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We study the computational complexity of the N-representability problem in quantum chemistry. We
show that this problem is quantum Merlin-Arthur complete, which is the quantum generalization of
nondeterministic polynomial time complete. Our proof uses a simple mapping from spin systems to
fermionic systems, as well as a convex optimization technique that reduces the problem of finding ground
states to N representability.
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The central theoretical problem in the field of many-
body strongly correlated quantum systems is to find effi-
cient ways of simulating Schrödinger’s equations. The
main difficulty is the fact that the dimension of the
Hilbert space describing a system of N quantum particles
scales exponentially in N. This makes a direct numerical
simulation intractable: every time an extra particle is added
to the system, the computational resources would have to
be doubled.

The situation is not hopeless, however, as in principle it
could be that all physical wave functions, i.e., the ones that
are realized in nature, have very special properties and can
be parameterized in an efficient way. The idea would then
be to propose a variational class of wave functions that
capture the physics of the systems of interest, and then do
an optimization over this restricted class. This approach
has proven to be very successful, as witnessed by mean
field theory and renormalization group methods. However,
it is still an open problem to find an efficient variational
class to describe complex wave functions such as those
arising in quantum chemistry.

One of the basic problems in quantum chemistry is to
find the ground state of a Hamiltonian describing the
many-body system of an atom or molecule. These Hamil-
tonians are very ungeneric, because they contain at most
2-body interactions. This implies that the number of free
parameters in such Hamiltonians scales at most quadrati-
cally in the number of particles or modes, and hence the
ground states of all such systems form a small-dimensional
manifold.

For a Hamiltonian with only 2-body interactions, the
energy corresponding to a wave function is completely
determined by its 2-body correlation functions, and as a
consequence the ground state will be the one with extremal
2-body reduced density operators. This fact was realized a
long time ago, and led Coulson [1] to propose the follow-
ing problem: given a set of N quantum particles, can we
characterize the allowed sets of 2-body correlations or
density operators between all pairs of particles?

If the particles under consideration are fermions, this has
been called the N-representability problem [2]. Here, we
consider the reduced density operators acting on pairs of
fermions, and we want to decide whether they are consis-
tent with some global state over N fermions. An efficient
solution to the N-representability problem would be a huge
breakthrough, as it would (for example) allow us to calcu-
late the binding energies of all molecules. Therefore, a very
large effort has been devoted to solving this problem [3–5].

Here we will give strong evidence that the
N-representability problem is intractable, as it is QMA
(quantum Merlin-Arthur) complete and hence NP hard.
By ‘‘intractable,’’ we mean that, for large N, solving the
problem in the worst case requires a number of operations
that grows exponentially in N. The complexity class QMA
is the natural generalization of the class NP (nondetermin-
istic polynomial time) to the setting of quantum comput-
ing. Colloquially, a problem is in QMA if there exists an
efficient quantum algorithm that, when given a possible
solution to the problem, can verify whether it is correct;
here the ‘‘solution’’ may be a quantum state on polyno-
mially many qubits. A problem is QMA hard if it is at least
as hard as any other problem in QMA; that is, given an
efficient algorithm for this problem, one could solve every
other problem in QMA efficiently. We say that a problem is
QMA complete if it is in QMA and it is also QMA hard.

In a seminal work, Kitaev [6] proved that the local
Hamiltonian problem—determining the ground state en-
ergy of a spin Hamiltonian that is a sum of 5-body terms
(on n qubits), with accuracy �" where " is inverse poly-
nomial in n—is QMA complete. In fact, it was later shown
that this problem remains QMA complete when restricted
to 2-body interactions [7], and even in the case of geomet-
rically local interactions [8].

Another problem is to decide whether a given set of local
density operators is consistent, i.e., whether they can be
realized as the reduced density operators of the same glo-
bal state. This is in some sense the dual of the local
Hamiltonian problem, and it was recently shown to be
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QMA complete [9]. In the present Letter, we will use very
similar techniques to prove that N representability, which
is the fermionic version of the consistency problem, is also
QMA complete.

