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Abstract—This paper evaluates the feasibility of applying Mas-
sive MIMO to tackle the uplink mixed-service communication
problem. Under the assumption of an available physical narrow-
band shared channel (PNSCH), devised to exclusively consume
data traffic from Machine Type Communications (MTC) devices,
the capacity (i.e., number of connected devices) of MTC networks
and, in turn, that of the whole system, can be increased by
clustering such devices and letting each cluster share the same
time-frequency physical resource blocks. Following this research
line, we study the possibility of employing sub-optimal linear
detectors to the problem and present a simple and practical
channel estimator that works without previous knowledge of the
large-scale channel coefficients. Our simulation results suggest
that the proposed channel estimator performs asymptotically as
well as the MMSE estimator with respect to the number of
antennas and the uplink transmission power. Furthermore, the
results also indicate that, as the number of antennas is made
progressively larger, the performance of sub-optimal linear de-
tection methods approaches the perfect interference-cancellation
bound. The findings presented in this paper shed light on and
motivate for new and exciting research lines towards a better
understanding of the use of massive MIMO in MTC networks.

Index Terms—Large-scale antenna systems, 5G networks, ma-
chine type communications, channel estimation, linear detection.

I. INTRODUCTION

RECENT technological developments taking place in our
society have been drastically changing the way we use

communications systems. These changes are in their great
part due to the huge (and also foreseen [1]) increase in
on-demand data consumption over both wireless and mobile
networks. In order to support such changes, it is mandatory
to devise solutions that can meet the different requirements of
use cases regarded as the market drivers for next generation
wireless networks (5G). ITU-R has defined the following three
main 5G use cases: Enhanced Mobile Broadband (eMBB);
Ultra-Reliable and Low Latency Communications (URLLC);
and Massive Machine Type Communications (mMTC) [2].
They aim at significantly improving performance, scalability
and (cost/energy) efficiency of the current wireless networks
such as LTE, LTE-A and LTE-A Pro. These use cases and
their direct requirements will demand huge improvements in
comparison with the previous generation of IMT systems [2].
A non-exhaustive list of 5G applications grouped by use case
and a brief explanation about them follows next.

• eMBB: focus on improvements to data rate, user density,
latency, capacity and coverage of the current wireless
networks [3], [4]. Some applications are: high-speed
mobile broadband, augmented and virtual realities (e.g.,
gaming), smart office environments, pervasive video (i.e.,
high-resolution video everywhere), etc.

• URLLC: aims at allowing devices and machines to
communicate with ultra-reliability, high availability and
very low latency, which make it ideal for real-time
applications [5]–[7]. Some applications are: wireless
industrial control, factory automation, remote surgery,
cellular vehicle-to-everything (C-V2X) communications,
self-driving cars, smart grids, public safety, etc.

• mMTC: focus on enabling machine-centered commu-
nications among devices that are massive in number,
battery-driven, generate bursty traffic and have low-cost,
i.e., Internet of Things (IoT) devices [3], [8], [9]. This
use case is intended to support applications like: smart
metering, smart cities, asset tracking, remote monitoring
(e.g., field and body sensors), etc.

Applications within the scope of the MTC driver range from
smart cities and smart grid to critical infrastructure monitoring
[10]–[12], and from Advanced Driver Assistance Systems
(ADAS) to mobile health, which includes sports/fitness and
telemedicine [13], [14]. Reliability in critical infrastructure
monitoring and smart grid, for example, is often achieved only
through dedicated land-line connections (i.e., wired connec-
tions) [15]–[17]. Telemedicine makes use of telecommunica-
tions and information technology systems in order to provide
remote clinical health care. It involves, for example, diag-
nostics realized through medical data stored in cloud servers,
which requires low-latency, real-time access and high capacity
servers capable of dealing with massive amounts of data, e.g.,
computerized axial tomography and magnetic resonance imag-
ing [18]–[20]. Automotive infotainment, vehicular cooperation
in ADAS, and pre-crash sensing and mitigation applications
also require high-speed, low-latency car-to-infrastructure and
car-to-car communications [21]–[23].

Reliability and power consumption are of huge importance
for wireless sensor networks (WSN), where a few to several
hundreds or even thousands of low-cost and power-constrained
sensor devices (in most of the WSNs, the sensors are battery-
powered) need to measure environmental conditions like tem-
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perature, noise level, air pollution levels, humidity, wind, etc.
and reliably transmit them to a central location over harsh
channel conditions [24], [25]. Most of the WSN use cases
require the deployment of battery-powered sensors for ten
years without any maintenance, meaning that the battery is
expected to last a decade without being recharged [26].

As can be noticed from the previous discussion, the require-
ments necessary for the implementation of next generation
wireless networks (i.e., 5G) are quite diverse, even within
the same market driver. Scalability is yet another issue posed
by IoT, as the main assumption behind it is that hundreds
to hundreds of thousands of low-cost MTC devices shall be
served by a single Base Station (BS) [27]. Scalability issues
have been mainly tackled by adopting different and sometimes
complementary approaches, such as sparse signal processing
techniques [28], techniques brought from duty-cycled Wireless
Sensor Networks [29] and new waveforms specially designed
for bursty and asynchronous data transmissions [30], [31],
however, until now, the use of Multiple Input Multiple Output
(MIMO) techniques in the context of MTC networks and the
scalability issue are less understood.

The sentiment shared by most researchers nowadays is
that the foreseen increase in data rate will be achieved by
combined gains [32] provided by (i) increasing the network
density, i.e., the addition of more radio sites with smaller
cell coverage areas to the same region (extreme network
densification), which consequently improves the area spectral
efficiency [33] (ii) increasing spectrum availability such as the
introduction of new spectrum bands like mmWaves [34], [35],
(iii) improving the use of licensed, unlicensed and licensed-
shared spectrum bands [36] with more efficient and intelligent
sharing techniques, (iv) and increasing spectral efficiency of
digital communications systems through advances in MIMO
techniques. One of the benefits resulting directly from the
powerful processing gains provided by the use of large arrays
of antennas (i.e., massive MIMO systems) is that the majority
of the physical layer signal processing and and resource
allocation (i.e., scheduling) issues are simplified, if not solved,
which is clearly not the case for systems employing only a
moderate to small number of antennas [37].

Massive MIMO has been gaining significant attention and
strength as a very promising candidate to improve spectral
efficiency and consequently increase the channel capacity in
multi-user networks. Massive MIMO is a scalable technol-
ogy through which large numbers of devices can simulta-
neously communicate through the entire allocated spectrum,
i.e., thanks to its many spatial degrees of freedom, the same
allocated frequency band can be reused by many users at the
same time [37]. In the limit, as the number of antennas, M ,
deployed at the BS increases, the system processing gain also
increases, i.e., as M tends to infinity, the processing gain
tends to infinity as well. Massive MIMO not only provides
high spectral efficiency in a cell, but also provides a good and
uniform service to a large number of devices simultaneously
[37]. A consequence of this powerful processing gain is that
the effects of small-scale fading and frequency dependence
disappear. In [38] it is indicated that, due to the law of
large numbers, the channel becomes reliable (i.e., it becomes

deterministic) so that each one of the subcarriers in an OFDM-
based massive MIMO system considerably experiences the
same channel gain. This phenomenon is known as channel
hardening [39]. Channel hardening renders frequency-domain
scheduling unnecessary as all subcarriers are considered
equally good, and consequently, makes most of the physical
layer control signaling no longer needed [40]. Additionally, the
adoption of massive MIMO systems also improve frequency
reuse (due to the reduced radiated power), simplifies power
control (power control coefficients depend only on the large-
scale fading coefficients) and decreases multi-user interference
(due to the possibility of having very narrow beams as M
increases) [39], [41].

On the other hand, massive MIMO also presents some
challenges that need to be studied and addressed in order to
fully reap its benefits. Next, some of the issues regarded as the
most challenging in the Massive MIMO literature are briefly
discussed.

• In multi-cell scenarios, the use of non-orthogonal pilot
signals by different users in different cells during the
training-phase brings about a phenomenon known as
pilot-contamination, which makes the target user’s chan-
nel estimate contaminated by other user’s channels using
the same pilot. This phenomenon degrades the quality
of the channel estimates and causes coherent interference
that does not vanish by increasing the number of antennas
[38], [42].

• Cost-efficient massive MIMO systems are expected to
be constructed making use of low-cost components,
however, this leads to the appearance of non-negligible
signal distortion caused by hardware impairments. Hard-
ware impairments cause channel estimation errors and
limit the system’s achievable capacity, which theoretically
should be unlimited as the number of antennas increases,
due to phase-noise, I/Q imbalance, power-amplifier non-
linearities, and quantization errors generally intrinsic to
low-cost components [43].

• The digital signal processing in massive MIMO systems
is inherently more computationally challenging when
compared to the processing required by systems with
single or small number of antennas. The signal pro-
cessing in massive MIMO systems generally involves
the following tasks: fast Fourier transform (FFT), chan-
nel estimation, precoding/detection and computation of
precoding/detection matrices. The complexity of these
digital signal processing operations increases linearly
with the number of antennas, and everything but the FFT
processing complexity also scales with the number of de-
vices. Therefore, low-complexity digital signal processing
techniques have to be devised in order to deal with this
massive computational complexity expected to be created
by these systems [38], [40].

• Massive MIMO systems are expected to mainly operate
in time division duplex (TDD) mode due to the fact
that the propagation channels can be assumed reciprocal
during a coherence interval, i.e., both downlink and
uplink channel responses are approximately equal during
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TABLE I
BENEFITS AND CHALLENGES OF MASSIVE MIMO SYSTEMS

Characteristic Explanation References

Benefits

High spectrum efficiency Huge multiplexing and array gains [38], [41], [49]
High energy efficiency Concentration of radiated energy on specific UEs [41]
High reliability Increased diversity gain [41], [49]
Efficient linear precoding and detection Favorable propagation condition for i.i.d. Rayleigh channels [39], [41]
Weak inter-user interference and With large M , channels become orthogonal and with extremely [41], [43]
enhanced physical layer security narrow beams
Simpler scheduling scheme Channel hardening effect averages out fast fading and receiver noise [40], [41], [50]
Robustness to failures of individual Massive number of antenna elements [38], [41]
antenna elements

Challenges

Pilot-contamination Limited number of orthogonal pilots due to coherence interval [38], [42]
Hardware impairments Cost-efficient massive MIMO deployments use low-cost components, [43]

which suffer from hardware impairments
High digital signal processing complexity Digital signal processing scales with number of antennas and devices [38], [40]
Non-reciprocal transceiver characteristics Transfer response of RF transceiver chains (amplifiers, filters, etc.) are different [44]

a time interval. Based on the reciprocity assumption,
TDD massive MIMO systems use the uplink channel as
an estimate of the downlink channel. However, an issue
that arises from this approach is that the transfer charac-
teristics of transmit and receive RF (i.e., RF transceiver)
chains are different (amplifiers, filters, local oscillators,
etc. have different characteristics), which directly impacts
the calculation of precoding matrices. Therefore, effective
and efficient reciprocity calibration techniques are needed
to exploit the channel reciprocity in practice [44].

Although the deployment of massive MIMO systems still
poses several challenges (i.e., open questions), theoretical
and measurement results demonstrate that its adoption can
tremendously improve the spectral efficiency of wireless com-
munications systems, [39], [41]. In Table I we summarize
the most important benefits and challenges brought about by
massive MIMO technologies.

The adoption of massive MIMO technology can specially
help leveraging and simplifying the deployment of mMTC
systems in cellular networks, which are potential candidates
to accommodate the emerging MTC data traffic thanks to the
existing infrastructure and wide-area coverage [45]. Massive
MIMO has the potential to enable the multiplexing of a myriad
of devices in the same time/frequency resources along with
an extension in range due to the coherent beamforming gain
inherent to this technology [37], [45].

