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Abstract

American option prices under jump-diffusion models are determined as solutions to partial integro-differential
equations (PIDE). In this paper a new combination of a time and spatial discretization applied to a linear comple-
mentary formulation (LCP) of the free boundary PIDE is proposed. First a coordinate stretching transformation
is performed to the asset price so that the computation of the prices can befocused on regions of real interest
instead of on the whole solution domain. An implicit-explicit time discretization applied to the reformulated
LCP on a uniform temporal grid is followed by a spatial discretization to get afully discrete system. The radial
basis function (RBF) finite difference method is a local method resulting in asparse linear system in contrast to
global RBF-methods which lead to ill-conditioned dense matrix systems. Forthe corresponding European option
we prove consistency, stability and second-order convergence in a discreteL2-norm. We derive mild conditions
for the model parameters under which these results hold. Numerical experiments are performed with European
and American options, and a comparison with numerical results available inthe literature illustrates the accuracy
and efficiency of the proposed algorithm.

Keywords: Radial basis functions, Finite difference, Option pricing, Merton’s and Kou’s models

1 Introduction

The pricing of European and American options under the jump-diffusion models introduced by Merton [30] and
Kou [25] has been extensively studied in the literature aiming at faster and more accurate algorithms to solve the
numerical approximating model. We will contribute to this literature by proposing an efficient numerical method
which combines some existing techniquesin an original way. The valuation of an option under a jump-diffusion
model requires the solution to a partial integro-differential equation (PIDE). Before starting the discussion on the
choice of the numerical method we first focus onthe type of PIDEthat is considered. In a first group of papers
[13, 45, 39, 19, 40, 41, 9, 37] the solution to the PIDE is a function of the underlying price processS itself. For
the spatial discretization a uniformS-grid is used except in [45, 37] where a non-uniform grid is chosen to have a
more refined grid near the strike. In a second group of papers [26, 27, 38, 8, 24, 22, 7, 23] the PIDE is transformed
into a PIDE for the option price as a function of the log-returns. The differential operator has in that case constant
coefficients. The spatial domain is further discretized by auniform grid. Only in [7] a non-uniform grid is
considered using the adaptive residual subsampling methodfrom [14]. In our approach we consider a change of
variable originally proposed by [10] and which is used in [45, 37] to select the non-uniform grid points. However,
we will transform the PIDE to a PIDE for a function of this new variablex resulting in a differential operator with
coefficients depending onx but having nice properties as we will show. In [34] a same transformation was applied
but to a PDE problem that is solved using higher order finite differences while in [3] it is applied to a higher
dimensional PDE. The advantage is that we can work with a uniform x-grid while the correspondingS-grid is
refined around the point of irregularity of the payoff function.
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The American option pricing problem is a free boundary problem. One can also solve this free boundary
problem itself under finite activity jump models by a so-called front-tracking method as in [7] or a front-fixing
method as in [19]. The most common way is to formulate it asa linear complementary problem (LCP)involving
a partial integro-differential inequality. In [37] the American option price formulated as a solution to an LCP is
approximated by a Bermudian option price using a Richardsoninterpolation technique. In [12] a penalty method
is proposed to approximate the resulting LCP. This penalty method is used in, e.g., [45, 40, 9] and is simple and
efficient but only first order implying slow convergence. We will apply theoperator splitting methodas in, e.g.,
[39, 27, 38, 23] and introduced by [21] in the context of American option pricing. Its advantage is that no fixed
point iteration techniques are needed at each time step in the discretized problem and that it has a a second-order
convergence rate. Operator splitting is in fact a natural and old idea, namely decompose systems of P(I)DEs into
simpler subproblems and treat those individually using specialized numerical algorithms.

For the spatial discretization of the PIDE typically a traditional finite difference method (FDM) is applied as
in [6, 26, 27, 39, 40] or a finite element method (FEM) as in [20,29, 49] for the PDE case or a finite volume
method as in [48, 18]. There are several other numerical methods available in the literature to solve the governing
equation. For example in [1] an alternating direction implicit (ADI) finite difference method has been proposed.
In [33, 35] the authors combined the spectral domain decomposition method and the Laplace transform method
while in [9] a quadratic collocation method is considered. Recently radial basis functions (RBFs) methods have
gained a lot of interest. In [15, 19, 38, 3, 7] meshfree methods based on an RBF approximation have been shown
to perform better than finite difference methods for option pricing problems in one or more spatial dimensions.
However, the RBF collocation method in these papers is a global one and leads to a dense linear system which
suffers from ill-conditioning. To overcome this drawback alocal version of the method was proposed in order to
have a sparse better-conditioned linear system. Local RBF-methods are applied in, e.g., [32, 31] for the pricing of
American options with stochastic volatility and jump-diffusion model.

Over the last decade a relatively new method is developed in which the function derivatives are not approxi-
mated by derivatives of the RBF but by a linear combination ofthe function values of the RBF at some nodes. In
[38] such method based on differential quadrature (DQ) is applied. However this RBF-DQ method leads to a full
differentiation matrix since the RBFs are evaluated at all spatial discretization nodes. The radial basis function
generated finite difference (RBF-FD) method is an FD method where the weights are computed by fitting an RBF-
interpolant through some scattered nodes in one or more spatial dimensions resulting in a sparse differentiation
matrix. Once the differentiation matrix is formed, it can beused repeatedly for spatial derivative approximation.
Although the method has been implemented in various contexts in the last ten years, the first survey articles on
RBF-FD are just now emerging, see, e.g., [16, 17]. In [24, 23]the local RBF-FD method is applied to price
European and American options under jump-diffusion modelswhen the P(I)DE for the option price is a function
of the log-returns.

In order not to destroy the sparsity of the differentiation matrix by the non-local integral term originating from
the jump part, we will combine the RBF-FD method with a three-level implicit-explicit (IMEX) time discretization
where the integral term is treated explicitly. In [26, 27] anIMEX method with three time levels has been studied
to evaluate the prices of European options under a jump diffusion model and the method is shown to be stable and
second order accurate in a discreteL2-norm. More recently, a class of IMEX-methods for pricing options under
jump diffusion model has been proposed by [41]. We will consider the Crank-Nicolson-Leap-Frog scheme and
show that the fully discrete scheme in our setting is also second order accurate when pricing European options.
For American options we study the convergence numerically.

To summarize, the contribution of this paper is that we combine different techniques in an original way for
the American option pricing under jump-diffusion models. We first perform in section 2 a coordinate stretching
transformation resulting in a differential operator with non-constant coefficients in the PIDE of the reformulated
LCP. Next an operator splitting method is applied in section3. In section 4 an RBF-FD method is combined with
a three-level implicit-explicit time discretization of section 3 that treats the non-local integral term explicitly.The
fully discretized system has a sparse matrix and can be solved efficiently. Applying the differential matrices of
section 4 to this solution an approximation for the hedging Greeks Delta and Gamma are obtained in section 6.
In section 5 we carry out a stability and convergence analysis for the European option case dealing in particular
with the non-constant coefficients in the differential operator. An extensive numerical study for European and
American options and comparison with other schemes in the literature is carried out in section 7.
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2 Option Pricing Model

2.1 Jump-diffusion model

Consider a complete filtered probability space(Ω,F , (F)t∈[0,T ] ,P) whereT > 0 is a fixed finite time horizon.
Let (St)t∈[0,T ] be the price process of an asset which is modeled as a finite activity jump-diffusion, see e.g. [11].
Assume that there exists an equivalent martingale measureQ under which the dynamics of the asset price are
given by the following stochastic differential equation (SDE) as in [41]

dSt

St−
= (r − q − λκ)dt+ σdWt + (Y − 1)dNt, (1)

whereW is a standardQ-Brownian motion,N is an independent Poisson process with intensity rateλ > 0, κ is
the expected value of the random value(Y − 1) of the jump size distribution producing a jump fromSt− to ySt−

and with densityf(y) implying κ =
∫∞

0
(y − 1)f(y)dy. The parametersr, q andσ(> 0), stand for the risk free

interest rate, the continuous dividend yield and the volatility, respectively, and are for simplicity assumed to be
constant. The case of time-dependent but deterministic functions requires a straightforward modification of the
computations.

In this paper we focus on two popular jump-diffusion models with finite activity, Merton’s [30] and Kou’s [25]
model. The jump size follows in the former a lognormal distribution and a double exponential one in the latter.
Hence, the density function and corresponding mean are fory > 0 respectively given by

Merton: f(y) =
1

yγ
√
2π

exp

(
− (log(y)− µ)2

2γ2

)
κ = exp(µ+

γ2

2
)− 1, (2)

Kou: f(y) = pα1y
−α1−1H(log(y)) + (1− p)α2y

α2−1H(− log(y))
(3)

κ = p
α1

α1 − 1
+ (1− p)

α2

α2 + 1
− 1,

with γ > 0, µ ∈ R, α1 > 1, α2 > 0 and0 < p < 1 and whereH(·) is the Heaviside function withH(0) = 1/2.

2.2 PIDE for European option

By the Markov property, the fair value of a vanilla European (call or put) option at timeτ is denotedV (τ, S) if
the asset price at that time isSτ = S with τ = T − t being the time to maturity andT the expiration date of the
contract. The following partial integro-differential equation (PIDE) can be derived for the evolution ofV (τ, S)
under the jump-diffusion models (1)-(3),

∂V

∂τ
(τ, S) = LV (τ, S), on (0, T ]× (0,∞) (4)

with

LV :=
σ2S2

2

∂2V

∂S2
(τ, S) + (r − q − λκ)S

∂V

∂S
(τ, S)− (r + λ)V (τ, S) + λ

∫ ∞

0

V (τ, Sy)f(y)dy. (5)

The value at maturity is given as the initial condition

V (0, S) = g(S), for S ∈ (0,∞),

whereg(S) is the payoff function of the claim, defined as

g(S) =

{
max{K − S, 0} put option,

max{S −K, 0} call option,
(6)

for a given strike priceK. As boundary conditions for the European put option we impose

V (τ, 0) = Ke−rτ , lim
S→∞

V (τ, S) = 0,

while for the call option we have

V (τ, 0) = 0, lim
S→∞

[V (τ, S)− (S −Ke−rτ )] = 0.

In what follows we focus on put options. The price of a call option will be computed through the put-call parity.
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2.3 PIDE for American option

The value of an American option which we also denote byV (τ, S) is a solution to the linear complementary
problem (LCP) [42]





∂V

∂τ
(τ, S)− LV (τ, S) ≥ 0,

V (τ, S) ≥ g(S), for all (τ, S) ∈ (0, T ]× (0,∞),(∂V
∂τ

(τ, S)− LV (τ, S)
)
(V (τ, S)− g(S)) = 0,

(7)

with the initial condition
V (0, S) = g(S),

whereg(S) is the payoff function. For American options we will focus onput options only. In that case, we
impose in addition the following boundary conditions

V (τ, 0) = K, lim
S→∞

V (τ, S) = 0.

