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Abstract

American option prices under jump-diffusion models are determinedlaiens to partial integro-differential
equations (PIDE). In this paper a new combination of a time and spatiaétiation applied to a linear comple-
mentary formulation (LCP) of the free boundary PIDE is proposedt Bicoordinate stretching transformation
is performed to the asset price so that the computation of the prices danused on regions of real interest
instead of on the whole solution domain. An implicit-explicit time discretizationiagpo the reformulated
LCP on a uniform temporal grid is followed by a spatial discretization to delladiscrete system. The radial
basis function (RBF) finite difference method is a local method resultingsjpaase linear system in contrast to
global RBF-methods which lead to ill-conditioned dense matrix systemghEaorresponding European option
we prove consistency, stability and second-order convergence inrateif--norm. We derive mild conditions
for the model parameters under which these results hold. Numerigatiments are performed with European
and American options, and a comparison with numerical results availatble literature illustrates the accuracy
and efficiency of the proposed algorithm.

Keywords. Radial basis functions, Finite difference, Option prigiMgrton’s and Kou’s models

1 Introduction

The pricing of European and American options under the jaliffpsion models introduced by Merton [30] and
Kou [25] has been extensively studied in the literature agvat faster and more accurate algorithms to solve the
numerical approximating model. We will contribute to thitsdature by proposing an efficient numerical method
which combines some existing techniquresn original way The valuation of an option under a jump-diffusion
model requires the solution to a partial integro-diffef@rgquation (PIDE). Before starting the discussion on the
choice of the numerical method we first focustbe type of PIDBEhat is considered. In a first group of papers
[13, 45, 39, 19, 40, 41, 9, 37] the solution to the PIDE is a fiomcof the underlying price processitself. For

the spatial discretization a unifor§rgrid is used except in [45, 37] where a non-uniform grid iss#n to have a
more refined grid near the strike. In a second group of pagét<L[7, 38, 8, 24, 22, 7, 23] the PIDE is transformed
into a PIDE for the option price as a function of the log-regirThe differential operator has in that case constant
coefficients. The spatial domain is further discretized byngorm grid. Only in [7] a non-uniform grid is
considered using the adaptive residual subsampling méthod[14]. In our approach we consider a change of
variable originally proposed by [10] and which is used in,[83] to select the non-uniform grid points. However,
we will transform the PIDE to a PIDE for a function of this new variablresulting in a differential operator with
coefficients depending anbut having nice properties as we will show. In [34] a samedfamation was applied
but to a PDE problem that is solved using higher order finifeedinces while in [3] it is applied to a higher
dimensional PDE. The advantage is that we can work with sotmifz-grid while the corresponding-grid is
refined around the point of irregularity of the payoff fuiocti



The American option pricing problem is a free boundary peabl One can also solve this free boundary
problem itself under finite activity jump models by a so-edlffront-tracking method as in [7] or a front-fixing
method as in [19]. The most common way is to formulate iadisear complementary problem (LCR\volving
a partial integro-differential inequality. In [37] the Amiean option price formulated as a solution to an LCP is
approximated by a Bermudian option price using a Richardstenpolation technique. In [12] a penalty method
is proposed to approximate the resulting LCP. This pena#ithod is used in, e.g., [45, 40, 9] and is simple and
efficient but only first order implying slow convergence. Wil apply the operator splitting methods in, e.g.,
[39, 27, 38, 23] and introduced by [21] in the context of Amari option pricing. Its advantage is that no fixed
point iteration techniques are needed at each time stegidificretized problem and that it has a a second-order
convergence rate. Operator splitting is in fact a naturdl@d idea, namely decompose systems of P(I)DEs into
simpler subproblems and treat those individually usingheed numerical algorithms.

For the spatial discretization of the PIDE typically a ttaatial finite difference method (FDM) is applied as
in [6, 26, 27, 39, 40] or a finite element method (FEM) as in [29, 49] for the PDE case or a finite volume
method as in [48, 18]. There are several other numerical sdsthvailable in the literature to solve the governing
equation. For example in [1] an alternating direction irplfADI) finite difference method has been proposed.
In [33, 35] the authors combined the spectral domain decaitipp method and the Laplace transform method
while in [9] a quadratic collocation method is considere@céntly radial basis functions (RBFs) methods have
gained a lot of interest. In [15, 19, 38, 3, 7] meshfree meshmased on an RBF approximation have been shown
to perform better than finite difference methods for optioicipg problems in one or more spatial dimensions.
However, the RBF collocation method in these papers is aafjlobe and leads to a dense linear system which
suffers from ill-conditioning. To overcome this drawbacloeaal version of the method was proposed in order to
have a sparse better-conditioned linear system. Local RB#ods are applied in, e.g., [32, 31] for the pricing of
American options with stochastic volatility and jump-d$ion model.

Over the last decade a relatively new method is developediohathe function derivatives are not approxi-
mated by derivatives of the RBF but by a linear combinatiotheffunction values of the RBF at some nodes. In
[38] such method based on differential quadrature (DQ) @ie@. However this RBF-DQ method leads to a full
differentiation matrix since the RBFs are evaluated at aditial discretization nodes. The radial basis function
generated finite difference (RBF-FD) method is an FD methbdra/the weights are computed by fitting an RBF-
interpolant through some scattered nodes in one or mor@abkgdahensions resulting in a sparse differentiation
matrix. Once the differentiation matrix is formed, it canumsed repeatedly for spatial derivative approximation.
Although the method has been implemented in various caniaxhe last ten years, the first survey articles on
RBF-FD are just now emerging, see, e.g., [16, 17]. In [24,tR8]local RBF-FD method is applied to price
European and American options under jump-diffusion moudien the P(I)DE for the option price is a function
of the log-returns.

In order not to destroy the sparsity of the differentiatioatrix by the non-local integral term originating from
the jump part, we will combine the RBF-FD method with a thieesl implicit-explicit (IMEX) time discretization
where the integral term is treated explicitly. In [26, 27]IMEX method with three time levels has been studied
to evaluate the prices of European options under a jumpsitiffumodel and the method is shown to be stable and
second order accurate in a discrétenorm. More recently, a class of IMEX-methods for pricingiops under
jump diffusion model has been proposed by [41]. We will cdaesithe Crank-Nicolson-Leap-Frog scheme and
show that the fully discrete scheme in our setting is alsosg@®rder accurate when pricing European options.
For American options we study the convergence numerically.

To summarize, the contribution of this paper is that we comldifferent techniques in an original way for
the American option pricing under jump-diffusion modelse ¥Wst perform in section 2 a coordinate stretching
transformation resulting in a differential operator witbnaconstant coefficients in the PIDE of the reformulated
LCP. Next an operator splitting method is applied in sec8oin section 4 an RBF-FD method is combined with
a three-level implicit-explicit time discretization of@n 3 that treats the non-local integral term expliciiiye
fully discretized system has a sparse matrix and can bedelfficiently. Applying the differential matrices of
section 4 to this solution an approximation for the hedgimge®s Delta and Gamma are obtained in section 6.
In section 5 we carry out a stability and convergence arafgsithe European option case dealing in particular
with the non-constant coefficients in the differential @ier. An extensive numerical study for European and
American options and comparison with other schemes in theature is carried out in section 7.



2 Option Pricing M odel
2.1 Jump-diffusion model

Consider a complete filtered probability spd€e 7, (F),¢ (o 7, ") whereT' > 0 is a fixed finite time horizon.
Let (St) 0 oy be the price process of an asset which is modeled as a fin@apimp-diffusion, see e.g. [11].
Assume tLat there exists an equivalent martingale me&3uwreder which the dynamics of the asset price are
given by the following stochastic differential equatiorD) as in [41]

ds;
Si_

wherelV is a standard)-Brownian motion,NV is an independent Poisson process with intensity Xxate0, x is
the expected value of the random va(¥e— 1) of the jump size distribution producing a jump frasp_ to y.S;
and with densityf(y) implying k = fooo(y —1)f(y)dy. The parameters, ¢ ando (> 0), stand for the risk free
interest rate, the continuous dividend yield and the ii\gtrespectively, and are for simplicity assumed to be
constant. The case of time-dependent but deterministictifums requires a straightforward modification of the
computations.

In this paper we focus on two popular jump-diffusion modeihvinite activity, Merton’s [30] and Kou'’s [25]
model. The jump size follows in the former a lognormal dizition and a double exponential one in the latter.
Hence, the density function and corresponding mean arg fof) respectively given by

— )2 2
o exp (‘W) K= exp(p + l) -1 (2)

2
Kou: f(y) = pary~**""H(log(y)) + (1 — p)ay®*~ ' H(—log(y))
=p

=(r—q—Ak)dt + odW; + (Y — 1)d]Vy, Q)

Merton: f(y) =

o a9 1 (3)
a1 — 1 a9 + 1
withy >0, p € R, a1 > 1, a3 > 0and0 < p < 1 and whereH(-) is the Heaviside function with/(0) = 1/2.

+(1-p)

?