The main contribution of this paper is the proposal of a data
transmission scheme employing massive MIMO technology
as a way to address the uplink mixed-service communication
problem. In the uplink mixed-service communication problem,
a BS has to serve not only Human Type Communications
(HTC) devices but also a possible massive number of MTC
devices. In order to be addressed properly, the problem can
be split into two subproblems, namely, random access and
data transmission problems. During the random access phase, a
huge number of MTC along with HTC devices might simulta-
neously try access the network, which results in congestion and
overloading [46]. On the other hand, after the MTC devices
are granted access to the network, the BS has to allocate
dedicated physical resource blocks to these devices [47]. With
the foreseen number of connected devices raising up to tens of

thousands per cell [46], a BS might easily run out of available
physical resource blocks (i.e., congestion due to user data
packets) to accommodate the data transmissions of this huge
number of devices, tremendously impacting on the operations
and quality of the provided services of a mobile network.

We focus our work on the data transmission phase by
proposing a massive MIMO-based scheme where the data
transmissions of a great number of MTC devices are served
through the same time-frequency resources by a BS equipped
with a large number of antennas. The proposed scheme has the
potential to mitigate the congestion due to the large (and pos-
sibly massive) number of user data packets and additionally, it
offers scalability, as the number of served devices can easily
grow by increasing the number of deployed antennas at the
BS [37]. The proposed scheme deals with data transmission,
channel estimation and detection of the many data streams
simultaneously transmitted by multiple MTC devices using the
PNSCH’s shared time-frequency resources.

We employ the maximum likelihood (ML) method to find
an estimator for the large-scale fading coefficients present in
the MMSE channel estimator. We show that this estimator
is not only unbiased but it also achieves the Crámer-Rao
lower bound. The estimated large-scale fading coefficients are
replaced into the MMSE channel estimator, giving rise to a
new channel estimator, which asymptotically approaches the
performance of the MMSE channel estimator as the number of
antennas and the uplink transmit power increase. Additionally,
we derive closed-form and approximate expressions for the
mean square error (MSE) of the proposed estimator. Moreover,
we find lower bounds on the achievable rate for each one of
the studied linear detectors.

This paper is an extension of a previous paper [48]. Differ-
ently from [48], where we have only considered Bit Error Rate
(BER) analysis for perfect channel estimation (i.e., full chan-
nel knowledge) and some linear detectors, the current paper
not only deals with imperfect channel estimation, proposing
and assessing the performance of a channel estimator in terms
of mean squared error (MSE) and BER, but also proposes a
scheme to tackle the problem posed by the simultaneous data
transmission of a large number of MTC devices connected to
the base station (i.e., user data packet congestion). Addition-
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ally, we also analyze the achievable rates of the studied linear
detectors with the proposed data transmission scheme.

The remainder of the paper is as follows. Section II provides
a brief discussion on related works. Section III presents a
study case, where the feasibility of Massive MIMO for MTC
networks is investigated as means to address the uplink mixed-
service communication problem. Section IV outlines one pos-
sible approach to estimate the large-scale fading coefficients.
Section V proposes a channel estimator that takes into account
the estimation of the large-scale fading coefficients. Section VI
presents simulation results and discussions on the outcomes.
Section VII wraps up the paper with concluding remarks.

A. Notations

Vectors and matrices are denoted by bold lower-case and
upper-case letters, respectively. The matrix/vector conjugate-
transpose is denoted by (.)H . We use E [.], var(.) and Cov [.]
to denote the expectation, variance and covariance operators.
The circularly-symmetric Gaussian distribution is denoted by
CN . We denote equality in asymptotic sense by

a

≈. Γ(.) and
B(., .) denote the Gamma and Beta functions respectively.
IK is the K × K identity matrix and 0N is the N × 1 zero
vector. ‖.‖, P{.}, R{.} and cos−1(.) denote Euclidean norm,
probability, real part and arc-cosine respectively. The big-O
notation O(Mx) describes that the complexity is bounded by
CMx for some 0 < C <∞.

II. RELATED WORK

In the literature, there are a myriad of works proposing
solutions exclusively tailored to increase the capacity of the
random access channel of LTE/LTE-A networks. In those
networks, the MTC devices compete for resource blocks
for their data transmission using a random access scheme.
The works [46], [51]–[54] and the vast number of papers
therein mentioned, review and propose solutions to tackle
the scalability issue posed by the random access of tens to
hundreds of thousands of MTC devices during the random
access/synchronization phase. The solutions presented in these
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works can accommodate from 30000 to more than 78000 MTC
devices per cell with low collision probabilities. However,
these works do not deal with the problem involving simul-
taneous data transmissions coming from a possible massive
number of MTC devices during the Radio Resource Control
(RRC) connected state [47].

Although there exist numerous studies on the massive
random access problem, there are relatively few publications
addressing the massive data transmission problem (i.e., con-
gestion due to user data packets) [55], which arises from
the simultaneous data transmission of a huge number of
devices during the RRC connected state (i.e., during the data
transmission phase).

The work presented in [56] tackles the problem of device
activity detection and joint channel estimation when non-
orthogonal pilot sequences are used by the devices. The
authors use approximate message passing (AMP) algorithm in
compressed sensing to exploit the sparsity in device activity
detection. The work considers a grant-free multiple-access
scheme and that the devices are already synchronized to the
BS. The drawbacks of the proposed solution are the lack of
information on how the devices stay synchronized to the BS
and the analysis for multi-cell scenarios. In [57] the authors
study the coexistence of HTC and MTC devices under a
single-cell massive MIMO setup and assess their joint spectral
efficiency, however they do not deal with channel estimation,
linear decoding problems and multi-cell scenarios. The authors
of [58] develop a stochastic geometry model for dense MTC
systems adopting massive MIMO setups however, their focus
is on providing a random access solution for such networks,
failing to analyze the impact of massive MIMO during the
data transmission phase. Additionally, it is worth noticing that
all these works assume that all devices are synchronized to
the uplink of the base station.

Therefore, we decided to focus our work on the data
transmission phase, by proposing a solution where clusters
of MTC devices share exclusive and periodic time-frequency
resources and simultaneously transmit their data with massive
MIMO technology being deployed at the BS to retrieve each
one of the device’s transmissions. By using massive MIMO at
the BS, a great number of MTC devices can be assigned to the
same time-frequency resources, consequently, mitigating the
negative effects on human type communications (HTC), e.g.,
data congestion. The proposed solution allows the addition
of MTC services to wireless cellular networks without the
necessity of additional time-frequency resources.

III. THE UPLINK MIXED-SERVICE COMMUNICATIONS
PROBLEM

In this section, we investigate the feasibility of massive
MIMO as a means to address the so-called uplink mixed-
service communication problem, where a single BS simultane-
ously delivers services to both narrowband MTC devices and
Fourth Generation (4G) wideband User Equipment (UEs). We
propose an approach that enables a huge number of bursty and
low rate devices in a cell without compromising the Radio
Access Network (RAN) as depicted in Figure 1. Our proposal
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The cluster of MTC devices seen at the transmit side share the same time-frequency PRBs, while the sole BS at the receive side is equipped with an antenna
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is in line with the set of MTC features considered in 3GPP
[55], [59]: (i) low mobility: the devices rarely move or only
move within a certain region; (ii) time controlled: MTC data
delivery only occurs during predefined time intervals; (iii)
time tolerant: MTC data transfer can be delayed; (iv) small
data transmissions: only small amounts of data are exchanged
between the device and the BS, i.e., bursty transmissions; (v)
mobile originated only: MTC devices utilizing only mobile
originated communications; (vi) infrequent transmission: long
period between two data transmissions. Treating MTC devices
as regular UEs turns out to be an issue, as scheduling Physical
Resource Blocks (PRBs) in extremely dense networks is a
nontrivial task made harder in the presence of retransmissions
and intrinsic uplink synchronization procedures [60]–[63].

Assuming the availability of a Physical Narrowband Shared
Channel (PNSCH), exclusively devised to consume data traffic
generated by MTC devices, the capacity of the MTC network
– and, in turn, that of the mixed-service system – can be
increased by clustering MTC devices and letting clusters share
the same time-frequency PRBs. The idea behind the PNSCH is
to allow the exploitation of the channel’s geometric scattering
characteristics to spread MTC signals in the spatial domain.
The individual data streams conveyed by spatially spread
MTC signals can be separated thanks to the inherent spatial
multiplexing properties of massive MIMO technology [39],
where the antenna array size at the BS is at least one order
of magnitude larger than the number of served MTC devices.
Next, we describe the system depicted in Figure 2 in terms of
its underlying functional blocks.

A. Signal Generation & Transmission

We assume the transmitted signals of a cluster with K
single-antenna MTC devices are detected by a Massive MIMO
BS equipped with M receive antennas, M � K. All the K
MTC sources map data into a set of continuous PRBs in the
frequency domain, with the subcarrier indexes providing the
spectral position of the PNSCH at the physical layer level.

As the focus of our work is on the data transmission
phase (i.e., during the RRC CONNECTED state [47]), we,
therefore, assume that all MTC devices being served by a BS

are already synchronized and connected to it before accessing
the PNSCH, i.e., the MTC devices have already performed the
random access and attach procedures before any data is sent
through the PNSCH. Before any transmission, in order to align
its uplink transmissions to the BS timing, each one of the MTC
devices must perform a random access procedure through the
physical random access channel (PRACH) [47], [62], [64].
Upon successful random access procedure, a MTC device
holds a Cell-Radio Temporary Identifier (C-RNTI) that is then
mapped to a pilot sequence, which will be used uniquely by
that device while it is connected to the BS. The MTC device
will use the same pilot sequence whenever it needs to transmit
data towards the BS. This unique correspondence between a
MTC device and a pilot sequence guarantees orthogonality
among all the MTC devices being served by the same BS,
which is of utmost importance to massive MIMO systems due
to the pilot-contamination problem that might arise when pilot
sequences are reused [65]. The interested reader is referred to
[46], [51], [52] for a list of solutions to the random access
problem posed by the large number of random access attempts
coming from a massive number of MTC devices.

The BS broadcasts system information blocks (SIB), just
like it is done for the PRACH used in current 4G systems

Fig. 3. Uplink Frame Structure with PNSCH.
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(see, e.g. [64] and the references therein), in order to configure
the PNSCH at the MTC devices. This allows the number of
PNSCH transmission opportunities in the uplink to be sched-
uled while taking into consideration discrepancies between the
(likely different) capacities of MTC devices and UEs. PNSCH
time-frequency resources are semi-statically allocated by the
BS, and repeat periodically. Additionally, the SIB messages
can carry, for instance, information about the pilot sequence
length, which in turn, dictates the capacity of the PNSCH as
it will determine the remaining period of time destined to data
symbols. The pilot sequence length can be varied so that more
MTC devices can be simultaneously served by the BS at the
cost of smaller data capacity. Figure 3 depicts the uplink frame
structure devised for the PNSCH. As can be seen in the figure,
we assume 1 ms long PNSCH transmission opportunities.
The PNSCH is time- and frequency-multiplexed with Physical
Uplink Shared Channel (PUSCH), Physical Uplink Control
Channel (PUCCH) and PRACH as illustrated in the figure.

In this work we assume that inter-cell interference is negligi-
ble. Inter-cell interference can be heavily mitigated, and there-
fore, considered insignificant, if less-aggressive frequency-
reuse (e.g., reuse of 3 or 7) is adopted [74]. Inter-cell
interference manifests itself in two ways, namely, coherent
and non-coherent interference, being the former caused by
contaminating cells (i.e., cells that use the same set of pilots
as the home cell, causing pilot-contamination) and the latter
caused by non-contaminating cells (i.e., cells that do not use
the same pilots as the home cell) [37]. In multi-cell scenarios,
pilot-contamination, and consequently, coherent interference,
can be disregarded once the PNSCH time-frequency resource
intervals in each one of the neighbor cells can be configured
to refrain them from overlapping with the intervals chosen for
the target cell. This kind of configuration can be implemented
in order to improve the overall system performance as pilot-
contamination results in degradation of the channel estimate
quality, which directly impacts on the spectral efficiency
[37]. Figure 4 illustrates one possible configuration for the
PNSCH intervals of neighbor cells so that pilot-contamination
is mitigated.

