f cpN and f spN are the central and spin-orbit amplitudes, ~σ is the spin-operator

corresponding with the incident proton, and ~∆ is the transferred momentum. The
small angle elastic scattering of energetic protons is dominated by the central, spin-
independent amplitude. The central amplitudes are usually parametrized in the
form

f cpN (∆) =
kfσ

tot
pN

4π
(εpN + i) exp

(

−
∆2β2pN

2

)

. (5.33)

The parameters in Eq. (5.33) can be taken directly from the nucleon-nucleon scat-
tering experiments. The measured elastic and total cross sections σpp and σpn are
shown in Fig. 5.5. These data points have been collected by various experimental
groups, and are bundled by the Particle Data Group [64]. All experimental results
for pp and pn scattering cross sections used in our calculations were taken from
these references. The slope parameters β2pp and β2pn may be found by analysing
the shape of the differential cross sections assuming that the contribution from the
spin-dependent terms is negligible. At energies Ep ≤ 1 GeV the slope parameters
found directly from experiment and phase-shift analysis differ significantly due to a
large contribution from the spin terms. This feature emerging from the analysis of
the data is illustrated in Fig. 5.6. Results for measured and calculated values for
the slope parameters are shown in Fig. 5.7. At higher energies this difference drops
quickly indicating that spin effects are small in that region. Since values for the
slope parameters below 1 GeV are scarce and not free of ambiguities due to spin
contributions, we have chosen to use a parametrization based on the theoretical
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Figure 5.5 Total and elastic cross sections for pp and pn scattering as a function of the
lab proton momentum. The data were taken from Ref. [64].



5.4. The Glauber Approach 43

Figure 5.6 This picture, that was taken from Ref. [6] shows the absolute contributions
from the spin-dependent terms to the differential pp scattering cross section at small angles.
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Figure 5.7 Slope parameters for pp and pn scattering. The solid and dashed lines are
results of calculations that rely on the experimental data points, for pp and pn scattering,
respectively. These experimental data points have been plotted for the pp scattering reac-
tion. The dotted line is the result of a phase shift analysis of the pn scattering reaction. For
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shape of the elastic nucleon-nucleon cross section. The elastic scattering amplitude
of Eq. (5.33) is directly related to the elastic differential cross section through the
following expression

d2σel
d∆

=
1

k2f
|fel(∆)|2 = σ2tot(1 + ε2)

16π2
exp(−∆2β2) , (5.34)

which is the standard high-energy approximation of the elastic differential cross
section. Integrating this differential cross section leaves us with

σel =

∫

d2σel
d∆

d∆ =
σ2tot(1 + ε2)

16π2β2
. (5.35)

This expression allows to derive the value of the slope parameter from the exper-
imentally known values of the elastic cross section and the ratios of the real to
imaginary part of the forward elastic scattering amplitudes. An example of such
a calculation can be found in Fig. 5.8, that has been taken from Ref. [65]. In this
reference use is made of a widely spread partial-wave analysis of nucleon-nucleon
elastic scattering data by Arndt et al. [66, 67, 68, 69, 70]. We use the experimental
values for εpp and εpn of Ref. [64] however; they can be found in Fig. 5.9.

By analogy with the central amplitude, the spin-orbit amplitude can be parame-
trized as

fspN = γ
kfσ

tot
pN

4π
(εspN + i)exp

(

−
∆2βs2pN

2

)

. (5.36)

Let us now consider the case of central scattering scattering. Inverting Eq. (5.29)
leaves us with

Γ(kf ,~b) =
2π

ikf

∫

d~∆

(2π)2
exp(−i~∆ ·~b)fE(~∆) . (5.37)

Inserting the parametrization of Eq. (5.33) into this expression, gives us then the
following expression for the profile function :

Γ(kf ,~b) =
σtotpN (1− iεpN )

4πβ2pN
exp

(

− b2

2β2pN

)

. (5.38)

In the analysis of the proton-nucleus scattering data, the spinless version of
Glauber theory was very succesfull [5, 71]. As can be inferred from Fig. 5.6, the
spin-dependent contributions to the proton scattering process are relatively weak
for higher kinetic energies. All results that are presented in this work are obtained
within the framework of the spinless version of the Glauber theory.
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Figure 5.8 The pn slope parameter b0 (in our notation, β) calculated with the aid of
Eq. (5.35). The ratio between the imaginary to the real part of the forward elastic amplitude
for pn scattering α (in our notation, ε) that was used in Eq. (5.35) is also depicted. These
plots were taken from Ref. [65].



5.4. The Glauber Approach 47

-1

-0.5

0

0.5

1

1.5

2

2.5

10
-1

1 10
Proton momentum [GeV/c]

ε pp

Proton momentum [GeV/c]

ε pn

-1

-0.5

0

0.5

1

1.5

10
-1

1 10
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5.4.2 Connection between the Profile Function and the NN Poten-
tial

In this section we sketch a procedure which allows to construct the nucleon-nucleon
potential directly from the profile function of Eq. (5.38), which in itself was derived
from the scattering amplitudes [14, 72]. We assume that the scattering process is
dominated by the central, spin-independent amplitude.

From Eq. (5.30) we have that

χ(kf ,~b) =
1

ı
log(1− Γ(kf ,~b)) , (5.39)

and from Eq. (5.31) that

χ(kf ,~b) = −
1

2kf

∫ +∞

−∞
U(~b, z)dz = − 1

vf

∫ +∞

−∞
VNN (~b, z)dz , (5.40)

where VNN is the nucleon-nucleon potential and vf denotes the proton’s velocity.
By using the Abel integration equation [73] to invert Eq. (5.40), we obtain

VNN (r) =
vf
π

1

r

d

dr

∫ ∞

r
bdb

χ(b)√
b2 − r2

=
vf
π

1

r

d

dr

∫ ∞

r
bdb

log(1− Γ(b))

ı
√
b2 − r2

=
vf
π

1

r

d

dr

∫ ∞

0
dy

1

ı
log(1− Γ(y2 + r2))

=
vf

ıπβ2pN

∫ ∞

0
dy

Γ(0)e−(y
2+r2)/2β2

pN

1− Γ(0)e−(y
2+r2)/2β2

pN

, (5.41)

where y =
√
b2 − r2, and where we have introduced the notation

Γ(0) =
σtotpN (1− iεpN )

4πβ2pN
. (5.42)

A word of caution is in order when trying to extract potentials directly from
the scattering observables. In Fig. 5.10 we have plotted the proton-proton potential
calculated with the aid of Eq. (5.41) for a 2 GeV proton-proton collision. We have
assumed a value of 47.5 mb for the total pp cross section and a value of −0.10 for
the ratio of the real to imaginary part of the forward elastic scattering amplitude.
The three calculations present results for three different slope parameters. As can be
seen, relatively small changes in the slope parameters induce considerable shifts in
the obtained potentials. This exercise also illustrates the role of the slope parameter
as a measure for the range in which the nucleon-nucleon interaction takes place.
The smaller the slope parameter the longer the range in which the nucleon-nucleon
interaction takes place. This concurs with the fact that the slope parameter increases
with increasing energies, and, hence, smaller distance scales are probed.



5.4. The Glauber Approach 49

r [fm]

V
pp

 [M
eV

]

0.23 fm2

0.28 fm2

0.18 fm2

Real

Imaginary

-1000

-750

-500

-250

0

250

500

750

1000

1250

0 0.5 1 1.5 2 2.5 3

Figure 5.10 Proton-proton potential as a function of the radius r for the case of kf = 2
GeV/c, σpptot = 47.5 mb and εpp = - 0.1. The slope parameters were varied about the central
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Figure 5.11 Schematic representation of the multiple-scattering of one proton with the
rest of the nucleons in the nucleus.

5.4.3 Glauber Multiple Scattering Theory

We now take things a step further by considering the scattering of a fast particle
A (“ejected proton”) by a composite target B (“nucleus”) containing N scatterers
(“remaining nucleons”), as in Fig. 5.11. We assume that the motion of the target
particles is slow by comparison with the relative motion of A and B (i.e. |~k| À |~k1|,
|~k2|, ...). Moreover, we suppose that the incident particle interacts with the target
scatterers by means of two-body spin-independent interactions. Exchange effects
between the incident and target particles are also neglected. The Glauber scattering
amplitude for a direct collision leading from an initial target state |i> to a final state
|f > is then given by

fMulti(
~∆) =

ikf
2π

∫

d~bei
~∆·~b < f |1− eiχtot(~b,~b1,...~bN )|i > . (5.43)

The total Glauber phase shift function

χtot(~b,~b1, . . .~bN ) =
N
∑

i=1

χi(~b−~bi) , (5.44)

is the sum of the phase shifts χi contributed by each of the target scatterers as
the wave, representing the incident particle, progresses through the target system.
This property of so-called phase-shift additivity is a direct consequence of the one-
dimensional nature of the relative motion, together with the neglect of three-body
forces, target scatterer motion and longitudinal momentum transfer. Furthermore,
it is important to note that the expression of Eq. (5.43) only applies to collisions for
which the energy transfer is small compared to the incident particle energy. This is
true for elastic collisions and for mildly inelastic ones in which the target is excited.
It is not true for deep inelastic collisions in which the nature of the incident or target
particles is modified or the number of particles is altered during collision.

Following the work of Glauber [5], we define the quantity

Γtot(~b,~b1, . . .~bN ) = 1− exp[iχtot(~b,~b1, . . .~bN )] , (5.45)
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so that Eq. (5.43) becomes

fMulti(
~∆) =

ikf
2π

∫

d~bei
~∆·~b < f |Γtot(~b,~b1, . . .~bN |i > . (5.46)

We introduce the functions

Γi(~b−~bi) = 1− exp[iχi(~b−~bi)] , (5.47)

and by combining Eqs. (5.44), (5.45) and (5.47), we can write that

Γtot = 1−
N
∏

i=1

[1− Γi(~b−~bi)] , (5.48)

or

Γtot =
N
∑

i=1

Γi −
∑

i6=j

ΓiΓj + . . .+ (−1)N−1
N
∏

i=1

Γi . (5.49)

This last equation, when substituted into Eq. (5.46), leads directly to an interpreta-
tion of the collision process in terms of a multiple scattering expansion. The terms
linear in Γi on the right-hand side of Eq. (5.49) account for the single scattering,
whereas the next terms provide double, triple,... scattering contributions. As is
mostly done in many-body calculations, all Glauber calculations reported in this
work are performed in the approximation

Γtot ≈
N
∑

i=1

Γi . (5.50)

which amounts to retaining all single rescattering processes in the calculation.
In calculating the transition strength in the Glauber approach one finds himself

confronted with matrix elements of the type

< A− 1|
A−1
∑

j=1

Γj(~b−~bj)θ(z − zj)|A− 1 > , (5.51)

where θ(z − zj) expresses the fact that the proton only interacts (collides) with the
other nucleons if they are localised in its forward propagation path. The above
expression easily reduces to the following sum :

∫

d~r1ρ1(~r1)Γ1(~b−~b1)θ(z − z1) +
∫

d~r2ρ2(~r2)Γ2(~b−~b2)θ(z − z2)

+...+

∫

d~rA−1ρA−1(~rA−1)ΓA−1(~b−~bA−1)θ(z − zA−1) , (5.52)
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where ρi denotes the density distribution of the nucleon with quantumnumbers i.
One thus arrives at an expression where the profile functions are folded with the
nucleonic densities.

In deriving Eq. (5.52) we have supposed an independent-particle behaviour. A
more realistic description needs the introduction of nucleon-nucleon correlations.
This can now simply be adopted by the substitution

ρi(~ri)→ ρi(~ri)g(~r − ~ri) , (5.53)

where g(~r − ~ri) is the (central) correlation function. The important role played by
these short-range correlations has been extensively discussed in literature [8, 74, 75,
76, 77]. We will address these correlations further in Sec. 9, when discussing nuclear
transparencies, as they appear to play a significant role there. We use the correlation
function proposed by Gearheart and Dickhoff [78, 79] as plotted in Fig. 5.12. This
choice is based on the fact that this correlation function was shown to produce a
favorable agreement with 12C(e, e′p) data [80]. Also, in comparison with other model
predictions for the central correlation function, the one obtained by Gearhart and
Dickhoff can be classified between the categories of “hard” (with a core at short
internucleonic distances) and “soft” (characterized by a finite probability to observe
nucleon pairs at very short internucleonic distances) correlations.

5.4.4 Relativistic Extension of the Glauber Approximation

In this section a relativistic generalization of the non-relativistic Glauber framework
will be outlined. We start from the scattering amplitude [57]

Fss′(~ki,~kf , E) = −M
2π

< Φ~ki,s|(βVs + Vv)|ψ(+)~kf ,s′
> , (5.54)

with a relativistic scattered wave of the type

ψ
(+)
~kf ,s′

=

√

E +M

2M

[

1
1

E+M+Vs−Vv
~σ · ~p

]

eı
~kf ·~reıS(~r)χ 1

2
ms′

, (5.55)

and the free Dirac solution

Φ~ki,s =

√

E +M

2M

[

1
1

E+M ~σ · ~ki

]

eı
~ki·~rχ 1

2
ms

. (5.56)

After some straightforward algebraic manipulations one obtains

F (~ki,~kf , E) = −iK
∫

d~b

2π
ei~q·

~b(eiχ(
~b) − 1) , (5.57)

where

Fss′(~ki,~kf , E) =< χs′ |F (~ki,~kf , E)|χs > . (5.58)
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Figure 5.12 The Gearheart-Dickoff correlation function as a function of the relative inter-
nucleonic range r.
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The phase shift function is given by

χ(~b) = ı
M

K

∫ +∞

−∞
dz [Vc(~b, z) + Vso(~b, z)[~σ · (~b× ~K)]] . (5.59)

In what follows only the spin-independent parts of the scattering amplitude will be
retained. In a completely analoguous manner as outlined in the previous sections,
one can generalize and perform a multiple-scattering expansion. The profile func-
tions remain the same as in Sec. 5.4.3, but we are now working with relativistic
plane waves and we can make use of relativistic current operators when evaluating
the interaction matrix elements. All Glauber calculations presented in this work are
the result of this relativistic Glauber scheme.