2.2 PIDE for European option

By the Markov property, the fair value of a vanilla Europeaall(or put) option at time- is denoted/ (7, S) if
the asset price at that time 6 = S with 7 = T' — ¢ being the time to maturity an@ the expiration date of the
contract. The following partial integro-differential eafion (PIDE) can be derived for the evolution bfr, S)
under the jump-diffusion models (1)-(3),

ov

E(’rv S) - ‘CV(Tv S)v on (OaT} X (0,00) 4)

with

LV =

05t O°V (1,8)+ (r—q— Ak)S V(TS’) (r+NV(r,S) —l—)\/ V(r,Sy)f(y)dy. (5)

0
2 052 S
The value at maturity is given as the initial condition
V(0,S) = g(S), for S € (0,0),
whereg(S) is the payoff function of the claim, defined as

max{K — 5,0 ut optio
M:{ { } put option

6
max{S — K,0} call option ©)

for a given strike price<. As boundary conditions for the European put option we irepos
V(r,0)=Ke "™, lim V(r,S) =0,
S—o00
while for the call option we have
V(r,0) =0, lim [V(r,S)—(S—Ke )] =0.
S—o0
In what follows we focus on put options. The price of a callioptwill be computed through the put-call parity.
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2.3 PIDE for American option

The value of an American option which we also denotelky, S) is a solution to the linear complementary
problem (LCP) [42]

ov
v - >
5y (1,8) = LV(1,5) >0

V(r,S) > g(9), forall (r,.5) € (0,T] x (0, 00), (7
(32r.9) £V (7, )) (V(7,5) — 9(5) =0,

with the initial condition
V(07 S) = g(S)?

whereg(S) is the payoff function. For American options we will focus pat options only. In that case, we
impose in addition the following boundary conditions

V(r,0) = K, Sh—>néo V(r,8)=0

2.4 Localization, truncation and coor dinate tr ansfor mation

To apply numerical techniques, we localize the variables tae integral term to bounded domains. First, we
replace the unbounded domdih = [0, 00) for .S with a bounded oné) = [Smins Smax). The valuesS,,i,
and Syax Will be chosen based on standard financial arguments With [Spin, Smax] @and such that they are
far enough away from the region of pricing interest in ordarthe solution to be unaffected by the truncation
and for the asymptotic conditions to hold approximatelycérclingly, we truncate the integration domain in the
integral term and divide it in two par{s, Smin/S] and[Smin/S, Smax/S]. Utilizing the asymptotic behavior of
the European put option, we approximate the integran&By”™ — Sy in the first integral while we change the
variables in the second by putting= Sy, providing

Smin

/VTsy dyN/ (Ke™ — ) f(y dy—l—S/ TV A

Smin

The integral term for the call option case can be dealt with smilar way.

The payoff function (6) and its derivatives are non-smodttha strike K. Therefore, to reduce the loss of
accuracy in the numerical approach we would like to have thete of the trial functions concentrated in a spatial
region close t&& = K. Hereto, we employ the following change of variable whi@mnsforms the physical domain
Q into the interval0, 1],

_sinh™' (¢(S — K)) — sinh™ (((Smin — K))
sinh ™ (¢(Smax — K)) — sinh ™ ({(Smin — K))

The choice of the stretching paramefatetermines the concentration néae= K. The inverse transformation is
1
S(x) = ¢ sinh (zsinh™" (¢(Smax — K)) + (1 — ) sinh ™" ((Smin — K))) + K. (8)
This change of variable has originally been proposed in @] has been applied, for example in [4, 34, 32].

Finally, applying the chain rule we derive the following FBor « (7, ) on the transformed truncated domain
from the PIDE (4)-(5) fol/(r, S(x)) on the original domain,

%(77 x) = Lu(r,z) with Lu(r,z) = Du(r,z) + Zu(r,2) — Mu(r,z), on(0,T] x (0,1) 9)
where o 5
Du(r,x) = a(a) 5 (r.2) + Bla) 5 (r,@) = ru(r, @) (10
with 2(5(p))?2 g o
o) = Ggrie @) = (r =g - M) 52 - al0) 1)
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and where

min

?‘S‘(w)
Tu(r, z) == /\/
0

The corresponding boundary and initial conditions are

(Ke™ "™ — S(x)y) f(y)dy + /\/0 u(T, ZM(E:E;D i’l((;)) dz. (12)

u(r,0) = Ke™ " — Sy, u(r,1)=0, 7€ (0,T], (13)
u(0,2) = g(S(x)), = €[0,1]. (14)
Along similar lines, the LCP (7) for American put optionsqasV/ (7, S(x)) is replaced by an LCP far(r, x)
on the transformed truncated domain:
ur(r,2) — (D — Au(r,z) — Zu(r,z) > 0,
u(t,z) > g(S(x)), on (0,77 x (0,1),  (15)
(ur(r,2) = (D= ADu(r,2) — Tu(r,2) ) (u(r,2) - g(S(x))) =0,

whereu, stands for the partial derivative w.r4, I is an identity operator] is defined by (10), and the integral
operatorZ by

L[ : 5()\5'(2)
Tu(r,x) = /\/O (K — S(x)y)f(y)dy + )\/0 u(T, Z)f(S(x)> S(2) dz. (16)
The corresponding boundary and initial conditions are
u(t,0) =K, wu(r,1)=0, 7€(0,T], a7
u(0,2) = g(S(x)) =z €]0,1]. (18)

3 Timediscretization with threetimelevels

Let AT = % with integerM > 1 be a given time step and let the corresponding temporal gilttpbe given
by 7, = kAT for 0 < k < M. We apply an implicit-explicit (IMEX) time semi-discretiion with three time
levels to the PIDE (9). In particular, we consider the Cridikelson-Leap-Frog (CNLF) scheme as in [2] and
[24]. In [41] this type of scheme is called the IMEX-midpostheme. The differential part is treated implicitly,
while the integral part is treated explicitly. In order taugtthe algorithm we will need initial data fér = 0 and
the value fork = 1 is obtained by an implicit-explicit backward difference timed of order one (IMEX-BDF1).
Thus, denotind/*(x) := u(7, z), the PIDE (9) for the price of a European option is approxadaty following
implicit-explicit time semi-discrete scheme fere (0, 1)
1 0

W = (D - AU (2) + ZU(x), (19)

Uk;+1(x) _ kal(l,)
2AT

Ukt(z) + U Y(z)

5 +ZU"(z), for 1<k<M -1, (20)

= (D - AD)

with boundary and initial conditions
UF(0) = K& — S, UF(1)=0, for 1<k<M and U°=x)=g(S(x)) for z € [0,1].

For American options, we use the operator splitting metlaydsblving the time semi-discretization of the
LCP problem (15). This method which was introduced by Ikoaed Toivanen in [21] to evaluate the price of the
American put option under the Black-Scholes model, and whias studied by Toivanen in [45] under the Kou
model, starts from the reformulated LCP (15) in terms of axilewy function A(r, z),

ur(m, ) — (D — X)u(r,z) — Zu(t,z) = A(1,2), A(T,2) >0
u(r,z) > g(S(x)), on (0,7] x (0, 1),
A(r, ) (u(r, z) — g(S(x))) = 0,



with boundary and initial conditions (17)-(18).

Then the operator splitting method splits the first equatioeach time level into two discrete equations using
some intermediate solutidii**!(z). Let A¥(x) := A(rx,z). For the CNLF scheme we find far € (0,1) and
similarly to [27]

Ul (z) — U%(x) . or N 1
— 2 (D= AT (@) + IU(@)) = Al (a),
Ul(x) - U (2) (21)
AT ’
Al(z) 20, Ul(z) = g(S(x)), Al(z)(U'(z) - g(S(x))) =0,

A(z) = A%(x) +

and

Uk (z) + UFL ()
2

Uk (z) — U (x)
2AT

—((D—-XI) +ZU*(z) ) = AR+ (),
( )

Uk+1 (z) — Uk+t (2) (22)

2AT ’
ARt (z) >0, UM (x) > g(S(x)), A*F'(z) (UM (z) - g(S(x))) =0,

AR (z) = AF(z) + 1<k<M-1

with boundary and initial conditions

Uk(0)=K, U*1)=0, for 1<k<M and U%x)=g(S(z)) for = €0,1].

4 Spatial discretization

The time semi-discrete systems in previous section arbdudiscretized in space to get fully discretized systems
of equations that can be easily computed numerically. Weapply the local radial basis function method which
was independently introduced by several authors [43, 46, Vs local RBF method can be viewed as a gener-
alization of the classical finite difference (FD) methodd as therefore also called RBF-FD method. In the FD
method the weights are computed using polynomial intetjpmavhile in the RBF-FD method they are computed
by fitting an RBF interpolant through a grid point and someghbbr points. In this sense it id@cal RBF method

in contrast to a global RBF method where all grid points in $patial domain are taken into consideration to
determine the interpolation coefficients resulting in asgelinear system showing ill-conditioning. The resulting
linear system in the local RBF method is sparse, hence owengpthe ill-conditioning of the global method.

4.1 RBF-FD based approximation

Consider a spatial domaid c R¢ and a set of distinct RBF collocation poif{s= {Xi, Xz, ...,Xy} in Q. Let

X; = {xﬁ”, e ,x%’)} C X be a subset containing and itsn — 1 nearest neighboring points forming a stencil
with x; as center and < N. The number of pointa in each stencil can be either constant or vary with

In the RBF-FD approach any linear differential operator @seixampleD defined by (10) acting om(x)
evaluated ax;, is approximated by a linear weighted combination of thefiom values of at the points oK},

Du(x;) ~ Z w,(cj)u(x,(f)).
k=1

The RBF-FD Weight&p,gj), k=1,...,n, are found by enforcing that the approximation is exact withe space

spanned by the RBFgs(||x — xﬁj)||) »_,, centered at the node§), i =1,...,n, and with|| - || the standard
Euclidean 2-norm, so that

n
Do([x; — x| =3 wo(|x —x|), i=1,...,n.
k=1

This is ann x n linear algebraic system
AWE) — C(j), (23)

6



where the coefficient matria?) has entries.”) = ¢(|[x”) — x|, fori, k = 1,...,n, W is the differential
weights vector, and the right hand side is definedc,fﬂﬂl = Do(||x; — xEj)H), t =1,...,n. We have to solve
thisn x n linear system for each stencil centgt j = 1,..., N to form theN rows of the sparse differentiation
matrix with n non-zeros per row. In the context of time-dependent P(l)Biies stencil weights remain constant
for all time-steps when the nodes are stationary.

Table 1 lists some radial basis functions that are commanigleyed in the literature. Some of them depend on a

shape parameterthat should be chosen in an optimal way to minimize the appration error.