We assume the utilization of OFDM block-based trans-
missions. We denote the OFDM symbol interval by Ts, the
subcarrier spacing by ∆f , the useful symbol duration by
Tu = 1/∆f , and the guard interval (duration of the cyclic
prefix) by Tg = Ts−Tu. As in [39], we call the reciprocal of
the guard interval, when measured in subcarrier spacings, the
”frequency smoothness interval”,

Nsmooth =
1

Tg∆f
=
Tu
Tg
, (1)

where Nsmooth represents the number of subcarriers over which
the channel frequency response is considered smooth, i.e.,
approximately constant [37].

A total of τp OFDM symbols are used entirely for pilot
sequence transmission. The remaining symbols, τu, within
the same coherence block are used for data transmission.
In general, the response is constant over Nsmooth consecutive
subcarriers and, therefore, the BS can estimate the channel
for a total of Kmax = τpNsmooth terminals. We assume that a
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coherence block consists of Nsmooth subcarriers and τp + τu
OFDM symbols, i.e., Nsmooth × (τp + τu) subcarriers, over
which the channel response is approximated as constant and
flat-fading [41].

1) Pilot Transmission: as widely used in LTE systems
[47], we adopt Zadoff-Chu sequences to design the mutually
orthogonal pilot sequences allocated to the MTC devices.
These sequences present unit-norm elements but also the addi-
tional feature that each sequence is the cyclic shift of another
sequence [66], [67]. However, any other set of sequences
exhibiting the mutual orthogonality property could be used as
pilot sequence, e.g., Walsh Hadamard sequences [68]. Within
a cell, each terminal is assigned a τpNsmooth pilot sequence,
which is orthogonal to the pilot sequences that are assigned
to other terminals in the cell. Collectively, the K ≤ τpNsmooth
terminals in the cell have the pilot book represented by Φ - a
τpNsmooth×K unitary matrix such that ΦHΦ = IK . The pilot
sequence assigned to the k-th MTC device is represented by
the column vector φk.

2) Data transmission: we assume that the modulated sym-
bols (carrying data of a MTC device) are randomly and
independently drawn from a digital modulation alphabet (e.g.,
PSK, 16QAM, etc.) with normalized average energy. The
modulated symbols are mapped into τu OFDM symbols.

Each MTC device transmits its signal (i.e., allocated pi-
lot sequence and data) by taking the Inverse Fast Fourier
Transform (IFFT) of the mapped pilot sequence and data, and
subsequently adding a CP.

Figure 5 shows the time-frequency plane for one possible
configuration of the PNSCH. It shows how pilots and data
symbols are mapped into the frequency/time domain of a
coherence block. In that configuration, half of the OFDM
symbols are used for pilots and the other half for data trans-
mission. The time-frequency plane is divided into coherence
blocks in which each channel is time-invariant and frequency-
flat. The fraction of pilot symbols and UL data can be selected
based on the network traffic characteristics, i.e., the PNSCH
configuration can be modified to increase the number of
served MTC devices or the data rate per MTC device by
increasing the number of OFDM symbols used for pilot or
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Fig. 5. Time-frequency plane.

data transmission accordingly.
As can be seen in Figure 2, filters are added to both

transmission and reception chains. These filters are added to
the processing chains so that out-of-band emissions (OOBE),
which are intrinsic to the OFDM waveform due to the discon-
tinuities at its edges, do not interfere with adjacent channels,
i.e., Physical Random Access Channel (PRACH), Physical
Uplink Shared Channel (PUSCH) and Physical Uplink Control
Channel (PUCCH). Additionally, the filters help to mitigate
inter-symbol interference (ISI) and inter-carrier interference
(ICI) caused by asynchronous transmissions coming random
access attempts happening at the PRACH [69]. Note that
the received signal is passed through a matched filter, which
maximizes the signal-to-noise ratio (SNR). The filter is applied
to each time domain OFDM symbol (i.e., after IFFT and CP
insertion) to mitigate the OOBE of the PNSCH transmissions.
The filters should be carefully designed to (i) maintain the
complex-domain orthogonality of OFDM symbols, (ii) exhibit
flat passband over the subcarriers in the PNSCH, (iii) have
sharp transition band in order to reduce the guard-bands, and
(iv) present sufficient stop-band attenuation [70].

B. The Massive MIMO Channel

Let hm,k,n denote the complex propagation coefficient
between the m-th BS antenna and the k-th MTC device in
the n-th subcarrier

hm,k,n = gm,k,n
√
dk, (2)

where gm,k,n is a complex small-scale fading coefficient, and
dk is an amplitude coefficient that accounts for geometric
attenuation and shadowing, i.e. large-scale fading [39]. The
large-scale fading coefficients are assumed constant with re-
spect to both subcarrier number and with respect to the index
of the BS antenna since the geometric and shadow fading
change slowly over space [39]. Therefore, between any given
BS and a MTC device, there is only one large-scale fading
coefficient. Additionally, these coefficients change only when
a MTC device significantly change its position. It is normally
assumed that in the radius of 10 wavelengths, the large-scale

��

…

�

BS
��

��

��

��

� - terminals per cell.
� - BS co-located antennas.

ℎ�,�

Signal from k-th user to the m-th BS antenna.

Problem definition

Fig. 6. Propagation model.

fading coefficients are approximately constant. On the other
hand, small-scale fading coefficients significantly change as
soon as the MTC device moves by a quarter of the wavelength.
Therefore, the large-scale fading coefficients change about 40
times slower than the small-scale fading coefficients [71].

The random channel responses in one coherence block
are statistically identical to the ones in any other coherence
block, irrespective of whether they are separated in time
and/or frequency. Hence, the channel fading is described by
a stationary ergodic random process. Therefore, hereafter,
our analysis is carried out by studying a single statistically
representative coherence block. We assume that the channel
realizations are independent between any pair of blocks, which
is known as a block fading assumption. Consequently, for
notational simplicity we suppress the dependency of hm,k,n
on the subcarrier index and write it as hm,k (see Figure 6).

The elements hm,k of the M ×K channel matrix

H = [h1 h2 . . . hK ]

=

 g1,1 · · · g1,K

...
. . .

...
gM,1 · · · gM,K


︸ ︷︷ ︸

G

.

 d1

. . .
dK


︸ ︷︷ ︸

D

1/2

, (3)

correspond to the complex channel gains from the trans-
mit antennas to the receive antennas, where hk ∼
CN (0M , bkIM ), ∀k. The channel model in (3) is called
uncorrelated Rayleigh fading or independent and identically
distributed (i.i.d.) Rayleigh fading, because the elements of
hk, i.e., hm,k, are uncorrelated (and also independent) and
have Rayleigh distributed magnitudes.

Under the assumption of large M and that the small-
scale fading coefficients experienced by each MTC device are
i.i.d. random variables with zero mean and unit variance, the
column channel vector from different MTC devices becomes
asymptotically orthogonal as the number of receive antennas
at the BS grows without bound [39]

HHH = D1/2 GHG D1/2 M → ∞
≈ MD1/2IKD1/2 = MD, (4)

where (·)H denotes transpose-conjugate (Hermitian) oper-
ation. As can be noticed, the small-scale fading vanishes



8

and only the large-scale fading remains, however, it can be
mitigated with power control techniques [72], [73].

One of the key assumptions exploited by massive MIMO
systems is that the channel vectors between the BS and
the terminals should be nearly orthogonal. This condition,
which is shown in (4), is known in the literature as favorable
propagation. With the assumption of favorable propagation,
linear processing techniques can achieve optimal performance.
For instance, on the uplink side, simple linear detectors can
be used to cancel out noise and interference. On the downlink
side, by adopting linear beamforming techniques, the BS can
simultaneously beamform multiple data streams to multiple
terminals without causing mutual interference [74], [75]. We
refer the eager reader to [76] for a discussion on this condition,
and to [49] for some experimental evidence supporting the
assumption of i.i.d. small-scale fading coefficients in Massive
MIMO.

C. Linear MMSE Channel Estimation

Here we consider the case where CSI, i.e., H is estimated
from the received pilot sequences at the BS. As mentioned
earlier, we do not consider the existence of pilot-contamination
during the channel estimation phase once the PNSCH intervals
in all cells (target and neighbor ones) can be configured to
avoid transmission overlapping.

1) De-Spreading of the Received Pilot Signal: the pilot se-
quences propagate through the uplink channel and are received
by the BS as a M × τpNsmooth signal,

Y =
√
ρ H ΦH + W, (5)

where ρ is the uplink transmit power (UL Tx power) and the
elements of the M × τpNsmooth receiver noise matrix, W, are
i.i.d. CN (0, 1). The BS performs a de-spreading operation of
the received signal by correlating it with each one of the K
pilot sequences. This is the equivalent of right-multiplying the
received signal matrix by the k-th pilot sequence, φk, resulting
in

yk =
Y φk√
ρ

= H ΦH φk +
W φk√

ρ

= hk + w’,

(6)

where w’ = W Φk√
ρ is an M × 1 noise vector, whose elements

are i.i.d. CN (0, 1/ρ) because they are related to the original
Gaussian noise matrix by a unitary multiplication scaled by
1/
√
ρ. The de-spread signal, yk, is Gaussian distributed as

follows

yk ∼ CN
(

0M ,
[
dk +

1

ρ

]
IM
)
. (7)

Remark 1: As ρ→∞, the variance of yk → dk.
Equation (6) is also known as the Least Squares (LS)

estimator [77],

ĥ
LS
k = yk, (8)

and its mean-square estimation error per antenna is denoted
by

ηLS
k =

1

M
E[‖h̃LS

k ‖2] =
1

M
E[‖ĥ

LS
k − hk‖2] =

1

ρ
. (9)

The LS channel estimation error is correlated with both the
channel estimate and the de-spread received signal,

1

M
E[(h̃

LS
k )H ĥ

LS
k ] =

1

M
E[(h̃

LS
k )Hyk] =

1

ρ
. (10)

As the LS channel estimate, ĥ
LS
k , the estimation error h̃

LS
k

is also Gaussian distributed as follows,

h̃
LS
k ∼ CN

(
0M ,

1

ρ
IM
)
. (11)

Next, we present the MMSE estimator, which exhibits better
performance than that of the LS estimator [65].

2) Channel Estimation: After de-spreading, the BS has
a noisy version of the channel vector, which is defined by
(6). Under the assumption of independent Rayleigh fading,
the elements of the channel vector and the noise vector
are statistically independent. By assumption, the large-scale
fading coefficients are considered known at the BS, so the
prior distribution of hm,k ∼ CN (0, dk), is also known. In
section IV we outline a possible approach for estimation of
the large-scale fading coefficients at the BS. The linear MMSE
estimator is the estimator achieving minimum MSE among all
estimators of such form [41]. That is, it solves the following
the optimization problem

ĥ
MMSE
k = arg min

B∈BM×M
‖hk − Byk‖2, (12)

where yk is defined in (6), B is a matrix that minimizes the
mean square error (MSE). After solving (12), we find that the
linear MMSE channel estimator is given by

ĥ
MMSE
k =

dk

dk + 1
ρ

yk

=
ρdk

ρdk + 1
yk.

(13)

Note that as ρ → ∞, the MMSE estimator becomes the
LS estimator. The mean-square per antenna of the channel
estimate is denoted by γk and given by

γk =
1

M
E[‖ĥ

MMSE
k ‖2] =

ρd2
k

1 + ρdk
. (14)

The channel estimation error is denoted by

h̃
MMSE
k = ĥ

MMSE
k − hk, (15)

and the mean-square estimation error per antenna is

ηMMSE
k =

1

M
E[‖h̃MMSE

k ‖2] =
1

M
E[‖ĥ

MMSE
k − hk‖2]

=
dk

1 + ρdk
= dk − γk.

(16)

As ρ → ∞, the mean-square error (MSE) per antenna,
ηMMSE
k → 0.
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The channel estimation error is uncorrelated with both the
channel estimate and the de-spread received signal,

1

M
E[(h̃

MMSE
k )H ĥ

MMSE
k ] = 0. (17)

1

M
E[(h̃

MMSE
k )Hyk] = 0. (18)

The estimation error h̃
MMSE
k and the estimate ĥ

MMSE
k are

jointly Gaussian distributed as follows,

ĥ
MMSE
k ∼ CN (0M , γkIM ) . (19)

h̃
MMSE
k ∼ CN (0M , (dk − γk) IM ) . (20)

Therefore, the fact that they are uncorrelated implies that
they are also statistically independent.