5.5 Higher Order Eikonal Corrections

In this section we want to show that the wave function derived in Sec. 5.2 is in
fact the first-order term in a semiclassical expansion of the Dirac equation under a
specific cone-like geometry [81, 82, 83, 84].

The derivation starts from the time-dependent Dirac equation for a relativistic
nucleon with energy E =

√
k2 +M2 in the presence of local scalar and vector

potentials S and Vµ, respectively :

[γµ(pµ − Vµ)− (M + S)] Ψ = 0 . (5.60)

Multiplying this equation with the operator [γν(pν − Vν) + (M + S)] leaves us with
a second order equation for the bi-spinor Ψ :

[

(i∂µ − Vµ)2 − (M + S)2 + σµν(∂νVµ)− iγµ(∂µS)
]

Ψ = 0 . (5.61)

Apart from the divergencies in the potentials S and Vµ, this equation corresponds
to the Klein-Gordon equation for a particle with mass M + S in an external field
Vµ. At high energies, one searches for a solution of the following form :

Ψ = eiχf , (5.62)

where f now contains all of the spinor information. Insertion of Eq. (5.62) into
Eq. (5.61) then yields

[

(∂µχ)(∂
µχ) + 2V µ(∂µχ) + V µVµ − (M + S)2

]

eiχf

−i [(∂µ∂µχ) + (∂µV
µ)] eiχf − 2i [(∂µχ) + V µ] (∂µf)e

iχ

+σµν(∂νVµ)e
iχf − iγµ(∂µS)eiχf

= eiχ
(

∂2

∂t2
−∇2

)

f . (5.63)
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Solving this equation can be reduced to finding the solutions to the following set of
equations :

[(∂µχ) + Vµ]
2 − (M + S)2 = 0 , (5.64)

[∂µ(∂
µχ+ V µ)] f + 2 [∂µχ+ V µ] ∂µf + iσµν(∂νVµ)f

+γµ(∂µS)f = i

(

∂2

∂t2
−∇2

)

f . (5.65)

One could question a representation of the wavefunction as in Eq. (5.62). It can
be shown however that Eq. (5.64) is the relativistic Hamilton-Jacobi equation for
the classical action χ [82]. Eq. (5.65) then determines the behaviour of the wave
packet and the spin of the nucleon in the external scalar and vector fields. In the
semiclassical approach one neglects the terms proportional to h̄. The wave packets
themselves then behave similarly to particles moving along classical trajectories
corresponding to the action χ.

We will only consider local, static potentials, and, on grounds of spherical sym-
metry, we will assume that only the time-component of Vµ is non-zero. Since we
are only interested in time-independent solutions, the set of Eqs. (5.64) - (5.65)
simplifies to the following one :

(~∇χ)2 = (E − V )2 − (M + S)2 , (5.66)

− (∇2χ)f − 2~∇χ · ~∇f + γi(γ0∂iV + ∂iS)f = 0 . (5.67)

Thus far we have followed the approach of Akhiezer et al. [82]. Starting from
Eqs. (5.64) - (5.65), or, equivalently, from (5.66) - (5.67), they calculate the eikonal
wave function by subsequently distorting a plane wave. However, since we know
the correct relation between the upper and lower component of the bi-spinor, we
choose to split the Eq. (5.67) in two parts : one for the upper and one for the lower
component. Solution of the equation for the upper component then gives us imme-
diately the solution for the lower component. In that way we should produce a more
accurate description of the eikonal wave.

This procedure simplifies the set of equations to be solved to following one :
[

1
1

E+M+S(r)−V (r)~σ · ~p

]

eiχ(~r)g(~r)χ(1/2)ms
, (5.68)

(~∇χ)2 = (E − V )2 − (M + S)2 , (5.69)

1

E +M + S − V ~σ ·
~∇(S − V )

[

~σ · ~∇χg − i~σ · ~∇g
]

(5.70)
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− (∇2χ)g − 2~∇ · ~∇g = 0 . (5.71)

To solve this set of equations, we introduce the following expansions :

χ(~r) = ~k · ~r + χ0(~r) + χ1(~r) + . . . , (5.72)

g(~r) = g0(~r) + g1(~r) + g2(~r) + . . . , (5.73)

where χn(~r), gn(~r) ∝ k−n. The lowest, first and second-order solutions read

χ0 = −
∫ z

−∞
V dz′ , (5.74)

g0 = 1 (5.75)

χ1 = − 1

2E

∫ z

−∞
[S2 − V 2 + 2MS + (~∇χ0)2]dz′ (5.76)

g1 = − 1

2E

∫ z

−∞
[∇2χ0 − ~σ · ~∇(S − V )σz]dz

′ (5.77)

χ2 = − 1

2E

∫ z

−∞
[2~∇χ0 · ~∇χ1 −

M2

E
∇zχ0]dz′ (5.78)

g2 = − 1

2E

∫ z

−∞
[(∇2χ0)g1 + (∇2χ1)g0 + 2~∇χ0 · ~∇g1

− 1

E
~σ · ~∇(S − V ){σzEg1 + ~σ · ~∇χ0g0}

+
M + S − V

E2
~σ · ~∇(S − V )σzEg0]dz

′ . (5.79)



Chapter 6

Final State Interactions and the
Eikonal Approximation

In the previous chapter we have discussed various methods to treat the final state
interactions in exclusive A(e, e′p) reactions. In this chapter all of these different
approximations will be put to a stringent test. This will be done by comparing cal-
culated A(e, e′p) observables with exclusive 16O(~e, e′~p) and 12C(~e, e′~p) data that have
recently been collected at Jefferson Lab (JLAB) and the Stanford Linear Accelerator
(SLAC) facility.

6.1 16O(e, e′p)15N

We start our (e, e′p) investigations within the relativistic eikonal approximation for
the kinematics of an 16O(e, e′p) experiment that was recently performed at Jefferson
Lab (E89-003) [15]. The main objectives of this experiment were to determine
[15, 85]

• the limits of the validity of the single-particle model of valence proton knockout

• the effects of relativity and spinor distortion on valence proton knockout using
the diffractive character of the ALT asymmetry (with the term “diffractive”
we refer to the behaviour of the experimental asymmetry at higher missing
momenta)

• the bound state wave function and spectroscopic factors for knockout from the
valence shells

• the longitudinal component of the (e, e′p) cross section at higher missing en-
ergies (through the RTL response function).

57
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In this experiment, the separated 16O(e, e′p) structure functions and differential
cross section were measured at Q2 = 0.8 (GeV/c)2 and ω = 0.439 GeV for missing
(or, initial) proton momenta pm = |~kf − ~q| below 355 MeV/c. The variation in
missing momentum was achieved by varying the detection angle of the ejected pro-
ton with respect to the direction of the momentum transfer (“quasi-perpendicular
kinematics”). The measured cross sections for knockout from the 1p1/2 and 1p3/2
levels are displayed in Fig. 6.1 along with the predictions of our calculations.

The major objective of this chapter is to compare the various schemes for the
description of the final state interactions. To that purpose, we will compare the
A(e, e′p) predictions for the various frameworks at specific kinematics. More in par-
ticular, we will present results in the Relativistic Plane Wave Impulse Approximation
(RPWIA) and three different versions of the eikonal method :

1. a Consistent Eikonal Approximation (CEA) in which the eikonal phase is cal-
culated from the relativistic scalar-vector potential that determines also the
bound states

2. an Optical Model Eikonal Approximation (OMEA) in which the eikonal phase
is calculated from the optical potentials as they are derived from global fits to
elastic proton-nucleus data

3. the Relativistic Multiple-Scattering Glauber Approximation (RMSGA) as it
was outlined in Sec. 5.4

All results presented in this chapter were obtained with the standard dipole form
for the electromagnetic form factor. In Fig. 6.1 16O(e, e′p) results are displayed for
all the different models that were sketched above. The spectroscopic factors were
determined by performing a χ2 fit to the complete data set and are summarized in
Table 6.1. Inspecting this table, it becomes clear that in utilizing the CC1 form of
the hadron-photon vertex one reaches a far better description of the data than what
is obtained with the CC2 version. The spectroscopic factors, on the other hand, do
not substantially depend on the choice with respect to the photon-hadron vertex.

6.1.1 The Self-Consistent Approach

Fig. 6.1 clearly illustrates that the CEA predicts cross sections that do not follow
the experimentally determined trend in the pm dependence. Nevertheless, we will
discuss the CEA results in some detail, as they do provide insight in the general
trends set by the eikonal approach to calculating nucleon scattering states [87].

At low missing momenta, the eikonal results provide a fair description of the pm
dependence of the data. As a comparison, the results of a relativistic plane wave
calculation in the impulse approximation (RPWIA) are also displayed. Through
comparing the plane wave and the eikonal calculations, thereby keeping all other
ingredients of the calculations identical, one can evaluate how the eikonal method
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Figure 6.1 Measured 16O(e, e′p) cross sections compared to relativistic eikonal, Glauber
and RPWIA calculations at ε = 2.4 GeV, q = 1 GeV/c, and ω = 0.439 GeV in quasiper-
pendicular kinematics. The calculations use the current operator CC1. The data are taken
from Ref. [15].
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CC1 operator

RPWIA CEA OMEA RMSGA Udias Kelly

1p3/2 0.59 (0.56) 0.53 (1.19) 0.96 (1.78) 0.96 (0.75) 0.71 0.67

1p1/2 0.53 (0.48) 0.50 (0.58) 0.79 (0.60) 0.80 (0.38) 0.73 0.72

CC2 operator

1p3/2 0.61 (1.59) 0.62 (2.80) 1.01 (3.48) 1.01 (2.19)

1p1/2 0.53 (0.56) 0.57 (1.09) 0.82 (1.04) 0.82 (0.95)

Table 6.1 The spectroscopic factors for the 16O(e, e′p) reaction of Ref. [15], as obtained
with a χ2 procedure. The reduced χ2 (i.e. the χ2 per degree of freedom) is given between
brackets. The spectroscopic factors obtained by Udias et al. in Ref. [86], and by Kelly in
Ref. [45] are also given by comparison.

deals with final state interactions (FSI’s). In the eikonal calculations, the dips of the
RPWIA calculations are filled in, and, at low missing momenta the RPWIA cross
sections are reduced. These two features reflect nothing but the usual impact of the
final state interactions on the A(e, e′p) angular cross sections. The limitations of the
consistent eikonal calculations (q À ki) are immediately visible at higher missing
momenta (pm ≥ 250 MeV/c). Here, the eikonal cross sections largely overshoot both
the RPWIA results and the data and should by no means be considered realistic. It
is worth remarking that the data closely follow the trend set by the RPWIA curves.
As a matter of fact, whereas the eikonal calculations predict huge effects from final
state interactions at large transverse missing momenta, the data seem to suggest
rather the opposite effect.

One may wonder whether the observed behaviour of the consistent eikonal results
at higher missing momenta in Fig. 6.1 is a mere consequence of the small-angle
approximation contained in Eq. (5.13), or whether the adopted model assumptions
for computing the scattering states is also (partly) at the origin of this pathological
behaviour. To address this question, we have performed calculations for various
fixed recoil angles θ defined as

cos θ =
~pm · ~q
|~pm||~q|

. (6.1)

The results are displayed in terms of the reduced cross section which is defined in
the standard fashion as the differential cross section, divided by a kinematical factor
times the “CC1” off-shell electron-nucleon cross section σcc1eN of Ref. [39]. This cross
section is defined as

σcc1eN = σMott

[

Q4

q4
wC +

(

Q2

2q2
+ tan2

θe
2

)

wT
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Figure 6.2 The reduced cross section for the 16O(e, e′p)15N(1p−1
3/2) reaction versus missing

momentum at three values of the recoil angle θ. A fixed outgoing proton momentum of
|~kf | = 1 GeV/c was considered. The solid line shows the consistent eikonal calculation,
while the dashed one shows RPWIA results.
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+
Q2

q2

(

Q2

q2
+ tan2

θe
2

)1/2

wI cosφ+

(

Q2

q2
cos2 φ+ tan2

θe
2

)

wS



 (6.2)

where the conventions of Sec. 2 were adopted. The structure functions are explicitly
given by

wC =
1

4EfE

[

(E + Ef )
2(F 21 +

Q
2

4m2
κ2F 22 )− q2(F1 + κF2)

2

]

,

wT =
Q
2

2EEf
(F1 + κF2)

2 ,

wS =
k2f sin

2 θ

EEf
(F 21 +

Q
2

4M2
κ2F 22 ) ,

wI = −kf sin θ
EEf

(E + Ef )(F
2
1 +

Q
2

4M2
κ2F 22 ) , (6.3)

where E = ((~kf − ~q)2 +M2)1/2 and Q
2
= q2 − ω2, with ω = Ef − E.