2.4 Localization, truncation and coordinate transformation

To apply numerical techniques, we localize the variables and the integral term to bounded domains. First, we
replace the unbounded domainΩ = [0,∞) for S with a bounded onẽΩ = [Smin, Smax]. The valuesSmin

andSmax will be chosen based on standard financial arguments withK ∈ [Smin, Smax] and such that they are
far enough away from the region of pricing interest in order for the solution to be unaffected by the truncation
and for the asymptotic conditions to hold approximately. Accordingly, we truncate the integration domain in the
integral term and divide it in two parts[0, Smin/S] and[Smin/S, Smax/S]. Utilizing the asymptotic behavior of
the European put option, we approximate the integrand byKe−rτ − Sy in the first integral while we change the
variables in the second by puttingz = Sy, providing

λ

∫ ∞

0

V (τ, Sy)f(y)dy ≈ λ

∫ Smin
S

0

(Ke−rτ − Sy)f(y)dy +
λ

S

∫ Smax

Smin

V (τ, z)f(
z

S
)dz.

The integral term for the call option case can be dealt with ina similar way.
The payoff function (6) and its derivatives are non-smooth at the strikeK. Therefore, to reduce the loss of

accuracy in the numerical approach we would like to have the points of the trial functions concentrated in a spatial
region close toS = K. Hereto, we employ the following change of variable which transforms the physical domain
Ω̃ into the interval[0, 1],

x(S) =
sinh−1(ζ(S −K))− sinh−1(ζ(Smin −K))

sinh−1(ζ(Smax −K))− sinh−1(ζ(Smin −K))
.

The choice of the stretching parameterζ determines the concentration nearS = K. The inverse transformation is

S(x) =
1

ζ
sinh

(
x sinh−1(ζ(Smax −K)) + (1− x) sinh−1(ζ(Smin −K))

)
+K. (8)

This change of variable has originally been proposed in [10]and has been applied, for example in [4, 34, 32].
Finally, applying the chain rule we derive the following PIDE foru(τ, x) on the transformed truncated domain

from the PIDE (4)-(5) forV (τ, S(x)) on the original domain,

∂u

∂τ
(τ, x) = Lu(τ, x) with Lu(τ, x) = Du(τ, x) + Iu(τ, x)− λu(τ, x), on (0, T ]× (0, 1) (9)

where

Du(τ, x) := α(x)
∂2u

∂x2
(τ, x) + β(x)

∂u

∂x
(τ, x)− ru(τ, x) (10)

with

α(x) =
σ2(S(x))2

2(S′(x))2
, β(x) = (r − q − λκ)

S(x)

S′(x)
− α(x)

S′′(x)

S′(x)
(11)
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and where

Iu(τ, x) := λ

∫ Smin
S(x)

0

(Ke−rτ − S(x)y)f(y)dy + λ

∫ 1

0

u(τ, z)f
(S(z)
S(x)

)S′(z)

S(x)
dz. (12)

The corresponding boundary and initial conditions are

u(τ, 0) = Ke−rτ − Smin, u(τ, 1) = 0, τ ∈ (0, T ], (13)

u(0, x) = g(S(x)), x ∈ [0, 1]. (14)

Along similar lines, the LCP (7) for American put options pricesV (τ, S(x)) is replaced by an LCP foru(τ, x)
on the transformed truncated domain:





uτ (τ, x)− (D − λI)u(τ, x)− Iu(τ, x) ≥ 0,

u(τ, x) ≥ g(S(x)), on (0, T ]× (0, 1),(
uτ (τ, x)− (D − λI)u(τ, x)− Iu(τ, x)

)(
u(τ, x)− g(S(x))

)
= 0,

(15)

whereuτ stands for the partial derivative w.r.t.τ , I is an identity operator,D is defined by (10), and the integral
operatorI by

Iu(τ, x) = λ

∫ Smin
S(x)

0

(K − S(x)y)f(y)dy + λ

∫ 1

0

u(τ, z)f
(S(z)
S(x)

)S′(z)

S(x)
dz. (16)

The corresponding boundary and initial conditions are

u(τ, 0) = K, u(τ, 1) = 0, τ ∈ (0, T ], (17)

u(0, x) = g(S(x)) x ∈ [0, 1]. (18)

3 Time discretization with three time levels

Let △τ = T
M with integerM ≥ 1 be a given time step and let the corresponding temporal grid points be given

by τk = k△τ for 0 ≤ k ≤ M . We apply an implicit-explicit (IMEX) time semi-discretization with three time
levels to the PIDE (9). In particular, we consider the Crank-Nicolson-Leap-Frog (CNLF) scheme as in [2] and
[24]. In [41] this type of scheme is called the IMEX-midpointscheme. The differential part is treated implicitly,
while the integral part is treated explicitly. In order to start the algorithm we will need initial data fork = 0 and
the value fork = 1 is obtained by an implicit-explicit backward difference method of order one (IMEX-BDF1).
Thus, denotingUk(x) := u(τk, x), the PIDE (9) for the price of a European option is approximated by following
implicit-explicit time semi-discrete scheme forx ∈ (0, 1)

U1(x)− U0(x)

△τ
= (D − λI)U1(x) + IU0(x), (19)

Uk+1(x)− Uk−1(x)

2△τ
= (D − λI)

Uk+1(x) + Uk−1(x)

2
+ IUk(x), for 1 ≤ k ≤ M − 1, (20)

with boundary and initial conditions

Uk(0) = Ke−rτ − Smin, Uk(1) = 0, for 1 ≤ k ≤ M and U0(x) = g(S(x)) for x ∈ [0, 1].

For American options, we use the operator splitting method for solving the time semi-discretization of the
LCP problem (15). This method which was introduced by Ikonenand Toivanen in [21] to evaluate the price of the
American put option under the Black-Scholes model, and which was studied by Toivanen in [45] under the Kou
model, starts from the reformulated LCP (15) in terms of an auxiliary functionΛ(τ, x),





uτ (τ, x)− (D − λI)u(τ, x)− Iu(τ, x) = Λ(τ, x), Λ(τ, x) ≥ 0

u(τ, x) ≥ g(S(x)), on (0, T ]× (0, 1),

Λ(τ, x)(u(τ, x)− g(S(x))) = 0,
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with boundary and initial conditions (17)-(18).
Then the operator splitting method splits the first equationon each time level into two discrete equations using

some intermediate solutioñUk+1(x). Let Λk(x) := Λ(τk, x). For the CNLF scheme we find forx ∈ (0, 1) and
similarly to [27]





Ũ1(x)− U0(x)

△τ
−
(
(D − λI)Ũ1(x) + IU0(x)

)
= Λ1(x),

Λ1(x) = Λ0(x) +
U1(x)− Ũ1(x)

△τ
,

Λ1(x) ≥ 0, U1(x) ≥ g(S(x)), Λ1(x)
(
U1(x)− g(S(x))

)
= 0,

(21)

and




Ũk+1(x)− Uk−1(x)

2△τ
−
(
(D − λI)

Ũk+1(x) + Uk−1(x)

2
+ IUk(x)

)
= Λk+1(x),

Λk+1(x) = Λk(x) +
Uk+1(x)− Ũk+1(x)

2△τ
, 1 ≤ k ≤ M − 1.

Λk+1(x) ≥ 0, Uk+1(x) ≥ g(S(x)), Λk+1(x)
(
Uk+1(x)− g(S(x))

)
= 0,

(22)

with boundary and initial conditions

Uk(0) = K, Uk(1) = 0, for 1 ≤ k ≤ M and U0(x) = g(S(x)) for x ∈ [0, 1].

4 Spatial discretization

The time semi-discrete systems in previous section are further discretized in space to get fully discretized systems
of equations that can be easily computed numerically. We will apply the local radial basis function method which
was independently introduced by several authors [43, 46, 47]. This local RBF method can be viewed as a gener-
alization of the classical finite difference (FD) method, and is therefore also called RBF-FD method. In the FD
method the weights are computed using polynomial interpolation while in the RBF-FD method they are computed
by fitting an RBF interpolant through a grid point and some neighbor points. In this sense it is alocal RBF method
in contrast to a global RBF method where all grid points in thespatial domain are taken into consideration to
determine the interpolation coefficients resulting in a dense linear system showing ill-conditioning. The resulting
linear system in the local RBF method is sparse, hence overcoming the ill-conditioning of the global method.

4.1 RBF-FD based approximation

Consider a spatial domainΩ ⊂ Rd and a set of distinct RBF collocation pointsX = {x1, x2, . . . , xN} in Ω. Let
Xj = {x(j)1 , . . . , x(j)

n } ⊂ X be a subset containingxj and itsn − 1 nearest neighboring points forming a stencil
with xj as center andn ≪ N . The number of pointsn in each stencil can be either constant or vary withj.

In the RBF-FD approach any linear differential operator as for exampleD defined by (10) acting onu(x)
evaluated atxj , is approximated by a linear weighted combination of the function values ofu at the points ofXj ,

Du(xj) ≈
n∑

k=1

w
(j)
k u(x(j)

k ).

The RBF-FD weights,w(j)
k , k = 1, . . . , n, are found by enforcing that the approximation is exact within the space

spanned by the RBFs{φ(‖x − x(j)
i ‖)}ni=1, centered at the nodesx(j)

i , i = 1, . . . , n, and with‖ · ‖ the standard
Euclidean 2-norm, so that

Dφ(‖xj − x(j)
i ‖) =

n∑

k=1

w
(j)
k φ(‖x(j)

i − x(j)
k ‖), i = 1, . . . , n.

This is ann× n linear algebraic system
A(j)W(j) = C(j), (23)
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where the coefficient matrixA(j) has entriesa(j)ik = φ(‖x(j)
i − x(j)

k ‖), for i, k = 1, . . . , n, W(j) is the differential

weights vector, and the right hand side is defined byc
(j)
i = Dφ(‖xj − x(j)

i ‖), i = 1, . . . , n. We have to solve
thisn× n linear system for each stencil centerxj , j = 1, . . . , N to form theN rows of the sparse differentiation
matrix withn non-zeros per row. In the context of time-dependent P(I)DEs, the stencil weights remain constant
for all time-steps when the nodes are stationary.
Table 1 lists some radial basis functions that are commonly employed in the literature. Some of them depend on a
shape parameterǫ that should be chosen in an optimal way to minimize the approximation error.