Remark 2: As ρ→∞, the variance of ĥ
MMSE
k → dk.

One final remark about the MMSE estimation is that the
MMSE estimator of a Gaussian random variable, hk, that
is observed in independent Gaussian noise, w’, is a linear
estimator and thus equals the linear MMSE channel estimator,
i.e., there exist no better non-linear Bayesian estimator in this
special case [41].

D. Signal Detection

Here we consider the scenario where the K MTC devices
simultaneously transmit signals to the BS. Let xk, where
E[|xk|2] = 1, ∀k, be the signal transmitted from the k-
th device to the BS. Since K devices share the same time-
frequency resource, the M × 1 received signal vector at the
BS is the combination of all signals transmitted from all K
devices [38], [74]:

y =
√
ρ H x + w

=
√
ρ

K∑
k=1

hk xk + w,
(21)

where y ∈ CM×1,
√
ρx is the K×1 vector of symbols simulta-

neously transmitted by the K devices (the average transmitted
power of each device is ρ) and w ∈ CM×1 is a zero-mean
noise vector with complex Gaussian distribution and identity
covariance matrix, i.e., CN (0M , IM ). The noise variance is
made unitary in order to minimize notation, but without any
loss of generality. With this convention, ρ can be interpreted as
normalized uplink transmit SNR or as introduced in subsection
III-C, UL Tx power, and is therefore dimensionless [78]. There
exist M PNSCH signal versions in (21) for each of the K
MTC devices. Hence, the task of the BS consists in detecting
K simultaneous MTC transmissions on the basis of estimates
of the channel coefficients in (3). Detection techniques need to
be employed in order to separate each one of the data streams
transmitted by the various devices in a Massive MIMO system.

When it comes to separation of data streams in conventional
systems, the complex signal processing technique known as
Maximum Likelihood (ML) detection provides the optimal
performance. With ML detection, the BS has to search all

possible transmitted signal vectors x, and choose the best one
as follows:

x̂ = arg min
x∈XK

‖y−√ρHx‖2, (22)

where X is the finite alphabet of xk, k = 1, 2, . . . ,K. The
problem (22) is a least squares (LS) problem with a finite-
alphabet constraint. The BS has to search over |X |K vectors,
where |X | denotes the cardinality of the set X . Hence, ML
has a complexity which is exponential in the number of MTC
devices, K. Therefore, although being the optimal solution for
detection, ML is a highly complex solution to be implemented
in our case, where hundreds to thousands of MTC devices
are envisioned. This is the reason why signal detection is a
key problem in Massive MIMO systems. To circumvent this
limitation, we discuss in the next section a couple of sub-
optimal alternatives with reduced computational complexity
[77]. However, when the number of BS antennas is large, it
is shown in [39], [49] that linear processing is nearly-optimal.
We justify our choices for the detectors adopted in this work
in the simulation work presented later on in Section VI.

E. Linear Decoding

Linear decoders (also known as linear detectors) work by
spatially decoupling the effects of the channel by a process
known as MIMO equalization. This involves multiplying y
with a MIMO equalization matrix A ∈ CM×K to get
x̂(y) ∈ CM×1 [77]. Let A be an M×K linear detector matrix
that depends on the estimated channel Ĥ. By using a linear
detector, the received signal can be separated into different
data streams using A as follows

r = AHy, (23)

where the vector r collects the data streams received at the BS,
i.e. the symbols of all K single-antenna MTC devices, and A
is a receive matrix that depends on the specific linear detector
used at the BS. After linear detection, as seen in Figure 2,
each data stream undergoes FFT processing and subcarrier
extraction in order to retrieve data symbols.

Inspection of (3) reveals that D is a diagonal matrix, so
we can use MRC in the uplink to separate the signals from
different MTC devices into different streams with asymptotic
no inter-user interference [39]. Thereby each MTC device’s
transmission can be seen as signals of a single device passing
through a single input single output channel. In the limit, this
implies that MRC is optimal when the number of receive
antennas is much larger than the number of transmit antennas,
i.e. M � K, M → ∞ – as can be seen from (4). In MRC
the linear detection matrix A is chosen using

AMRC = Ĥ (24)

where the dominant computation is due to matrix transposition.
With MRC, the BS aims to maximize the received signal-to-
noise ratio (SNR) of each MTC device, i.e., stream, ignoring
the effect of multiuser interference and therefore, one of its
drawbacks is that it performs poorly in interference-limited
scenarios [37]. The associated complexity is of only O(MK)
multiplications.
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In contrast to the MRC decoder, ZF decoders take the inter
user interference into account, but neglect the effect of noise,
i.e., it chooses A with the objective of completely eliminating
interference, regardless of noise enhancement. With ZF, the
multiuser interference is completely nulled out by projecting
each stream onto the orthogonal complement of the inter
user interference [37]. Specifically, the ZF detector chooses
A constrained to AH = I

AZF = Ĥ(ĤHĤ)−1. (25)

The advantages of ZF are that the signal processing is
simple and it works well in interference-limited scenarios.
The drawback is that since ZF neglects the effect of noise,
it works poorly under noise-limited scenarios. Furthermore,
if the channel is not well conditioned then the pseudo-
inverse amplifies the noise significantly, and therefore, the
performance is very poor. Compared with MRC, ZF has a
higher implementation complexity due to the computation of
the pseudo-inverse of the channel gain matrix [78]. ZF exhibits
a complexity of O(MK+2MK2+K3) [49]. A better strategy
is to choose A so as to balance the signal energy lost with the
increased interference. From this point of view, it is better to
accept some residual interference provided that this allows the
detector to capture more of the desired signal’s energy [77].

One last linear detector that, together with MRC and ZF,
poses complexity costs that do not depend on the modulation
order is the MMSE. As the name suggests, the MMSE detector
chooses the A that minimizes e = E[‖AHy−x‖2|Ĥ] without
any additional constraints

AMMSE = Ĥ

[
ĤHĤ +

1

ρ
cov

(
w−√ρH̃x

)]−1

= Ĥ

[
ĤHĤ +

1

ρ

(
1 + ρ

K∑
l=1

E
[
h̃lh̃

H

l

])
IK

]−1

,

(26)

where cov(a) denotes the covariance matrix of a random
variable a and H̃ is the estimation error, H = Ĥ− H̃.

In contrast to ZF, which minimizes interference but fails to
treat noise, and to MRC, which minimizes noise but fails to
treat interference, MMSE achieves an optimal balance between
interference suppression and noise enhancement (it maximizes
the received SINR [78]) at the same cost (i.e., complexity) of
ZF [49], [79].

The shortcomings listed in Table I of [48] under iterative
filtering, random step search, and tree-based methods suggest
that these detection classes perform well but are still too
complex to be practical. This indicates that more work is
needed on this matter, perhaps towards turbo codes or Low-
density Parity-check (LDPC) codes in iterative detection and
decoding settings [80]. On the other hand, linear filtering meth-
ods that are non-iterative, such as MRC, ZF, and MMSE, seem
more feasible candidates for Massive MIMO systems. For
1� K �M , it is known that linear detection performs fairly
well, and asymptotically achieves capacity when M → ∞.
[39]. We therefore consider only such linear methods in the
simulation work section.

F. Achievable Rates

In this subsection we derive lower bounds on the achievable
rate for each one of the studied linear detectors when MMSE
channel estimation is considered. Considering that during one
PNSCH transmission interval at the target cell there are no
other PNSCH transmissions being originated at other cells
or that a less-aggressive frequency-reuse factor (e.g., reuse
factor of 3 or 7 for instance) is employed, we can analyze and
derive the achievable rates as if the target cell was a single-
cell system, emphasizing the fact that inter-cell interference
is inexistent or negligible and therefore, do not need to be
accounted for. The rationale behind the single-cell Multi User
(MU)-MIMO analysis is that its results are readily compre-
hended, they bound the performance of multicell systems and
that the single-cell performance can be actually achieved if
less-aggressive frequency-reuse is adopted. For the following
derivations we use standard capacity bounding techniques
from the massive MIMO literature [37], [74], [81].

The received signal vector at the BS can be rewritten as

r = AH
(√

ρĤx−√ρH̃x + w
)
, (27)

where H̃ = Ĥ − H. Due to the properties of the MMSE
estimation, H̃ is independent of Ĥ, see (17). Therefore, the
received signal associated with the k-th MTC device is given
by

rk =
√
ρaHk Ĥx−√ρaHk H̃x + aHk w

=
√
ρaHk ĥkxk︸ ︷︷ ︸

desired signal

+
√
ρ

K∑
l=1,l 6=k

aHk ĥlxl︸ ︷︷ ︸
intra-cell interference

−√ρ
K∑
l=1

aHk h̃lxl + aHk w︸ ︷︷ ︸
effective noise

,

(28)

where ak, ĥl and h̃l are the l-th columns of A, Ĥ, and
H̃, respectively. As H̃ and Ĥ are independent, A and H̃
are also independent. As shown in (28), the BS treats the
channel estimate as the true channel, and the last three terms
in the equation are considered as intra-cell interference and
effective noise respectively. Therefore, an achievable rate of
uplink transmission for the k-th MTC device is defined by

Rk = E {log2 (1 + SINRk)} , (29)

SINRk =
ρ|aHk ĥk|2

ρ
∑K
l=1,l 6=k |aHk ĥl|2 + ρ‖ak‖2

∑K
l=1 η

MMSE
l + ‖ak‖2

,

(30)

where ηMMSE
l is defined in (16). By following a similar line

of reasoning as in [37], [74] we obtain lower bounds on the
achievable rate for the MRC, ZF and MMSE linear detectors.
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1) MRC detector: with MMSE channel estimation,
Rayleigh fading, and MRC processing, the achievable rate for
the k-th MTC device is lower bounded by

R̃MRC
k = log2

(
1 +

ρ(M − 1)γk

1 + ρ
∑K
l=1 dl − ργk

)
. (31)

2) ZF detector: with MMSE channel estimation, Rayleigh
fading, ZF processing, and for M ≥ K+1 the achievable rate
for the k-th MTC device is lower bounded by

R̃ZF
k = log2

(
1 +

ργk(M −K)

1 + ρ
∑K
l=1 η

MMSE
l

)
. (32)

3) MMSE detector: with MMSE channel estimation,
Rayleigh fading, MMSE processing, the achievable rate for
the k-th MTC device is approximately lower bounded by

R̃MMSE
k = log2 (1 + (αk − 1)θk) , (33)

where

αk =
(M −K + 1 + (K − 1)µ)2

M −K + 1 + (K − 1)κ
, (34)

θk =
M −K + 1 + (K − 1)κ

M −K + 1 + (K − 1)µ
wγk, (35)

where w =
[

1
ρ +

∑K
l=1 η

MMSE
l

]−1

, µ and κ are obtained by
solving the following two equations:

µ =
1

K − 1

K∑
l=1,l 6=k

1

Mwγl
(
1− K−1

M + K−1
M µ

)
+ 1

(36)

κ

1 +

K∑
l=1,l 6=k

wγl(
Mwγl

(
1− K−1

M + K−1
M µ

)
+ 1
)2


=

K∑
l=1,l 6=k

wγlµ+ 1(
Mwγl

(
1− K−1

M + K−1
M µ

)
+ 1
)2

(37)

IV. ESTIMATION OF LARGE-SCALE FADING COEFFICIENTS

In this section we describe how the large-scale fading coeffi-
cients, dk,∀k, can be estimated based on the de-spread signal,
yk. We employ the Maximum Likelihood (ML) method to
estimate the the large-scale fading coefficients [82]. Applying
the ML method to f(yk; dk) with distribution defined in (7),
we find the following estimator for dk given the observation
yk

d̂k =
‖yk‖2

M
− 1

ρ
. (38)

This estimator exhibits a central Chi-square distribution with
2M degrees of freedom. It has E[d̂k] = dk, which shows

that the ML estimator is unbiased, and var(d̂k) =
(dk+ 1

ρ )2

M .

The mean-square error of the proposed large-scale fading
coefficient estimator is defined as

E[(dk − d̂k)2] =

(
dk + 1

ρ

)2

M
. (39)

Note that the mean-square error of the proposed estimator
is also equal to its variance.