For the results of Fig. 6.2 we considered in-plane kinematics at a fixed value of
the outgoing proton momentum [kf = 1 GeV/c] and an initial electron energy of 2.4
GeV. The variation in missing momentum was achieved by changing the momentum
transfer q. For recoil angles θ = 0◦ (“parallel kinematics”) the eikonal calculations
do not exhibit an unrealistic behaviour up to pm = 0.5 GeV/c, which is the high-
est momentum considered here. With increasing recoil angles, and consequently,
growing “transverse” components in the missing momenta the unrealistic behaviour
of the eikonal results becomes manifest. Accordingly, the accuracy of the eikonal
method based on the small-angle approximation of Eq. (5.13) can only be guaran-
teed for proton knockout in a small cone about the momentum transfer. A similar
quantitative behaviour as a function of the recoil angle to what is observed in Fig. 6.2
was reported in Ref. [7] for d(e, e′p)n cross sections determined in a Glauber frame-
work. We conclude this discussion with remarking that the eikonal method does
not exclude situations with high initial (or, missing) momenta, it only requires that
the perpendicular component of the ejectile’s momentum ~kf is sufficiently small. It
speaks for itself that such conditions are best fulfilled as one approaches parallel
kinematics.

At first sight, this observation puts serious constraints on the applicability of the
Glauber method, which is based on the eikonal approximation, for modelling the final
state interactions in high-energy (e, e′p) reactions from nuclei. However, as we noted
before, this consistent framework does use purely real scalar and vector potentials.
More realistic scattering potentials demand an imaginary part that accounts for the
inelastic channels that are open during the reaction process. The Glauber approach
effectively includes these inelastic channels and on these grounds one may expect
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Figure 6.3 The differential cross section for the 12C(e, e′p)11B(1p−1
3/2) reaction versus miss-

ing momentum at six different values for Q2 (in (GeV/c)2). Quasielastic conditions and
perpendicular kinematics were considered.

that its range of applicability is wider than what is observed here. This matter will
be discussed in greater detail in Sec. 6.1.2.

With the eye on defining the region of validity for the eikonal approximation
in the consistent approach, we have studied differential cross sections for vari-
ous Q2. In Fig. 6.3, we display the computed differential cross section for the
12C(e, e′p)11B(1p−13/2) process against the missing momentum for Q2 varying between

1 and 20 (GeV/c)2. Hereby, quasielastic conditions were imposed. The arrow indi-
cates the missing momentum where the slope of the eikonal differential cross section
starts deviating from the trend set by the RPWIA cross section. In the light of the
conclusions drawn from the comparison between data and the eikonal curves in Fig.
6.1, the eikonal results should be regarded with care beyond this missing momen-
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tum. Furthermore, it is clear that the change in the slope of the angular cross section
becomes more and more pronounced as Q2 increases. It is apparent from Fig. 6.3
that the eikonal differential cross section changes slope at about pm = 250 MeV/c
for all values of Q2 considered. As a consequence, the momentum of the ejected nu-
cleon varies quite dramatically as one moves up in Q2. The uniform behaviour of all
curves contained in Fig. 6.3 allows one to write down a relation between the trans-
ferred momentum ~q and the polar scattering angle θ : |~q| θ ≤ 250 MeV/c rad. This
simple relation can serve as a conservative guideline to determine the opening angle
of the cone in which the outgoing proton momentum has to reside to ascertain that
the eikonal approximation produces realistic results. This limitation of the eikonal
method can also be inferred from the results contained in Refs. [12, 88]. Indeed, in
Figs. 3 and 4 of Ref. [12] one can confirm that the above relation between |~q| and θ
defines the missing momentum at which a sudden change in the pm dependence of
the calculated cross sections is observed. The above relation can be understood as
follows. In quasi-perpendicular kinematics and quasielastic conditions, the missing
momentum roughly equals the transverse momentum of the ejected nucleon. With
increasing momentum transfer, the longitudinal momentum of the escaping nucleon
increases correspondingly while its transverse momentum has to stay smaller than
this emperical value of 250 MeV/c. Hence, the sine of the angle between the trans-
ferred momentum and the ejectile’s momentum has to decrease. Since we are dealing
with small angles, sin(θ) can be approximated by θ. The opening angle of the cone
in which the eikonal approximation is valid, can be inferred to be independent of Q2

in the Lorentz frame where the ejected nucleon is at rest. When transforming back
to the lab frame, lateral dimensions become dilated, and, thus, angles contracted.

6.1.2 The Eikonal Approximation with Optical Potentials and the
Glauber Multiple Scattering Extension

The selfconsistent results that were presented in the previous section made clear
that inelastic mechanisms in the trajectory of the ejected particle affect both the
magnitude and the pm dependence of the A(e, e′p) cross sections. Consequently, the
CEA cannot be used as a model to extract spectroscopic factors in a reliable manner.
It is a common practice in modelling A(e, e′p) reactions to use optical potentials. It
is widely accepted that the errors induced by violating orthogonality and unitarity
constraints are of minor importance than the error induced by completely leaving
out the inelastic process in the final state.

We now concentrate on eikonal calculations that make use of optical potentials to
determine the eikonal phase ıS(~b, z). In Fig. 6.1 the RPWIA and consistent eikonal
calculations are compared to the eikonal calculations that make use of the complex
potentials of Ref. [56]. The spectroscopic factors were taken from the results of
Table 6.1.

In general the effect of final state interactions is far weaker compared to the
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CEA when using complex optical potentials. This behaviour reflects itself in a
number of things. The dips in the RPWIA cross sections, for example, are much
less filled in compared to the consistent approach, while at high pm the cross section
falls much steeper. Another very interesting feature is the enhancement of the
spectroscopic factors. These values have to be compared with the values obtained
by other calculations performed by Udias et al. [86] and Kelly [45], and that were
published in Ref. [15]. They can also be found in Table 6.1. These two calculations
made use of the RDWIA approach and resulted in smaller spectroscopic factors. One
possible explanation, apart from the different solution of the Dirac equation, is that
we have not included contributions stemming from the 1d5/2 and 2s1/2 particle levels,
which influence the experimental 1p3/2 particle strength. In Ref. [89] the spectral
function of the 16O(e, e′p)15N was measured in quasielastic parallel kinematics, and
it was found that a 28 % reduction of the valence 1p shell strength was caused by
the 2s1d shell.

A striking feature of Fig. 6.1 is that the usage of optical potentials extends the
applicability of the eikonal method to larger values of the proton angle. For the range
considered here, the eikonal results using optical potentials provide a fair description
of the data. The available amount of exclusive A(e, e′p) data at high Q2 and pm is
rather modest. Nonetheless, on the basis of our model calculations it appears safe
to state that after implementing inelastic mechanisms in the description of the final
state, the applicability of the eikonal method gets extended beyond the pm ≤ 250
MeV/c limit which was observed in the CEA approach. This is also a justification of
the Glauber method, which is basically a multiple-scattering extension of the eikonal
approximation with complex scattering potentials.

As can be seen in Table 6.1 the Glauber and eikonal optical potential approach
essentially give the same spectroscopic factors. The agreement between the eikonal
and the Glauber calculations at low missing momenta is almost perfect; in the range
-200 MeV/c ≤ pm ≤ 200 MeV/c, the differences are negligible, apart from the region
of parallel kinematics. For vanishing missing momenta the Glauber calculations fol-
low more closely the trend set by the RPWIA results. This drop at low missing
momenta is more pronounced for the 1p1/2 level than for the deeper lying 1p3/2
level, which proves that the longer the way that the struck proton has to travel to
reach the surface of the nucleus, the more it gets distorted on its way out of the nu-
cleus. At higher missing momenta the Glauber results gradually shift away from the
eikonal ones in the direction of the data, thereby producing an even more accurate
description of the experimental results than the eikonal results do. The trend set by
the RPWIA curves is followed more closely, but the tendency to underestimate the
data is still present, albeit very weakly.

The difference between the optical model and the Glauber predictions for the
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Figure 6.4 Measured RL+TT , RTL and RT structure functions, and the corresponding
eikonal (OMEA) and Glauber (RMSGA) calculations. The data are taken from Ref. [15].

differential cross sections is rather modest. We will now turn to the different un-
polarized structure functions of the JLAB experiment of Ref. [15]. In Fig. 6.4, the
response functions RL+TT , RTL and RT are presented as a function of missing mo-
mentum for knockout from the p-shell levels. Since the cross sections were measured
in perpendicular kinematics, it was not possible to isolate the longitudinal response
function RL. Instead, the combination RL+TT = RL + vTT

vL
RTT was extracted. We

note that the conventions used for defining the response functions by the authors of
Ref. [15] is somewhat different from ours. This difference is kinematical from origin
and independent from the missing momentum pm. We have applied the appropriate
scaling factor (∼ 0.41) to our calculations in Fig. 6.4.

We start by making a few general observations that apply to both methods.
As can be seen in Fig. 6.4, both calculations are able to reproduce the necessary
strength for the longitudinal response function; the agreement with the data is rather
good. We note that the contribution of the RTT structure function is small (< 10 %).
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Figure 6.5 Diagram of the (e, e′p) process showing the electron scattering plane, the reac-
tion plane and the basis in which the ejectile’s polarization is determined.

Opposed to the situation for the longitudinal response function is the contribution of
the purely transverse component of the current matrix element; an underestimation
of 10 - 15 % is observed for both calculations. While the optical potential model
and the Glauber method give similar results for the L and T response functions,
significant differences occur for the TL response function. Apparently, the small
differences between the differential cross sections of the two methods can primarily
be attributed to the RTL response function. It is still not possible however to favour
one method over the other by looking at this TL response function. For the 1p3/2
knockout, the overall agreement with the experiment is somewhat better for the
Glauber calculations. For 1p1/2 knockout, on the other hand, the optical-potential
approach gives a somewhat better description of the data.

We should mention here that the contribution from the TL response function
has been the subject of much debate the few last years, as it has proven to be very
sensitive to slight changes in the theoretical modelling of the reaction process [86,
90, 91, 92]. Slight changes in the applied current operator, relativistic enhancements
and different approaches to the construction of the scattering wave function, infer
considerable effects in the mixed TL channel, while the other channels are by far not
affected in such a degree. Of all structure functions the RTL exhibits the greatest
sensitivity to the different ingredients that enter the model calculations.

Specific information about the reaction dynamics can be obtained when per-
forming spin polarimetry on the ejected proton. In what follows, the polarization of
the escaping proton is expressed in the so-called barycentric reference frame that is
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defined by the following set of unit vectors and is shown in Fig. 6.5

~l =
~kf

|~kf |

~n =
~q × ~kf
|~q × ~kf |

~t = ~n×~l (6.4)

Note that for coplanar kinematics ~n determines the y-axis of the reference frame.
The escaping nucleon polarization observables can be determined through measuring
ratios. The induced polarization can be addressed with unpolarized electrons (i =
n,l,t)

Pi =
σ(siN =↑)− σ(siN =↓)
σ(siN =↑) + σ(siN =↓) , (6.5)

whereas the polarization transfer also requires polarized electron beams (i = n,l,t)

P ′
i =

[σ+(siN =↑)− σ−(siN =↑)]− [σ+(siN =↓)− σ−(siN =↓)]
[σ+(siN =↑) + σ−(siN =↑)] + [σ+(siN =↓)− σ−(siN =↓)] , (6.6)

where siN = ↑ (↓) denotes that the ejected hadron is spin-polarized in the positive
(negative) i direction (i = n,l,t) and where the plus (minus) sign in σ± denotes the
helicity h = ±1 of the electron impinging on the target nucleus. σ±(siN ) is then
a shorthand notation for the differential cross section for an electrodisintegration
process initiated by an electron with helicity h = ±1 and for which the ejectile is
detected with a spin polarization characterized by siN . One distinct advantage of the
polarization observables is that, unlike the response functions, they are independent
of the applied spectroscopic factors, which cancel out in a natural way.

In Fig. 6.6, we have plotted the calculations for the P ′
l and P ′

t observables for
the 16O(~e, e′~p) experiment of Ref. [15]. We note that the P ′

n is identically zero in
the kinematics considered here. These polarization observables are expected to be
rather insensitive to final-state interactions. This is confirmed by our calculations.
For the P ′

l observable the Glauber predictions are almost indistinguisable from the
RPWIA ones. The OMEA prediction follows somewhat more closely the trends
set by the data. At contrast, both methods predict equivalent trends for the P ′

t

observable, and there’s no real preferred calculation. Both methods follow the trend
set by the RPWIA curve, reflecting the fact that the P ′

t is indeed rather insensitive
to the effects of final state interactions.

The polarization observables can be combined to investigate nucleon form factors.
For the free nucleon, the polarization transfer can be written in terms of the form
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Figure 6.6 Polarization transfers P ′
l and P ′

t for the 16O(e, e′p) experiment of Ref. [15].
Calculations for RPWIA (dashed line), eikonal (solid line) and Glauber (dotted line) ap-
proximations are plotted. The data are from Ref. [93].
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factors as [94, 95]

I0P
′
l =

ε+ ε′

Mp

√

τ(1 + τ)G2M tan2(θe/2) , (6.7)

I0P
′
t = −2

√

τ(1 + τ)GMGE tan(θe/2) , (6.8)

I0 = G2E + τG2M [1 + 2(1 + τ) tan2(θe/2)] , (6.9)

τ = Q2/4M2
p (6.10)

The ratio of the transferred polarizations is then

P ′
t

P ′
l

=
−2Mp

(ε+ ε′) tan(θ/2)

GE

GM
(6.11)

For a free proton target, the ratio of the polarizations can be used to determine the
ratio of the form factors. This ratio is independent of beam polarization provided
it is not zero of course. Pioneering work on this terrain was done in the early 90’s
at SLAC [96, 97]. For nuclear targets the polarization transfer also depends on the
nuclear wave functions. In addition they are affected by the final state interactions
of the outgoing proton, off-shell effects and relativity. In Fig. 6.7 the ratios of the
polarization observables of Fig. 6.6 are compared to the data.