Function name Definition
Gaussian (GA) exp(—e2r?)
Multiquadrics (MQ) 1+ (er)?
Inverse multiquadrics (IMQ) —_—
1+ (er)?
Conical splines r2htl

Thin plate splines (TPS) (—1)*+1r2k Jog(r)

Table 1: Some well-known radial basis functions

Obviously, since:r < N the size of the linear systems (23) is much smaller than #e\8ix N of the linear
system of a global RBF collocation method. A global RBF mdttwderive a differentiation matrix needg N3)
operations, and results in a dense matrix. In the RBF-FD odetve only need)(n?) operations for each of the
N stencils, so that the total cost of computingién® V), without taking into account the cost of determining
the stencil grids. Fon fixed withn < NN, the total cost will beO(N) for increasingN. The weights can be
computed by inverting the local distance matriééd of ordern x n for each stencil. These distance matrices
depend only on the distance of the grid points implying tbathiform grids we only need to compute the inverse
of one local distance matrix. Further, the differentiatioatrix for one stencil is independent from those for the
other stencils. Hence their computation can be parakellio increase the efficiency of RBF-FD method in high
dimensional problems and adaptive algorithms.

4.2 Discretization of theintegral operator

Besides the linear differential operat®rwe also have to discretize in space the integral opefatiafined in (12)
and (16) for a European and an American put option respégtitérst, note that the expressions (12) and (16)
only differ by the factor €”” in the first term. Moreover, this first term does not dependheruinknown function

u and can be evaluated exactly for the density functjbng(2)-(3) of the Merton and the Kou model. Apart from
the factor), introducing the indicator functiorig:yropean@nd 1 american We find for the first integral term

S

min

R(T, I) = /0 o (K(lEuropeaﬁirT + 1American) - S(x)y)f(y)dy, (24)

where for the Merton model using the cumulative distribafienction®(-) of a standard normal random variable
log(s) — 1 log( ) — u— 7
R(Tv T) = K(lEuropeateirT + 1American)q) (S(/y) - S(-f)eu+%w2¢) 5(z) ~ , (25)
and for the Kou model recalling th&t,;, /S(z) < 1

R(r.) = (1) (50

The second integral in (12) and (16) is approximated by tygezoidal rule

(%)
_ a2
K(1 " + 1american) — ———— Smin | - 26
) < ( Europeale + Amerlcan) a2+1 ) ( )

! S(2).5'(2) Mz [
~ F. ‘ 27
wherez; = jAz with Az = % wj = 1forj =0,N andw; = 2forj = 1,...,N — 1, andF;(z) =
f(S(zj))S’(zj)
S(z) /7 S(z) -



4.3 Fully discretized system for European option

We now apply the RBF-FD approximation of section 4.1 with= 1. Let X = {xg,x2,...,zn} be a set of
distinct interpolation points of0, 1] with zp = 0 andzy = 1, and7 = {rp =0 < 7 < --- < 71py = T}

be a partition of[0, T]. Applying the RBF-FD method in one dimension and the diszagbn of the inte-
gral operator as described in the previous subsectionsettirtte semi-discrete problem (19)-(20), the evalua-

tion of a European put option price is reduced to finding amr@gmationU* := [U} UF - UmT for

[u(Te,z0) ulrh,a1) -+ u(tg,an)] Tk = 0,...,M, as a solution to the following time stepping scheme,
ut —u°
= (D — MU' + ZU°, with U° =g, (28)
-
k+1 _ jk—1 k41 k—1
V=0 oo (Y ) g0k for 1<k < M1, (29)
2AT 2

whereD is the differentiation matrix associated with the diffeiahoperatorD (10), | is an identity matrix
of order N + 1 andZ is the integral matrix corresponding to the integral oparét (12) which can be ex-

pressed aZU* = A\FU" + ARF with according to (27)7 = (%ijj(xi)) . and according to
0<7,5<

(24) RF = [R(7k,20) Rk 21) -+ R(Tk,l'N)]T. In the boundary pointsy, = 0 andzy = 1 the
boundary condition$/} = u(7y,0) = Ke "™ — Syin, UX = u(r,1) = 0 are imposed according to (13).
Note that it is possible to enforce the boundary conditiong2i8)-(29) by putting the elements zero in the
first and last row of the matrices on the right hand side. Tliainvector U° is the given vectog defined
by [9(S(z0)) g(S(z1)) --- g(S(a:N))]T whereg(-) is the payoff function (6). Then, the vector* pro-
vides an approximation to the European put option priceraé teero for different initial asset prices(z;),
j=0,...,N.

4.4 Fully discretized system for American option
As for the European put option, we apply the RBF-FD methodaisi set ofV + 1 collocation pointsX =

{zo,x1,...,zn}oOf theinterval0, 1] with o = 0 andzy = 1 and the discretization of the integral operator to the
time semi-discrete systems (21)-(22) of the LCP problerh witerator splitting. To evaluate an American put op-
tion price, we look for an approximatidy’® := [U§ U - U}f,f for [u(ri, wo) u(rp, 1) - U(Tk,iL'N)]T,
k=0,..., M, as asolution to the time stepping schemes
0w ((D ESVHIv +Iu0) — A%, U= ()
AT 1 - 9 - g7
ut-u (30)
Al — AO
- VAV (b)
A'>0, U'>g (A)T(U'-g)=0 (c)
and k+1 k+1
U -yt U Ukt . .
— (D \N)—+ T =A
i (P T zu) At @
Ukt — gt (31)
E+1 _ Ak <k< —
A A"+ ST , 1<k<M-1, (b
AL >0, U > g (AMHT(UM —g) =0, (©)
whereU" " is an intermediate solution vectoy” = [A(7y, z0) A(7h,z1) -+ A7k, 2n)] " is the auxiliary
function A(r,x) evaluated at the discretization points and) stands for the vector
[9(S(z0)) g(S(z1)) -+ g(S(zn))] " with ¢(-) the payoff function (6)D is the differentiation matrix asso-

ciated with the differential operat@ (10), 1 is an identity matrix of ordeN + 1 andZ is the integral matrix cor-
responding to the integral operafb(16) which can be expressedB8” = \JU* + AR " with according to (27)

T = (%ijj(xi)) and according to (24R = [R(r,z0) R(7k,71) -+ R(m,an)] which

0<i,j<N



does not depend on.. In the boundary points, = 0 andx = 1 the boundary conditionl%C =u(m,0) = K,
Uk = u(m,, 1) = 0 are imposed according to (17).

Each time step is splitinto two parts. Starting from theahitectorU® = gandA® = 0, first, the intermediate
solution vectorlj1 is solved from the system of linear equations (30)(a). NextomputeA' andU! from (b)
satisfying relations (c) we use the equivalent relatiohs= max(g, 01 — ATA%) andA' = A + UIA;TGI. Now,
we can use the system (31) fbr=1,..., M — 1. For the computed valugs"*~!, U¥ andA*, the intermediate

solution vectoank+1 is first solved from the modified system of linear equatiorig(@. Next, the update step (b)
satisfying (c) can be performed very fast and at each smgidipoint independently with the formulagi+! =

~k+1 1 ik . ) )
max(g, U T oATAF) andAFT = AF ¢ UHT‘TJM. Finally, we obtainJ™ as an approximate value for the

American put option price at time zero for different initadset price$(z;), 7 =0,..., N.

5 Stability and conver gence analysis

In this section we analyze the stability and convergencheflly discrete scheme (28)-(29) to price a European
option in the case of a uniform grid in space amd= 3 points per stencil. Further, we choose as RBF the

multiquadratic function
P(lz —yl) = Ve + |z —yl? (32)

wheree is the shape parameter. For the collocation points we foouthe interior pointsey, ..., zy_1. We
first construct the differential matri@ corresponding to the differential operaf@r(10) in this particular case and
derive some properties. This differential matbixs an(N—1) x (N —1)-submatrix of the matriD corresponding
to the interior points obtained by deleting the first andidegtand columns irD. The grid points in the-direction
are equidistant with step sizeand each stencil centered arourngdcontains also the interpolation points — A
andz; + h. We further consider the grid points to be stationary suet the stencil weights remain constant
for all time-steps. The first order derivative ofr;,, z) ate = x; forj =1,...,.N —landk =0,...,M, is
approximated by

ou

%(Tk, zj) = aj1u(Tr, x; — h) + aju(Te, ;) + ajr1u(te, xj; + h). (33)
Requiring that for the multiquadratic RBF function (32) d@léis that
o¢ () o) () ()
5g Uz =2 = aj—19(j —h = 2)) + a;¢(jay — 2]) + aj16(|z; + b — ),

for 20) = z; — h, 29 = 2; andzU) = z; + h, we get a linear algebraic system in three unknowns, a;,
a;+1 With solution, see [5],

1 1+ 1—|—4€L22

e N T
€2

Whene > h, we obtain by Taylor's expansion and neglecting higher otelens, as in [5], that

aj:().