Remark 3: As M →∞, E[(dk − d̂k)2] = var(d̂k)→ 0.
Remark 3 shows that as M increases, the estimator defined
in (38) becomes a deterministic value and that it tends, in
the limit, to the actual dk value once the mean-square error
vanishes.

In order to assess the efficiency of the estimator we derive
the Cramér-Rao bound as [82]

var(d̂k) ≥
(dk + 1

ρ )2

M
. (40)

Therefore, as can be noticed, the ML estimator derived for
dk is the minimum variance unbiased estimator (MVUE), i.e.,
it is an unbiased estimator that has the lowest variance among
all other possible unbiased estimators [82].

Additionally, we show that the proposed estimator ap-
proaches dk as the number of antennas M increases.

lim
M→∞

d̂k = lim
M→∞

‖yk‖2

M
− 1

ρ

a.s.
= dk. (41)

The proof of (41) is provided in Appendix A. This is
an example of the strong law of large numbers and can be
interpreted as the variations of ‖yk‖

2

M becoming increasingly
concentrated around its mean value E

[
‖yk‖

2

M

]
= dk + 1

ρ as
more antennas are added.

V. PROPOSED CHANNEL ESTIMATOR

In this section we propose a simple and practical channel
estimator based on the estimator for the large-scale fading
coefficients defined in Section IV. Our proposed approach
estimates the large-scale fading coefficients, dk, and replaces
it into the MMSE channel estimator defined in (13), resulting
in the following channel estimator

ĥ
prop
k =

(
1− M

ρ

1

‖yk‖2

)
yk. (42)

Remark 4: The proposed estimator asymptotically ap-
proaches the ideal MMSE channel estimator in (13) as M →
∞,

lim
M→∞

(
1− 1

ρ

M

‖yk‖2

)
yk =

(
ρdk

ρdk + 1

)
yk. (43)

This can be easily proved by applying Lemma 4 to (42).
The proposed estimator has E

[
ĥ

prop
k

]
= 0M and covariance

matrix given by

Cov[ĥ
prop
k ] = E[ĥ

prop
k (ĥ

prop
k )H ]

=
(ρdk + 1)(ρdk − 1)(M − 1) +M

ρ(ρdk + 1)(M − 1)
IM

=
ρd2
k

(ρdk + 1)
+

1

ρ(ρdk + 1)(M − 1)
IM

= γk + εk,

(44)
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where εk = 1
ρ(ρdk+1)(M−1) , which is the error introduced by

the estimation of dk.
Remark 5: As ρ and M →∞, the variance of ĥ

prop
k → dk.

As can be seen by analyzing equation (44), as M → ∞,
Cov[ĥ

prop
k ] → ρd2k

1+ρdk
IM , which is the covariance matrix of

the MMSE estimator. The mean-square estimation error per
antenna of the proposed channel estimator is defined as

ηprop
k =

1

M
E[‖h̃prop

k ‖2] =
1

M
E[‖ĥ

prop
k − hk‖2]

=
1

ρ

(
M

M − 1

1

1 + ρdk
− 1 + 2θk

)
,

(45)

where θk =
∫ 1

0

∫ 1

−1

κ2
k(1−t)+κkw

√
t(1−t)

κ2
k(1−t)+2κkw

√
t(1−t)+t

fW (w)fT (t)dwdt

and κk ,
√
ρdk and fW (w) and fT (t) are defined by

fT (t) =
Γ(2M)

(Γ(M))2
[t(1− t)]M−1

, 0 < t < 1, (46)

fW (w) =
M

π
B

(
1

2
,M

)(
1− w2

)M− 1
2 , |w| < 1. (47)

The proof of the mean-square estimation error per antenna
is given in Appendix B. The analytical mean-square estimation
error expression (45) is useful for system design and perfor-
mance evaluation purposes [83].

Remark 6: The mean-square error between ĥ
prop
k and ĥ

MMSE
k

is defined as

1

M
E[‖ĥ

prop
k − ĥ

MMSE
k ‖2] =

1

ρ(ρdk + 1)(M − 1)
= εk. (48)

The proof of (48) is given in Appendix C. From (48) we
observe that the mean-square error decreases when M , ρ
and dk increase, which consequently shows that the proposed
channel estimator asymptotically approaches the performance
of MMSE channel estimator.
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Fig. 7. Channel estimation MSE versus uplink pilot power, ρ.
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Fig. 8. MSE performance versus number antennas, M .

Next, we also present a simpler and more tractable expres-
sion for the mean-square estimation error per antenna, which
is defined as

1

M
E[‖h̃prop

k ‖2] =
1

M
E[‖ĥ

prop
k − hk‖2] ≈ ηprop(approx.)

k =

=
1

ρ

[
ρdk

1 + ρdk
+

1

(M − 1)(1 + ρdk)

]
= dk − γk + εk.

(49)

Remark 7: As M or ρ→∞, ηprop(approx.)
k = dk/(1+ρdk) =

dk − γk.
Remark 7 clearly shows that the approximated mean-square
estimation error per antenna of the proposed estimator tends
to that of the MMSE estimator when M →∞. The proof for
the approximated mean-square estimation error per antenna of
the proposed channel estimator is given in Appendix D.

The channel estimation error is correlated with the channel
estimate and uncorrelated with the de-spread received signal,

1

M
E[(h̃

prop
k )H ĥ

prop
k ] = εk. (50)

1

M
E[(h̃

prop
k )Hyk] = 0. (51)

Remark 8: As M or ρ→∞, then 1
ME[(h̃

prop
k )H ĥ

prop
k ] = 0.

The estimation error, h̃
prop
k , have the following mean vector

and covariance matrix,

E[h̃
prop
k ] = 0M , (52)

Cov
[
h̃

prop
k

]
= (dk − γk + εk)IM . (53)
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A. Complexity Analysis

The computational complexity is a important factor indicat-
ing the efficiency of a channel estimator. In this section we
assess the computational complexity of the studied channel
estimators. Table II summarizes the complexities involved in
the calculation of the estimators in terms of number of floating-
point operations (flops) and the Big-O notation. The Big-O
notation, also called Landau’s symbol, which is a well-known
symbolism widely used in complexity theory to describe the
asymptotic behavior of algorithms [84]. It basically indicates
how fast an algorithm grows or declines. In the table P is
the length of the pilot sequence (i.e., τpNsmooth) and D is a
K × K identity matrix with the diagonal elements equal to
ρdk
ρdk+1 ∀k and

(
1− M

ρ
1

‖yk‖2

)
∀k for the MMSE and proposed

channel estimators respectively. It is important to notice that
in this work and in the great majority of works in the literature
[65], [85]–[87] the large scale fading coefficients, {dk}, are
assumed perfectly known for the MMSE channel estimation.

The LS estimator is the most computational cost efficient
among all of them, presenting a complexity of O(MPK),
however, as will be shown later, this is the least efficient
estimator in terms of MSE. The MMSE estimator is the
most efficient in terms of MSE, exhibiting a complexity
of O(MK(P + K)), however, as mentioned earlier, the
complexity involved in the calculation of large-scale fading
coefficients (i.e., the elements of D) is not taken into account.
On the other hand, the proposed estimator, presents MSE
efficiency that asymptotically approaches that of the MMSE
estimator and has a complexity of O(MK(P+K+1)), where
the calculation (i.e., estimation) of the large-scale fading
coefficients is already considered in the presented complexity.

VI. SIMULATION RESULTS

In this section, we compare the performance of the pro-
posed channel estimator with that of LS and MMSE channel
estimators. Additionally, we assess the performance of MRC,
ZF, and MMSE linear decoders when the MMSE and the
proposed channel estimators are employed. The performance
of each linear decoder is quantified in terms of its Bit Error
Rate (BER) over a range of UL Tx power (i.e., ρ) values.

We consider two different types of simulation setups for the
large-scale fading coefficient, dk, one with fixed values and
other with random values. For the fixed case, we set dk = 1.

For the random case, the MTC devices in the cell (see
Figure 6) are uniformly distributed within a ring with radii
r0 = 100 m and r1 = 1000 m respectively. The large-scale
fading coefficients {dk} are independently generated by dk =

ψ/
(
rk
r0

)v
, where v = 3.8, 10 log10(ψ) ∼ N (0, σ2

shadow,dB)

with σshadow,dB = 8, and rk is the distance of the k-th MTC
device to the BS. Both, the path loss exponent, v, and the
standard deviation of the log-normal shadowing, σshadow,dB,
are common values for outdoor shadowed urban cellular
radio environments [88], [89]. For all simulations we assume
K = 10 MTC devices.

Figure 7 shows the MSE versus UL Tx power results (ρ)
for the case when dk = 1 and M = 70. As can be noticed, the

analytical, approximated and simulated MSE curves match for
all the studied channel estimators. As expected, the MSE of all
estimators decreases as ρ increases. At low ρ values (values
lower than -10 dB), the MSE of the proposed estimator is
higher than that of the MMSE estimator, however, it is still
smaller than that of the LS estimator. On the other hand, with
the increase of ρ (for values higher than -10 dB), the gap
between the MMSE and proposed estimators decreases.

The MSE versus the number of BS antennas, M , is com-
pared in Figure 8 for the case when dk = 1 and ρ = 10 dB.
The MSE of the proposed estimator decreases as M increases,
approaching the MSE of the MMSE estimator, while the
MSE of the LS and MMSE channel estimators stay constant.
The result showed in the figure is in line with Remark 4.
Additionally, it is also worth mentioning that the approximated
MSE expression for the proposed channel estimator matches
the values of the closed-form expression.

In Figure 9, we assess the variation of the MSE under
random large-scale fading {dk} for M = 30 and M = 70
respectively. The results are obtained by averaging the MSE
values over 10× 103 realizations of {dk}. As can be noticed,
the simulated MSE values match the values of the analytical
and approximated MSE expressions. It can be also noticed
that the MSE of the proposed channel estimator approaches
that of the MMSE channel estimator as M increases. The pro-
posed channel estimator outperforms the LS channel estimator
significantly at low UL Tx power values.

Figures 10 and 11 present the averaged variance and error
under random large-scale fading coefficient, {dk}, respec-
tively. The results are obtained by averaging the variance and
error values over 10 × 106 different realizations of {dk}. As
can be seen, the variance and consequently the error of the
LS and MMSE channel estimators do not depend on M (both
of them depend only on ρ), however, the variance of the
proposed channel estimator depends on both M and ρ. As
M increases, the variance curve for the the proposed channel
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Fig. 9. Average channel estimation MSE under random dk versus uplink
pilot power, ρ.
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TABLE II
COMPLEXITIES INVOLVED IN THE STUDIED LINEAR CHANNEL ESTIMATORS.

Estimator Operation Flops O(.)
LS YΦ MK(2P − 1) or 2MKP if P is large MKP

MMSE/Prop.
YΦD MK(2P − 1) +MK(2K − 1) or 2MK(P +K) if P and K are large MK(P +K)

Calculation of the elements in D MMSE: Elements are considered perfectly known -
Prop.: calculation of ‖yk‖2 ∀k : K(2M − 1) flops or 2KM if M is large MK

-10 -5 0 5 10 15 20 25 30 35 40
 [dB]

10 -2

10 0

10 2

V
ar

ia
nc

e

LS estimator

M = 10
M = 100
M = 500
M = 1000

Avg. d
k

 = 0.2162

-10 -5 0 5 10 15 20 25 30 35 40
 [dB]

10 -4

10 -2

10 0

V
ar

ia
nc

e

MMSE estimator

M = 10
M = 100
M = 500
M = 1000

Avg. d
k

 = 0.2162

-10 -5 0 5 10 15 20 25 30 35 40
 [dB]

10 -2

10 0

10 2

V
ar

ia
nc

e

Proposed estimator

M = 10
M = 100
M = 500
M = 1000

Avg. d
k

 = 0.2162

Fig. 10. Comparison of the averaged variances of the channel estimators.

estimator approaches that of the MMSE channel estimator. It
is also worth mentioning that the variance of both MMSE and
proposed channel estimators converges faster to the average
dk than the variance of the LS estimator as can be seen in
Figure 11. These results are in line with Remarks 1, 2 and 5,
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Fig. 12. Averaged distance between proposed and MMSE channel estimators.

showing that the variance of all the studied channel estimators
tend to the average dk.