Function name Definition

Gaussian (GA) exp(−ǫ2r2)

Multiquadrics (MQ)
√
1 + (ǫr)2

Inverse multiquadrics (IMQ)
1√

1 + (ǫr)2

Conical splines r2k+1

Thin plate splines (TPS) (−1)k+1r2k log(r)

Table 1: Some well-known radial basis functions

Obviously, sincen ≪ N the size of the linear systems (23) is much smaller than the sizeN ×N of the linear
system of a global RBF collocation method. A global RBF method to derive a differentiation matrix needsO(N3)
operations, and results in a dense matrix. In the RBF-FD method we only needO(n3) operations for each of the
N stencils, so that the total cost of computing isO(n3N), without taking into account the cost of determining
the stencil grids. Forn fixed with n ≪ N , the total cost will beO(N) for increasingN . The weights can be
computed by inverting the local distance matricesA(j) of ordern × n for each stencil. These distance matrices
depend only on the distance of the grid points implying that for uniform grids we only need to compute the inverse
of one local distance matrix. Further, the differentiationmatrix for one stencil is independent from those for the
other stencils. Hence their computation can be parallellized to increase the efficiency of RBF-FD method in high
dimensional problems and adaptive algorithms.

4.2 Discretization of the integral operator

Besides the linear differential operatorD we also have to discretize in space the integral operatorI defined in (12)
and (16) for a European and an American put option respectively. First, note that the expressions (12) and (16)
only differ by the factor e−rτ in the first term. Moreover, this first term does not depend on the unknown function
u and can be evaluated exactly for the density functionsf(·) (2)-(3) of the Merton and the Kou model. Apart from
the factorλ, introducing the indicator functions1Europeanand1American, we find for the first integral term

R(τ, x) :=

∫ Smin
S(x)

0

(
K(1Europeane

−rτ + 1American)− S(x)y
)
f(y)dy, (24)

where for the Merton model using the cumulative distribution functionΦ(·) of a standard normal random variable

R(τ, x) = K(1Europeane
−rτ + 1American)Φ

(
log(Smin

S(x) )− µ

γ

)
− S(x)eµ+

1
2γ

2

Φ

(
log(Smin

S(x) )− µ− γ2

γ

)
, (25)

and for the Kou model recalling thatSmin/S(x) < 1

R(τ, x) = (1− p)

(
Smin

S(x)

)α2
(
K(1Europeane

−rτ + 1American)−
α2

α2 + 1
Smin

)
. (26)

The second integral in (12) and (16) is approximated by the trapezoidal rule

λ

∫ 1

0

u(τ, z)f(
S(z)

S(x)
)
S′(z)

S(x)
dz ≈ λ△z

2




N∑

j=0

ωjFj(x)u(τ, zj)


 (27)

wherezj = j△z with △z = 1
N , ωj = 1 for j = 0, N andωj = 2 for j = 1, . . . , N − 1, andFj(x) =

f(
S(zj)
S(x) )

S′(zj)
S(x) .
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4.3 Fully discretized system for European option

We now apply the RBF-FD approximation of section 4.1 withd = 1. Let X = {x0, x2, . . . , xN} be a set of
distinct interpolation points of[0, 1] with x0 = 0 andxN = 1, andT = {τ0 = 0 < τ1 < · · · < τM = T}
be a partition of[0, T ]. Applying the RBF-FD method in one dimension and the discretization of the inte-
gral operator as described in the previous subsections to the time semi-discrete problem (19)-(20), the evalua-

tion of a European put option price is reduced to finding an approximationUk :=
[
Uk
0 Uk

1 · · · Uk
N

]⊤
for

[
u(τk, x0) u(τk, x1) · · · u(τk, xN )

]⊤
, k = 0, . . . ,M , as a solution to the following time stepping scheme,

U1 − U0

△τ
= (D − λI)U1 + IU0, with U0 = g, (28)

Uk+1 − Uk−1

2△τ
= (D − λI)

(
Uk+1 + Uk−1

2

)
+ IUk, for 1 ≤ k ≤ M − 1, (29)

whereD is the differentiation matrix associated with the differential operatorD (10), I is an identity matrix
of orderN + 1 andI is the integral matrix corresponding to the integral operator I (12) which can be ex-

pressed asIUk = λJ Uk + λRk with according to (27)J =
(

△z
2 ωjFj(xi)

)

0≤i,j≤N
and according to

(24) Rk :=
[
R(τk, x0) R(τk, x1) · · · R(τk, xN )

]⊤
. In the boundary pointsx0 = 0 andxN = 1 the

boundary conditionsUk
0 = u(τk, 0) = Ke−rτk − Smin, Uk

N = u(τk, 1) = 0 are imposed according to (13).
Note that it is possible to enforce the boundary conditions in (28)-(29) by putting the elements zero in the
first and last row of the matrices on the right hand side. The initial vector U0 is the given vectorg defined

by
[
g(S(x0)) g(S(x1)) · · · g(S(xN ))

]⊤
whereg(·) is the payoff function (6). Then, the vectorUM pro-

vides an approximation to the European put option price at time zero for different initial asset pricesS(xj),
j = 0, . . . , N .

4.4 Fully discretized system for American option

As for the European put option, we apply the RBF-FD method using a set ofN + 1 collocation pointsX =
{x0, x1, . . . , xN} of the interval[0, 1] with x0 = 0 andxN = 1 and the discretization of the integral operator to the
time semi-discrete systems (21)-(22) of the LCP problem with operator splitting. To evaluate an American put op-

tion price, we look for an approximationUk :=
[
Uk
0 Uk

1 · · · Uk
N

]⊤
for
[
u(τk, x0) u(τk, x1) · · · u(τk, xN )

]⊤
,

k = 0, . . . ,M , as a solution to the time stepping schemes





Ũ
1 − U0

△τ
−
(
(D − λI)Ũ

1
+ IU0

)
= Λ

0, U0 = g, (a)

Λ
1 = Λ

0 +
U1 − Ũ

1

△τ
, (b)

Λ
1 ≥ 0, U1 ≥ g, (Λ1)⊤(U1 − g) = 0 (c)

(30)

and 



Ũ
k+1 − Uk−1

2△τ
−
(
(D − λI)

Ũ
k+1

+ Uk−1

2
+ IUk

)
= Λ

k, (a)

Λ
k+1 = Λ

k +
Uk+1 − Ũ

k+1

2△τ
, 1 ≤ k ≤ M − 1, (b)

Λ
k+1 ≥ 0, Uk+1 ≥ g, (Λk+1)⊤(Uk+1 − g) = 0, (c)

(31)

whereŨ
k+1

is an intermediate solution vector,Λ
k :=

[
Λ(τk, x0) Λ(τk, x1) · · · Λ(τk, xN )

]⊤
is the auxiliary

function Λ(τ, x) evaluated at the discretization points andg stands for the vector[
g(S(x0)) g(S(x1)) · · · g(S(xN ))

]⊤
with g(·) the payoff function (6).D is the differentiation matrix asso-

ciated with the differential operatorD (10),I is an identity matrix of orderN +1 andI is the integral matrix cor-
responding to the integral operatorI (16) which can be expressed asIUk = λJ Uk+λRk with according to (27)

J =
(

△z
2 ωjFj(xi)

)

0≤i,j≤N
and according to (24)R :=

[
R(τk, x0) R(τk, x1) · · · R(τk, xN )

]⊤
which
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does not depend onτk. In the boundary pointsx0 = 0 andxN = 1 the boundary conditionsUk
0 = u(τk, 0) = K,

Uk
N = u(τk, 1) = 0 are imposed according to (17).

Each time step is split into two parts. Starting from the initial vectorU0 = g andΛ0 = 0, first, the intermediate

solution vector̃U
1

is solved from the system of linear equations (30)(a). Next,to computeΛ1 andU1 from (b)

satisfying relations (c) we use the equivalent relationsU1 = max(g, Ũ
1 −△τΛ0) andΛ1 = Λ

0 + U1−Ũ
1

△τ . Now,

we can use the system (31) fork = 1, . . . ,M − 1. For the computed valuesUk−1, Uk andΛk, the intermediate

solution vector̃U
k+1

is first solved from the modified system of linear equations (31)(a). Next, the update step (b)
satisfying (c) can be performed very fast and at each spatialgrid point independently with the formulasUk+1 =

max(g, Ũ
k+1 − 2△τΛk) andΛk+1 = Λ

k + Uk+1−Ũ
k+1

2△τ . Finally, we obtainUM as an approximate value for the
American put option price at time zero for different initialasset pricesS(xj), j = 0, . . . , N .

5 Stability and convergence analysis

In this section we analyze the stability and convergence of the fully discrete scheme (28)-(29) to price a European
option in the case of a uniform grid in space andn = 3 points per stencil. Further, we choose as RBF the
multiquadratic function

φ(|x− y|) =
√

ǫ2 + |x− y|2 (32)

whereǫ is the shape parameter. For the collocation points we focus on the interior pointsx1, . . . , xN−1. We
first construct the differential matrixD corresponding to the differential operatorD (10) in this particular case and
derive some properties. This differential matrixD is an(N−1)×(N−1)-submatrix of the matrixD corresponding
to the interior points obtained by deleting the first and lastrow and columns inD. The grid points in thex-direction
are equidistant with step sizeh and each stencil centered aroundxj contains also the interpolation pointsxj − h
andxj + h. We further consider the grid points to be stationary such that the stencil weights remain constant
for all time-steps. The first order derivative ofu(τk, x) at x = xj for j = 1, . . . , N − 1 andk = 0, . . . ,M, is
approximated by

∂u

∂x
(τk, xj) ≈ aj−1u(τk, xj − h) + aju(τk, xj) + aj+1u(τk, xj + h). (33)

Requiring that for the multiquadratic RBF function (32) it holds that

∂φ

∂x
(|xj − x(j)|) = aj−1φ(|xj − h− x(j)|) + ajφ(|xj − x(j)|) + aj+1φ(|xj + h− x(j)|),

for x(j) = xj − h, x(j) = xj andx(j) = xj + h, we get a linear algebraic system in three unknownsaj−1, aj ,
aj+1 with solution, see [5],

aj−1 = −aj+1 = − 1

4h

1 +
√
1 + 4h2

ǫ2√
1 + h2

ǫ2

, aj = 0.