We have already mentioned the pronounced sensitivity of the RTL response func-
tion to the different ingredients that enter into the model calculations. A quantity
that reflects this sensitivity is the left-right asymmetry ALT

ALT =
σ(φ = 0◦)− σ(φ = 180◦)

σ(φ = 0◦) + σ(φ = 180◦)
=

vTLRTL
vLRL + vTRT + vTTRTT

. (6.12)

Also this ratio is independent of the spectroscopic factors. In Fig. 6.8 we have
plotted the left-right asymmetry for both 1p1/2 and 1p3/2 knockout from

16O in the
kinematics of Ref. [15]. When discussing the shape of the differential cross sections it
was already stressed that the predicted asymmetry between the positive and negative
pm side was too large. This reflects itself in the calculations predicting too large a
ALT value. Note that above pm ≈ 250 MeV/c the ALT exhibits a strong sensitivity
to FSI effects. Both the Glauber and optical-model approach, albeit showing very
different pm dependences, reproduce the trend set by the data at high pm. Note
that the inclusion of FSI effects is essential for an accurate description of the data
points at pm = 275 and 350 MeV/c.

6.2 12C(e, e′p)11B

We also compare our predictions with data from a recent 12C(e, e′p) SLAC exper-
iment (NE18 experiment) at Q2 = 1.1 (GeV/c)2 [98, 99]. The differential cross
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Figure 6.7 The ratio of the polarization observables P ′
t/P

′
l for the

16O(~e, e′~p) experiment
of Ref. [15] as a function of the missing momentum for ε = 2.4 GeV, q = 1 GeV/c, and
ω = 0.439 GeV, in quasiperpendicular kinematics. The curves refer to predictions obtained
within the RPWIA (dashed), the OMEA (solid) and RMSGA (dotted) framework. The
data are taken from Ref. [93].
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section was measured in quasi-perpendicular kinematics for ε = 2.015 GeV, q = 1.2
GeV/c, and ω = 0.6 GeV.

The same spectroscopic factors for the 1p3/2 level were adopted as in Table 6.1,
while the factor was kept unity for the deeper lying 1s1/2 level. It is very apparent
from Fig. 6.9 that a proton ejected from the 1s1/2 level undergoes stronger final state
distortion than those that are ejected from the 1p3/2 level. This reflects the fact that
the deeper lying 1s1/2 nucleons encounter more obstacles in their way to reach the
surface. However, the eikonal picture apparently overestimates this distortion, as
the strength in the 1s1/2 channel cannot be reproduced entirely, even with unity
spectroscopic factors. It is worth remarking here that the data exhibit a negligible
asymmetry for this 12C(e, e′p) reaction. In contrast, when looking back to Fig. 6.1,
we see that the data there display a substantial asymmetry for the 16O(e, e′p) re-
action, one of many indications that the 12C and 16O differ substantially, although
both have a closed shell structure.

At higher missing energies, it can be witnessed that the calculations underes-
timate both the data and the RPWIA results; the cross section even falls steeper
then the plane wave solutions do. The fact that there seems to be a much less ad-
equate description of the deeper lying 1s1/2 level, is not very surprising. The main
reason for this is that many other processes compete with the proton knockout
process, especially in the 1s1/2 channel. For instance, two-nucleon knockout reac-
tions generate part of the missing strength. As it is very difficult to experimentally
disentangle these competing effects, one cannot expect to adequately describe the
A(e, e′p)B(1s−11/2) reaction by just taking this exclusive one-nucleon knockout into
account.

The first experiment measuring the induced proton polarization Pn on a “hea-
vy” nucleus (A > 2) was recently reported by Woo et al. [100]. In this 12C(e, e′~p)
experiment the Pn was determined at quasifree kinematics for energy and momentum
transfer (ω,q) = (294 MeV, 756 MeV/c), and sampled a missing momentum range
of 0 - 250 MeV/c. The results of these measurements for both knockout from the
1s1/2 and the 1p3/2 bound level are shown in Fig. 6.10, along with our theoretical
results. The excellent agreement of the Glauber results with the experimental data
is striking. This comes a bit as a surprise, since one would expect a potential model
to be more adequate to describe reactions in the lower energy regime.

In the following sections we will more closely inspect the Q2 evolution of various
effects. Special attention will be paid to the differences between the predictions
obtained in the Glauber (RMSGA) and the optical model (OMEA) approach. At
higher energies, potential models do not appear to be appropriate as the NN scat-
tering process becomes highly inelastic. We remind the reader that global optical
potential fits to elastic proton-nucleus scattering data are not available for proton
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Figure 6.10 Induced polarization of the knocked-out proton in the 12C(e, e′p)11B reaction.
The energy of the incident electron was 579 MeV, with constant q-ω kinematics. The data
are from Ref. [100].
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kinetic energies larger than 1 GeV.



Chapter 7

Off-Shell Ambiguities

A major point of concern in any A(e, e′p)B calculation are the ambiguities regarding
the off-shell electron-proton coupling. Most multi-body calculations do not obey
current conservation and as outlined in Sec. 4, a variety of prescriptions have been
proposed to partially cure this deficiency. Any attempt to address off-shell effects
from the microscopic point of view seems to fail at some point.

In this section we will attempt to quantify the ambiguities caused by the use
of different current operators and the methods employed to restore current con-
servation. Hereby, we will concentrate, not only on differential cross sections and
structure functions, but also on polarization observables and left-right asymmetries.
A key issue in these considerations will be the Q2 dependence of the off-shell am-
biguities. We adopt a heuristic view and estimate the sensitivity of the calculated
observables by comparing the results obtained with different viable prescriptions
for the electron-proton coupling. These investigations will allow us to put forward
favorable choices for the current operators that produce reaction observables which
are reasonably stable against minor changes.

We start our investigations into the role of off-shell ambiguities by considering
the 16O(e, e′p) differential cross section at Q2 = 0.8 (GeV/c)2 and ω = 0.439 GeV, in
quasi-perpendicular kinematics. Fig. 7.1 compares the predictions for the differential
cross section for various choices of the current operator. This is done by comparing
the predictions relative to the CC2 results. In line with other investigations [41,
42, 101], we find that the ambiguities grow with increasing missing momenta. This
is not so surprising and can be understood in the following sense. Short-range and
tensor forces give rise to strong nucleon correlations among the nucleons in the mean
field, with the result that the Fermi surface is smeared out significantly. This means
that relatively high excited states are present and contribute to the high missing
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Figure 7.1 The sensitivity of relativistic eikonal calculations for the 16O(e, e′p) experiment
of Ref. [15]. Plotted are the ratios of the differential cross sections relative to the cross
section obtained with the CC2 current operator.
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momentum region. Since these excited states are expected to be largely off-shell,
it is only natural that the off-shell ambiguities manifest themselves more strongly
in this region of phase space. One can estimate the off-shellness of a particle as
follows. The actual energy transfer to the nucleon ω is determined by the electron
kinematics. Assuming that the struck nucleon was on its mass shell, it would have
an energy Eon equal to (~p2m+M2)1/2. The energy transfer ω′ which one would have
in that case is given by

ω′ = Ef − Eon , (7.1)

where Ef is the escaping particle’s energy. The difference, δω

δω = ω − ω′ (7.2)

is a measure for the off-shellness and a quantity which grows with increasing pm.
Figs. 7.2 and 7.3 show the predictions for the structure functions that contribute

to the differential cross sections shown in Fig. 7.1. The results are obtained within
the framework of the relativistic eikonal model and utilize the EDAI 16O optical
potentials of Ref. [56]. Among the infinite number of possible recipes for the
off-shell proton-electron coupling we have selected four that are frequently used
in literature. They are the commonly used CC1 (Eq. (4.2)) and CC2 (Eq. (4.3))
current operators, the operator proposed by Donnelly et al. (Eq. (4.10)), and the
operator that was constructed via the Ward-Takahashi identity (Eq. (4.11)). Current
conservation was imposed by either modifying the longitudinal component of the
vector current operator (hereafter denoted as the “J0 method”), or by modifying the
charge operator (hereafter denoted as the “J3 method”), along the lines of Eqs. (4.5)
and (4.7), respectively. Note that for the operator of Eq. (4.10), both methods
yield the same results, since, by construction, this operator is current conserving,
regardless of the method adopted to compute the initial and final wave functions.

Turning one’s attention to the results of Figs. 7.2 and 7.3, one immediately ob-
serves that the calculated (e, e′p) observables are far from independent from the
choices made with regard to the electron-proton coupling. We first look at the dif-
ferences between the J0 and the J3 method. Obviously, the transverse RT and RTT
structure functions are insensitive to whether the J0 or J3 scheme is adopted, as
they only involve a modification of the purely longitudinal and the charge compo-
nent. Looking at the RL response function, we see that the CC1 current operator,
for example, produces results in the J3 method that are much bigger than the ones
in the J0 method. A similar observation applies to the “WT”operator. For the RL

response all current operators produce comparable results in the J0 scheme. The
deviations become sizeable though in the J3 scheme, favoring the Jz → (ω/q)J0
substitution, as it turns out that the purely longitudinal channel is then insensitive
to the choice of the adopted operator.

In the transverse responses RT and RTT , all couplings but the CC1 one produce
the same results. The CC1 results are identical in the J0 and J3 scheme. A response
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Figure 7.2 The different structure functions versus missing momentum for 1p3/2 knock-
out from 16O in the kinematics of Ref. [15]. The calculations in the left column imposed
current conservation by replacing the longitudinal component of the vector current operator
(Eq. (4.5)), while for the results in the right column the charge density operator was mod-
ified according to Eq. (4.7). The curves refer to the different off-shell prescriptions as they
were introduced in Sec. 4.
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Figure 7.3 Same as in Fig. 7.2, but for 1p1/2 knockout.
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function of particular interest here is the longitudinal-transverse one. As we have
stressed several times before, of all structure functions the RTL response function
exhibits the greatest sensitivity to any change in the theoretical framework in which
it is calculated. It can be inferred from Figs. 7.2 and 7.3, that ambiguities are
now introduced in both schemes, although they are (again) much larger in the J3
scheme. The large values for the RTL response function obtained with the CC1 and
the WT current operator confirms the somewhat odd behaviour of the differential
cross section at high missing momenta in Fig. 7.1.

Combining the above comments on the gauge sensitivity of the operators, we
are inclined to give preference to the J0 scheme. Indeed, within the J0 scheme, the
results for different operators stay in one another’s proximity. When comparing J0
and J3 calculations for one particular operator, we can only attribute a more robust
behaviour to the most-widely used CC2 current operator. Evidently the current
operator of Eq. (4.10) is insensitive to gauge restoration schemes.

With increasing Q2 and the corresponding decreasing distance scale, the off-shell
ambiguities in the photon-nucleus coupling are expected to decline and the impulse
approximation is believed to become increasingly accurate. In an attempt to make
these statements, which are based on physical intuition, more quantitative, we have
calculated 12C(e, e′p) structure functions corresponding with a quasi-elastic situa-
tion of really high four-momentum transfer : ε = 5120 MeV/c, q = 4490 MeV/c
and ω = 3664 MeV. Global parametrizations of the complex potential model are
only available for proton kinetic energies up to ∼ 1 GeV/c. Therefore, the only
available framework for treating the final state interactions is the Glauber method.
In Figs. 7.4 and 7.5 our predictions for the four unpolarized structure functions are
shown for calculations using different current operators and gauge restoring schemes.
Figs. 7.4 and 7.5 illustrate that the off-shell ambiguities are indeed modest as one
moves into kinematic regimes where Q2 is large. Not only produce all four current
operators within one scheme almost identical results, the differences between the J0
and the J3 approach are almost vanishing. For the RL and RT structure functions,
all calculations, but the “WT” one, produce analogous results. At higher energies,
calculations using the “WT” current operator of Eq. (4.11) predict unrealistically
high cross sections and structure functions. This should be attributed to the fact
that the operator of Eq. (4.11) is plagued by the occurrence of a term which lacks an
electromagnetic form factor. Hence, the operator of Eq. (4.11) does not account for
the decreasing nucleon elastic form factor when smaller distance scales are probed.
Consequently, we will dismiss the operator of Eq. (4.11) as a viable alternative for
the description of the electron-nucleon coupling. For the RTT and RTL responses,
the predictions obtained with the other six operator combinations are rather close.
Again, the greatest ambiguities persist in the TL response. As was already the case
in Figs. 7.2 and 7.3, the “DON” current predicts very low values for the RTL. Cal-
culations at even higher energies confirm this behaviour. Based on this observation,
and on the fact that the operator of Eq. (4.10) was constructed in a rather artificial
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Figure 7.4 The different structure functions versus the missing momentum for 1s1/2 knock-
out from 12C for ε = 5120 MeV/c, q = 4490 MeV/c and ω = 3664 MeV, under quasi-elastic
conditions. The calculations in the left column imposed current conservation by replacing
the longitudinal component of the vector current operator (Eq. (4.5)), while for the results
in the right column the charge density operator was modified according to Eq. (4.7). The
curves refer to the different off-shell prescriptions as they were introduced in Sec. 4.
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Figure 7.5 Same as in Fig. 7.4, but for 1p3/2 knockout.
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manner, we will from here on only consider the CC1 and CC2 current operators.

The results shown in Figs. 7.4 and 7.5 suggest that the impulse approxima-
tion becomes increasingly accurate. In order to investigate the degree and rate to
which this virtue may be realized, we have performed calculations in a wide Q2

range of 0.15 ≤ Q2 ≤ 20 (GeV/c)2. We use two techniques to estimate the sen-
sitivity to off-shell ambiguities as a function of Q2. First, results computed with
the J0 and J3 method are compared. Second, predictions with various choices for
the electron-proton coupling are confronted with one another. The validity of the
impulse approximation is then established whenever the final result happens to be-
come independent of the adopted choice for the electron-nucleon coupling. In order
to assess the degree to which this independence is realized, we have considered ratios
of structure functions for some fixed kinematics but calculated with different choices
for the electron-proton coupling. As a benchmark calculation, we have computed
12C(e, e′p)11B(1p−13/2) observables in quasielastic kinematics for several values of the
four-momentum transfer.