1 h?
Aj—1 = —Qj41 =~ —g(l + ?>, a; = 0. (34)

Note that these coefficients are independentddie to the equidistant grid points and only one linear sys$tam
to be solved. In what follows we denote

1 h?
a._ﬁ(wﬁ). (35)
In a similar way we approximate the second order derivative(o,, z) atz = z,; forj=1,...,N —1and
k=0,...,M, by
0%u
@(Tk,ﬁj) ~ bj,lu(Tk, Tj— h) + bju(Tk, acj) + bj+1’u,(7']€,!l?j + h) (36)



where the unknown coefficients_;, b; andb, ., are solved from a linear system consisting of the equations
0%¢
02

for 2) = x; — h, 20) = z; andz\9) = x; + h. The solution is given by, see [5],

24 (B 4 2) /14 482 4 5h% 20! . 24 (B 4+2)y/1+4 42 4 31
j=— :

4h2(1 4 22)°? ’ 2h2(1 4 13)

(lzj = 2V1) = bjmag(lw; = h = @) + byo(|w; — 29)) + by (a5 +h = 2D,

bj—1="bj11 =

Whene > h, we can approximate these coefficients which are indepemndgmespectively by, see again [5],

. 1 h? 2 h? .
b.:ﬁ(1+6—2)(> 0), b= —ﬁ(ug) — 2h(<0). 37)
Assuming thate > h, substitution of the first and second order derivative axiprations (33) and (36)

with coefficients (34)-(35) and (37) respectively in the megsion (10) for the differential operatdrleads to the
tridiagonal differential matrix

D = a(X)Dyx + 8(X)Dx — rl, (38)
where R
b b 0 a
b b b —a 0 a
Dy = and Dy = (39)
b b b —a 0 a
I; b —a 0

and wherex(x) andg(x) are diagonal matrices defined by
a(x) = diaga(z1), a(@2), ..., a(zn-1)), B(x) =diagB(x1), B(z2), ..., Bxn-1))
with a(z) andS(x) given in (11). Hence, the non-zero elements of the difféaéion matrix are
Dis =a(z)b—r, i=1,2,...,N—1 (40)
Dit1i= o(2i41)b — B(wiz1)a, Diit1 = alz)b+ B(z)a, i=1,2,...,N—2. (41)

Since the entries of the matrix depend on the grid points through the functier{s) and5(-) in contrast to
the differentiation matrix obtained in [26] or [41], we firshow two lemmas and a main result that will allow us
to adapt the consistency, stability and convergence sesfi[26] and [41] to our setting.

Lemma 1. The functionH (-) defined or{0, 1] by

_ ()
reaches a minimum and maximum given by
rn[(i)nl] H(xz) =min (H(z*),H(1)) = (¢1 — ¢2)Chin (43)
xe|0,
m[%ui] H(z) =max (H(0),H(1)) = (¢1 — ¢2)Cmax (44)
xe|0,
with 2* a critical point of the functior () and
¢1 = sinh ™ (¢(Smax — K))(> 0), co = sinh™({(Smin — K))(< 0) (45)
1 . ¢ cosh(ey)
Cmin = — min , 46
¢ {\/1+(K§)2 Smax } (46)
1 cosh(cg) cosh(cy)
max — . 5 47
¢ C e { Smin Smax ( )

where( is the stretching parameter of the transformat{@j.
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Proof. For the asset pricé(z) (8) belonging tdSiin, Smax] With S > 0 we denote
1
S(x) = Zsinh(cla: +e(l—2)+ K >0,

where
1 :=sinh 1 (¢(Smax — K)) >0, ¢ :=sinh™ (¢(Smin — K)) < 0

sinceK € [Smin, Smax] and we easily derive, noting that — c2 > 0,

(c1 — 62)2 inh
——=—sinh(c1z + (1 — x)). (48)

S'(z) = % cosh(ciz +ca(1—2)) >0 and S”(z) =
Then, the extremal values féf () (> 0) solve H'(x) = 0, or equivalently solves” () S(x) — (S'(z))? = 0. By
substituting the first and second order derivatives (48j(af) and using formulaosh? z — sinh? z = 1, we get
sinh(ciz + c2(1 — z)) = 1/(K¢) > 0 which provides the critical points of the functidii(-) denoted:*. The
extremal values ofi(-) are reached in such critical points or in the boundary paints0 or z = 1. The function
values ofH (+) in those points are

C1—C2 1
Hry = S - T VIT®EE a0
S 8@ getE 1T+ (KQY

~8'(0)  (c1 — c2)cosh(ea)
H(O) B S(O) B Sminc ’
~ S8'(1)  (c1 — co)cosh(cr)
AO=50 = Bt

Since cosh(ce) > 1 and S,in < K, it holds that H(0) > H(z*), and we can conclude that
mingeo,1) H(x) = min (H (x*), H(1)) while max,¢[o,1) H(z) = max (H(0), H(1)). The results then follow by
substituting the found expressions of the function valtigs), H (1) andH (z*). O

Lemma 2. The functions(-) and 5(-) defined in(11) are bounded ovelo, 1] as follows

o2 o2 2|lr —q — Akl
S < ; 1
0<0) < T 196N < g (PO 1) @9
and, in addition,
Ay — g —
B (e — o) (wcmax N 1) 7 (50)
a(z) o?

wherecy, ¢a, Crpin and Cy,.x are defined in(45)-(47).

Proof. To bound the functiom(-) we note that we can express it in terms of the bounded funéfipn (42) that
has minimal value (43),

o2 1 o?
= — <
0<al®) =510 < 2o —arce. 1)
Similarly we bound the functiof#(-) as follows
1 S (x)
<|r—g— - -
B(@)| < Ir = g = Al + @) max |, (52)
where from (48) we immediately find
S//
‘ S’((aacj)) = (¢1 — co)|tanh(ciz + co(1 — 2))| < ¢ — eq, (53)
which in combination with (43), (51) in (52) leads to the regted bound fof(-) in (49).
Dividing the expression g8(z) by the one ofx(x) in (11) and recalling (42) we obtain
Bla)| _ 2lr—q— s 5"(x)
< .
o) ST ot B H@T I e
Substituting (44) and the upperbound (53) we easily ariveeabound (50). O

11



Theorem 1. The tridiagonal matrices-D (38)and —D + Al are nonsingular M-matrices if

|r — q — k| 1 2 h?
< 1 -1 54
o2 = 2Cmax \ h(c1 — ¢2) ( + 2¢2 4 h2) ’ (54)

wheree is the shape parameter in the RBF functi@2) (with ¢ > h) andc;, c2 and Cp,.x are defined in(45)
and (47).

Proof. We derive a sufficient condition for the matrixD to be a nonsingular M-matrix by its characterization
N3g in the survey paper [36], namely the diagonal entries Dfare positive real numbers, the off-diagonal entries
are real and nonpositive, and the matri is strictly diagonally dominant. Since the matbD + Al has the
same off-diagonal elements, we only have to check that @gatial elements are positive real numbers and that
the matrix is strictly diagonally dominant.

Sincer, A anda(x;) foralli = 1,2,..., N — 1 are positive, and (37) is negative, we find for (40) that
—Dji =7 —a(x;)b > 0and(—D + Al);; = (r+A) —a(z;)b > 0. For the off-diagonal entries of matrixD, we
should prove according to (41) that

B(zip1)a—a(zi)b<0 and — B(z)a—a(z)b<0, i=1,2,...,N—2 (55)
Since the grid points; vary with the step sizé we will prove these inequalities for all € [0, 1], which can be

combined as R
. . Bx)| b 2 h?
- < < — < - == 55 3
O‘(x)b = B(x)a = a(:(:)b ~a h (1 + 2¢2 + h2)’

a(z)
where we also used (35) and (37) in the last equality. In viéthe bound (50), the latter inequality will be

satisfied when 8z) | | )
x 2r —q— Ak 2 h

< - 7Cmax ]- S 7 ]- a0 19 )
ax) < (e C2)< o? * ) h( +2€2+h2)
which is the case under condition (54), and this completesitst part of the proof.

To prove that the matrix-D is strictly diagonally dominant it is sufficient to show thiae sum of all entries
in each row is positive since the diagonal entries-@f are positive and the off-diagonal entries under condition
(54) are nonpositive. Equivalently, we can prove that thra sfiall nonzero entries dd in each row is negative.
Starting with the first and the last row B we must show that(z1)(b + b) +B(x1)a—r <0anda(zy—1)(b+
b) — B(zn_1)a —r < 0. From (37) we know tha2b + b = 0. Puttingh + b = —b and using (55), we get the
desired result. For the rovizsup to N — 2 of D the sum of the nonzero entries (41) equals

20(x;)b + ()b — 1 = al2;)(2b + b) — 1 = —r < 0,

where we used again th2li + b = 0 andr > 0. This completes the proof of strictly diagonal dominanae-f®.
The matrix—D + Al will be a fortiori strictly diagonally dominant since a ptige )\ is added to a positive sum of
the row elements. O

Remark 1. In the limit for h tending to zero the upper bound (®4) will tend to infinity. Hence, conditio(b4)
in Theorem 1 is not too restrictive. For a fixed value of thegghparametee it is sufficient to choose the step size
h(< €) small enough.

5.1 Stability analysiscf. [41]

In [41] a stability analysis is carried out based on a linegst fproblem. Under Merton’s and Kou’s model
the IMEX-midpoint scheme (29) combined with a spatial disization is found to be conditionally stable for
AT < 1 when a quadrature with positive weights is used for the nateggrm and if the eigenvalues of the
differential matrixD are real and nonpositive, see [41, Corollary 1]. Since thgimaD in the present setting is
tridiagonal and an M-matrix under condition (54), it is dizmito a real symmetric tridiagonal matrix and hence all
its eigenvalues are real and positive (see [36, Charaat&nirG)]). In view of (27) we can conclude the following
stability result.

Corollary 1. If the model parameters satisfy4) then the discretization scher(i&l) with the differential matrix
D as in(38) applied to a linear test problem is conditionally stable fohr < 1.
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5.2 Consistency, stability and convergence analysis cf. [26]

In this section we adapt the consistency, stability and emyence study of [26] to our setting where we recall
that the main difference is that the entries in the diffaedittn matrix (38) depend on the grid points while in [26]
those are constants.

We introduce some additional notations as in [26]. We carsitle discrete operatofl;,, Z;, and £;, as
approximations to the operatcfs Z and £ and defined by

Dpu(Ty, z5) = a(xj)l;(u(Tk,xjH) — 2u(Ty, ) + u(Tk,x]—,l))

+ B(a:j)a(u(Tk, zjp1) — u(T, xj,l)) — ru(Tk, ;) (56)
N

Thu(Tg, xj) = )\g ZwiF,;(xj)u(Tk, x;) + R(Tk, ;) (57)
i=0

)U(Tk+1,ffj) + u(Tk—1,7;)

Ehu(m,x]—) = (Dh — /\ B)

+Ihu(7k,xj) (58)

with (73, z;) € (0,T] x (0, 1) and where we used (24)-(27), (37), (40)-(41).