Whenǫ ≫ h, we obtain by Taylor’s expansion and neglecting higher order terms, as in [5], that

aj−1 = −aj+1 ≈ − 1

2h

(
1 +

h2

2ǫ2

)
, aj = 0. (34)

Note that these coefficients are independent ofj due to the equidistant grid points and only one linear systemhas
to be solved. In what follows we denote

a :=
1

2h

(
1 +

h2

2ǫ2

)
. (35)

In a similar way we approximate the second order derivative of u(τk, x) atx = xj for j = 1, . . . , N − 1 and
k = 0, . . . ,M, by

∂2u

∂x2
(τk, xj) ≈ bj−1u(τk, xj − h) + bju(τk, xj) + bj+1u(τk, xj + h). (36)
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where the unknown coefficientsbj−1, bj andbj+1 are solved from a linear system consisting of the equations

∂2φ

∂x2
(|xj − x(j)|) = bj−1φ(|xj − h− x(j)|) + bjφ(|xj − x(j)|) + bj+1φ(|xj + h− x(j)|),

for x(j) = xj − h, x(j) = xj andx(j) = xj + h. The solution is given by, see [5],

bj−1 = bj+1 =
2 + (h

2

ǫ2 + 2)
√

1 + 4h2

ǫ2 + 5h2

ǫ2 + 2h4

ǫ4

4h2
(
1 + h2

ǫ2

)3/2 , bj = −
2 + (h

2

ǫ2 + 2)
√

1 + 4h2

ǫ2 + 3h2

ǫ2

2h2
(
1 + h2

ǫ2

) .

Whenǫ ≫ h, we can approximate these coefficients which are independent of j respectively by, see again [5],

b̂ :=
1

h2

(
1 +

h2

ǫ2

)
(> 0), b := − 2

h2

(
1 +

h2

ǫ2

)
= −2b̂ (< 0). (37)

Assuming thatǫ ≫ h, substitution of the first and second order derivative approximations (33) and (36)
with coefficients (34)-(35) and (37) respectively in the expression (10) for the differential operatorD leads to the
tridiagonal differential matrix

D = α(x)Dxx + β(x)Dx − rI, (38)

where

Dxx =




b b̂

b̂ b b̂
. . .

. . .
.. .

b̂ b b̂

b̂ b




and Dx =




0 a
−a 0 a

. . .
. ..

. . .
−a 0 a

−a 0




(39)

and whereα(x) andβ(x) are diagonal matrices defined by

α(x) = diag(α(x1), α(x2), . . . , α(xN−1)), β(x) = diag(β(x1), β(x2), . . . , β(xN−1))

with α(x) andβ(x) given in (11). Hence, the non-zero elements of the differentiation matrix are

Dii = α(xi)b− r, i = 1, 2, . . . , N − 1 (40)

Di+1,i = α(xi+1)b̂− β(xi+1)a, Di,i+1 = α(xi)b̂+ β(xi)a, i = 1, 2, . . . , N − 2. (41)

Since the entries of the matrixD depend on the grid points through the functionsα(·) andβ(·) in contrast to
the differentiation matrix obtained in [26] or [41], we firstshow two lemmas and a main result that will allow us
to adapt the consistency, stability and convergence results of [26] and [41] to our setting.

Lemma 1. The functionH(·) defined on[0, 1] by

H(x) =
S′(x)

S(x)
, (42)

reaches a minimum and maximum given by

min
x∈[0,1]

H(x) = min (H(x∗), H(1)) = (c1 − c2)Cmin (43)

max
x∈[0,1]

H(x) = max (H(0), H(1)) = (c1 − c2)Cmax (44)

with x∗ a critical point of the functionH(·) and

c1 = sinh−1(ζ(Smax −K))(> 0), c2 = sinh−1(ζ(Smin −K))(< 0) (45)

Cmin =
1

ζ
min

{
ζ√

1 + (Kζ)2
,
cosh(c1)

Smax

}
(46)

Cmax =
1

ζ
max

{
cosh(c2)

Smin
,
cosh(c1)

Smax

}
(47)

whereζ is the stretching parameter of the transformation(8).
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Proof. For the asset priceS(x) (8) belonging to[Smin, Smax] with Smin > 0 we denote

S(x) :=
1

ζ
sinh(c1x+ c2(1− x)) +K > 0,

where
c1 := sinh−1(ζ(Smax −K)) > 0, c2 := sinh−1(ζ(Smin −K)) < 0

sinceK ∈ [Smin, Smax] and we easily derive, noting thatc1 − c2 > 0,

S′(x) =
c1 − c2

ζ
cosh(c1x+ c2(1− x)) > 0 and S′′(x) =

(c1 − c2)
2

ζ
sinh(c1x+ c2(1− x)). (48)

Then, the extremal values forH(x)(> 0) solveH ′(x) = 0, or equivalently solveS′′(x)S(x)− (S′(x))2 = 0. By
substituting the first and second order derivatives (48) ofS(x) and using formulacosh2 x − sinh2 x = 1, we get
sinh(c1x + c2(1 − x)) = 1/(Kζ) > 0 which provides the critical points of the functionH(·) denotedx∗. The
extremal values ofH(·) are reached in such critical points or in the boundary pointsx = 0 or x = 1. The function
values ofH(·) in those points are

H(x∗) =
S′(x∗)

S(x∗)
=

c1−c2
ζ

√
1 + 1

(Kζ)2

1
Kζ2 +K

=
c1 − c2√
1 + (Kζ)2

,

H(0) =
S′(0)

S(0)
=

(c1 − c2) cosh(c2)

Sminζ
,

H(1) =
S′(1)

S(1)
=

(c1 − c2) cosh(c1)

Smaxζ
.

Since cosh(c2) > 1 and Smin < K, it holds that H(0) > H(x∗), and we can conclude that
minx∈[0,1] H(x) = min (H(x⋆), H(1)) whilemaxx∈[0,1] H(x) = max (H(0), H(1)). The results then follow by
substituting the found expressions of the function valuesH(0), H(1) andH(x⋆).

Lemma 2. The functionsα(·) andβ(·) defined in(11)are bounded over[0, 1] as follows

0 < α(x) ≤ σ2

2(c1 − c2)2C2
min

|β(x)| ≤ σ2

2(c1 − c2)C2
min

(
2|r − q − λκ|

σ2
Cmin + 1

)
(49)

and, in addition, ∣∣∣∣
β(x)

α(x)

∣∣∣∣ ≤ (c1 − c2)

(
2|r − q − λκ|

σ2
Cmax + 1

)
, (50)

wherec1, c2, Cmin andCmax are defined in(45)-(47).

Proof. To bound the functionα(·) we note that we can express it in terms of the bounded functionH(·) (42) that
has minimal value (43),

0 < α(x) =
σ2

2

1

H2(x)
≤ σ2

2(c1 − c2)2C2
min

. (51)

Similarly we bound the functionβ(·) as follows

|β(x)| ≤ |r − q − λκ| 1

min[0,1] H(x)
+ α(x) max

x∈[0,1]

∣∣∣∣
S′′(x)

S′(x)

∣∣∣∣ , (52)

where from (48) we immediately find
∣∣∣∣
S′′(x)

S′(x)

∣∣∣∣ = (c1 − c2)| tanh(c1x+ c2(1− x))| ≤ c1 − c2, (53)

which in combination with (43), (51) in (52) leads to the requested bound forβ(·) in (49).
Dividing the expression ofβ(x) by the one ofα(x) in (11) and recalling (42) we obtain

∣∣∣∣
β(x)

α(x)

∣∣∣∣ ≤
2|r − q − λκ|

σ2
max
[0,1]

H(x) + max
x∈[0,1]

∣∣∣∣
S′′(x)

S′(x)

∣∣∣∣ .

Substituting (44) and the upperbound (53) we easily arrive at the bound (50).
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Theorem 1. The tridiagonal matrices−D (38)and−D + λI are nonsingular M-matrices if

|r − q − λκ|
σ2

≤ 1

2Cmax

(
2

h(c1 − c2)

(
1 +

h2

2ǫ2 + h2

)
− 1

)
, (54)

whereǫ is the shape parameter in the RBF function(32) (with ǫ ≫ h) and c1, c2 andCmax are defined in(45)
and (47).

Proof. We derive a sufficient condition for the matrix−D to be a nonsingular M-matrix by its characterization
N39 in the survey paper [36], namely the diagonal entries of−D are positive real numbers, the off-diagonal entries
are real and nonpositive, and the matrix−D is strictly diagonally dominant. Since the matrix−D + λI has the
same off-diagonal elements, we only have to check that its diagonal elements are positive real numbers and that
the matrix is strictly diagonally dominant.

Sincer, λ andα(xi) for all i = 1, 2, . . . , N − 1 are positive, andb (37) is negative, we find for (40) that
−Dii = r−α(xi)b > 0 and(−D+λI)ii = (r+λ)−α(xi)b > 0. For the off-diagonal entries of matrix−D, we
should prove according to (41) that

β(xi+1)a− α(xi+1)b̂ ≤ 0 and − β(xi)a− α(xi)b̂ ≤ 0, i = 1, 2, . . . , N − 2. (55)

Since the grid pointsxi vary with the step sizeh we will prove these inequalities for allx ∈ [0, 1], which can be
combined as

−α(x)b̂ ≤ β(x)a ≤ α(x)b̂ ⇔
∣∣∣∣
β(x)

α(x)

∣∣∣∣ ≤
b̂

a
=

2

h

(
1 +

h2

2ǫ2 + h2

)
,

where we also used (35) and (37) in the last equality. In view of the bound (50), the latter inequality will be
satisfied when ∣∣∣∣

β(x)

α(x)

∣∣∣∣ ≤ (c1 − c2)

(
2|r − q − λκ|

σ2
Cmax + 1

)
≤ 2

h

(
1 +

h2

2ǫ2 + h2

)
,

which is the case under condition (54), and this completes the first part of the proof.
To prove that the matrix−D is strictly diagonally dominant it is sufficient to show thatthe sum of all entries

in each row is positive since the diagonal entries of−D are positive and the off-diagonal entries under condition
(54) are nonpositive. Equivalently, we can prove that the sum of all nonzero entries ofD in each row is negative.
Starting with the first and the last row ofD, we must show thatα(x1)(b+ b̂)+ β(x1)a− r < 0 andα(xN−1)(b+

b̂) − β(xN−1)a − r < 0. From (37) we know that2b̂ + b = 0. Puttingb̂ + b = −b̂ and using (55), we get the
desired result. For the rows2 up toN − 2 of D the sum of the nonzero entries (41) equals

2α(xi)b̂+ α(xi)b− r = α(xi)(2b̂+ b)− r = −r < 0,

where we used again that2b̂+ b = 0 andr > 0. This completes the proof of strictly diagonal dominance for −D.
The matrix−D + λI will be a fortiori strictly diagonally dominant since a positive λ is added to a positive sum of
the row elements.

Remark 1. In the limit forh tending to zero the upper bound in(54) will tend to infinity. Hence, condition(54)
in Theorem 1 is not too restrictive. For a fixed value of the shape parameterǫ it is sufficient to choose the step size
h(≪ ǫ) small enough.