Fig. 7.6 shows for several observables the ratio of the values obtained with the
J3 scheme to the corresponding predictions with the J0 method. Fig. 7.7 shows
the ratio of the strengths obtained with the CC1 vertex function compared to the
corresponding predictions with the CC2 form. We have chosen to perform these kind
of calculations for the peaks in the missing momentum range, pm ∼ 100 MeV/c,
where the relative differences are large. We remark that in the limit of vanishing off-
shell effects, these ratios should equal one. It is indeed found that the calculations
that are based on the substitution Jz → (ω/q)J0 tend to converge to those based
on the substitution J0 → (q/ω)Jz with increasing energy transfer. The predictions
with the different prescriptions also converge to each other as the energy is increased.
This feature is most apparent in the transverse response RT , which dominates the
cross section at sufficiently high energies. It appears thus as if off-shell ambiguities,
speaking in terms of strengths and absolute cross sections, are of far less concern at
higher Q2 than they used to be in the Q2 ≤ 1 (GeV/c)2 region, where most of the
data have been accumulated up to now. The interference structure functions RTT

and RTL on the other hand, are subject to off-shell ambiguities that are apparently
extending to the highest four-momentum transfers considered here. This feature
was already established in Ref. [47] and explained by referring to the large weight of
the negative energy solutions in the interference structure functions RTL and RTT .
For any structure function one can write that

R = RP +RN +RC , (7.3)

where RP (RN ) stems from the contribution from the positive (negative) energy
projections only, while RC is a crossed term containing products of both positive and
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negative energy projections. TheRL andRT structure functions are mainly governed
by their positive energy projection, while for the RTT and RTL response functions
the cross term RC can be larger than the positive energy projection RP . As the
differences between the CC1 and CC2 current operators and the gauge restoration
schemes are mainly concentrated in their action upon the lower components of the
wave functions, it should not come as a surprise that the ambiguities will be much
larger in the responses that generate a significant part of their strength from these
negative energy projections.

The observed feature that the cross sections are only marginally sensitive to
gauge ambiguities at higher energies can be explained on the basis of the following
considerations. A measure for the violation of current conservation is given by [102]

qµJ
µ = ωJ0 − ~q · ~J ≡ χ , χ = δω[J ] , (7.4)

where the quantity [J ] denotes (part of) the nuclear current density (i.e. ufγ
0ui).

This can be understood by considering the explicit expression for the CC2 current
operator (Eq. (4.3)) for example :

qµJ
µ
CC2 = qµufΓ

µ
CC2ui ,

= F1uf (ωγ
0 − ~q · ~γ)ui ,

= F1(ω − ω′)ufγ
0ui , (7.5)

where we have used the definition (7.1) of ω′. Rewriting now the matrix element in
the Coulomb gauge of Eq. (4.15) in terms of χ, leaves us with

MCoulomb =
ı

Q2
jµJ

µ − ı

Q2

(

ωj0χ

~q2

)

. (7.6)

Along similar lines the matrix element in the Weyl gauge of Eq. (4.16) can be
rewritten as

MWeyl =
ı

Q2
jµJ

µ − ı

Q2

(

j0χ

ω

)

. (7.7)

With these two expressions we can estimate the relative differences between the
cross sections obtained in the J0 and J3 scheme, respectively :

MWeyl

MCoulomb
=

ı
Q2 jµJ

µ − ı
Q2

(

j0δω[J ]
ω

)

ı
Q2 jµJµ − ı

Q2

(

ωj0χ
~q2

) . (7.8)

For the purpose of getting order of magnitude estimates, we approximate j0[J ] '
jµJ

µ and find

MWeyl

MCoulomb
' 1− δω

ω

1− ωδω
~q2

∼ σCC1

σCC2
. (7.9)
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The relation obtained in Eq. (7.9) illustrates two important findings. First, it shows
that for low missing momenta (small δω) the degree of off-shellness wil be smaller
than for the higher missing momentum range. Second, it indicates that the ambi-
guities decrease as q and ω increase, thereby making the ratio equal to one.

An interesting physical observable in the context of off-shell effects is the left-right
asymmetry, whose Q2 evolution also confirms the above behaviour. This particu-
lar observable is interesting in that it reflects the behaviour of the RTL response
function. Fig. 7.8 shows the left-right asymmetry for the 12C(e, e′p)11B(1p−13/2) reac-
tion at four different energies under quasielastic conditions. Indeed, the ambiguities
decrease with increasing momentum transfers, and are more significant for higher
missing momenta. This concurs with the findings of Ref. [42]. The left-right asym-
metry does not depend on spectroscopic factors and has frequently been illustrated
to be extremely sensitive to the various ingredients that enter the model calcula-
tions. As such it is an interesting variable for discriminating for example between
the different gauge choices. Fig. 7.9 shows our predictions for ALT at Q2 = 0.8
(GeV/c)2. We have performed optical potential and Glauber calculations, consid-
ering both the CC1 and CC2 current operator. At first sight, it appears that the
data favor the calculations using the CC2 current operator. The CC1 calculations
tend to overestimate the measured left-right asymmetry. For the 1p1/2 knockout the
overall agreement is satisfactory. It is remarkable that for a particular choice for the
current operator, the Glauber and optical potential model produce ALT ’s that are
close at missing momenta below the Fermi momentum. Once again, it emerges that
the optical potential and the Glauber model, despite their very different starting
points, yield results that are remarkably similar.
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Chapter 8

Relativistic Effects

Recently, there have been several claims for strong indications for genuine (or, “dy-
namic”) relativistic effects in A(~e, e′~p) observables [15, 86, 90, 103]. In an attempt to
implement some of these effects in calculations based on a Schrödinger picture, sev-
eral techniques to obtain a “relativized version” of the electron-nucleus vertex have
been developed. In leading order in a p/M expansion these “relativized” electron-
nucleus vertices typically miss the coupling between the lower components in the
bound and scattering states. For that reason, we interpret the effect of the coupling
between the lower components in the bound and scattering states as a measure of
the impact of the relativistic effects.

In Fig. 8.1 the unpolarized structure functions for the 12C(e, e′p) experiment
of Ref. [98] are plotted. It follows from Fig. 8.1 that the effects of relativity are
mostly confined to the RTL and RTT interference structure functions. The effect of
removing the coupling between the lower states is a reduction of the strength in the
RTL and RTT interference structure functions. At first sight, the dominant RL and
RT channels remain unaffected.

In order to check these findings for other kinematics we have performed a series
of calculations for varying Q2. We consider quasielastic conditions and study the Q2

evolution of the structure functions at a fixed value of the missing momentum. We
have selected pm = 100 MeV as this coincides with the situation where the reduced
cross section reaches its maximum. Moreover, pm = 100 MeV corresponds with small
proton angles with respect to the direction of the momentum transfer, so that one
can safely apply the eikonal approximation. The results of our investigations into
the Q2 evolution of the relativistic effects are contained in Fig. 8.2. It becomes clear
that the Q2 evolution of the relativistic effects is not smooth and some oscillatory
behaviour emerges.

Looking first at the results for the total cross section, we observe that the impact
of the coupling amongst the lower components first increases, and then tends to con-
verge to zero when higher values of ω are reached. Omitting dynamical relativistic
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potentials, while for the dashed results, the coupling between the lower components of the
bound and scattering state has been reduced to zero.



95

1

1.2

0 2 4 6 8 10 12 14 16 18 20

0.9

1

1.1

0 2 4 6 8 10 12 14 16 18 20

0.99

1

1.01

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20

σR
el

/N
on

-R
el CC1 CC2

R
L

R
el

/N
on

-R
el

R
T

R
el

/N
on

-R
el

R
T

T
R

el
/N

on
-R

el

Q2 [(GeV/c)2]

R
T

L
R

el
/N

on
-R

el

0

2

4

0 2 4 6 8 10 12 14 16 18 20

Figure 8.2 The Q2 dependence of the sensitivity of the (e,e’p) structure functions to dy-
namical relativistic effects. The curves show for 1p3/2 knockout from 12C the ratio of the
fully relativistic results to the predictions when the coupling between the lower components
has been omitted. These calculations were performed in the maximum of the 1p3/2 momen-
tum distribution (pm ' 100 MeV/c). Calculations are performed for both the CC1 and CC2
current operator in the Glauber framework.
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effects, in terms of our definition, introduces more absorption, resulting in higher
spectroscopic factors. In contrast with other studies [45, 53, 90, 91] that have esti-
mated the effect of relativity, we find an overall enhancement of the differential cross
section due to coupling of the lower components in the bound and scattering wave
function. This should be attributed to the fact that these other studies explicitly
made a comparison of a non-relativistic Schrödinger approach with their fully rel-
ativistic models, while we estimate the effect of relativity by omitting the coupling
term of the lower components in the fully relativistic expression of the transition
matrixelement.

The genuine relativistic effect stemming from this coupling is larger in the lon-
gitudinal than in the transverse channel. It is noteworthy that in the cross section
the impact of the “relativistic dynamical effects” never exceeds the 10 % level. This
also applies to the longitudinal structure function RL. In the transverse response
RT the magnitude of the effects is at the percent level. However, in this channel, the
net effect of introducing relativity into the calculation is a reduction of the strength.
If we turn our attention to the interference structure functions RTL and RTT , the
relativistic effects grow in importance. Especially for the RTL structure function
the effects are large and extend to the largest values of Q2 considered here. This
enhanced sensitivity of the RTL response to relativistic effects, even when relatively
low values of Q2 are probed, complies with the conclusions drawn in other studies
[45, 90, 104, 105, 106]. The enhancement of the RTL structure function after includ-
ing the dynamical coupling between the lower components in the nucleon spinors,
gives rise to an enhanced left-right asymmetry in quasi-perpendicular kinematics.
This enhancement of the RTL structure function makes that the relativistic pre-
dictions for the differential cross section are less symmetric than the nonrelativistic
predictions.

We conclude the discussion of Fig. 8.2 with remarking that the enhanced sensitiv-
ity to relativistic effects when using the CC1 version of the off-shell electron-nucleon
coupling (Eq. (4.2)), can be attributed to the momentum-dependent part of that
operator. The contribution of this term in the matrixelement < kfsf |Jµcc1|kisi >
experiences severe reductions when neglecting the coupling between the lower com-
ponents.

A quantity that can be relatively easy accessed experimentally, and, at the same
time, depends heavily upon the RTL structure function is the left-right asymmetry
ALT that was defined earlier in Eq. (6.12). The role played by the lower components
in this dynamical enhancement of the left-right asymmetry can be further clearified
by looking at the results of Fig. 8.3. In this figure, we plot the left-right asymmetry
for 1p3/2 knockout from

12C, for different Q2 and quasi-elastic conditions. Looking
at the fully relativistic curves, we observe a gradual decrease of the asymmetry with
increasing Q2. At the same time, the relative contribution of the “non-relativistic”
contribution to ALT diminishes. This indicates that the asymmetry is almost ex-
clusively generated by the coupling between the lower components as Q2 increases.
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A quantity similar to the left-right asymmetry ALT is the ALT ′ observable

ALT ′ =
2vTL′RTL′

vLRL + vTRT + vTLRTL + vTTRTT
, (8.1)

and can be measured by taking the electron’s helicity into account. At high energies
the reaction process becomes independent of the electron’s helicity and therefore it
is expected that ALT ′ will fall to zero if higher and higher energies are probed. In
Fig. 8.4 we display ALT ′ for a number of Q2 for scattering in a plane that is per-
pendicular to the electron scattering plane. This choice maximizes the contribution
from the RTL′ structure function which has a sinφ dependence. Several observations
emerge from Fig. 8.4. First, the asymmetry ALT ′ decreases as Q2 increases. Second,
we observe relativistic effects only at higher momenta, a feature that was already
established in literature [45, 90, 91, 92, 103]. Third, in line with the left-right asym-
metry ALT , the nonrelativistic calculations predict much smaller asymmetries than
the fully relativistic ones, indicating that the asymmetry is again mainly generated
by this dynamical coupling of the lower components.