Theorem 2 (consistency) Letu € C*°((0,T] x [0, 1]) satisfy the boundary and initial conditio§$3)-(14). For
a sufficiently small time stefAr and a sufficiently small grid step sizeit holds that

2

ou U(Tpr1, ;) — w(Th—_1, %, h
57 (T ) = LulT, 25) = ( (it j)2AT( k1, 24) —Eh,u(m,xj)) =O0((AT)? +h* + =)

1<k<M-1
where(ry, z;) € (0,T] x (0, 1) ande is the shape parameter in the RBF funct{@2) (with e > h).

Proof. The proof follows the same steps as the proof of [26, Theordn B/e will only discuss in detail the steps
that differ. As can be seen from section 4.2 the error for @dprating the integral operator originates from the
error of applying the trapezoidal rule leading to

Tu(th, ;) — Tpu(ry, z;) = O(h?).

The error for the approximation of the first-order derivatia time is by Taylor's expansio@((/A7)?) for 1 <

k < M — 1. Also the interpolation error formula in time for the firstcheecond order partial derivative with
respect tar is O((A7)?). The errors originating from the RBF-FD approximation te first and second order
partial derivatives with respect toare derived in [5], providing

ou , R
o (7 2) — alu(mi, 1) — u(, zj-1)) = O(h? + 6—2),
0%u . B2

527 (T, ) — b(u(Tk,ij) — 2u(7g, ;) + u(Tk,xj_1)) =0(h* + ?2)

Combining these errors as in [26] and noting that the funetig(-) and3(-) are bounded ovep, 1] by constants
independent of, and of A, see (49), we obtain that the differential operafois approximated by the discrete
operatorD;, with the error at each mesh poift;, x;)

ulThr1, @) + (Tt 25) O((AT)? +h* + h—Q)
: :

Du(t, ;) — Dy, =

In addition we need the following interpolation error whert & < M — 1

1 (AT)? 0%u
I R — . _ . < 5 .
u(Tk, ;) B (w(Tht1, ) + u(mh—1, ;)| < 9 re[r:}l},)rk,ﬂ] 972 (7,25)]
to finally arrive at the stated error. O

Theorem 3 (stability). The RBF-FD schem&8)-(29) is stable in the sense of the von Neumann analysis if
AT < 1/2.
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Proof. This proof follows the same lines as the proof of [26, Theof8] and the stability is proved by using
[44, Theorem 4.2.2].

For a fixed time steg, 1 < k < M — 1, thejth equation in the scheme (29) can be expressed in terms of the
introduced discrete operators as follows

Uk+1 o U’*C_l Uk+1 4 Uk 1
J J — (D, — T k
20T (P == +InUj
Multiplying both sides by2/Ar, neglecting the last terR (7., z;) which does not contaity¥, substitutingy* e

for UJ’? and dividing both sides of the resulting relationddy ' €7¢, we obtain the amplification polynomial in the
von Neumann analysis defined by

O(0, AT, h) = Bag”® — 2B19 — Bo,
where the coefficients depend on the grid pointand are given by

Bo(z;) =14+ A1 (204(307»)?)(1 —cosf)+ (r+ /\)) —12A76(z;)asing,

n=1

Bo(zj) =1—- A1 (2@(3@)3(1 —cosf) + (r+ )\)) +i2A718(x;j)asinb.

Since the functior(-) is strictly positive over0, 1], see (49), and > 0 (37) it is clear thatBy(z;)| > 1 and
|Bo(z;)/B2(z;)| < 1forj =1,...,N — 1. Further, since we are dealing with a density function idisahat
|61(z;)| < AAT. Thus, we have (when omitting the dependence pto simplify the notations)

B t+/B% — 52ﬁ0
B2

NES
62

Bo

gl = 52

< 14 2)\AT,

which proves (a) in [44, Theorem 4.2.2]. To prove [44, Theoe?2.2 (b)] we note that the sum of the rogts
andg, of ®(0, At, h) satisfies
lg1 + ga2| = 2|61/ B2| < 2MAT,

and hence ifg; | is larger than 1, then
l92 — 91| > 2[g1] — [g1 + g2| > 2 = 2)\AT > 1
holds whem\Ar < 1/2. O
To prove the global convergence of the scheme we introducertior vectors at time levél 1 < & < M,
}T

ho=eb & o e, with  &F = u(rp,2;) - UF, j=1,....N—1

J

The boundary errorg; and¢k; are zero by the imposed boundary conditions in section 4.4.
We further define the following vector norms. LRE' be the space of column vectors of dimensigrwith

real entries. For a given column vecto= [z; z5 --- xn] € RY we introduce two discrete vector norms
| ||z and]| - ||~ defined by

N 3
= 2 o =
|x||ez—(h_zlxj) e = max [z,
]:

and two induced matrix nornigA || and||A ||, defined by

N
HAXHP | AX[[¢o
Jj=1
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Theorem 4 (convergence)Letu € C*°((0,T] x [0, 1]) be the solution to the initial-valued PIDE {9)-(14) and
let U* be the solution to the RBF-FD approximation(28)-(29). Assume thaB + B is positive semi-definite
withB = —2(D— Al). If A7 andh are sufficiently small and conditid®4) is satisfied, then there exists a positive
constantC independent of\r andh such that forl <k < M —1

2
€l < C((AT + 12 + ), (60

wheree is the shape parameter in the RBF functi@2) (with € >> h).

Proof. This proof follows the same lines as the one of [26, Theoredh G herefore we will only indicate how
that reasoning can be applied to our setting and point ouiffexences.
We start by rewriting (29) as

(I = AT(D = M)HUF = (I 4+ AT(D — M)UFT L 22A7TUR 4 20ATRY, for 1 <k < M —1,

with the matrices7 andR* defined in that subsection. Combination with Theorem 2 aedbtundary conditions
provides in matrix form the following recursion for the arkector

(| + AQT > T (| - AQTB) L oATIE +d, 1<k<M-1 (61)
wherel is the identity matrix of ordeiV — 1,J = (%ijj(mi)) is a submatrix of7,
1<ij<N-1
T . 5 o  h?
B:—2(D—)\|) and d= [dl dy -+ dN—l] Wlthdj:ATO((AT) +h —‘r?)
€

For a sufficiently small space step sizgeit was proven in Theorem 1 that(D — Al), and hence for a positive
AT also—2A7(D — Al), is a nonsingular M-matrix. CharacterizationGn [36] guarantees the(tl B)

nonsingular and its inverse exists. Further, the symmaetatrix B + B is positive semi-definite by assumption
and the estimates [26, (6.22)] and [26, (6.23)] also holdhat tase, namely

-t AT -1
H I + —B (I - —B <1 H + —B <1. (62)
2
As a next step we show that for some constgnt 0) independent of\7 andh
’(| +ATB> J| <e (63)
2

Hereto we cannot follow the approach of [26] since our malrig not a Toeplitz matrix. We proceed as follows,

using (62),
H (1+578) D << Jlaman.
2
— \JlITHE |
< I H 3], (64)
where

H :=diag H(x1), H(z2),..., H(zn—_1)).
Invoking the definition (42) of functio (-) and of the infinity norm (59) and using (43) we find

H o = max [(H(z)) "= ( min |H(z:)])" < ( min [H(z))" = ((c1—c2)Comin) > (65)

1<i<N-—1 1<i<N-—1 — tzelo,1]
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with ¢y, co andCl,;y, given by (45)-(46).
Next, we derive a bound for

|J7H||s = max —WZZF x;)H
1<i<N—-1 2

where, recalling the definition df;(z;),

N-—1 N—-1
Fi(x;)H f(

j=1 j=1

S50 St st

Then, taking into account thdt-) is a density function, tha$’(z) (48) is positive and adding the terms with the
integration boundary points and applying the substitugios: S(z;)/S(x) we find

DaS S @) M SE) - Sa) |
2 ; w’f(S%))(S(%))?S_ ﬂSw” S ™ 5 s T

Jj=1

1
(z)

SinceAz = Ax = handw; = w; = 2for1 < 4,5 < N — 1, combination of the estimates above leads to

S
w'LZFxJ ij )S S(Zl)_H( Z)’

and by using (44)

T — _
137 H]lo < max H(z1) = [Hlow < (61 = 2)Chna: (66)

Finally, substituting the estimations (65) and (66) in (64Y since|J||.. < 1, we get the required estimate (63)
with ¢ = \/Cinax/Cmin WhereCl,i, andChy,,x are independent ofi+ andh as can be seen from (46)-(47).
Hence, we obtain from (61) a recursion for the error vectdhéndiscrete vector norm

1€ e < 165 lee + 2eAAT]E 2 + ] e

Applying [26, Lemma 6.4] with initial conditiof{£°|,» = 0, we get

k—1
1€ 2 < (1 + 2eAAT)H([E o2 + [|dl2 D (1 + 2eAAT)
j=0
AT 1 e26)\T
<@gl + S " Lyg),, (67)

2eADT

where||¢'|| 2 = ATO(AT + 1% + h2/€?) and||d|| 2 < ATO((AT)? + h? + h?/€?), hence providing the stated
result (60). O

Remark 2. The positive semi-definiteness of the marix B will be tested in the numerical experiments by
checking whethefi,,i, (B +B ") > 0, implying that all eigenvalues & + B are positive. For all the parameter
cases that we study in section 7, we even found that all eijses ofB + B ' are strictly positive. It is possible
to derive a relation in terms of first and second order detiwed of the functiona and 5 in (11) that implies the
positive (semi-)definiteness. However, this involved itimmdhas also to be tested numerically for the different
parameter cases while the computation of the minimal eilemwofB + B ' is immediate in MATLAB.