5.1 Stability analysis cf. [41]

In [41] a stability analysis is carried out based on a linear test problem. Under Merton’s and Kou’s model
the IMEX-midpoint scheme (29) combined with a spatial discretization is found to be conditionally stable for
λ△τ < 1 when a quadrature with positive weights is used for the integral term and if the eigenvalues of the
differential matrixD are real and nonpositive, see [41, Corollary 1]. Since the matrix −D in the present setting is
tridiagonal and an M-matrix under condition (54), it is similar to a real symmetric tridiagonal matrix and hence all
its eigenvalues are real and positive (see [36, Characterization C9]). In view of (27) we can conclude the following
stability result.

Corollary 1. If the model parameters satisfy(54) then the discretization scheme(31) with the differential matrix
D as in(38)applied to a linear test problem is conditionally stable forλ△τ < 1.
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5.2 Consistency, stability and convergence analysis cf. [26]

In this section we adapt the consistency, stability and convergence study of [26] to our setting where we recall
that the main difference is that the entries in the differentiation matrix (38) depend on the grid points while in [26]
those are constants.

We introduce some additional notations as in [26]. We consider the discrete operatorsDh, Ih andLh as
approximations to the operatorsD, I andL and defined by

Dhu(τk, xj) = α(xj)b̂
(
u(τk, xj+1)− 2u(τk, xj) + u(τk, xj−1)

)

+ β(xj)a
(
u(τk, xj+1)− u(τk, xj−1)

)
− ru(τk, xj) (56)

Ihu(τk, xj) = λ
h

2

N∑

i=0

ωiFi(xj)u(τk, xi) +R(τk, xj) (57)

Lhu(τk, xj) = (Dh − λ)
u(τk+1, xj) + u(τk−1, xj)

2
+ Ihu(τk, xj) (58)

with (τk, xj) ∈ (0, T ]× (0, 1) and where we used (24)-(27), (37), (40)-(41).

Theorem 2 (consistency). Letu ∈ C∞((0, T ]× [0, 1]) satisfy the boundary and initial conditions(13)-(14). For
a sufficiently small time step△τ and a sufficiently small grid step sizeh, it holds that

∂u

∂τ
(τk, xj)− Lu(τk, xj)−

(
u(τk+1, xj)− u(τk−1, xj)

2△τ
− Lhu(τk, xj)

)
= O((△τ)2 + h2 +

h2

ǫ2
)

1 ≤ k ≤ M − 1

where(τk, xj) ∈ (0, T ]× (0, 1) andǫ is the shape parameter in the RBF function(32) (with ǫ ≫ h).

Proof. The proof follows the same steps as the proof of [26, Theorem 6.1]. We will only discuss in detail the steps
that differ. As can be seen from section 4.2 the error for approximating the integral operator originates from the
error of applying the trapezoidal rule leading to

Iu(τk, xj)− Ihu(τk, xj) = O(h2).

The error for the approximation of the first-order derivative in time is by Taylor’s expansionO((△τ)2) for 1 ≤
k ≤ M − 1. Also the interpolation error formula in time for the first and second order partial derivative with
respect tox is O((△τ)2). The errors originating from the RBF-FD approximation to the first and second order
partial derivatives with respect tox are derived in [5], providing

∂u

∂x
(τk, xj)− a

(
u(τk, xj+1)− u(τk, xj−1)

)
= O(h2 +

h2

ǫ2
),

∂2u

∂x2
(τk, xj)− b̂

(
u(τk, xj+1)− 2u(τk, xj) + u(τk, xj−1)

)
= O(h2 +

h2

ǫ2
).

Combining these errors as in [26] and noting that the functionsα(·) andβ(·) are bounded over[0, 1] by constants
independent ofh and of△τ , see (49), we obtain that the differential operatorD is approximated by the discrete
operatorDh with the error at each mesh point(τk, xj)

Du(τk, xj)−Dh
u(τk+1, xj) + u(τk−1, xj)

2
= O((△τ)2 + h2 +

h2

ǫ2
).

In addition we need the following interpolation error when1 ≤ k ≤ M − 1

∣∣∣∣u(τk, xj)−
1

2
(u(τk+1, xj) + u(τk−1, xj))

∣∣∣∣ ≤
(△τ)2

2
sup

τ∈[τk−1,τk+1]

∣∣∣∣
∂2u

∂τ2
(τ, xj)

∣∣∣∣ ,

to finally arrive at the stated error.

Theorem 3 (stability). The RBF-FD scheme(28)-(29) is stable in the sense of the von Neumann analysis if
λ△τ ≤ 1/2.
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Proof. This proof follows the same lines as the proof of [26, Theorem6.3] and the stability is proved by using
[44, Theorem 4.2.2].

For a fixed time stepk, 1 ≤ k ≤ M − 1, thejth equation in the scheme (29) can be expressed in terms of the
introduced discrete operators as follows

Uk+1
j − Uk−1

j

2△τ
= (Dh − λ)

Uk+1
j + Uk−1

j

2
+ IhUk

j .

Multiplying both sides by2△τ , neglecting the last termR(τk, xj) which does not containUk
j , substitutinggkeijθ

for Uk
j and dividing both sides of the resulting relation bygk−1eijθ, we obtain the amplification polynomial in the

von Neumann analysis defined by
Φ(θ,△τ, h) = β2g

2 − 2β1g − β0,

where the coefficients depend on the grid pointsxj and are given by

β2(xj) = 1 +△τ
(
2α(xj)b̂(1− cos θ) + (r + λ)

)
− i2△τβ(xj)a sin θ,

β1(xj) = λ△τ

(
h

2

N−1∑

n=1

ωnFn(xj)e
i(n−j)θ

)
,

β0(xj) = 1−△τ
(
2α(xj)b̂(1− cos θ) + (r + λ)

)
+ i2△τβ(xj)a sin θ.

Since the functionα(·) is strictly positive over[0, 1], see (49), and̂b > 0 (37) it is clear that|β2(xj)| > 1 and
|β0(xj)/β2(xj)| < 1 for j = 1, . . . , N − 1. Further, since we are dealing with a density function it holds that
|β1(xj)| ≤ λ△τ . Thus, we have (when omitting the dependence onxj to simplify the notations)

|g| =
∣∣∣∣∣
β1 ±

√
β2
1 − β2β0

β2

∣∣∣∣∣ ≤ 2

∣∣∣∣
β1

β2

∣∣∣∣+
∣∣∣∣
β0

β2

∣∣∣∣
1/2

≤ 1 + 2λ△τ,

which proves (a) in [44, Theorem 4.2.2]. To prove [44, Theorem 4.2.2 (b)] we note that the sum of the rootsg1
andg2 of Φ(θ,△τ, h) satisfies

|g1 + g2| = 2|β1/β2| ≤ 2λ△τ,

and hence if|g1| is larger than 1, then

|g2 − g1| ≥ 2|g1| − |g1 + g2| ≥ 2− 2λ△τ ≥ 1

holds whenλ△τ ≤ 1/2.

To prove the global convergence of the scheme we introduce the error vectors at time levelk, 1 ≤ k ≤ M ,

ξk :=
[
ξk1 ξk2 · · · ξkN−1

]⊤
with ξkj = u(τk, xj)− Uk

j , j = 1, . . . , N − 1.

The boundary errorsξk0 andξkN are zero by the imposed boundary conditions in section 4.4.
We further define the following vector norms. LetRN be the space of column vectors of dimensionN with

real entries. For a given column vectorx =
[
x1 x2 · · · xN

]⊤ ∈ RN we introduce two discrete vector norms
‖ · ‖ℓ2 and‖ · ‖ℓ∞ defined by

‖x‖ℓ2 =


h

N∑

j=1

x2
j




1
2

, ‖x‖ℓ∞ = max
1≤j≤N

|xj |,

and two induced matrix norms‖A‖2 and‖A‖∞ defined by

‖A‖2 = max
x 6=0

‖Ax‖ℓ2
‖x‖ℓ2

, ‖A‖∞ = max
x 6=0

‖Ax‖ℓ∞
‖x‖ℓ∞

= max
i




N∑

j=1

|aij |


 . (59)
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Theorem 4 (convergence). Letu ∈ C∞((0, T ]× [0, 1]) be the solution to the initial-valued PIDE in(9)-(14)and
let Uk be the solution to the RBF-FD approximation in(28)-(29). Assume thatB + B⊤ is positive semi-definite
with B = −2(D−λI). If △τ andh are sufficiently small and condition(54) is satisfied, then there exists a positive
constantC independent of△τ andh such that for1 ≤ k ≤ M − 1

‖ξk‖ℓ2 ≤ C
(
(△τ)2 + h2 +

h2

ǫ2
)
, (60)

whereǫ is the shape parameter in the RBF function(32) (with ǫ ≫ h).

Proof. This proof follows the same lines as the one of [26, Theorem 6.5]. Therefore we will only indicate how
that reasoning can be applied to our setting and point out thedifferences.
We start by rewriting (29) as

(I −△τ(D − λI))Uk+1 = (I +△τ(D − λI))Uk−1 + 2λ△τJ Uk + 2λ△τRk, for 1 ≤ k ≤ M − 1,

with the matricesJ andRk defined in that subsection. Combination with Theorem 2 and the boundary conditions
provides in matrix form the following recursion for the error vector

(
I +

△τ

2
B
)
ξk+1 =

(
I − △τ

2
B
)
ξk−1 + 2λ△τJξk + d, 1 ≤ k ≤ M − 1 (61)

whereI is the identity matrix of orderN − 1, J =
(

△z
2 ωjFj(xi)

)

1≤i,j≤N−1
is a submatrix ofJ ,

B = −2(D − λI) and d =
[
d1 d2 · · · dN−1

]⊤
with dj = △τO

(
(△τ)2 + h2 +

h2

ǫ2
)
.

For a sufficiently small space step sizeh, it was proven in Theorem 1 that−(D − λI), and hence for a positive

△τ also−2△τ(D − λI), is a nonsingular M-matrix. Characterization C10 in [36] guarantees that
(

I + △τ
2 B
)

is

nonsingular and its inverse exists. Further, the symmetricmatrix B + B⊤ is positive semi-definite by assumption
and the estimates [26, (6.22)] and [26, (6.23)] also hold in that case, namely

∥∥∥∥∥

(
I +

△τ

2
B
)−1(

I − △τ

2
B
)∥∥∥∥∥

2

≤ 1,

∥∥∥∥∥

(
I +

△τ

2
B
)−1

∥∥∥∥∥
2

≤ 1. (62)

As a next step we show that for some constantc(> 0) independent of△τ andh
∥∥∥∥∥

(
I +

△τ

2
B
)−1

J

∥∥∥∥∥
2

≤ c. (63)

Hereto we cannot follow the approach of [26] since our matrixJ is not a Toeplitz matrix. We proceed as follows,
using (62),

∥∥∥∥∥

(
I +

△τ

2
B
)−1

J

∥∥∥∥∥
2

≤ ‖J‖2 ≤
√
‖JTJ‖∞

=
√
‖JTHH−1J‖∞

≤
√
‖JTH‖∞‖H−1‖∞‖J‖∞, (64)

where
H := diag(H(x1), H(x2), . . . , H(xN−1)).