If one assumes equivalent central and spin-orbit potentials in a Schrödinger and
a Dirac approach, another relativistic effect stems from the so-called Darwin term.
Recalling the eikonal phase of Eq. (5.16)

ıS(~b, z) = −ıM
K

∫ z

−∞
dz′ [Vc(~b, z

′) + Vso(~b, z
′)[~σ · (~b× ~K)− ıKz′]], (8.2)

it is the impact of the last term in this expression on the cross section and structure
functions that we want to measure. For that reason, we have performed calculations
for the 16O(e, e′p) experiment of Ref. [15]. In Fig. 8.5 we present results for a fully
relativistic eikonal model with Cooper potentials, once with and once without the
Darwin term included. As a comparison, we have also plotted results where both
the spin-orbit and Darwin term were set to zero. These results are also interesting
to compare with Glauber calculations, which typically only incorporate a central
scattering part. As expected, the effects of the entire spin-dependent term (i.e.
including the Darwin term) on the relatively spin-insensitive response functions RL

and RT is minimal. A slight reduction of the response functions is observed when
spin-orbit and Darwin terms are taken into account. The effects on the interference
structure functions RTL and RTT , on the other hand, are significant as far as the
spin-orbit term is concerned. The net effect of the Darwin term is rather modest,
and more pronounced in the 1p1/2 knockout reaction than in the 1p3/2 knockout
reaction. In the 1p1/2 knockout reaction, the exclusion of the Darwin term causes a
modest enhancement of the interference structure functions, while omitting the spin-
orbit part results in a rather large decrease of strength in the RTL and RTT response



98 Chapter 8. Relativistic Effects

-1

-0.5

0

0.5

1

0 100 200 300 400 500

-1

-0.5

0

0.5

1

0 100 200 300 400 500

-1

-0.5

0

0.5

1

0 100 200 300 400 500

A
L

T

Q2 = 1.08 (GeV/c)2

A
L

T

Q2 = 3.11 (GeV/c)2

A
L

T

Q2 = 6.74 (GeV/c)2

pm

A
L

T

Q2 = 12.2 (GeV/c)2

-1

-0.5

0

0.5

1

0 100 200 300 400 500

Figure 8.3 The left-right asymmetry ALT for 1p3/2 knockout from 12C for different Q2.
The Glauber calculations were performed for quasielastic conditions and a fixed value of
pm = 100 MeV/c. Results are shown for the full Glauber calculation (solid line), for a
Glauber calculation where the coupling between the lower components has been set to zero
(dashed line) and for RPWIA calculation (dotted line).
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functions. Major differences are observed for the spin-orbit partners 1p1/2 and 1p3/2.
The interference structure functions are thus highly sensitive to the spin-dependent
terms in the optical potential. Furthermore, the spin-orbit term has the largest
impact at low missing momenta, which concurs with other studies [86]. In Fig. 8.5,
the Glauber curves closely follow the predictions of the optical potential calculations
after turning off the spin dependent terms (with an exception for the RTL response
function for knockout from the 1p3/2 level). This illustrates that if one would also
include a spin-orbit scattering amplitude in the Glauber formalism, one would most
certainly dismiss some of the discrepancies observed between the Glauber model and
the eikonal model. This effect was already studied for the deuteron in Ref. [7].

In conclusion, we can say that the relativistic effects stemming from the Darwin
term are rather modest, especially if they are compared to the dynamical effects
resulting from the coupling between the lower components of the bound and final
state.





Chapter 9

Nuclear Transparency

The issue of nucleon propagation through the nuclear medium has received much
attention during the last few decades. For large enough energies, perturbative QCD
predicts the so-called phenomenom of color transparency. The possible occurence
of this effect was predicted by Brodsky and Mueller in the early 1980s [107, 108].
In the context of exclusive A(e, e′p) reactions this phenomenon causes the struck
nucleon to undergo minimal interactions with the surrounding nuclear environment,
thereby making the nucleus more “transparent” for the emission of the proton.

In Sec. 9.1 we outline the theoretical assumptions which underly the color trans-
parency (CT) phenomenon. These assumptions are actually predictions by different
non-perturbative QCD-models which in theirselves await experimental verification.
The onset of CT in (e, e′p) processes can only be observed provided that realistic
models for proton transparency can determine the baseline for standard final-state
interactions. In Secs. 9.2 and 9.3, we present a brief overview of experimental results
so far. As we will see, there remain a lot of unsolved or not so-well understood facets
of this phenomenon. In Sec. 9.3 we present our calculations for the nuclear trans-
parency in the 12C(e, e′p) reaction. These calculations cover quasielastic kinematics
in a wide kinematic range [0.1 (GeV/c)2 ≤ Q2 ≤ 20 (GeV/c)2]. In comparison
with other nuclear transparency calculations which are available in literature, our
calculations are unfactorized and account for relativistic effects. In the Q2 ≤ 2 − 3
(GeV/c)2 regime, we will compare calculated transparencies obtained within the
optical potential model (OMEA) and the Glauber (RMSGA) approach.

9.1 Theoretical Background

For color transparency to occur in semi-exclusive (e, e′p) reactions, basically three
requirements have to be fulfilled [2, 3, 4]

103
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Requirement 1 : Small objects are produced at high Q2 collisions.

Consider a highly energetic virtual photon impinging upon a bound nucleon in the
nucleus. On the basis of the qualitative features of the nucleon-nucleon cross sections
at high energies (see Fig. 5.5) one would expect the struck proton to be scattered
into the inelastic channels. However, as high momentum transfer is associated with
small wavelenghts, the virtual photon can probe the subnucleonic degrees of free-
dom. Suppose now that the incoming photon hits one of the confined color quarks.
As the quark is now in a highly excited state, it will move very rapidly in some
direction. According to the uncertainty principle, the excited quark which now has
an energy surplus of δE ∼ ω, will decay by emitting gluons in a time τ ∼ 1/ω. A
single quark is colored, and colored objects are not allowed to exist freely according
to the confinement principle. Hence, the struck quark will hadronize unless it is
followed by its two companion quarks. In order now for these two quarks to be
able to follow the escaping quark, they must have been close together initially. On
average the radiated gluons must be absorbed by quarks which are a distance less
than r = τ ∼ 1/ω away. This means that the struck proton must have been in a
small-sized fluctuation. Note that one has to make a distinction between the initially
bound nucleon and the “object” which moves through the nucleus which should not
really be looked upon as a nucleon.

QCD lattice calculations indicate that hadrons are bound states of strongly in-
teracting quarks and gluons. The hadron can be described in terms of an infinite
number of configurations, and different configurations are expected to have different
sizes :

|N >= |qqq > +|qqq + π > +... (9.1)

For example, a configuration containing a π meson cloud will have a maximal radius
due to the light mass of the pion. As in ordinary quantum mechanics, this system
fluctuates between its different configurations. Consequently, images of a hadron
taken at different times would reveal both small and large-sized configurations. One
refers to this phenomenon as color fluctuations. The average time it takes to fluc-
tuate between two configurations can be estimated on the basis of the uncertainty
principle. As the time scale is inversely proportional to the energy (or mass) dif-
ference between the two configurations one can write that τ ∼ 1/(m−M). As the
mass differences are of the order of a few hundreds of MeV, the fluctuation time is
very small, and of the order of 1 fm. Some hadronic models predict that these small,
point-like configurations (PLC) could already be produced for momentum transfers
as low as 1-2 GeV/c.
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Requirement 2 : Small objects experience reduced interactions

The second condition which has to be fulfilled for CT to exist, is that the “small
object” interacts in an anomalously weak manner with the surrounding nuclear
medium. This situation is somewhat comparable to the charge screening effect in
QED where two neutral atoms interact with one another through their electric dipole
moment. In QCD the electric charges are now the color charges, and the hadrons
now play the role of charge neutral objects, i.e. color singlets. A small object will
have a small color dipole moment, and will interact in a much weaker way than a
normal sized singlet. This assumption arises naturally from a two-gluon exchange
model between color singlets. As gluons carry color, single gluon exchange is forbid-
den. This model can be considered plausible as it proves the approximate constancy
of the hadronic total cross sections, and also explains why the imaginary part of the
forward scattering amplitude is much larger than the real part.

Requirement 3 : Small objects escape the nucleus before expanding

Since the ejectile is not a stationary state of the QCD-Hamiltonian, it will un-
dergo time evolution, which can only happen by increasing its size and restoring the
soft quark-gluon fields. As it moves through the nucleus, the PLC expands and,
if this expansion is rapid enough, it will become normal-sized before leaving the
nucleus and will start interacting in a “normal” way with the surrounding nucleons,
as shown in Fig. 9.1.

Suppose the hadron has a large laboratory momentum k, with v ∼ c = 1. The
energy difference between configurations of mass m and M becomes

√
k2 +M2 −√

k2 +m2. If k is very large, the energy denominator (M 2 −m2)/2k can be small,
and the time scale for fluctuation is long. The configuration of mass M can move
for a long distance

lc =
2k

M2 −m2 , (9.2)

before decaying. Coherent, constructively interfering interactions occur between
the excited configuration and the target material over this length lc, the so-called
coherence length. This length grows with increasing energy and can thus become
greater than the nucleus’ radius. The time τ it takes for a PLC to evolve into an
object of normal hadronic size is then evidently given by τ = 2k/(M 2 −m2). The
bare mass M of the PLC is an undetermined parameter in estimating this expansion
time. However, for sufficiently large energies, τ will be long enough so that the
object can leave the nucleus without any interactions. Different estimates based on
quark models lead to values of τ of 0.4 - 1.0 (E/GeV)fm. So with current values of
E up to 5 GeV, expansion will occur and final-state interactions are not completely
suppressed. It should however be possible to estimate this rate of expansion in the
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Figure 9.1 Schematic representation of the interaction of a “normal-sized” nucleon (upper
panel) and an expanding PLC (lower panel) with the surrounding nucleons.
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few GeV energy range.

In brief, CT can only exist if one assumes that at high momentum transfer small
color singlet objects (PLC’s) are produced, which experience little interaction with
the surrounding nucleons. This system expands and interacts as it moves through
the nucleus.

To implement CT effects in the description of (e, e′p) processes, it is mandatory
to adjust the interaction matrix elements. In the energy regime of interest here,
the expansion distance, or coherence length, is still rather small. In an optical
potential model one has that the imaginary part of the optical potential Uopt is

roughly proportional to the total proton-nucleon cross section Uopt ' −ıσtotρ(r),
where ρ(r) is the nuclear density. Only the imaginary part of the optical potential is
retained here. Indeed, at high energies the real part of the nucleon-nucleon forward
scattering amplitude is small. Equivalently, from Eq. (5.38) it is clear that in a
Glauber formalism, the magnitude of the final-state interactions is proportional
to the total cross section. Since a point-like configuration cannot be treated as a
nucleon, it becomes inaccurate to use the proton-nucleon cross sections as a measure
for the interactions that the PLC is subject to in the medium. The simplest way
to implement color transparency is to replace the free proton-nucleon cross section
σtotpN by a new quantity σeffPLC , that describes the interaction of the PLC with the
medium. This effective cross section should take into account both the suppresion
of interaction in the point where the PLC is produced and the restoration of soft
final state interactions with the nucleons as it moves through the nuclear medium.
The need to include this expansion was recognized by Farrar et al. [109], who argued
that the square of the transverse size is approximately proportional to the distance
travelled from the point where the PLC is formed. Thus, the cross section σ that
appears in the optical potential, or, equivalently, in the Glauber profile function, is
replaced by one that grows as the ejectile moves in the z direction [3, 4] :

σeffPLC = σtotpN

{[

z

lc
+

〈

n2k2T
〉

Q2

(

1− z

lc

)

]

θ(lc − z) + θ(z − lc)
}

. (9.3)

Here, z is the distance moved by the expanding color singlet along the trajectory
from its point of formation, n is the number of constituents in the proton (i.e. n =
3), and k2T is the average transverse momentum of the proton’s constituents [k2T '
(0.35GeV/c)2]. The linear dependence of the cross section follows from analyses of
perturbative Feynman diagrams. Moreover, it is commonly assumed that the size of
the object’s configuration decreases inversely proportional with Q2. This assumption
is legitimized by the fact that this reproduces the correct Q2 dependence of the
transverse size of nucleons found in realistic models of the nucleon form factor. The
coherence length lc depends upon the squared mass difference of the initial PLC and
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the final hadron. Obviously, its value is very important as it defines the scale at
which the onset of CT effects occurs. Based on several constituent quark models this
squared difference is usually bound in the range of 0.7 ≤ δM 2 ≤ 1.1 (GeV/c2)2. This
lowest value of 0.7 (GeV/c2)2 would allow to witness the effects of color transparency
for energies as low as Q2 ≥ 5 (GeV/c)2.

Unfortunately, the color transparency phenomenon is suppressed at intermediate
Q2 by a QCD effect that is called the nuclear color screening effect. This effect causes
the probability to create a color singlet in a bound nucleon to be smaller than in a
free nucleon. Since the potential for the interaction of a bound nucleon in a small-
size configuration with nearby nucleons is smaller than for a nucleon which resides
in an “average” configuration, the creation of a PLC would lead to smaller binding
energies. Energywise this is not a preferred configuration. Therefore, this mechanism
is suppressed by a factor δ(k) which modifies the momentum distribution. For sake
of completeness we give the expression for δ(k) as it was derived in Ref. [110] :

δk = δ(Q20 −Q2) + δ(Q2 −Q20)


1 +

(

1− Q20
Q2

) k2

mp
+ 2εA

δE





−2

. (9.4)

An analysis of the 2He(e,e’) SLAC data in Ref. [110] indicate a value of Q20 ∼ 2
(GeV/c)2. Its effect is illustrated in Fig. 9.2 that was taken from Ref. [4]. We
conclude this section by remarking that other and more complicated procedures to
describe the reduced interaction of the PLC with the surrounding nuclear medium
have been developed. Because of its relative simplicity, the procedure of Eq. (9.3) is
most widely used.

9.2 Review of Experimental Results

The first transparency experiment looking for CT effects was performed by Carroll et
al. [111]. In this experiment large-angle pp elastic and quasielastic (p, 2p) scattering
cross sections were measured simultaneously in hydrogen and several nuclear targets
(Li, C, Al, Cu, Pb) at incident proton momenta of 6, 10 and 12 GeV/c. The nuclear
transparency was measured as the ratio of the obtained cross sections with the free
pp cross section. These data showed a color transparency-like increase for Q2 ∼ 3−8
(GeV/c)2, followed by a decrease for Q2 ∼ 8 − 11 (GeV/c)2. This decrease occurs
in a region where the free proton-nucleon cross section exhibits very little energy
dependence. These results were interpreted by the so-called Landshoff process [112],
a process which does not occur in A(e, e′p) reactions.