The averaged distance between the proposed and MMSE
channel estimators for different number of antennas, M , and
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Fig. 15. Transmit power required to achieve 1 and 2 bits/s/Hz per user for
MRC, ZF and MMSE linear receivers as a function of the number of antennas
M . The number of users is set to K = 10, and the propagation paremters
are σshadow = 8 dB and v = 3.8.

UL Tx power values, ρ, under random large-scale fading,
{dk}, is depicted in Figured 12. The results are obtained by
averaging the MSE values over 10× 103 realizations of {dk}
for the simulated and closed-form distances between the two
estimators. As stated in Remark 6, the distance between the
estimators decreases as M and ρ increase.

In Figure 13, we compare the averaged absolute distance
between the approximated MSE expression presented in (45)
and the analytical (closed-form) MSE expression presented in
(49) under random large-scale fading {dk} for various UL Tx

power (i.e., ρ) and M values. The results are obtained by
averaging the absolute distance between the MSE expressions
over 10× 103 realizations of {dk}. The distance between the
MSE expressions is large (around 1.07) at low ρ, decreasing
with ρ as expected. For M = 100 and ρ = −10 dB the
averaged absolute error between the expressions is around
0.072. The results presented in Figure 13 show that the
approximated MSE expression expression can be used instead
of the more complex one given by (45) when M is at least
one order of magnitude larger than K (i.e., M � K) and/or
at high UL Tx power regimes.

Figure 14 shows lower bounds and simulated spectral effi-
ciency for MRC, ZF and MMSE detectors employing MMSE
channel estimation under random large-scale fading {dk}. The
spectral efficiency is averaged over 1 × 106 realizations of
{dk}. In this simulation ρ is set to 10 dB and there are
K = 10 MTC devices. As can be seen, at this UL Tx
power, the spectral efficiency for M = 500 is in the order
of 16 − 20 bits/s/Hz, corresponding to a spectral efficiency
of 1.6 − 2 bits/s/Hz per MTC device. These values are in
line with practical values, for example, 64-QAM with rate 1/2
channel coding corresponds to 3 bits/s/Hz [74]. As can be seen
from the figure, the MMSE detector is always better than the
MRC and ZF detectors, however, the performance of the ZF
detector asymptotically approaches the MMSE with increasing
M . The conclusion here is that even with simple and sub-
optimal linear processing such as MRC and ZF it is possible
to achieve high spectral efficiency and consequently serve
more MTC devices at the same time/frequency resource. It is
also worth discussing the achievable rates when the proposed
estimator is employed instead of the MMSE one. As it has
been shown earlier, the performance of the proposed estimator
asymptotically approaches that of the MMSE estimator as M
and/or ρ increases, therefore, the lower bounds derived here
can be thought of as upper bounds for linear detectors using
the proposed estimator, i.e., they will never perform better
than linear detectors using the MMSE channel estimator once
at best, the proposed estimator will be equal to the MMSE
one.

In Figure 15 we show the transmit power per user that is
needed to reach a fixed spectral efficiency. The figure shows
the normalized power, ρ, required to achieve 1 and 2 bits/s/Hz
per user as a function of M . It can be seen that by doubling
the number of antennas, M , the transmit power can be cut
back by approximately 2 dB. When M is large, the difference
in performance between MRC and ZF (or MMSE) is less
than 1.5 dB. This difference increases when the target spectral
efficiency is increased. For the 2 bits/s/Hz case, the cross-
talk interference, i.e., interference from other devices, is more
significant (relative to thermal noise) and therefore, ZF and
MMSE receivers perform relatively better. This characteristic
of massive MIMO is very important to MTC devices, where
stringent power constraints have to be respected.

Next, we present some simulations to asses how the BER
behaves when a large number of antennas and sub-optimal
linear detectors are employed at the BS. For the following
simulation results, we assume OFDM parameters similar to
LTE: (i) a symbol interval of Ts = 500/7 ≈ 71.4 us, (ii) a
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Fig. 16. BER performance of different linear detectors methods for K = 10 single-antenna MTC devices and different array sizes at the BS. MFB is provided
as benchmark for comparisons. (a) M = 50 antennas. (b) M = 100 antennas. (c) M = 250 antennas. (d) M = 500 antennas.

subcarrier spacing of ∆f = 15 KHz, (iii) a useful symbol
duration Tu = 1/∆f ≈ 66.7 us, and (iv) a cyclic prefix
interval (guard interval) Tg = Ts − Tu ≈ 4.76 us. The
frequency smoothness interval is approximately Nsmooth = 14
subcarriers. We assume a coherence time of 1 ms (equivalent to
14 OFDM symbols), of which 1 symbol is used to send uplink
pilots and the remaining symbols, i.e., 13 symbols, are used to
send uplink data. Therefore, in this case, the maximum number
of MTC devices, K = τpNsmooth = 1×14 = 14. Additionally,
we consider uncoded QPSK uplink data transmissions.

We use the Matched Filter Bound (MFB) as benchmark
for the BER comparisons. The MFB is also known in the
literature as the perfect interference-cancellation bound [77].
As the name suggests, MFB performs as the k-th user of
a matched-filter receiver in the absence of other sources of
interference [77]. Our motivation for this choice is that for
M � K both multi-user interference and small-scale fading

effects tend to disappear (thanks to the processing gains of
Massive MIMO), so the performance of the MIMO K ×M
channel, which is assumed to be flat Rayleigh fading inside
a coherence block, approaches the MFB as M → ∞. The
simulation results discussed in the sequel were averaged over
1010 realizations. The simulation type is Monte-Carlo with a
bit error counting procedure that compares the transmitted bit
vector to the received bit vector.

Figure 16 shows the BER of the linear filtering detectors
described in section III-E for a fixed number of K = 10
MTC devices and BS array sizes in the range of 50 ≤
M ≤ 500 antennas. For UL Tx power values smaller than
0 dB, the gap between all the linear detectors (MRC, ZF
and MMSE) employing the proposed channel estimator and
the ones employing MMSE estimator is noticeable, vanishing
as ρ increases. This gap also decreases as M increases. In
the following discussion, we consider the performance of the
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studied linear detectors without differentiating if they employ
MMSE or the proposed channel estimator to calculate the
equalization matrix A once the analysis apply to both cases.

After analyzing the figure, the performance gap inherent to
MRC becomes evident, although, as can be seen, it can be
dramatically reduced at the expense of larger array sizes at
the BS. These results suggest that even low-complexity MRC
detectors have the potential to approximate the MFB when M
can be made large enough.

As expected, due to its better balance between interference
suppression and noise enhancement, the MMSE detector out-
performs both the MRC and ZF detectors in all cases studied.
The performance gap between ZF and MMSE, which is small
enough to be considered negligible for M ≤ 50, entirely
disappears as the BS array size is increased to M = 250
or more antennas. As a matter of fact, the main conclusion
that can be drawn from the results presented here is that the
MRC, ZF, and MMSE detectors all approach the performance
of MFB as M → ∞, however, the gap between the MFB
and the ZF/MMSE detectors decreases at a faster pace when
compared to that of the MRC detector. It is also important
to notice that (4) is an approximation that only becomes an
equality when M � K, M → ∞, which explains why the
MRC detection is not optimum for the results presented here.

VII. CONCLUDING REMARKS AND FUTURE WORK

In this paper we propose the use of a Massive MIMO setup
as means to tackle the uplink mixed-service communication
problem. By assuming the availability of a physical narrow-
band shared channel (PNSCH), the capacity of the network
is increased through the creation of clusters of MTC devices
that share the same time-frequency physical resource blocks
for data transmission.

We present a simple and practical channel estimator that
does not need previous knowledge of the large-scale fading
coefficients. The proposed channel estimator presents MSE
results that asymptotically approach the ones exhibited by the
MMSE channel estimator as the number of antennas and/or
UL Tx power increases. Additionally, we derive closed-form
and approximated MSE expressions for the proposed estima-
tor, which can be useful in system design and performance
evaluation.

Moreover, our simulation results suggest that, as the size
of the antenna array at the BS is made progressively larger,
the performance of sub-optimal linear detectors approaches the
perfect interference-cancellation bound.

The findings presented in this paper shed light into and
motivate for entirely new research lines towards a better
understanding of Massive MIMO for MTC networks.

Next we describe some directions along which the results of
this paper can be further extended. First, the results presented
in our work assume that there is no inter-cell interference,
i.e., coherent and non-coherent interference. Therefore, future
work can extend the existing results to account for inter-cell
interference. Second, in this paper, we assume independent
and identically distributed (i.i.d.) Rayleigh fading, however,
practical channels are not spatially uncorrelated. Therefore,

future work considering the impact spatially correlated fading
(Rician and Rayleigh fading), i.e., spatially correlated chan-
nels, has on channel estimation, linear detection and spectral
efficiency is of interest.

APPENDIX A

For the proof of (41), we need the following Lemmas.
Lemma 1: Let z ∼ CN (0, a), where z = u + jv, then

E
[
|z|4
]

= 2a2.
Proof: In order to prove this, we first rewrite E

[
|z|4
]

as

E
[
|z|4
]

=
1

πa

∫
C
|z|4e−

|z|2
a dz. (54)

Next, taking the Jacobian determinant of the transformation
r =
√
u2 + v2 and θ = arctan

(
v
u

)
results in

|J | =
∣∣∣∣ ∂(r, θ)

∂(u, v)

∣∣∣∣ =

∣∣∣∣ ∂r
∂u

∂r
∂v

∂θ
∂u

∂θ
∂v

∣∣∣∣ =

∣∣∣∣ u√
u2+v2

v√
u2+v2

− v
u2+v2

u
u2+v2

∣∣∣∣
=

1√
u2 + v2

=
1

r
.

(55)

Therefore, the forth moment of z expressed in terms of r
and θ is defined by

E
[
r4
]

= E
[
|z|4
] ∣∣∣∣ ∂(r, θ)

∂(u, v)

∣∣∣∣
=

1

π

∫ π

−π
dθ

1

a

∫ ∞
0

r5e−
r2

a dr

=
2

a

∫ ∞
0

r5e−
r2

a dr

= 2a2.

(56)

Lemma 2: Let z = [z1, . . . , zM ]T ∈ CM×1 be a complex
random vector with distribution z ∼ CN (0M , aIM ). Then
E
[
‖z‖4

]
= a2M(M + 1).

Proof: We start the proof by expanding E
[
‖z‖4

]
as

E
[
‖z‖4

]
= E

[
(zHz)2

]
= E

( M∑
m=1

|zm|2
)2


=

M∑
m=1

M∑
m′=1

E
[
|zm|2|zm′ |2

]
=

M∑
m=1

E
[
|zm|4

]
+

M∑
m=1

M∑
m′=1, m′ 6=m

E
[
|zm|2

]
E
[
|zm′ |2

]
= a2M(M + 1),

(57)

where in the last equality we used Lemma 1. Lemma 3 can
be used to find moments of any order.

Lemma 3: Let z = [z1, . . . , zM ]T ∈ CM×1 be a complex
random vector with distribution z ∼ CN (0M , aIM ). Then
E
[
‖z‖2k

]
= ak

∏k−1
i=0 (M + i), where {k ∈ Z | k > 0}.

Proof: Given the pdf of z

f(z) =
1

(πa)M
exp

(
−1

a
‖z‖2

)
. (58)
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By using the following identity

1

(πa)M

∫
C

exp

(
−1

a
‖z‖2

)
dz = 1, (59)

which can be rewritten as∫
C

exp

(
−1

a
‖z‖2

)
dz = (πa)M , (60)

and next deriving both sides of the identity w.r.t. a, we find∫
C

dk

dka

[
exp

(
−1

a
‖z‖2

)]
dz =

dk

dka

[
(πa)M

]
. (61)

After applying the derivation to (61), it can be rewritten as

∫
C
‖z‖2k exp

(
−1

a
‖z‖2

)
dz = πM (M)(k)aM+k, (62)

where (M)(k) =
∏k−1
i=0 (M + i). Next, by reorganizing (62),

we find

1

(πa)M

∫
C
‖z‖2k exp

(
−1

a
‖z‖2

)
dz︸ ︷︷ ︸

E[‖z‖2k]

= ak(M)(k), (63)

which concludes the proof.
Lemma 4: Let z = [z1, . . . , zM ]T ∈ CM×1 be a complex

random vector with distribution CN (0M , aIM ). Then

lim
M→∞

‖z‖2

M

a.s.
= a. (64)

Proof: As M increases, zHz
M becomes more and more

deterministic, and consequently, its variance must be zero
when M →∞. Therefore, one way to prove the convergence
in (64) is to show that

lim
M→∞

var
[
‖z‖2

M

]
= lim
M→∞

1

M2
var
[
‖z‖2

]
= lim
M→∞

1

M2

{
E
[
‖z‖4

]
−
(
E
[
‖z‖2

])2}
.