6 Greeks

In the numerical experiments we will also compute the op&waeks Delta and Gamma which are important for
hedging the option. Delta measures the sensitivity of thoprice to a fluctuation in the underlying asset price
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V.

while Gamma is the speed at which the Delta changes with cetpthis movement. They are definedas= 55

andl’ = 22Y respectively, where by the chain rule we get

052
ov ou dz 1 Ou
A= %(T’ S(l’)) - %(T7 x)@ - S/(I) a(T,l’),
0*V 0A 1 0%u 1 ou
= _ Y= v o " e )
852 (7_3 (I)) aS (S’(.%‘))2 8{1}2 (7_7 ZE) (S/(CC))3 S (I) 8$ (7_5 LE)
At the time levelr,; we need to compute th& andI” functions at the grid pointSy, S1, - - - , Sy corresponding
to grid points in the sek = {z¢,x1,--- ,2y}. By means of the differential matricd3, and Dy, of order

N + 1, (39), we derive the following approximations farandT",

AM = L _pum

§'(x)
o= (sl o sl wrom

with UM the solution to the fully discretized problem (28)-(29) e tEuropean option case and (30)-(31) in the
American option case, and with notations

1 \* . 1 1 1
<s<x>> = R o) Ty (S am))?
S (x) = diag(S” (z0), S" (x1), .. ., S" (xx)),

)7 62172737

whereS’(z) andS” (z) are given in (48).

7 Numerical Results

In this section, we report on the performance of our propasethod to price European and American options
under the Merton model and the Kou model by carrying out sgvermerical simulations on a PC Laptop with
an Intel(R) 3.6 GHz Core i3 processor. The software programsvritten in MATLAB.

The N + 1 collocation pointsr;, j = 0,..., N in the spatial discretization are chosen to be uniform in the
interval [0, 1]. The corresponding values (8) fSrare more concentrated around the strike pficas can be seen
in Figure 1.

(=0.1, Smin=1, Smax=2K, K=100

[0 e T i i i S S e *k KK K Kk Kk K Kk K Kk ¥ k k

L 1 L L
0 20 40 60 80 100 120 140 160 180 200

Figure 1: Uniform grid forr and corresponding non-uniform grid f&r
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Although the proposed scheme works for all radial basistfans from Table 1 we choose the multiquadric
radial basis function (32) for all the numerical experinsenthe accuracy of RBF-methods where the differenti-
ation matrix contains the differentiations of the shapecfiom highly depends upon the shape parametdrthe
basis functions, which is responsible for the flatness ofuhetions. For smooth problems, the best accuracy is
typically achieved wheanis small, but then the condition number of the linear systegomes very large. In [19]
they show the error convergence according to the variatidheoshape parameter. In the RBF-FD method the
shape parameter enters the weights in the approximatidreafdrivatives as can be seen in (35) and (37). In [23]
a different shape parameter is chosen for each case thatisdtin the numerical simulations. It turns out that
our proposed RBF-FD method is rather robust with respedi¢shape parameter in the sense that we can use
one fixed valuédor ¢ for all cases in our numerical study. Hereto, we try to findliket compromise for the size
of e by means of the root mean square (RMS) error defined by

RMS error= (UM —v(0, Sj))27 (68)

3
=1

1
3 4

J

WhereUJM is an RBF-FD based approximation from section 4.3 or seetidrior the exact option pricg (0, S;)

with S; € {90,100, 110}. For European options the exact priéé&, S;), j = 1, 2, 3, are available and presented
in Table 5. For American options the exact prices are notfava and we use the reference values from Table
5 to evaluate this RMS error. For both European and Amerigdiomms, we compute an RBF-FD soluti

with N = 256 and M = 128. Figure 2 displays the dependence of this root mean squebe@r the size of

107, :

—sv— European put Merton | -
—&— European put Kou
—o— American put Merton |
—=— American put Kou

[
I

RMS error

1"
Q N\ e—e-8-a-8-8-85—

56666

|
0 0.5 1 15 2 25 3 35 4 45 5
Shape Parameter

Figure 2: Root mean square (RMS) error as function of theespapametet for European and American options
and parameter set 1

the shape parameter for European and American options fioee sommon test examples. We derive from it that
e = 1is a good choice for our numerical experiments. In what feflave fixe on this value, thus we work with

the multiquadric radial basis functiaf(|z — y|) = /1 + |z — y[2.

7.1 Convergenceratefor European and American option pricesunder Merton and Kou
model

We will study numerically the convergence rate of the preglasethod using the root mean square error as defined
in (68). The jump distribution parameters are not changeéaédrn experiments and are given in Table 2. The
shape parameterin the RBF is fixed orl as motivated above.

In the numerical experiments we use reference prices fotwbeparameter sets from Table 3 as the exact
prices in (68). The first parameter set is as reported in [lleithe second one is taken from [40, 37]. In Table
4 we list for which maximal value ok and minimal valueN = 1/h condition (54) is satisfied for the different
models. The reference prices are listed in Table 5. As ajreshtioned, the European call and put option prices
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o

v

o Qo p

Merton -0.9

Kou

0.45

3.0465 3.0775 0.3445

Table 2: Jump distribution parameters

can be computed exactly using the analytical formula in {80fhe Merton model and in [25] for the Kou model.
For the American put option prices we will use results from literature as benchmark values. For the Merton
model the reference prices with the first set of parametersaden from [13] which were also used as reference
valuesine.g.[27, 40, 9, 23, 37] while those with the seca@tdtparameters are as in [40, 37]. For the Kou model
and the first parameter set we consider the prices repor{d&jand used in e.g. [39, 27, 40, 23, 37]. Reference
American put option prices under the Kou model with the sdquarameter set are again taken from [40, 37].

a

r q T K A

parametersetl 0.15 005 0 0.25 100 0.1

parameter set

2

0.1

01 O 1 100 0.5

Table 3: Model parameters and data

Smin

Smax ¢ N h

Merton, parameterset1 0.03K 2K 7/K 800 0.001251

Merton, parameter set 2

Kou, parameter set 1
Kou, parameter set 2

0.3K 4K  6/K 542 0.001848

0.3K 2K 6/K 27 0.038461
0.3K 4K  7/K 142 0.007092

Table 4: Maximal value foh and minimal valueV so that condition (54) is satisfied

— % —slope=2

T T T T
—%— Parameter set 1 Merton
—#— Parameter set 1 Kou

log 1O(RMSE)

0.8 1 1.2 1.4 1.6 1.8 2 2.2
log, (M)

2.4

2.6

T T T T
—%— Parameter set 1 Merton
—#— Parameter set 1 Kou

— * —slope=2

Iogm(RMS error)

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
log, o(N)

Figure 3: European put option for parameter set 1. Left: fgomvergence in time using 512 nodal points. Right:
Error convergence in space using 512 time discretizatiepsst

From Figures 3-4 we may conclude that for both European andrisan put option prices and in both jump-
diffusion models for different parameter sets the propasethod is second order in time and space. This is in

accordance with the result in Theorem 4.
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Model, type S =90 S =100 S =110
parameter set 1

Merton, European call  0.527638  4.391246 12.643406
Merton, European put  9.285418  3.149026  1.401186
Merton, American put  10.003822 3.241251  1.419803

Kou, European call 0.672677  3.973479  11.794583
Kou, European put 9.430457  2.731259  0.552363
Kou, American put 10.005071 2.807879  0.561876

parameter set 2
Merton, American put  19.948906 18.246332 16.666925
Kou, American put 10.698208 6.417275  4.624099

Table 5: Reference prices used in numerical experiments

T T T T 0 T T T T
—©6— Parameter set 1 Merton —&— Parameter set 1 Merton
—+— Parameter set 1 Kou —+— Parameter set 1 Kou
-1r — % —slope=2 -1 — % —slope=2
S S
S -2t 5 -2 F~_
%) n ~
= =
S S
S 3 S 3
j=2] j=2}
E=] K=]
-4t -4t R
5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ - ‘ ‘ ‘ ‘ ‘ ‘ ¥
0.8 1 12 14 1.6 1.8 2 22 24 2.6 0.8 1 1.2 1.4 1.6 1.8 2 22 24 2.6
log, (M) log, (N)
0 T T T T 2 T T T T
—6&— Parameter set 2 Merton —6&— Parameter set 2 Merton
L —f— Parameter set2 Kou || 1r —+— Parameter set 2 Kou
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s = O0f
£ <l
s -2t 5]
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0.8 1 12 14 1.6 18 2 2.2 24 2.6 0.8 1 1.2 14 1.6 1.8 2 22 24 2.6
log, ,(M) log, ,(N)

Figure 4: American put option for parameter set 1 respdgtiparameter set 2. Left: Error convergence in time
using 512 nodal points. Right: Error convergence in spaogusl2 time discretization steps.

7.2 Comparison to other methods

The goal of this section is to compare the accuracy and effigief the proposed method to other schemes in
the literature. Standard we will report in the tables dhsolute errorbetween the computed option price and the

reference price unless otherwise stated. In the numeriparenents we will use some other parameter sets than
those in Table 3, see Table 6.