Invoking the definition (42) of functionH(·) and of the infinity norm (59) and using (43) we find

‖H−1‖∞ = max
1≤i≤N−1

|(H(xi))
−1| =

(
min

1≤i≤N−1
|H(xi)|

)−1 ≤
(

min
x∈[0,1]

|H(x)|
)−1

=
(
(c1−c2)Cmin

)−1
, (65)
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with c1, c2 andCmin given by (45)-(46).
Next, we derive a bound for

‖JT
H‖∞ = max

1≤i≤N−1

△z

2
ωi

N−1∑

j=1

Fi(xj)H(xj),

where, recalling the definition ofFi(xj),

N−1∑

j=1

Fi(xj)H(xj) =

N−1∑

j=1

f(
S(zi)

S(xj)
)
S′(zi)

S(xj)

S′(xj)

S(xj)
= S′(zi)

N∑

j=1

f(
S(zi)

S(xj)
)
S′(xj)

(S(xj))2
.

Then, taking into account thatf(·) is a density function, thatS′(x) (48) is positive and adding the terms with the
integration boundary points and applying the substitutiony := S(zi)/S(x) we find

△x

2

N−1∑

j=1

ωjf(
S(zi)

S(xj)
)
S′(xj)

(S(xj))2
≤ −

∫ 1

0

f(
S(zi)

S(x)
)(− S′(x)

(S(x))2
)dx =

1

S(zi)

∫ S(zi)

Smin

S(zi)

Smax

f(y)dy

≤ 1

S(zi)

∫ ∞

0

f(y)dy =
1

S(zi)
.

Since△z = △x = h andωi = ωj = 2 for 1 ≤ i, j ≤ N − 1, combination of the estimates above leads to

△z

2
ωi

N−1∑

j=1

Fi(xj)H(xj) =
h

2

N−1∑

j=1

ωjFi(xj)H(xj) ≤
S′(zi)

S(zi)
= H(zi),

and by using (44)
‖JT

H‖∞ ≤ max
1≤i≤N−1

H(zi) = ‖H‖∞ ≤ (c1 − c2)Cmax. (66)

Finally, substituting the estimations (65) and (66) in (64)and since‖J‖∞ ≤ 1, we get the required estimate (63)
with c =

√
Cmax/Cmin whereCmin andCmax are independent of△τ andh as can be seen from (46)-(47).

Hence, we obtain from (61) a recursion for the error vector inthe discrete vector norm

‖ξk+1‖ℓ2 ≤ ‖ξk−1‖ℓ2 + 2cλ△τ‖ξk‖ℓ2 + ‖d‖ℓ2 .

Applying [26, Lemma 6.4] with initial condition‖ξ0‖ℓ2 = 0, we get

‖ξk+1‖ℓ2 ≤ (1 + 2cλ△τ)k‖ξ1‖ℓ2 + ‖d‖ℓ2
k−1∑

j=0

(1 + 2cλ△τ)j

≤ e2cλT ‖ξ1‖ℓ2 +
e2cλT − 1

2cλ△τ
‖d‖ℓ2 , (67)

where‖ξ1‖ℓ2 = △τO(△τ + h2 + h2/ǫ2) and‖d‖ℓ2 ≤ △τO
(
(△τ)2 + h2 + h2/ǫ2

)
, hence providing the stated

result (60).

Remark 2. The positive semi-definiteness of the matrixB + B⊤ will be tested in the numerical experiments by
checking whetherµmin(B+B⊤) ≥ 0, implying that all eigenvalues ofB+B⊤ are positive. For all the parameter
cases that we study in section 7, we even found that all eigenvalues ofB + B⊤ are strictly positive. It is possible
to derive a relation in terms of first and second order derivatives of the functionsα andβ in (11) that implies the
positive (semi-)definiteness. However, this involved condition has also to be tested numerically for the different
parameter cases while the computation of the minimal eigenvalue ofB + B⊤ is immediate in MATLAB.

6 Greeks

In the numerical experiments we will also compute the optionGreeks Delta and Gamma which are important for
hedging the option. Delta measures the sensitivity of the option price to a fluctuation in the underlying asset price
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while Gamma is the speed at which the Delta changes with respect to this movement. They are defined as∆ = ∂V
∂S

andΓ = ∂2V
∂S2 respectively, where by the chain rule we get

∆ =
∂V

∂S
(τ, S(x)) =

∂u

∂x
(τ, x)

dx
dS

=
1

S′(x)

∂u

∂x
(τ, x),

Γ =
∂2V

∂S2
(τ, S(x)) =

∂∆

∂S
=

1

(S′(x))2
∂2u

∂x2
(τ, x)− 1

(S′(x))3
S′′(x)

∂u

∂x
(τ, x).

At the time levelτM we need to compute the∆ andΓ functions at the grid pointsS0, S1, · · · , SN corresponding
to grid points in the setX = {x0, x1, · · · , xN}. By means of the differential matricesDx andDxx of order
N + 1, (39), we derive the following approximations for∆ andΓ,

∆M =
1

S′(x)
DxU

M

ΓM =

(
1

S′(x)

)2

DxxU
M −

(
1

S′(x)

)3

S
′′(x)DxU

M

with U
M the solution to the fully discretized problem (28)-(29) in the European option case and (30)-(31) in the

American option case, and with notations

(
1

S′(x)

)ℓ

:= diag(
1

(S′(x0))ℓ
,

1

(S′(x1))ℓ
, . . . ,

1

(S′(xN ))ℓ
), ℓ = 1, 2, 3,

S
′′(x) := diag(S′′(x0), S

′′(x1), . . . , S
′′(xN )),

whereS′(x) andS′′(x) are given in (48).

7 Numerical Results

In this section, we report on the performance of our proposedmethod to price European and American options
under the Merton model and the Kou model by carrying out several numerical simulations on a PC Laptop with
an Intel(R) 3.6 GHz Core i3 processor. The software programsare written in MATLAB.

TheN + 1 collocation pointsxj , j = 0, . . . , N in the spatial discretization are chosen to be uniform in the
interval[0, 1]. The corresponding values (8) forS are more concentrated around the strike priceK as can be seen
in Figure 1.
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−1

−0.5

0

0.5

1

x

N=100

0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

S

ζ=0.1,     Smin=1,   Smax=2K,    K=100

Figure 1: Uniform grid forx and corresponding non-uniform grid forS
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Although the proposed scheme works for all radial basis functions from Table 1 we choose the multiquadric
radial basis function (32) for all the numerical experiments. The accuracy of RBF-methods where the differenti-
ation matrix contains the differentiations of the shape function highly depends upon the shape parameterǫ of the
basis functions, which is responsible for the flatness of thefunctions. For smooth problems, the best accuracy is
typically achieved whenǫ is small, but then the condition number of the linear system becomes very large. In [19]
they show the error convergence according to the variation of the shape parameter. In the RBF-FD method the
shape parameter enters the weights in the approximation of the derivatives as can be seen in (35) and (37). In [23]
a different shape parameter is chosen for each case that is studied in the numerical simulations. It turns out that
our proposed RBF-FD method is rather robust with respect to the shape parameter in the sense that we can use
one fixed valuefor ǫ for all cases in our numerical study. Hereto, we try to find thebest compromise for the size
of ǫ by means of the root mean square (RMS) error defined by

RMS error=

√√√√1

3

3∑

j=1

(
UM
j − V (0, Sj)

)2
, (68)

whereUM
j is an RBF-FD based approximation from section 4.3 or section4.4 for the exact option priceV (0, Sj)

with Sj ∈ {90, 100, 110}. For European options the exact pricesV (0, Sj), j = 1, 2, 3, are available and presented
in Table 5. For American options the exact prices are not available and we use the reference values from Table
5 to evaluate this RMS error. For both European and American options, we compute an RBF-FD solutionUM

j

with N = 256 andM = 128. Figure 2 displays the dependence of this root mean square error on the size of
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Figure 2: Root mean square (RMS) error as function of the shape parameterǫ for European and American options
and parameter set 1

the shape parameter for European and American options for some common test examples. We derive from it that
ǫ = 1 is a good choice for our numerical experiments. In what follows we fixǫ on this value, thus we work with
the multiquadric radial basis functionφ(|x− y|) =

√
1 + |x− y|2.

7.1 Convergence rate for European and American option prices under Merton and Kou
model

We will study numerically the convergence rate of the proposed method using the root mean square error as defined
in (68). The jump distribution parameters are not changed between experiments and are given in Table 2. The
shape parameterǫ in the RBF is fixed on1 as motivated above.

In the numerical experiments we use reference prices for thetwo parameter sets from Table 3 as the exact
prices in (68). The first parameter set is as reported in [1] while the second one is taken from [40, 37]. In Table
4 we list for which maximal value ofh and minimal valueN = 1/h condition (54) is satisfied for the different
models. The reference prices are listed in Table 5. As already mentioned, the European call and put option prices
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µ γ α1 α2 p
Merton -0.9 0.45

Kou 3.0465 3.0775 0.3445

Table 2: Jump distribution parameters

can be computed exactly using the analytical formula in [30]for the Merton model and in [25] for the Kou model.
For the American put option prices we will use results from the literature as benchmark values. For the Merton
model the reference prices with the first set of parameters are taken from [13] which were also used as reference
values in e.g. [27, 40, 9, 23, 37] while those with the second set of parameters are as in [40, 37]. For the Kou model
and the first parameter set we consider the prices reported in[45] and used in e.g. [39, 27, 40, 23, 37]. Reference
American put option prices under the Kou model with the second parameter set are again taken from [40, 37].

σ r q T K λ
parameter set 1 0.15 0.05 0 0.25 100 0.1
parameter set 2 0.1 0.1 0 1 100 0.5

Table 3: Model parameters and data

Smin Smax ζ N h
Merton, parameter set 1 0.03K 2K 7/K 800 0.001251
Merton, parameter set 2 0.3K 4K 6/K 542 0.001848
Kou, parameter set 1 0.3K 2K 6/K 27 0.038461
Kou, parameter set 2 0.3K 4K 7/K 142 0.007092

Table 4: Maximal value forh and minimal valueN so that condition (54) is satisfied
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Figure 3: European put option for parameter set 1. Left: Error convergence in time using 512 nodal points. Right:
Error convergence in space using 512 time discretization steps.