(65)

Applying Lemma 2 to (65) and knowing that E
[
‖z‖2

]
=

aM , we find that

lim
M→∞

var
[
‖z‖2

M

]
= a2 lim

M→∞

1

M

a.s.
= 0. (66)

This Lemma is accordance with to the Law of large numbers
[90], [91].

For the proof of (41) we take into account the distribution
of yk defined in (7) and using Lemma 4, after simple compu-
tations, we complete the proof.

APPENDIX B

For the proof of the mean-square estimation error of the
proposed channel estimator we need to define the following
Lemmas.

Lemma 5: If x ∼ CN (0M , σ2
xIM ) and y ∼ CN (0M , σ2

yIM )

are independent and xH
‖x‖

y
‖y‖ , Rejθ, therefore, θ is uniformly

distributed in the range [−π, π] and the pdf of R is defined as

fR(r) = 2Mr(1− r2)M−1, 0 ≤ r ≤ 1. (67)

Proof: The circular symmetry of x and y results in the

uniform distribution of θ. The random variable Z =
∣∣∣ xH
‖x‖

y
‖y‖

∣∣∣2
exhibits a Beta pdf fZ(z) = M(1 − z)M−1, z ∈ [0, 1] [92].
Finally, the transformation of random variable R =

√
Z yields

(67).
Lemma 6: If a random variable R has pdf defined as in

(67), θ is uniformly distributed within the range [−π, π] and
they are independent, therefore the pdf of the random variable
W , R cos(θ) is given by

fW (w) =
M

π
B

(
1

2
,M

)(
1− w2

)M− 1
2 , |w| ≤ 1. (68)

Proof: Starting from the uniform distribution of θ, we
have that

P
(

cos(θ) ≤ w

r

)
=


0, w

r < −1

1− 1
π cos−1

(
w
r

)
, −1 ≤ w

r ≤ 1

1, w
r > 1

(69)
Next, the cumulative distribution function (cdf) of the

random variable W is defined as FW (w) = P (cos(θ) ≤ w) =∫ 1

0
P
(
cos(θ) ≤ w

r

)
fR(r)dr

FW (w) =


0, w < −1

ξ(w), −1 ≤ w ≤ 0

ξ(w) +
∫ w

0
fR(r)dr, 0 ≤ w ≤ 1

1, w > 1

(70)

where ξ(w) ,
∫ 1

|w|
(
1− 1

π cos−1
(
w
r

))
fR(r)dr.

Therefore, we find that fW (w) = dFW (w)
dw =∫ 1

|w|
2Mr(1−r2)M−1

π
√
r2−w2

dr, |w| < 1. Next, by changing the
variable z as z = r2 − w2 and using [93], we complete the
proof and find (68).

Lemma 7: If the random variables x ∼ CN (0M , IM ) and
y ∼ CN (0M , IM ) are independent, therefore, U = ‖x‖

‖y‖ has its
pdf defined by

fU (u) =
2Γ(2M)

(Γ(M))2

u2M−1

(u2 + 1)2M
, u > 0. (71)

Proof: We start by recalling that ‖x‖2 and ‖y‖2 are central
Chi-square random variables with the following pdf: fV (v) =
vM−1

Γ(M) e
−v . Next, by using the independence of ‖x‖2 and ‖y‖2,

the cdf of U2 is found and then by differentiating it we find the
pdf of U2 as being defined by fZ(z) = Γ(2M)

(Γ(M))2
zM−1

(z+1)2M
, z >

0. Finally, by applying the square root variable transformation
to U2, we find (71).
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Lemma 8: If the random variables x ∼ CN (0M , σ2
xIM ) and

y ∼ CN (0M , σ2
yIM ) are independent, therefore

E
{

(x + x)Hx
‖x + y‖2

}
=

∫ ∞
0

∫ 1

−1

(ku+ w)fU (u)fW (w)

ku+ 1
ku + 2w

dwdu,

(72)
where k ,

√
σ2
x

σ2
y

, and fW (w) and fU (u) are defined in (68)
and (71), respectively.

Proof: We start this proof by expanding and dividing both
the numerator and denominator of the left-hand part of (72)
by ‖x‖‖y‖. This way, that term can be re-written as

E
{

(x + x)Hx
‖x + y‖2

}
= E

{
kU +Re−jθ

kU + 1
kU + 2W

}
, (73)

where ‖x‖‖y‖ , kU , xH
‖x‖

y
‖y‖ , Rejθ, and W , R cos(θ). Note

that U , R and θ are independent random variables. Initially,
we find that the expected value of the imaginary part of the
left-hand side of (73) is equal to zero when we condition it
on U and R, and average it over θ. Therefore, (73) becomes
E
{

kU+W
kU+ 1

kU +2W

}
. Next, by applying Lemmas 6 and 7 to (73)

and doing a direct calculation of the expectation in (73) over
the pdfs, fU (u) and fW (w), results in (72), which completes
the proof.

A. Proof of the mean-square estimation error, ηprop
k

For the proof of the mean-square estimation error, we first
expand it as

ηprop
k =

1

M
E
[
‖ĥ

prop
k ‖2

]
+

1

M
E
[
‖hk‖2

]
− 2

M
E
[
R

[(
ĥ

prop
k

)H
hk
]]
,

(74)

and find these three expectations. The first expectation can be
expanded as

1

M
E
[
‖ĥ

prop
k ‖2

]
=

1

M
E

[(
1− M

ρ

1

‖yk‖2

)2

‖yk‖2
]

=
1

M
E
[
‖yk‖2

]
− 2

ρ
+
M

ρ2
E
[

1

‖yk‖2

]
,

(75)

where the first term 1
ME

[
‖yk‖2

]
= dk + 1

ρ and in order to
find the last term we use the fact that 1

‖yk‖2
has an Inverse

Gamma distribution, Γ−1(M,dk+ 1
ρ ), with mean, E

[
1

‖yk‖2

]
=

1
(dk+ 1

ρ )(M−1)
, therefore, we have the first expectation defined

as

1

M
E
[
‖ĥ

prop
k ‖2

]
=

(ρdk + 1)(ρdk − 1)(M − 1) +M

ρ(ρdk + 1)(M − 1)

=
ρd2
k

(ρdk + 1)
+

1

ρ(ρdk + 1)(M − 1)
.

(76)

Next, for the second expectation, we recall that ‖hk‖2 has a
Gamma distribution, Γ(M,ddk) and therefore, 1

ME
[
‖hk‖2

]
=

dk.

Finally, in order to find the third expectation, we first expand
it as

− 2

M
E
[
R

[(
ĥ

prop
k

)H
hk
]]

= − 2

M
E
[
R

{(
1− M

ρ

1

‖yk‖2

)
yHk hk

}]
= − 2

M
E
[
R
{

yHk hk
}]

+
2

ρ
E
[
R

{
yHk hk
‖yk‖2

}]
.

(77)

After simple calculations we find that the first term in (77)
is given by − 2

ME
[
R
{

yHk hk
}]

= −2dk. In order to find the
second term in (77), we apply Lemma 8 to it with x = hk and
y = yk, where the distribution of yk is defined in (7). Next, for
the purpose of making the boundary in the integral finite, we
apply the following change of variable, t = 1

1+u2 , and then,
we define this integral as θk. After substituting each one of the
three expectations back in the expansion of the mean-square
estimation error, ηprop

k , in (74), we conclude the proof.

APPENDIX C
In this appendix we present proof for Remark 6. We start

with the following expansion
1

M
E[‖ĥ

prop
k − ĥ

MMSE
k ‖2] =

1

M
E
[
‖ĥ

prop
k ‖2

]
+

1

M
E
[
‖ĥ

MMSE
k ‖2

]
− 2

M
E
[
R

[(
ĥ

prop
k

)H
ĥ

MMSE
k

]]
.

(78)

Next, we calculate the three different expectations in (78).
First, from Appendix B we know that 1

ME
[
‖ĥ

prop
k ‖2

]
=

γk + εk. Next, by recalling that the distribution of ĥ
MMSE
k

is defined in (19), and using the fact that ‖ĥ
MMSE
k ‖2 has

a Gamma distribution, Γ
(
M,

ρd2k
1+ρdk

)
, then we have that

1
ME

[
‖ĥ

MMSE
k ‖2

]
=

ρd2k
1+ρdk

= γk. For the last expectation,

after substituting ĥ
prop
k and ĥ

MMSE
k in the last term of (78) we

find

− 2

M
E
[
R

[(
ĥ

prop
k

)H
ĥ

MMSE
k

]]
= − 2

M

dk

dk + 1
ρ

{
E
[
‖yk‖2

]
− M

ρ

}
= −2

ρd2
k

1 + ρdk
= −2γk,

(79)

where we have used E
[
‖yk‖2

]
= M(dk + 1

ρ ) in the last
equality. Finally, after substituting the three found expectations
back in (78), we conclude the proof.

APPENDIX D
For the proof of the approximated mean-square estimation

error per antenna of the proposed estimator we need to define
the following Lemma.

Lemma 9: Let µX and µY be the expectations of X and Y ,
σ2
Y be the variance of Y , and σXY be their covariance. Then

the expectation, E{X/Y }, can be approximated by

E
{
X

Y

}
≈ µX
µY
− σXY

µ2
Y

+
µX
µ3
Y

σ2
Y . (80)
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Proof: For a function that depends on two variables, x
and y, the second order Taylor expansion series about the point
(a, b) is given by

g(x, y) = g(a, b) + gx(a, b)(x− a) + gy(a, b)(y − b)+

+
1

2!
(gxx(a, b)(x− a)2 + 2gxy(a, b)(x− a)(y − b)+

+gyy(a, b)(y − b)2),

(81)

where the subscripts denote the respective partial derivatives.
The partial derivatives are defined by gy = −X/Y 2, gyy =
2X/Y 3, gx = 1/Y , gxx = 0, and gxy = −1/Y 2. Applying
the derivatives into (81), the second order Taylor expansion
of g(X,Y ) = X/Y around the mean point (µX , µY ), the
following is obtained

X

Y
≈ µx
µy
− µx
µ2
y

(Y − µy) +
1

µy
(X − µx) +

+
1

2!

(
2µx
µ3
y

(Y − µy)2 − 2

µ2
y

(Y − µy)(X − µx)

)
.

(82)

Finally, applying the expectation operator, E {.}, to (82)
concludes the proof.

With the purpose of finding a more tractable expression for
the mean-square error per antenna of the proposed channel
estimator we derive an approximation to the expectation of
the ratio of random variables in the last part of (77), i.e., the
term define as θk.

It is possible to approximate the moments of a function
g(X,Y ) using Taylor series expansions, provided that g is
sufficiently differentiable and that the moments of X and Y
are finite. Therefore, applying Lemma 9 to

θk = E
[
R

{
yHk hk
‖yk‖2

}]
= E

[
R

{
(hk + w’)Hhk
‖hk + w’‖2

}]
, (83)

we are able to find an approximation to θk, which is defined
as

θk ≈
ρdk

1 + ρdk
. (84)

Note that the approximation does not depend on M but
only on ρ. The proof is concluded by substituting (84) into
the expansion of the mean-square error given in (74).
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Massive MIMO for Wireless Sensing With a Coherent Multiple Access
Channel, IEEE Transactions on Signal Processing, vol. 63, no. 12, pp.
3005-3017, June 2015.