Comparison to other RBF-methods for European option prices under the Merton model  In [38] a numer-
ical test is carried out to compare the radial basis funcsidmeme based on differential quadrature (RBF-DQ)
against a traditional finite difference (FD) approximatafrthe pricing PIDE. We do the same test with our pro-
posed RBF-FD method. Recall that the RBF-DQ method leaddub @differentiation matrix since the RBFs are
evaluated at all spatial discretization nodes while the RBFmethod results in a sparse differentiation matrix.
All three schemes puv = 512 for the spatial nodes and evaluate an European call optioa pnder the Merton
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o r q T K A Smin  Smax ¢
parameter set 3 0.2 0.1 0 1 0.1 0.01K 4K 6/K
parameterset4 035 0.05 O 1 1 0.1 0.01K 4K #6/K
0
0

parameter set5 0.1/1 0.03 0.1 1 01 0.1K 4K  6/K
parameterset6 0.2  0.05 3 100 0.2 0.1K 4K  6/K
parameter set 7 0.8 0.1 0.1 1 100 0.5 0.01K 7K 6/K
parameter set 8 0.2 005 0 01/3 1 0.2 01K 2K 7/K
parameter set 9 0.2 0.07 0.1 3 100 0.6 0.1K 4K  6/K

Table 6: Model parameters and data

model withy = 0 and~ = 0.35 and with the other parameters as in parameter set 3. To inepietine RBF-FD
method we further choos&/ = 400 for the number of time steps. The exact prices are computied tise
analytical formula in [30] for pricing European options. elheported absolute errors for the RBF-DQ and FD
method are taken from [38, Table 4]. The results in Table fcatd that RBF-FD approximate option prices are
in general more accurate than those computed by the RBF-RIgedfD method. In particular for at-the-money
and out-of the money option prices the RBF-FD method is muateraccurate for this example.

RBF-DQ FD RBF-FD
S Exact price Error Error Error Value
0.25 0.000553 1.39e-4 1.14e-4 1.05e-6 0.000551803
0.50 0.021135 1.72e-6 1.36e-6 4.43e-6 0.021130366
0.75 0.120108 4.08e-6 3.69e-5 3.73e-6 0.120104105
1.00 0.301392 2.67e-5 2.06e-4 3.4le-6 0.301388328
1.25 0.525354 9.82e-5 7.15e-4 2.38e-8 0.525353793
1.50 0.765832 2.73e-4 1.93e-3 1.16e-7 0.765831485
1.75 1.012184 6.40e-4  4.40e-3 2.82e-7 1.012184545

Table 7: European call option prices under the Merton modksl w= 0, v = 0.35 and parameter set 3.

Further, we show how fast and efficient our method perforneemparison to other RBF methods in literature.
In particular we compare our RBF-FD method to the RBF metmof8] and again the RBF-DQ method. We
consider parameter set 4. The corresponding exact Eurgpgagprice under the Merton model wiila = 0,
~ = 0.5i50.12299068 for S = K = 1 and is computed using the analytical formula from [30]. Thedute
errors atS = K = 1 are reported in Table 8. For these computations, wéfix= 1080 as the number of time
steps but let the number of grid poim&vary. Table 6 of [38] reports CPU times of the order of secdndshe
RBF method in [8] and for the RBF-DQ method. Comparing thasthe CPU times for our RBF-FD method

listed in Table 8 which are of the order of milliseconds, weyroanclude that the RBF-FD method is efficient and
fast.

RBF [8] RBF-DQ RBF-FD
N Error Error Error Value CPU (s)
Exact price 0.12299068

80 8.30e-4 6.22e-5 3.786le-5 0.123039401 0.041
160 2.03e-4 1.51e-5 5.7673e-6 0.123003307  0.087
320 5.03e-5 3.6le-6 2.4174e-6 0.122993400 0.157
640 1.26e-5 7.51e-7 6.9075e-7 0.122990413  0.677

Table 8: European put option prices under the Merton mod#l wi= 0, v = 0.5 and parameter set 4.

American put option prices under the Merton and the Kou model To further test our proposed RBF-FD
method we compute the American put option prices under theddend the Kou model for the two parameter
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sets of Table 3. We report in Tables 9 and 10 the option priceghese options and their absolute error with
respect to the reference prices from Table 5. In many papetisei literature the evaluation of option prices
has been tested using these parameter sets. For the firstgtaraset we can compare our results with those in
[39, 19, 27, 38, 8, 9, 23, 37] and for the second parameteritiethose in [40, 37]. In particular we focus on [23,
Tables 9 and 10] and on [27, Tables 5.1 and 5.3] since theynR8&-FD method and an FD method, respectively,
combined with an IMEX-scheme but both without first applyagoordinate transformation. We may conclude
that our method leads to very accurate results using lessgiaps and spatial discretization points and in only a
few milliseconds. Also in comparison to the methods in tHeeotreferences our method is competitive since it
needs less time steps and discretization points to get aailpaor better accuracy. We can also easily compute
the early exercise boundary using the approximate fornsde,(e.g., [27])

Sp(t) =max{S(z) >0|U" <g zeX,0<k< M}

whereU* is the numerical solution for the system (30)-(31) ands the set of interpolation points @, 1]. In
Figure 5 we provide the plot of the early exercise boundarafoAmerican put option under the Merton model
and the Kou model for parameter sets 1 and 2. The part belolw @awe represents the exercise or stopping
region while the part above it is the holding or continuatiegion. We note that the exercise boundary decreases
with increasing time to maturity.

S =90 S =100 S =110
N M Value Error Value Error Value Error CPU (s)
Merton [13] 10.003822 3.241251 1.419803

128 64  10.000713 3.1094e-3 3.239611 1.6400e-3 1.41943580364  0.005
256 128 10.004088 2.6626e-4 3.241030 2.2113e-4 1.41974192Z%=-5 0.015
512 256 10.003786 3.5994e-5 3.241259 7.7127e-6 1.41979892@e-6  0.121
Kou [45] 10.005071 2.807879 0.561876

128 64  10.003149 1.9215e-3 2.806248 1.6308e-3 0.56157877394  0.005
256 128 10.005122 5.0730e-5 2.807660 2.1858e-4 0.56184458@=-5 0.013
512 256 10.005127 5.6458e-5 2.807866 1.2954e-5 0.561863480e-5  0.102

Table 9: American put option prices under the Merton modditae Kou model for parameter set 1

S =90 S =100 S =110
N M Value Error Value Error Value Error CPU (s)
Merton [40] 19.948906 18.246332 16.666925

128 64 19949471 5.6547e-04 18241667 4.6644e-03 16.858893307e-03  0.005
256 128 19.949048 1.4186e-04 18.245175 1.1572e-03 1666648.0644e-03  0.015
512 256 19.948954 4.7847e-05 18.246051 2.8081e-04 1616664.0570e-04  0.120
Kou [40] 10.698208 6.417275 4.624099

128 64 10.694761 3.4468e-03 6.414181 3.0939e-03 4.622385137e-03  0.005
256 128 10.697760 4.4816e-04 6.416588 6.8678e-04 4.623680880e-04  0.014
512 256 10.698363 1.5476e-04 6.417157 1.1766e-04 4.624008047e-05  0.105

Table 10: American put option prices under the Merton modditae Kou model for parameter set 2

Short and long maturity combined with low and high volatility In [8] special focus is put on the accuracy in
option pricing forsmall maturities Hereto, an adaptive RBF method was proposed. We computerR BF-

FD method the European put option prices for the Merton madthl the first parameter set and [Etvary, i.e.

T = 1e-6,0.25, 1. Further, we consider two cases for the volatility= 0.15 ande = 1. We report the relative
error to be able to compare with the reported relative eliro[8, Table 5]. We conclude from Table 11 that our
RBF-FD method remains very accurate even for very short ritigicombined with eithelow (o = 0.15) or
high (¢ = 1) volatility when using onlyNV = M = 512 discretization points in space and time. Comparing to [8,
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Figure 5: Early exercise boundary for an American put optioder the Merton and the Kou models for parameter
sets 1 and 2.

Table 5] foro = 0.15 we observe that our RBF-FD method is more accurate than dilghethod in [8] since
with a comparable number of spatial discretization poirespet smaller errors or in one case a comparable error.

o=0.15 oc=1
T S Value Rel. Error Exact price Value Rel. Error  Exact price

99.9 0.099995  3.169360e-8 9.999504e-02 0.108330 1.2806e-0.108316

le-06 100 5.742706e-3 4.039229e-2 5.984431e-03 0.039843741e-03  0.039895
100.1 4.503670e-6 1.873367e-1 5.541865e-06 0.008354 4@=034 0.008348

90 9.285433 1.5853e-06 9.285418 23.655246 9.8890e-07 52X8

99.9 3.184844 2.2213e-06 3.184837 19.437222 1.0726e-064371202

0.25 100 3.149033 2.2659e-06 3.149026 19.398611 1.0656e41.398590
100.1  3.113710 2.3119e-06 3.113703 19.360075 1.0584e-0B360055

110 1.401192 4.3717e-06 1.401186 15.900450 1.1337e-06900468

90 10.30366 2.8981e-05 10.303963  38.857797 5.4859e-0585%3®R28

95 8.189224 2.5239%e-05 8.189431 37.303492 5.1461e-05 0412

1 100 6.684271 2.5524e-05 6.684441 35.839436 4.9390e-058413%6
105 5.654291 1.8398e-05 5.654395 34.458796 4.7071e-0546(419

110 4.961362 1.7882e-05 4.961450 33.155272 4.6061e-05156G39

Table 11: European put option prices under the Merton modél parameter set 1 and varyifigando. Other
parameters ar&v = 512, M = 512, Sy, = 0.01K, and S,.x = 2K,4K,10K for T' = 1e-06,0.25, 1,
respectively and = 1/K,7/K for o = 0.15, 1, respectively.

Also [38] tested their RBF method for short maturity of 7" = 0.1 combined with dow (¢ = 0.1) and a
high (c = 1) volatility. The prices of a European put option under thertde model withy = 0 and~y = 0.35
and parameter set 5 from Table 6 are computed for 1950 ecgadlyed stock prices in the interyal /3, 5K /3]
and the corresponding RMS error is reported. Note that bdirst RBF-FD approximations are computed using
N = 128, 256 and512 spatial grid points combined with/ = 64, 128 and256 time steps respectively. Next,
the option prices at these 1950 equally spaced stock priegshtained by interpolating the solution. Comparing
these RMS errors in Table 12 obtained by our RBF-FD methol thibse in [38, Table 7], we conclude that our
method leads to a higher accuracy with less spatial and tisoeatization points. To get an error of order 1e-07
2560 ¢ = 0.1) and 1280 § = 1) nodal grid points are needed in [38], while we get this omfeaccuracy using

23



N + 1 =513 grid points.

c=0.1 c=1
N M  RMSerror RMS error
128 64 6.1971e-06 1.0256e-05
256 128 1.2249e-06 2.0468e-06
512 256 2.7987e-07 6.2346e-07

Table 12: European put option prices under the Merton modhklw= 0, v = 0.35 and parameter set 5.