A few years ago, the A-dependence of the quasi-elastic A(e, e′p) reaction has
been studied at SLAC with 2H, C, Fe and Au nuclei as targets [98, 99]. In this
experiment the nuclear transparencies were extracted at momentum transfers Q2 =
1, 3, 5 and 6.8 (GeV/c)2. Recalling the discussion of Sec. 9.1, one can expect to see
the onset of CT in the highest Q2 part of the data.
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Figure 9.2 Effective transparency as a function of Q2
0 for the

12C(e, e′p) reaction, calculated
in a quantum diffusion model with different values of δM 2. The curves labeled CSE include
the color screening effect of suppression of small-size configurations in bound nucleons. This
picture was taken from Ref. [4].
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In A(e, e′p) processes the nuclear transparency is determined as the ratio of the
measured to the plane wave impulse approximation cross section. Hereby both the
data and the PWIA results are integrated over that region of phase space where the
IA approximation is established to be a valid approximation. One has

Texp =

∫

∆3k d
~k
∫

∆E dE Sexp(~k,E)
∫

∆3k

∫

∆E dE SPWIA(~k,E)
, (9.5)

where Sexp(PWIA) is the measured (plane wave) cross section divided by a kine-
matic factor and the off-shell elastic electron-proton scattering cross section σepcc1 of
Ref. [39]. For the SLAC experiment, the boundaries in the above integrals were
fixed at -30 < Em < 100 MeV for the missing energy and 0 < pm < 250 MeV/c for
the missing momentum.

Studying the A-dependence of the experimental nuclear transparency is a very
efficient tool to search for CT effects. Indeed, CT implies that the ejectile expe-
riences a reduced attenuation through the presence of the other nucleons over a
distance comparable to the nuclear radius. Evidently, this means that the onset of
CT effects in heavier nuclei should be slower, and, hence, a change in the shape of
the A-dependence with increasing Q2 could indicate the onset of CT. If one simply
parametrizes this A-dependence as T (Q2) = c(Q2)Aα(Q

2), then complete CT would
correspond to α = 0, or, a vanishing dependence on the radius of the nucleus.

The results of such A-dependence measurements of the nuclear transparency are
displayed in Figs. 9.3 and 9.4. Fig. 9.3 shows the measured transparency as a
function of Q2. The hypothesis of color transparency predicts an increase of T with
increasing Q2. The data in Fig. 9.3 show no evidence for this. Inspecting Fig. 9.4
which shows T as a function of A, a similar conclusion has to drawn. Indeed, within
experimental errors the α values from the fit of the data to T = cAα are independent
of Q2, pointing towards the absence of CT effects. A calculation based on a classical
attenuation model for protons propagating in the nucleus basically reproduces the
A-dependence of the results.

It would be too simplistic to claim that CT has been ruled out by experiment.
On the other hand, there are strong indications that color transparency is a small
effect in the few-GeV regime. Another possibility is that CT effects are suppressed
in this energy regime by a yet unknown QCD effect. One could also argue that
the underlying model to determine the “normal” hadronic attenuation of the struck
proton through the medium is too crude. For example, to our knowledge all Glauber
calculations that have been done up to now adopt a factorized approach separating
the photon-nucleus physics from the nuclear dynamics and ignore relativistic effects.
In the preceding sections we have shown that the unfactorized Glauber model is
fairly accurate in describing all major A(~e, e′~p) observables. In what follows we
will put our unfactorized and relativistic Glauber approach to test by comparing its
calculated transparencies to the 12C data.
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Figure 9.3 Nuclear transparency for A(e, e′p) quasielastic scattering as a function of Q2.
The inner error bars are the systematic uncertainties, and the outer error bars are the
statistical and systematic uncertainties added in quadrature. The open points at Q2 = 0.33
(GeV/c)2 are from Refs. [113] and [114] for C, Ni and Ta targets. This figure was taken
from Ref. [99].
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Figure 9.4 Nuclear transparency (with total errors) as a function of A at various values
of Q2. The curves are fits to the C, Fe and Au data using the classical attenuation model
discussed in Ref. [99] (solid line) and T (Q2) = cAα(Q2) (dashed line). This figure was taken
from Ref. [99].
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9.3 Nuclear Transparency Calculations

In this section we will study the nuclear transparency in the quasi-elastic 12C(e, e′p)
reaction in a wide Q2 range of 0.3 ≤ Q2 ≤ 20 (GeV/c)2. We will compare the results
of our theoretical predictions with experimental results that were recently obtained
at the Stanford Linear Accelerator (SLAC) [98, 99] and Jefferson Lab (JLAB) [115].

The results of our nuclear transparency calculations in 12C are contained in
Fig. 9.5. We have performed calculations within the Glauber framework and the
eikonal model with the optical potentials of Ref. [56]. We remind the reader that
the optical potential model is only applicable up to values of Tp ∼ 1 GeV. As for
the Glauber results, we have also performed calculations that included the effect
of short-range correlations. Each of these calculations was done with the CC1 and
CC2 current operator.

The measurements of the differential cross section in Refs. [98, 99, 115] were
performed in a limited region of the available phase space, dictated by the require-
ment that quasi-elastic conditions are met. Analogously, we have constrained our
calculations to the same portion of phase space. In general, the experimental results
are reported in terms of the experimental transparency Texp, defined as

Texp =

∫

∆3k d
~k
∫

∆E dE Sexp(~k,E)

cA
∫

∆3k

∫

∆E dE SPWIA(~k,E)
. (9.6)

The A-dependent factor cA renormalizes the PWIA results to take corrections in-
duced by SRC into account. This factor grows with increasing mass number A. For
the 12C(e, e′p) a correction factor of 0.901 ± 0.024 was adopted by the authors of
Refs. [98, 99, 115]. As the implementation of SRC can be done in numerous ways,
we have removed this factor from the data of Refs. [98, 99, 115], as in Eq. (9.5).
These “corrected” data points are shown in Fig. 9.5. Although the JLAB data
points suggest somewhat smaller nuclear transparencies than the SLAC data, they
are consistent with each other.

In line with Eq. (9.5) we have calculated the theoretical nuclear transparency
Ttheo, according to

Ttheo =

∫

∆3k d
~k
∫

∆E dE Stheo(~k,E)
∫

∆3k

∫

∆E dE SPWIA(~k,E)
. (9.7)

From the results contained in Fig. 9.5 it is clear that in a particular scheme, the trans-
parencies computed with the CC1 current operator converge to those obtained with
the CC2 form of the electron-proton coupling. Accordingly, the theoretical trans-
parencies are relatively free of ambiguities with respect to off-shell prescriptions in
the Q2 > 3−4 (GeV/c)2 range. For these high Q2 values the difference between the
CC1 and CC2 predictions drop to percent levels. The oscillations in our theoretical
curves at high Q2 reflect the energy dependencies in the pp and pn scattering data
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Figure 9.5 Nuclear transparency for 12C(e, e′p) as a function of Q2. The theoretical curves
present calculations done within the Glauber framework and the eikonal model with optical
potentials. Glauber calculations were done once including the effects of SRC, and once
without. The calculations presented in the upper panel used the CC1 current operator,
while the bottom panel used the CC2 current operator. The square data points are from
SLAC [98, 99], and the round data points are from JLAB [115].
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which serve as input parameters in the Glauber calculations. Most Glauber calcu-
lations which are available in literature adopt a “smooth” parametrization. In our
calculations, we have chosen to insert the values as obtained by pN experiments at
selected values of Tp. Referring to Fig. 5.10, we have estimated the effect induced by
the experimental uncertainties of the pN scattering data on the nuclear transparency
to be of the order of 5 %.

If we examine the standard RMSGA results that have not included the effects
of SRC, we can infer from Fig. 9.5 that the calculations using the CC1 current
operator reproduce the experimental data at lower Q2 rather well. At higher Q2

[Q2 ≥ 3 − 4 (GeV/c)2], where the differences caused by the adoption of the CC1
or CC2 current operator are negligible, our Glauber predictions undershoot the
observed experimental transparencies by about 10 - 15 %.

This deficiency, which is more pronounced for the calculations using the CC2
current operator, can be cured by the inclusion of short-range correlations. The
effect of short-range correlations on transparencies has been studied extensively in
literature [8, 72, 77, 76, 116, 117, 118, 119], and effects of the order of 10 % have
been reported. We have adopted the central correlation function of Gearheart and
Dickhoff [78, 79] along the lines of Eq. (5.53). As can be seen from Fig. 9.5 the effects
of SRC increase the calculated transparencies by about 10 %. It is interesting to note
that this overall enhancement of the nuclear transparency due to the effects of SRC is
independent of Q2; the correlated Glauber calculations follow a trend very similar to
the uncorrelated Glauber results. This can be explained by the fact that the adopted
short-range correlation function does not have any Q2 dependence, and, hence, one
can expect a relative enhancement of the nuclear transparency which is independent
of Q2. That is also the reason why the factor cA in Eq. (9.6) is a function of the mass
number A only. This also means that the effects caused by pure color transparency
can still be disentangled from the effects stemming from short-range correlations. It
was already discussed in Sec. 9.2 that CT effects can be revealed through their Q2

dependence. Inspecting Fig. 9.5 we observe that the correlated RMSGA results for
both the CC1 and CC2 current operator, are now able to describe the high Q2 data.
Furthermore, the correlated RMSGA calculations using the CC2 current operator
provides us with a fair description of all the transparency data, both at low and high
Q2.

When we restrict ourselves to the lower Q2 regime, we can also compare the
results of an optical potential model with the experimental results and the corre-
sponding Glauber calculations. It is very clear from Fig. 9.5 that the OMEA results
exhibit a behaviour very similar to the correlated Glauber results. This might come
as a surprise since these models handle the final state interactions in a rather dif-
ferent way. The good agreement between the OMEA and the correlated RMSGA
results is also a very interesting result in the sense that this demonstrates that the
gap between the low Q2 regime, described in terms of a potential model, and the
higher Q2 regime, described in terms of a multiple-scattering Glauber framework,
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can actually be bridged in a satisfactory manner. We consider this an important
finding. In what follows, it will be shown that this smooth transition from the low
to the high Q2 regime has it consequences for the Q2 evolution of the spectroscopic
factors in 12C.

The transparency results of Fig. 9.5 can be placed in a totally different con-
text if we make the connection between the obtained nuclear transparencies and
the summed spectroscopic strength of the independent-particle levels in 12C. In
what follows we will examine this relationship more closely and demonstrate how
a summed spectroscopic factor S12C for the 12C nucleus can be extracted from the
results presented in Fig. 9.5. With the term “summed” we refer to the fact that the
spectroscopic factors S1s and S1p of the 1s and 1p levels in 12C, respectively, can not
be extracted separately from the nuclear transparency results. In fact, one averaged
spectroscopic factor S12C , related to the total number of IPM protons, for the entire
12C nucleus will be determined according to

S12C =
2S1s + 4S1p

6
. (9.8)

We remind the reader that our spectroscopic factors are normalized to unity for each
individual level characterised by an angular momentum j and principal quantum
number n. Consequently, the summed spectroscopic factor S12C of Eq. (9.8) is also
normalized to unity.

In the calculations presented in Fig. 9.5 we have assumed a full occupancy of the
proton levels. In other words, we have assumed that the spectroscopic factors equal
1, for both the 1s and 1p nuclear levels. The theoretical transparencies of Fig. 9.5
are the results of the following ratio

Ttheo =
S1pσ

theo
1p + S1sσ

theo
1s

σPWIA
1p + σPWIA

1s

, (9.9)

where S1p = S1s = 1, and where σtheo(PWIA) is a shorthand notation for

∫

∆3k
d~k

∫

∆E
dE Stheo(PWIA)(~k,E) , (9.10)

as in Eq. (9.6). Analogously, we have that the experimental transparency Texp is
given by

Texp =
σexp1p + σexp1s

σPWIA
1p + σPWIA

1s

. (9.11)

In order to make an accurate comparison of the theoretical transparencies and the
experimental transparencies possible, we should insert the correct values for the
spectroscopic factors S1s and S1p in Eq. (9.9). In Ref. [120] an analysis of the world’s
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12C(e, e′p) data was performed in order to extract the correct values for the 1s and 1p
spectroscopic factors from experiment. It was shown there that such an extraction of
the spectroscopic factors at low Q2 [Q2 < 0.6 (GeV/c)2] lead to a summed (average)
spectroscopic factor S12C = 0.575± 0.02 for 12C. These calculations were performed
with an optical potential model to treat the final state interactions. On the other
hand, the authors of Ref. [120] also performed Glauber calculations in the higher Q2

range [Q2 > 0.8 (GeV/c)2] with the result that they found a summed spectroscopic
factor of 0.84 ± 0.03 at Q2 = 1.08 (GeV/c)2 and slightly increasing values with
increasing energy. The results of this analysis are shown in Fig. 9.6. We note that
the authors of Ref. [120] adopt the convention in which the spectroscopic factor
for a particular angular level is normalized according to the occupation number
in the independent-particle model (i.e. 2 and 4 for the 1s and 1p proton levels
in 12C, respectively). It is evident from the results for the spectroscopic factors
in 12C that the calculated transparencies will differ enormously from each other
depending on which values for the spectroscopic factors are adopted. When using
the high Q2 spectroscopic factors of Fig. 9.6 to calculate the nuclear transparencies
in the 12C(e, e′p) reaction, the authors found values T12C ∼ 0.5−0.6 in the Q2 range
between 1 and 8 (GeV/c)2. On the other hand, when using the low Q2 spectroscopic
factors, transparencies T12C ∼ 0.8− 0.9 were found.