[25] Amirpasha Shirazinia, Subhrakanti Dey, Domenico Ciuonzo, and Pier-
luigi Salvo Rossi, Massive MIMO for Decentralized Estimation of a
Correlated Source, IEEE Transactions on Signal Processing, vol. 64,
no. 10, pp. 2499-2512, May 2016.

[26] Domenico Ciuonzo, Pierluigi Salvo Rossi, and Subhrakanti Dey, Mas-
sive MIMO channel-aware decision fusion, IEEE Transactions on Signal
Processing, vol. 63, no. 3, pp. 604-619, February 2015.

[27] da Costa, F., Rethinking the Internet of Things: A Scalable Approach to
Connecting Everything, Apress, 1st edition, 2014.

[28] Wunder, G., Jung, P. and Wang, C., Compressive Random Access for
Post-LTE Systems, IEEE International Conference on Communications
Workshops (ICC), August 2014.

[29] Villaverde, B. C. et al., Service Discovery Protocols for Constrained
Machine-to-Machine Communications, IEEE Communications Surveys
& Tutorials, vol. 16, no. 1, pp. 41-60, November 2013.

[30] Wunder, G., Kasparick, M. and Jung, P., Spline Waveforms and Inter-
ference Analysis for 5G Random Access with Short Message Support,
arXiv preprint arXiv:1501.02917, January 2017.

[31] Yinsheng Liu et al., Waveform Design for 5G Networks: Analysis and
Comparison, IEEE Access, vol. 5, pp. 19282-19292, February 2017.

[32] Andrews, J. G. et al., What Will 5G Be?, IEEE Journal on Selected
Areas in Communications, vol. 32, no. 6, pp. 1065-1082, June 2014.



21

[33] Aymen Omri, Mazen O. Hasna and Mohammed Nafie, Effective area
spectral efficiency for wireless communication networks with interfer-
ence management, EURASIP Journal on Wireless Communications and
Networking, vol. 2015, no. 1, pp. 205-217, August 2015.

[34] Theodore S. Rappaport, Yunchou Xing, George R. MacCartney, Jr.,
Andreas F. Molisch, Evangelos Mellios, and Jianhua Zhang, Overview
of Millimeter Wave Communications for Fifth-Generation (5G) Wireless
Networks-With a Focus on Propagation Models, IEEE Transactions on
Antennas and Propagation, vol. 65, no. 12, December 2017.

[35] Theodore S. Rappaport, Spectrum frontiers: The new world of
millimeter-wave mobile communication, Invited Keynote Presentation,
The Federal Communications Commission (FCC) Headquarters, 2016.

[36] Marja Matinmikko, et al., Overview and comparison of recent spectrum
sharing approaches in regulation and research: From opportunistic
unlicensed access towards licensed shared access, IEEE International
Symposium on Dynamic Spectrum Access Networks (DYSPAN), April
2014.

[37] Thomas L. Marzetta, Erik G. Larsson, Hong Yang, Hien Quoc Ngo,
Fundamentals of Massive MIMO, Cambridge U.K., Cambridge Univer-
sity Press, 1st edition, November 2016.

[38] Larsson, E. G. et al., Massive MIMO for Next Generation Wireless
Systems, IEEE Communications Magazine, vol. 52, no. 2, pp. 186-195,
February 2014.

[39] Marzetta, T. L., Noncooperative Cellular Wireless with Unlimited
Numbers of Base Station Antennas, IEEE Transactions on Wireless
Communications, vol. 9, no. 11, pp. 3590-3600, November 2010.

[40] Emil Bjornson, Erik G. Larsson and Thomas L. Marzetta, Massive
MIMO: ten myths and one critical question, IEEE Communications
Magazine, vol. 54, no. 2, pp. 114-123, February 2016.

[41] Emil Björnson, Jakob Hoydis and Luca Sanguinetti, Massive MIMO
Networks: Spectral, Energy, and Hardware Efficiency, Foundations and
Trends in Signal Processing, vol. 11, no. 3-4, pp. 154-655. DOI:
10.1561/2000000093, November 2017.

[42] Olakunle Elijah, Chee Yen Leow, Tharek Abdul Rahman, Solomon
Nunoo, and Solomon Zakwoi Iliya, A Comprehensive Survey of Pilot
Contamination in Massive MIMO-5G System, IEEE Communications
Surveys & Tutorials, vol. 18, no. 2, pp. 905-923, November 2015.

[43] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin and R. Zhang, An
Overview of Massive MIMO: Benefits and Challenges, IEEE Journal of
Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742-758, October
2014.

[44] Joao Vieira, Fredrik Rusek, Ove Edfors, Steffen Malkowsky, Liang Liu,
and Fredrik Tufvesson, Reciprocity Calibration for Massive MIMO:
Proposal, Modeling, and Validation, IEEE Transactions on Wireless
Communications, vol. 16, no. 5, pp. 3042-3056, May 2017.

[45] Kamil Senel, and Erik G. Larsson, Grant-Free Massive MTC-Enabled
Massive MIMO: A Compressive Sensing Approach, arXiv preprint
arXiv:1806.10061, June 2018.

[46] Andres Laya, Luis Alonso, and Jesus Alonso-Zarate, Is the Random
Access Channel of LTE and LTE-A Suitable for M2M Communications?
A Survey of Alternatives, IEEE Communications Surveys & Tutorials,
vol. 16, no. 1, pp. 4-16, First Quarter 2014.

[47] Stefania Sesia, Issam Toufik and Matthew Baker, LTE - The UMTS
Long Term Evolution: From Theory to Practice, John Wiley & Sons,
ISBN:9780470697160, February 2009.

[48] Felipe A. P. de Figueiredo, Fabbryccio A. C. M. Cardoso, Renato
R. Lopes and Joao Paulo Miranda, On the Application of Massive
MU-MIMO in the Uplink of Machine Type Communication Systems,
International Workshop on Telecommunications (IWT), June 2015.

[49] Rusek, F. et al., Scaling Up MIMO: Opportunities and Challenges with
Very Large Arrays, IEEE Signal Processing Magazine, vol. 30, no. 1,
pp. 40-60, January 2013.

[50] B. Hochwald, T. Marzetta, and V. Tarokh, Multiple-antenna channel
hardening and its implications for rate feedback and scheduling, IEEE
Transactions on Information Theory, vol. 50, no. 9, pp. 1893-1909,
September 2004.

[51] Monowar Hasan, Ekram Hossain, and Dusit Niyato, Random access for
machine-to-machine communication in LTE-advanced networks: issues
and approaches, IEEE Communications Magazine, vol. 51, no. 6, pp.
86-93, June 2013.

[52] Md Shipon Ali, Ekram Hossain, and Dong In Kim, LTE/LTE-A Random
Access for Massive Machine-Type Communications in Smart Cities,
IEEE Communications Magazine, vol. 55, no. 1, pp. 76-83, January
2017.

[53] Han Seung Jang, Su Min Kim, Kab Seok Ko, Jiyoung Cha, and Dan
Keun Sung, Spatial Group Based Random Access for M2M Commu-

nications, IEEE Communications Letters, vol. 18, no. 6, pp. 961-964,
June 2014.

[54] Shree Krishna Sharma, and Xianbin Wang, Towards Massive Machine
Type Communications in Ultra-Dense Cellular IoT Networks: Current
Issues and Machine Learning-Assisted Solutions, arXiv:1808.02924,
August 2018.

[55] Tarik Taleb, Andreas Kunz, Machine type communications in 3GPP
networks: potential, challenges, and solutions, IEEE Communications
Magazine, vol. 50, no. 3, March 2012.

[56] Liang Liu, and Wei Yu, Massive Connectivity With Massive MIMO - Part
I: Device Activity Detection and Channel Estimation, IEEE Transactions
on Signal Processing, vol. 66, no 11, pp. 2933-2946, June 2018.

[57] Kamil Senel, Emil Bjornson, Erik G Larsson, Human and Machine Type
Communications can Coexist in Uplink Massive MIMO Systems, IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6613-6617, April 2018.

[58] Rasha Al Khansa, Jean J. Saade, Hassan A. Artail, and Mohamad As-
saad, A small cell approach to optimizing the coverage of MTC systems
with massive MIMO and random access using stochastic geometry,
IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), October 2017.

[59] 3GPP, TS 22.368 V10.1.0 - Service Requirements for Machine-Type
Communications, June 2010.

[60] Lien, S. -Y., Chen, K. -C. and Lin, Y., Toward Ubiquitous Massive
Accesses in 3GPP Machine-to-machine Communications, IEEE Com-
munications Magazine, vol. 49, no. 4, pp. 66-74, April 2011.

[61] Cheng, M.-Y. et al., Overload control for machine-type-communications
in LTE-advanced system, IEEE Communications Magazine, vol. 50, no.
6, pp. 38-45, June 2012.

[62] Gerasimenko, M. et al., Energy and delay analysis of LTE-advanced
RACH performance under MTC overload, IEEE Globecom Workshops,
March 2013.

[63] Phuyal, U. et al., Controlling access overload and signaling congestion
in M2M networks, Asilomar Conference on Signals, Systems and
Computers (ASILOMAR), March 2013.

[64] Felipe A. P. de Figueiredo, et al., Multi-stage Based Cross-
Correlation Peak Detection for LTE Random Access Preambles, Revista
Telecomunicações, vol. 15, no. 2, pp. 1-7, 2013.

[65] Felipe A. P. de Figueiredo, Fabbryccio A. C. M. Cardoso, Ingrid
Moermanand Gustavo Fraidenraich, Channel estimation for massive
MIMO TDD systems assuming pilot contamination and flat fading,
EURASIP Journal on Wireless Communications and Networking, vol.
2018, no. 14, pp. 1-10, January 2018.

[66] R. L. Frank, S. A. Zadoff and R. Heimiller, Phase shift pulse codes with
good periodic correlation properties, IRE Transactions on Information
Theory, vol. 8, no. 6, pp. 381-382, October 1962.

[67] David C. Chu, Polyphase codes with good periodic correlation prop-
erties, IEEE Transactions on Information Theory, vol. 18, no. 4, pp.
531-532, July 1972.

[68] Wallis, J. S., On the existence of Hadamard matrices, Journal of
Combinatorial Theory. vol. 21, no. 2, pp. 188–195, September 1976.

[69] Shendi Wang, John S. Thompson, and Peter M. Grant, Closed-Form
Expressions for ICI/ISI in Filtered OFDM Systems for Asynchronous
5G Uplink, IEEE Transactions on Communications, vol. 65, no. 11, pp.
4886-4898, November 2017.

[70] Abdoli J., Jia M., and Ma J., Filtered OFDM: A New Waveform
for Future Wireless Systems, IEEE International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC), July 2015.

[71] A. Ashikhmin, T. L. Marzetta, L. Li, Interference reduction in multi-cell
massive MIMO systems I: Large-scale fading precoding and decoding,
arXiv preprint arXiv:1411.4182, November 2014.

[72] Jinho Choi, Massive MIMO With Joint Power Control, IEEE Wireless
Communications Letters, vol. 3, no. 4, August 2014.

[73] Hong Yang, Thomas L. Marzetta, Massive MIMO With Max-Min Power
Control in Line-of-Sight Propagation Environment, IEEE Transactions
on Communications, vol. 65, no. 11, pp. 4685-4693, November 2017.

[74] Ngo, H. Q., Larsson, E. G. and Marzetta, T. L., Energy and spectral
efficiency of very large multiuser MIMO systems, IEEE Transactions on
Communications, vol. 61, no. 4, pp. 1436-1449, April 2013.

[75] Hien Quoc Ngo, Erik G. Larsson, and Thomas L. Marzetta, Aspects of
favorable propagation in Massive MIMO, European Signal Processing
Conference (EUSIPCO), pp. 76-80, March 2014.

[76] Matthaiou, M. et al., On the condition number distribution of complex
wishart matrices, IEEE Transactions on Communications, vol. 58, no.
6, pp. 1705-1717, June 2010.

[77] Barry, J. R., Lee, E. A. and Messerschmitt, D. G., Digital Communica-
tion, Springer, 3rd edition, 2004



22

[78] Hien Quoc Ngo, Massive MIMO: Fundamentals and System Designs,
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