In addition, we study the convergence rate in time and space European put option under a Merton model
with 4 = 0, v = 0.35, combined with parameter set 5 and fow (¢ = 0.1) andhigh (o = 1) volatility. Figure 6
confirms that the proposed method is also in these casestsertsr in time and space.

—6— volatility=0.1 L
—+— volatility=1 -2
—*— slope=2 i

—©— volatility=0.1| |
—+— volatility=1
—%— slope=2

-4+

Iogm(RMS Error)
{l
o
log, (RMS Error)

5t

-6

0.6 0.8 1 1.2 14 16 18 2 22

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
log, (M)

tog,,(N)

Figure 6: European put option under the Merton model wits 0, v = 0.35 and parameter set 5. Left: Error

convergence in time using 2048 nodal points. Right: Errawveogence in space using 512 time discretization
steps.

We now test dong maturity in combination withow andhigh volatilities. ForEuropeanput options we have
already some results faf = 3 in Table 7 and forT’ = 1 in Table 11. In Table 13 we consider again a long
maturity, 7’ = 3, for a European put option under the Merton model with 0 and~ = 0.35 but with parameter
set 6 in order to compare to [38, Table 9]. Also in this testRBF-FD method proves to be accurate and fast.
Our method leads to an error of order 1e-06 with= 512 for the spatial discretization and in a few milliseconds
while in [38] 640 spatial points give an error of order 1e-08 #éhey report 9.8 seconds to get to this precision.

S =100
N M Value Error CPU (s)
Exact price  9.8233158
128 256 9.8229636 3.5221e-04 0.014
256 512 9.8232739 4.1847e-05  0.080
512 1024 9.8233228 7.0328e-06  0.355

Table 13: European put option prices under the Merton modhalw= 0, v = 0.35 and parameter set 6.

For anAmericanput option with along maturity 7 = 1 and ahigh volatility ¢ = 0.8 we can compare our
results in Table 14 to those in [38, Table 15]. The benchmatioo price is taken from [38, Table 15] and is
evaluated using the proposed method by [28]. Also for the gaa case our RBF-FD method is very fast and
accurate since we need only + 1 = 513 spatial discretization nodes to get an error of order 1er0%oime
milliseconds while in [38] they report faV = 640 an error of 1e-04 in 17.11 seconds. In addition we provide in
Figure 7 the plot of the early exercise boundary for an Anagrigut option under the Merton model for parameter

sets 7 and 9. Under each curve we find the exercise or stopggngnrwhile the part above it is the continuation
or holding region.

24



S =100
N M Value Error CPU (s)
Benchmark  29.832970
128 256 29.8359417 2.9717e-03  0.011
256 512 29.8334683 4.9829e-04  0.051
512 1024 29.8329819 1.1932e-05 0.317

Table 14: American put option prices under the Merton mod#i w = 0, v = 0.3 and parameter set 7.
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Figure 7: Early exercise boundary for American put optiodenthe Merton model for parameter sets 7 and 9.

7.3 Greeks

In this section our aim is to evaluate the efficiency of the RBEFmethod against other existing methods in the
literature for computing the Greek's = g—‘g andl’ = gZ‘Q introduced in section 6.

We start by considering a European put option with short ntgtd” = 0.1 under the Merton model with
n = 0,~ = 0.35 and parameter set 8. These parameters have been used tatienpl\ andT" in [38] using
the RBF-DQ method. As in [38] we compute the RMS errors and @Rls, see Table 15. For computing these
RMS errors, we apply the RBF-FD method and use the valuesdfetging parameters andI in 1950 equally
spaced stock prices in the range[6f/3,5K/3]. The exact values o andT" in the expression of the RMS
error for the different stock prices have been computed mguse closed form solution presented in [30]. Now,
comparing our results with those in [38, Table 18], we mayctate that the RBF-FD method is more accurate
than the RBF-DQ method also for computing the Greeks. Foiedicly a same level of accuracy, the RBF-FD
method needs to solve a linear system of equations of snsdlerthan in the RBF-DQ method. Moreover the
coefficient matrix in the RBF-FD method is tridiagonal, iyiplg that the system can be solved very fast.

RMS error
N M A r CPU (s)
256 128 4.8831e-05 2.3144e-04  0.010
512 256 1.2047e-05 7.2280e-05 0.152
1024 512 3.0479e-06 1.7567e-05 0.513
2048 1024 8.0647e-07 7.2174e-06  4.327

Table 15: Delta and Gamma of European put option price urideMerton model withy = 0, v = 0.35 and
parameter set 8 for a short maturity= 0.1.
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To further investigate the efficiency of the RBF-FD metho@, @onsider again a European put option under
the Merton model with: = 0, v = 0.35 and parameter set 8 but with a long matufity= 3. The absolute errors
and the RMS errors when computing the Greeks for this pubogdbr varying values of5' using the RBF-FD
method withN = 1024 and M = 1024 are reported in Table 16. We conclude that also in this cas&BF-FD
method is accurate.

S A Exact value Error r Exact value Error
80 -0.49307119 -0.493067335 3.8569e-06 0.01191453 0@ 3.4749e-08
85 -0.43527507 -0.435271821 3.2536e-06 0.01117259 O7/@EPB 2.8725e-08
90 -0.38158922 -0.381586517 2.7046e-06 0.01028331 1.8816e-08
95 -0.33256734 -0.332565092 2.2489e-06 0.00931775 0100%31 7.7364e-09
100 -0.28844229 -0.288440390 1.9022e-06 0.00833293 832931 3.6005e-08
105 -0.24919839 -0.249196723 1.6648e-06 0.00737123 B®MX26 4.3037e-08
110 -0.21464169 -0.214640165 1.5282e-06 0.00646189 0aU@B7 1.2793e-08
115 -0.18446145 -0.184459970 1.4805e-06 0.00562287 6228650 2.1484e-08
120 -0.15827982 -0.158278311 1.5095e-06 0.00486340 863397 2.9209e-08
RMS error at the above 9 points 2.3812e-06 2.8059e-08

Table 16: Delta and Gamma of European put option price urdeMerton model withy = 0, v = 0.35 and
parameter set 8 for a long maturity= 3.

Since there is no closed form formula for American optioeg@siand their Greeks we test the RBF-FD method
for the computation of the Greeks of an American put optiodeurthe Merton model with a parameter set as in
[38]. Thus we pui. = 0, v = 0.35 and consider the parameter set 9 which is a case of a longitgdfue 3.
Numerical approximations for the GreelssandI” of this American option obtained by the RBF-FD method using
different numbers of time and space steps and differenkgidces are reported in Table 17. Comparing to [38,
Table 20] we conclude that the results for the Greeks ara@wiith each other.

A T
N = 1024, M =512 N =512, M = 256

S N =512, M = 256 N =1024, M =512

80 -0.50461524776 -0.50459969084 0.00798701879 0.068832
85 -0.46612448531 -0.46611327509 0.00742345331 0.00B4623F
90 -0.43026138170 -0.43025105856 0.00693080288 0.066%30
95 -0.39674621849 -0.39673689636 0.00648062636 0.0a64680
100 -0.36540995868 -0.36540193399 0.00611455180 0.0263P3
105 -0.33614380923 -0.33613591696 0.00565209011 0.20264.3
110 -0.30886416789 -0.30885694770 0.00526193679 0.0833652
115 -0.28350160200 -0.28349409671 0.00488561810 0.66834.6
120 -0.25998251566 -0.25997703555 0.00452359882 0.G58538

Table 17: Delta and Gamma of American put option price underMerton model with, = 0, v = 0.35 and
parameter set 9.

For the parameter set 1 combined with the jump distributiarameters from Table 2, we plotted in Figures
8 and 9 the Delta and Gamma functions against the exact vidu&siropean put option prices under the Kou
and Merton model. Also, for the American put option priceslemthe Kou and Merton model with the same
parameters as in the European case, we depicted the opitengmd its Delta and Gamma functions in Figures
10 and 11.
All plots are smooth with no oscillations at or around théstr This shows that the RBF-FD technique combined
with a stable time discretization is accurate for approtinggthe option Greeks Delta and Gamma.

8 Conclusions

We presented an efficient numerical method that is seconer anctime and space to evaluate European and
American option prices based on a combination of the RBF-fhod and a three level IMEX scheme that treats
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Figure 8: Delta and Gamma of European put option price urdeKou model with jump distribution parameters
from Table 2 and with parameter set 1.
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Figure 9: Delta and Gamma of European put option price urtdeMerton model with with jump distribution
parameters from Table 2 and parameter set 1.
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Figure 10: American put option price and its Delta and Gammaeu the Kou model with jump distribution
parameters from Table 2 and with parameter set 1.
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Figure 11: American put option price and its Delta and Gamnaeuthe Merton model with with jump distribu-
tion parameters from Table 2 and parameter set 1.
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the non-local integral term explicitly. An important difesce to other schemes in the literature is that we first
transformed the PIDE by a coordinate stretching coorditratesformation so that the computation of the prices
is focused on the regions of interest. We proved for the Eemoption case that our scheme is stable and second
order convergent in time and space. For American optiosswhas confirmed by the numerical experiments. We
compared several cases including long and short matytitigsand high volatility. We also tested the performance
to approximate the hedging Greeks Delta and Gamma. We adubémat the proposed method is very accurate
and efficient in all those cases.
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