From Figures 3-4 we may conclude that for both European and American put option prices and in both jump-
diffusion models for different parameter sets the proposedmethod is second order in time and space. This is in
accordance with the result in Theorem 4.
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Model, type S = 90 S = 100 S = 110
parameter set 1
Merton, European call 0.527638 4.391246 12.643406
Merton, European put 9.285418 3.149026 1.401186
Merton, American put 10.003822 3.241251 1.419803

Kou, European call 0.672677 3.973479 11.794583
Kou, European put 9.430457 2.731259 0.552363
Kou, American put 10.005071 2.807879 0.561876

parameter set 2
Merton, American put 19.948906 18.246332 16.666925
Kou, American put 10.698208 6.417275 4.624099

Table 5: Reference prices used in numerical experiments
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Figure 4: American put option for parameter set 1 respectively parameter set 2. Left: Error convergence in time
using 512 nodal points. Right: Error convergence in space using 512 time discretization steps.

7.2 Comparison to other methods

The goal of this section is to compare the accuracy and efficiency of the proposed method to other schemes in
the literature. Standard we will report in the tables theabsolute errorbetween the computed option price and the
reference price unless otherwise stated. In the numerical experiments we will use some other parameter sets than
those in Table 3, see Table 6.

Comparison to other RBF-methods for European option prices under the Merton model In [38] a numer-
ical test is carried out to compare the radial basis functionscheme based on differential quadrature (RBF-DQ)
against a traditional finite difference (FD) approximationof the pricing PIDE. We do the same test with our pro-
posed RBF-FD method. Recall that the RBF-DQ method leads to afull differentiation matrix since the RBFs are
evaluated at all spatial discretization nodes while the RBF-FD method results in a sparse differentiation matrix.
All three schemes putN = 512 for the spatial nodes and evaluate an European call option price under the Merton
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σ r q T K λ Smin Smax ζ
parameter set 3 0.2 0.1 0 3 1 0.1 0.01K 4K 6/K
parameter set 4 0.35 0.05 0 1 1 0.1 0.01K 4K 6/K
parameter set 5 0.1 / 1 0.03 0 0.1 1 0.1 0.1K 4K 6/K
parameter set 6 0.2 0.05 0 3 100 0.2 0.1K 4K 6/K
parameter set 7 0.8 0.1 0.1 1 100 0.5 0.01K 7K 6/K
parameter set 8 0.2 0.05 0 0.1/3 1 0.2 0.1K 2K 7/K
parameter set 9 0.2 0.07 0.1 3 100 0.6 0.1K 4K 6/K

Table 6: Model parameters and data

model withµ = 0 andγ = 0.35 and with the other parameters as in parameter set 3. To implement the RBF-FD
method we further chooseM = 400 for the number of time steps. The exact prices are computed using the
analytical formula in [30] for pricing European options. The reported absolute errors for the RBF-DQ and FD
method are taken from [38, Table 4]. The results in Table 7 indicate that RBF-FD approximate option prices are
in general more accurate than those computed by the RBF-DQ orthe FD method. In particular for at-the-money
and out-of the money option prices the RBF-FD method is much more accurate for this example.

RBF-DQ FD RBF-FD
S Exact price Error Error Error Value

0.25 0.000553 1.39e-4 1.14e-4 1.05e-6 0.000551803
0.50 0.021135 1.72e-6 1.36e-6 4.43e-6 0.021130366
0.75 0.120108 4.08e-6 3.69e-5 3.73e-6 0.120104105
1.00 0.301392 2.67e-5 2.06e-4 3.41e-6 0.301388328
1.25 0.525354 9.82e-5 7.15e-4 2.38e-8 0.525353793
1.50 0.765832 2.73e-4 1.93e-3 1.16e-7 0.765831485
1.75 1.012184 6.40e-4 4.40e-3 2.82e-7 1.012184545

Table 7: European call option prices under the Merton model with µ = 0, γ = 0.35 and parameter set 3.

Further, we show how fast and efficient our method performs incomparison to other RBF methods in literature.
In particular we compare our RBF-FD method to the RBF method in [8] and again the RBF-DQ method. We
consider parameter set 4. The corresponding exact Europeanput price under the Merton model withµ = 0,
γ = 0.5 is 0.12299068 for S = K = 1 and is computed using the analytical formula from [30]. The absolute
errors atS = K = 1 are reported in Table 8. For these computations, we fixM = 1080 as the number of time
steps but let the number of grid pointsN vary. Table 6 of [38] reports CPU times of the order of secondsfor the
RBF method in [8] and for the RBF-DQ method. Comparing those to the CPU times for our RBF-FD method
listed in Table 8 which are of the order of milliseconds, we may conclude that the RBF-FD method is efficient and
fast.

RBF [8] RBF-DQ RBF-FD
N Error Error Error Value CPU (s)

Exact price 0.12299068
80 8.30e-4 6.22e-5 3.7861e-5 0.123039401 0.041
160 2.03e-4 1.51e-5 5.7673e-6 0.123003307 0.087
320 5.03e-5 3.61e-6 2.4174e-6 0.122993400 0.157
640 1.26e-5 7.51e-7 6.9075e-7 0.122990413 0.677

Table 8: European put option prices under the Merton model with µ = 0, γ = 0.5 and parameter set 4.

American put option prices under the Merton and the Kou model To further test our proposed RBF-FD
method we compute the American put option prices under the Merton and the Kou model for the two parameter
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sets of Table 3. We report in Tables 9 and 10 the option prices for these options and their absolute error with
respect to the reference prices from Table 5. In many papers in the literature the evaluation of option prices
has been tested using these parameter sets. For the first parameter set we can compare our results with those in
[39, 19, 27, 38, 8, 9, 23, 37] and for the second parameter set with those in [40, 37]. In particular we focus on [23,
Tables 9 and 10] and on [27, Tables 5.1 and 5.3] since they use an RBF-FD method and an FD method, respectively,
combined with an IMEX-scheme but both without first applyinga coordinate transformation. We may conclude
that our method leads to very accurate results using less time steps and spatial discretization points and in only a
few milliseconds. Also in comparison to the methods in the other references our method is competitive since it
needs less time steps and discretization points to get comparable or better accuracy. We can also easily compute
the early exercise boundary using the approximate formula (see, e.g., [27])

Sp(τ) = max
{
S(x) > 0 | Uk ≤ g, x ∈ X, 0 ≤ k ≤ M

}

whereUk is the numerical solution for the system (30)-(31) andX is the set of interpolation points of[0, 1]. In
Figure 5 we provide the plot of the early exercise boundary for an American put option under the Merton model
and the Kou model for parameter sets 1 and 2. The part below each curve represents the exercise or stopping
region while the part above it is the holding or continuationregion. We note that the exercise boundary decreases
with increasing time to maturity.

S = 90 S = 100 S = 110
N M Value Error Value Error Value Error CPU (s)

Merton [13] 10.003822 3.241251 1.419803
128 64 10.000713 3.1094e-3 3.239611 1.6400e-3 1.419435 3.6807e-4 0.005
256 128 10.004088 2.6626e-4 3.241030 2.2113e-4 1.419741 6.1922e-5 0.015
512 256 10.003786 3.5994e-5 3.241259 7.7127e-6 1.419793 9.7920e-6 0.121
Kou [45] 10.005071 2.807879 0.561876
128 64 10.003149 1.9215e-3 2.806248 1.6308e-3 0.561578 2.9773e-4 0.005
256 128 10.005122 5.0730e-5 2.807660 2.1858e-4 0.561841 3.4580e-5 0.013
512 256 10.005127 5.6458e-5 2.807866 1.2954e-5 0.561861 1.5480e-5 0.102

Table 9: American put option prices under the Merton model and the Kou model for parameter set 1

S = 90 S = 100 S = 110
N M Value Error Value Error Value Error CPU (s)

Merton [40] 19.948906 18.246332 16.666925
128 64 19.949471 5.6547e-04 18.241667 4.6644e-03 16.658594 8.3307e-03 0.005
256 128 19.949048 1.4186e-04 18.245175 1.1572e-03 16.664860 2.0644e-03 0.015
512 256 19.948954 4.7847e-05 18.246051 2.8081e-04 16.666419 5.0570e-04 0.120
Kou [40] 10.698208 6.417275 4.624099
128 64 10.694761 3.4468e-03 6.414181 3.0939e-03 4.622385 1.7137e-03 0.005
256 128 10.697760 4.4816e-04 6.416588 6.8678e-04 4.6236804.1880e-04 0.014
512 256 10.698363 1.5476e-04 6.417157 1.1766e-04 4.6240069.3047e-05 0.105

Table 10: American put option prices under the Merton model and the Kou model for parameter set 2

Short and long maturity combined with low and high volatility In [8] special focus is put on the accuracy in
option pricing forsmall maturities. Hereto, an adaptive RBF method was proposed. We compute by our RBF-
FD method the European put option prices for the Merton modelwith the first parameter set and letT vary, i.e.
T = 1e-6, 0.25, 1. Further, we consider two cases for the volatilityσ = 0.15 andσ = 1. We report the relative
error to be able to compare with the reported relative errorsin [8, Table 5]. We conclude from Table 11 that our
RBF-FD method remains very accurate even for very short maturities combined with eitherlow (σ = 0.15) or
high (σ = 1) volatility when using onlyN = M = 512 discretization points in space and time. Comparing to [8,
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Figure 5: Early exercise boundary for an American put optionunder the Merton and the Kou models for parameter
sets 1 and 2.

Table 5] forσ = 0.15 we observe that our RBF-FD method is more accurate than the global method in [8] since
with a comparable number of spatial discretization points we get smaller errors or in one case a comparable error.

σ = 0.15 σ = 1
T S Value Rel. Error Exact price Value Rel. Error Exact price

99.9 0.099995 3.169360e-8 9.999504e-02 0.108330 1.2406e-04 0.108316
1e-06 100 5.742706e-3 4.039229e-2 5.984431e-03 0.039840 1.3741e-03 0.039895

100.1 4.503670e-6 1.873367e-1 5.541865e-06 0.008354 8.0340e-04 0.008348
90 9.285433 1.5853e-06 9.285418 23.655246 9.8890e-07 23.655223

99.9 3.184844 2.2213e-06 3.184837 19.437222 1.0726e-06 19.437202
0.25 100 3.149033 2.2659e-06 3.149026 19.398611 1.0656e-06 19.398590

100.1 3.113710 2.3119e-06 3.113703 19.360075 1.0584e-06 19.360055
110 1.401192 4.3717e-06 1.401186 15.900450 1.1337e-06 15.900468
90 10.30366 2.8981e-05 10.303963 38.857797 5.4859e-05 38.859928
95 8.189224 2.5239e-05 8.189431 37.303492 5.1461e-05 37.305412

1 100 6.684271 2.5524e-05 6.684441 35.839436 4.9390e-05 35.841206
105 5.654291 1.8398e-05 5.654395 34.458796 4.7071e-05 34.460419
110 4.961362 1.7882e-05 4.961450 33.155272 4.6061e-05 33.156799

Table 11: European put option prices under the Merton model with parameter set 1 and varyingT andσ. Other
parameters areN = 512, M = 512, Smin = 0.01K, andSmax = 2K, 4K, 10K for T = 1e-06, 0.25, 1,
respectively andζ = 1/K, 7/K for σ = 0.15, 1, respectively.