As already pointed out above, one can also perform the inverse procedure, where
one combines the experimental transparency and the theoretical transparency to
obtain an average spectroscopic factor S12C . If the theoretically calculated trans-
parency is scaled with the correct averaged spectroscopic factor, it should equal the
experimentally found transparency. In other words the summed or average spectro-
scopic factor is simply found by considering the ratio Texp/Ttheo. This simple rela-
tionship gives the results of Fig. 9.5 a whole new dimension. For one, this means that
we should only consider the calculations that overshoot the data points as realistic.
The uncorrelated Glauber calculation using the CC2 current operator for example,
largely undershoots the data points (Ttheo < Texp), assuming a spectroscopic factor
larger than unity. Second, the closer the theoretical curves are to the experimental
data points, the higher the average spectroscopic factor. Complete agreement with
the experimental results would assume a full occupancy of the nuclear shell levels.

In Fig. 9.5 the correlated RMSGA calculations predict an average spectroscopic
factor that approaches unity in the Q2 > 0.6 (GeV/c)2 regime. This observation con-
curs with the findings of Fig. 9.6. These spectroscopic factors are large compared to
the ones typically found in low Q2 analysis. From Fig. 9.5 we can also infer a rather
modest Q2 dependent rise of the spectroscopic factors in the correlated RMSGA cal-
culations using the CC1 operator. This also concurs with the findings of Ref. [120],
as can be seen from Fig. 9.6. For the calculations using the CC2 current operator,
there’s no real indication for a Q2 dependence of the spectroscopic strength, when
experimental error margins are kept in mind. However, the most striking feature
of Fig. 9.6 is the abrupt rise of the spectroscopic strength when going from the low
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Figure 9.6 Q2 dependence of the summed spectroscopic strength S1p + S1s for 1p and
1s knockout in the reaction 12C(e, e′p) up to Em = 80 MeV. This picture was taken from
Ref. [120].
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Q2 regime to the higher Q2. This rise is a well established fact and is caused by
the quenching of the single-particle strength at low Q2. Consequently, the rise of
the spectroscopic factor from low to high Q2 is often referred to as single-particle
strength restoration. Our results also point towards this strength restoration, but
this rise of the spectroscopic factor in Fig. 9.6 happens rather abruptly around val-
ues of Q2 ∼ 0.6 (GeV/c)2. A number of reasons are cited in Ref. [120] to account
for this gap. First, and most apparent, is the usage of two entirely different models
to analyze the low and the high Q2 data. As already mentioned the authors of
Ref. [120] used an optical potential method to describe the 12C(e, e′p) data at low
Q2, while a Glauber approach was adopted to account for the higher Q2 data. Our
results of Fig. 9.5 however, convincingly demonstrate that calculations adopting an
optical potential method at low Q2 are not necessarily inconsistent with Glauber
calculations at higher Q2, as can be deduced from Table 6.1. In the intermediate
regime [0.5 < Q2 < 1 (GeV/c)2], where the OMEA calculations and the correlated
RMSGA curves overlap, similar spectroscopic factors are predicted. Even if we were
to exclude the effects stemming from SRC, the net effect on the spectroscopic factor
would still be much smaller than is the case in Fig. 9.6. The good agreement in de-
scribing A(e, e′p) observables between the eikonal method with optical potentials and
the multiple-scattering Glauber approximation was already extensively discussed in
Sec. 6. Another reason that was cited as a possible origin for the observed discrep-
ancy in Fig. 9.6 is the usage of different current operators. From Fig. 9.5 we can
estimate this effect to be no larger than 10 % around Q2 ∼ 0.6 (GeV/c)2. Also,
we have shown in Sec. 8 that relativistic effects never exceed the 10 % level in the
calculation of the differential cross section. One other possible explanation for the
observed gap around Q2 ∼ 0.6 (GeV/c)2 is the contribution of two-body currents
which are of more importance at low Q2 than they are at large Q2. Many studies into
the role of meson exchange and intermediate delta excitations in (e, e′p) reactions
have been carried out in the past [104, 121, 122], and it appears that the observed
discrepancy can also not be (entirely) explained by two-body contributions. In fact,
in Ref. [123] it is shown that the uncertainty on the extracted spectroscopic factors
induced by mechanisms that fall beyond the impulse approximation is of the order
of 5 - 10 %. The combined effect of two-body currents and ground-state correlations
on the spectroscopic factors in 16O is depicted in Fig. 9.7.

As suggested by the authors of Ref. [120], a consistent analysis of all 12C(e, e′p)
data between 0.1 ≤ Q2 ≤ 10 (GeV/c)12 could much improve insight into this mat-
ter. A consistent treatment would at least allow to separate genuine physical effects
(contributions from meson exchange etc.) from model-dependent uncertainties (cur-
rent operator, construction of final state etc.). Such an analysis should preferably
be carried out in a framework that is able to describe both the low and high Q2

data without any inconsistencies in some intermediate-energy range. We feel that
our model presented here, is an initial step in this direction.
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Figure 9.7 The predicted sensitivity of the extracted spectroscopic factors to effects beyond
the impulse approximation in the 16O(e, e′p) reaction. Parallel kinematics (~kf‖~q) and quasi-
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Conclusion and Outlook

In this work we have outlined a fully relativistic eikonal framework for modelling
semi-exclusive A(e, e′p) reactions from spherical nuclei at intermediate and high
four-momentum transfers Q2. We have carried out a wide range of 12C(e, e′p) and
16O(e, e′p) calculations for a variety of kinematical conditions, thereby covering four-
momentum transfers in the range 0.1 ≤ Q2 ≤ 20 (GeV/c)2. Our model has proven to
be a very flexible framework as it can be used in conjunction with relativistic optical
potentials or within a Glauber multiple-scattering approach, which are two substan-
tially different techniques to deal with final state interactions. To our knowledge all
Glauber calculations reported in literature are performed within a non-relativistic
and factorized scheme. Our approach can accommodate dynamical relativity, and
all calculations were performed within a fully unfactorized model. This means that
in our theoretical considerations we do not formally separate the proton-nucleus
interaction from the nuclear dynamics.

In addition to the Glauber and optical potential approach we developed a con-
sistent eikonal model (CEA) in which the bound and scattering states were derived
from the same Dirac equation. Our results illustrate that the validity of the CEA
is confined to proton emission in a cone with a relatively small opening angle about
the direction of the virtual photon’s momentum. At first sight, this observation
put serious constraints on the applicability of the Glauber method, that is based on
the eikonal approximation, for modelling the final state interactions in high-energy
(e, e′p) reactions from nuclei.

However, although this consistent treatment minimizes the effects of spurious
states, it can only take elastic contributions into account. It turned out that the
implementation of inelastic contributions in the exit channels is needed to fully
appreciate the limits of the Glauber model. To that purpose we have extended the
eikonal formalism to include optical (complex) potentials that are constructed by
global fits to the available nucleon-nucleus data. This method of dealing with final
state interactions has shown to extend the applicability of the eikonal method far

121
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beyond the limits which were observed in the consistent approach (CEA). In fact,
we have found no evidence that the applicability of the optical potential model in the
eikonal approximation (OMEA) is restricted to a certain angular range.

At higher Q2 [Q2 > 1 (GeV/c)2] nucleon-nucleus scattering becomes increas-
ingly diffractive, and descriptions of the reaction dynamics that rely on a potential
approach for the ejectile can no longer be justified. For that reason we have also
introduced a relativistic generalization of the Glauber approximation (RMSGA). In
such an approach the final state interactions in the nuclear medium are calculated
from pp and pn scattering data. The question arises whether the transition between
the low-energy regime, where optical potentials are used to calculate the scatter-
ing states, and the high-energy regime, where the Glauber method is adopted, is
smooth.

To address this question, we have studied a large number of observables for the
12C(e, e′p) and 16O(e, e′p) reactions, and compared them with experimental results.
Although both methods treat final state interactions in a rather different manner,
it was shown that they produce comparable results for the differential cross sections,
structure functions and polarization observables. We consider the fact that both
methods produce similar spectroscopic strengths one of the major findings of this
work. In this comparison, special attention was paid to the RTL structure func-
tion. It has been extensively discussed in literature that the contribution stemming
from the interference RTL structure function is very sensitive to slight changes in
the theoretical modelling of the reaction process, including the construction of the
scattering wave function. We have shown that the largest differences between the
optical model approach and the Glauber approach are indeed observed in the RTL

structure function. The left-right asymmetry ALT that is heavily influenced by the
RTL structure function, proved to be a very efficient tool to express these differences.
However, although both methods exhibit a very different pm dependence for large
missing momenta, they both reproduce the experimental trend, thereby illustrating
the necessity of including final state interactions at high missing momenta.

A major concern in any relativistic approach are the uncertainties that arise from
the choice of the electromagnetic electron-proton coupling. We have quantified the
effects of the ambiguities on the observables by comparing results obtained with a
number of current operators and methods to restore current conservation. In line
with other investigations we have found that the off-shell ambiguities grow with
increasing missing momenta. Further, it was demonstrated that a modification
of the longitudinal component of the vector current according to Jz → (ω/q)J0,
which restores current conservation, produces the smallest off-shell ambiguities in
the calculated results. Also, the current operator CC2 was put forward as the
most favorable choice for the electron-proton coupling as calculations employing this
operator proved to be rather insensitive to the chosen gauge restoration scheme.

A key issue in the considerations of off-shell ambiguities was the Q2 dependence
of the induced uncertainties on the reaction observables. It is often claimed that
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with increasing Q2 the uncertainties related to these ambiguities drop, making the
impulse approximation increasingly accurate. In an attempt to verify this statement
we have performed calculations in a wide Q2 range up to 20 (GeV/c)2. It was not
only found that the calculations using the substitution J0 → (q/ω)Jz converged to
those using the substitution Jz → (ω/q)J0, but that the predictions with different
current operators in one scheme also converged to each other with increasing en-
ergy transfer. Speaking in terms of cross sections, the uncertainties introduced by
off-shell effects drop to percent levels for Q2 ∼ 3 - 4 (GeV/c)2. It appears thus as if
off-shell ambiguities are of far less concern at higher Q2 than they used to be in the
Q2 ≤ 1 (GeV/c)2 region, where most of the data have been accumulated up to now.
It was also found that the interference structure functions RTT and RTL are subject
to off-shell ambiguities that are extending to the highest four-momentum transfers
considered here. Note however that these effects also decrease with increasing ener-
gies, albeit in a much slower manner. This feature was explained by the large weight
of the negative energy states in these structure functions.

Our theoretical model also permits to asses the impact of the relativistic effects
over a wide energy range. Non-relativistic models for the electron-nucleus coupling
typically miss the coupling between the lower components in the bound and scatter-
ing states. We have interpreted the effect of this coupling as a measure for genuine
relativistic effects. The impact of the lower components on the A(e, e′p) observables
was observed to be significant over the whole Q2 range studied. As for the cross
section it was found that the impact of the coupling amongst the lower components
first increases, and then tends to converge to zero when higher values of the energy
transfer are reached. It is noteworthy that for the differential cross section the effect
of this genuine relativistic mechanism never exceeds the 10 % level. The enhanced
sensitivity of the RTL structure function to relativistic effects complies with other
studies. This enhancement lead the left-right asymmetry ALT to be almost entirely
governed by the coupling amongst the lower components, making this observable
very useful to study the effects of genuine relativistic origin.

We have also calculated nuclear transparencies in our relativistic model. We
have not found any evidence for the onset of color transparency in the 0.1 ≤ Q2 ≤
20(GeV/c)2 region. It also became clear that an accurate description of the nuclear
transparency at higher Q2 requires the inclusion of short-range correlations effects
(SRC), as they prove to significantly enhance the (e, e′p) cross section, and, evi-
dently, the nuclear transparency. Although the inclusion of SRC causes the nuclear
transparency to be overall enhanced with some 10 %, still no Q2 dependent increase
of the nuclear transparency with increasing momentum transfers is observed. The
results for the nuclear transparency in 12C were also linked with the spectroscopic
strength of the 1s and 1p levels in 12C. We have found that the summed spectro-
scopic strength is almost Q2 independent in the Q2 > 1 (GeV/c)2 range. Further,
we have shown that the usage of a potential model for the description of A(e, e′p)
transparencies at low Q2 is reasonably consistent with the high Q2 results which can



124 Chapter 10. Conclusion and Outlook

only be computed in a Glauber framework.

To conclude we would also like to propose some points of interest towards the
future that might contribute to a better understanding of A(e, e′p) nuclear reactions,
and, in particular, the transparency phenomenon

• Extension of the eikonal/Glauber method : higher order terms to increase the
accuracy of the transversal momentum distribution, proper inclusion of spin-
orbit, spin-spin, non-central corrections to the adopted potentials and scat-
tering amplitudes, multiple-scattering extension of the optical eikonal method
through the use of realistic nucleon-nucleon interaction potentials

• Effect of short-range correlations at high Q2 : particularly useful in this context
are the two-nucleon knockout experiments and the corresponding polarization
observables to gain some insight into the role of the strong central and tensor
components of these correlations [124, 125, 126, 127]

• Inclusion of recent experimental results on nucleon form factors : in this work
we have performed all calculations with the standard dipole form for the elec-
tromagnetic form factors. Since the reaction strength is heavily influenced by
the elastic nucleon form factors, one should make use of the available experi-
mental results and QCD-based predictions for these form factors

• Hybrid models : at high Q2 the incoming foton is able to probe the quark
degrees of freedom in the struck nucleon, and a correct combination of QCD
modelling and nuclear reaction theory might result in a more accurate descrip-
tion of the physics governing the A(e, e′p) reaction

• Usage of other reaction frames : standard nuclear calculations are performed
within the laboratory or center-of-mass frame. It might be more efficient to
consider another framework, as is done for example in Light Cone theory,
where some of the properties inherent to high-energy reactions are already
incorporated in the formalism
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