Also [38] tested their RBF method for ashort maturity ofT = 0.1 combined with alow (σ = 0.1) and a
high (σ = 1) volatility. The prices of a European put option under the Merton model withµ = 0 andγ = 0.35
and parameter set 5 from Table 6 are computed for 1950 equallyspaced stock prices in the interval[K/3, 5K/3]
and the corresponding RMS error is reported. Note that hereto first RBF-FD approximations are computed using
N = 128, 256 and512 spatial grid points combined withM = 64, 128 and256 time steps respectively. Next,
the option prices at these 1950 equally spaced stock prices are obtained by interpolating the solution. Comparing
these RMS errors in Table 12 obtained by our RBF-FD method with those in [38, Table 7], we conclude that our
method leads to a higher accuracy with less spatial and time discretization points. To get an error of order 1e-07
2560 (σ = 0.1) and 1280 (σ = 1) nodal grid points are needed in [38], while we get this orderof accuracy using
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N + 1 = 513 grid points.

σ = 0.1 σ = 1
N M RMS error RMS error

128 64 6.1971e-06 1.0256e-05
256 128 1.2249e-06 2.0468e-06
512 256 2.7987e-07 6.2346e-07

Table 12: European put option prices under the Merton model with µ = 0, γ = 0.35 and parameter set 5.

In addition, we study the convergence rate in time and space for a European put option under a Merton model
with µ = 0, γ = 0.35, combined with parameter set 5 and forlow (σ = 0.1) andhigh (σ = 1) volatility. Figure 6
confirms that the proposed method is also in these cases second order in time and space.
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Figure 6: European put option under the Merton model withµ = 0, γ = 0.35 and parameter set 5. Left: Error
convergence in time using 2048 nodal points. Right: Error convergence in space using 512 time discretization
steps.

We now test along maturity in combination withlow andhigh volatilities. ForEuropeanput options we have
already some results forT = 3 in Table 7 and forT = 1 in Table 11. In Table 13 we consider again a long
maturity,T = 3, for a European put option under the Merton model withµ = 0 andγ = 0.35 but with parameter
set 6 in order to compare to [38, Table 9]. Also in this test ourRBF-FD method proves to be accurate and fast.
Our method leads to an error of order 1e-06 withN = 512 for the spatial discretization and in a few milliseconds
while in [38] 640 spatial points give an error of order 1e-05 and they report 9.8 seconds to get to this precision.

S = 100
N M Value Error CPU (s)
Exact price 9.8233158
128 256 9.8229636 3.5221e-04 0.014
256 512 9.8232739 4.1847e-05 0.080
512 1024 9.8233228 7.0328e-06 0.355

Table 13: European put option prices under the Merton model with µ = 0, γ = 0.35 and parameter set 6.

For anAmericanput option with along maturityT = 1 and ahigh volatility σ = 0.8 we can compare our
results in Table 14 to those in [38, Table 15]. The benchmark option price is taken from [38, Table 15] and is
evaluated using the proposed method by [28]. Also for the American case our RBF-FD method is very fast and
accurate since we need onlyN + 1 = 513 spatial discretization nodes to get an error of order 1e-05 in some
milliseconds while in [38] they report forN = 640 an error of 1e-04 in 17.11 seconds. In addition we provide in
Figure 7 the plot of the early exercise boundary for an American put option under the Merton model for parameter
sets 7 and 9. Under each curve we find the exercise or stopping region while the part above it is the continuation
or holding region.
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S = 100
N M Value Error CPU (s)
Benchmark 29.832970
128 256 29.8359417 2.9717e-03 0.011
256 512 29.8334683 4.9829e-04 0.051
512 1024 29.8329819 1.1932e-05 0.317

Table 14: American put option prices under the Merton model with µ = 0, γ = 0.3 and parameter set 7.
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Figure 7: Early exercise boundary for American put option under the Merton model for parameter sets 7 and 9.

7.3 Greeks

In this section our aim is to evaluate the efficiency of the RBF-FD method against other existing methods in the
literature for computing the Greeks∆ = ∂V

∂S andΓ = ∂2V
∂S2 introduced in section 6.

We start by considering a European put option with short maturity T = 0.1 under the Merton model with
µ = 0, γ = 0.35 and parameter set 8. These parameters have been used for evaluating∆ andΓ in [38] using
the RBF-DQ method. As in [38] we compute the RMS errors and CPUtimes, see Table 15. For computing these
RMS errors, we apply the RBF-FD method and use the values of the hedging parameters∆ andΓ in 1950 equally
spaced stock prices in the range of[K/3, 5K/3]. The exact values of∆ andΓ in the expression of the RMS
error for the different stock prices have been computed by using the closed form solution presented in [30]. Now,
comparing our results with those in [38, Table 18], we may conclude that the RBF-FD method is more accurate
than the RBF-DQ method also for computing the Greeks. For achieving a same level of accuracy, the RBF-FD
method needs to solve a linear system of equations of smallersize than in the RBF-DQ method. Moreover the
coefficient matrix in the RBF-FD method is tridiagonal, implying that the system can be solved very fast.

RMS error
N M ∆ Γ CPU (s)

256 128 4.8831e-05 2.3144e-04 0.010
512 256 1.2047e-05 7.2280e-05 0.152
1024 512 3.0479e-06 1.7567e-05 0.513
2048 1024 8.0647e-07 7.2174e-06 4.327

Table 15: Delta and Gamma of European put option price under the Merton model withµ = 0, γ = 0.35 and
parameter set 8 for a short maturityT = 0.1.
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To further investigate the efficiency of the RBF-FD method, we consider again a European put option under
the Merton model withµ = 0, γ = 0.35 and parameter set 8 but with a long maturityT = 3. The absolute errors
and the RMS errors when computing the Greeks for this put option for varying values ofS using the RBF-FD
method withN = 1024 andM = 1024 are reported in Table 16. We conclude that also in this case the RBF-FD
method is accurate.

S ∆ Exact value Error Γ Exact value Error
80 -0.49307119 -0.493067335 3.8569e-06 0.01191453 0.011914579 3.4749e-08
85 -0.43527507 -0.435271821 3.2536e-06 0.01117259 0.011172598 2.8725e-08
90 -0.38158922 -0.381586517 2.7046e-06 0.01028331 0.010283331 1.8816e-08
95 -0.33256734 -0.332565092 2.2489e-06 0.00931775 0.009317751 7.7364e-09
100 -0.28844229 -0.288440390 1.9022e-06 0.00833293 0.008332941 3.6005e-08
105 -0.24919839 -0.249196723 1.6648e-06 0.00737123 0.007371226 4.3037e-08
110 -0.21464169 -0.214640165 1.5282e-06 0.00646189 0.006461887 1.2793e-08
115 -0.18446145 -0.184459970 1.4805e-06 0.00562287 0.005622860 2.1484e-08
120 -0.15827982 -0.158278311 1.5095e-06 0.00486340 0.004863397 2.9209e-08
RMS error at the above 9 points 2.3812e-06 2.8059e-08

Table 16: Delta and Gamma of European put option price under the Merton model withµ = 0, γ = 0.35 and
parameter set 8 for a long maturityT = 3.

Since there is no closed form formula for American option prices and their Greeks we test the RBF-FD method
for the computation of the Greeks of an American put option under the Merton model with a parameter set as in
[38]. Thus we putµ = 0, γ = 0.35 and consider the parameter set 9 which is a case of a long maturity T = 3.
Numerical approximations for the Greeks∆ andΓ of this American option obtained by the RBF-FD method using
different numbers of time and space steps and different stock prices are reported in Table 17. Comparing to [38,
Table 20] we conclude that the results for the Greeks are in line with each other.

∆ Γ
S N = 512,M = 256 N = 1024,M = 512 N = 512,M = 256 N = 1024,M = 512
80 -0.50461524776 -0.50459969084 0.00798701879 0.00798658642
85 -0.46612448531 -0.46611327509 0.00742345331 0.00742318607
90 -0.43026138170 -0.43025105856 0.00693080288 0.00693058531
95 -0.39674621849 -0.39673689636 0.00648062636 0.00648046681
100 -0.36540995868 -0.36540193399 0.00611455180 0.00607728393
105 -0.33614380923 -0.33613591696 0.00565209011 0.00565202013
110 -0.30886416789 -0.30885694770 0.00526193679 0.00526184852
115 -0.28350160200 -0.28349409671 0.00488561810 0.00488553516
120 -0.25998251566 -0.25997703555 0.00452359882 0.00452353538

Table 17: Delta and Gamma of American put option price under the Merton model withµ = 0, γ = 0.35 and
parameter set 9.

For the parameter set 1 combined with the jump distribution parameters from Table 2, we plotted in Figures
8 and 9 the Delta and Gamma functions against the exact valuesfor European put option prices under the Kou
and Merton model. Also, for the American put option prices under the Kou and Merton model with the same
parameters as in the European case, we depicted the option price and its Delta and Gamma functions in Figures
10 and 11.
All plots are smooth with no oscillations at or around the strike. This shows that the RBF-FD technique combined
with a stable time discretization is accurate for approximating the option Greeks Delta and Gamma.

8 Conclusions

We presented an efficient numerical method that is second order in time and space to evaluate European and
American option prices based on a combination of the RBF-FD method and a three level IMEX scheme that treats
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Figure 8: Delta and Gamma of European put option price under the Kou model with jump distribution parameters
from Table 2 and with parameter set 1.
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Figure 9: Delta and Gamma of European put option price under the Merton model with with jump distribution
parameters from Table 2 and parameter set 1.
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Figure 10: American put option price and its Delta and Gamma under the Kou model with jump distribution
parameters from Table 2 and with parameter set 1.
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Figure 11: American put option price and its Delta and Gamma under the Merton model with with jump distribu-
tion parameters from Table 2 and parameter set 1.
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the non-local integral term explicitly. An important difference to other schemes in the literature is that we first
transformed the PIDE by a coordinate stretching coordinatetransformation so that the computation of the prices
is focused on the regions of interest. We proved for the European option case that our scheme is stable and second
order convergent in time and space. For American options this was confirmed by the numerical experiments. We
compared several cases including long and short maturities, low and high volatility. We also tested the performance
to approximate the hedging Greeks Delta and Gamma. We observed that the proposed method is very accurate
and efficient in all those cases.
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