Let us now formulate the problem. In a molecule, the
nuclei are fairly well localized and can be treated as
classical degrees of freedom, and the wave function of
the N electrons can be approximated as a linear combina-
tion of tensor products of the d single-particle modes in the
system (those form the basis set). As electrons are fermi-
onic, the complete wave function must be antisymmetric,
and this is most easily taken into account by working in the
formalism of second quantization:

 j i �
X

i1 ;...;id2f0;1g
i1�����id�N

ci1;...;id�a
y
1 �
i1 . . . �ayd �

id j�i:

Here ayj is the creation operator for the jth mode, and j�i
represents the vacuum state without fermions. The opera-
tors obey the following anticommutation relations:
fai; ajg � 0 � fayi ; a

y
j g and fai; a

y
j g � �ij. Note that we

restrict ourselves to the subspace of states with exactly N
fermions. d denotes the number of modes, which is typi-
cally much larger than N. The number of degrees of free-
dom is �dN�, which grows exponentially in N when d � cN
for some constant c > 1.

In the case of quantum chemistry, the Hamiltonian
typically contains only one- and two-body interactions
between all modes, and so it can be written as a linear
combination of terms of the form ayi aj and ayi a

y
j alak.

The 2-fermion reduced density matrix (2-RDM) is cal-
culated by tracing out all but two of the fermions:

 ��2� � Tr3;...;N�
�N�;

where ��N� is a mixture of states with exactly N fermions.
The matrix elements of the 2-RDM are given by

 ��2�ijkl �
1

N�N � 1�
hayk a

y
l ajaii:

The N-representability problem can now be stated as
follows: Consider a system of N fermions and d modes,
d 	 poly�N�. (For purposes of complexity, we consider N
to be the ‘‘size’’ of the problem.) We are given a 2-fermion
density matrix �, of size d�d�1�

2 
 d�d�1�
2 , and a real number

� � 1=poly�N�. All numbers are specified with poly�N�
bits of precision. The problem is to distinguish between the
following two cases:

(i) There exists an N-fermion state � such that
Tr3;...;N��� � �. In this case, answer ‘‘YES.’’

(ii) For all N-fermion states �, jjTr3;...;N��� � �jj1 � �.
In this case, answer ‘‘NO.’’

If neither of these cases applies, then one may answer
either ‘‘YES’’ or ‘‘NO.’’ Note that we allow an error
tolerance of � � 1=poly�N�, measured using the trace
distance jjAjj1 � TrjAj.

We will show that N representability is QMA complete.
The proof consists of two parts. First, we show that any
2-local Hamiltonian of spins can be simulated using a
2-local Hamiltonian of fermions with d � 2N. Using tech-
niques of convex programming, we show that an efficient
algorithm forN representability would allow us to estimate
the ground state energies of 2-local Hamiltonians; thus, N
representability is QMA hard.

Second, we show that N representability is in QMA;
specifically, we construct a quantum verifier that can check
whether a 2-particle state is N representable, given a
suitable witness.

Let us first show how to map a 2-local Hamiltonian,
Hqubit, defined on a system of N qubits, to a 2-local
Hamiltonian on fermions, HFermi, with d � 2N modes,
such that the ground state energy remains the same; this
is the opposite of what has been done in [10]. We represent
each qubit i as a single fermion that can be in two different
modes ai, bi; so each N-qubit basis state corresponds to the
following N-fermion state:

 jz1i � � � � � jzNi� �ay1 �
1�z1�by1 �

z1 � � � �ayN�
1�zN �byN�

zN j�i:

Also, all the relevant single-qubit operators should corre-
spond to bilinear functions of the creation and annihilation
operators (this construction guarantees that operators on
different qubits commute). This can be achieved by the
following mapping:

 �xi ! ayi bi � b
y
i ai; �yi ! i�byi ai � a

y
i bi�;

�zi ! 1� 2byi bi:

HFermi is now obtained by rewriting these Pauli operators
with respect to the above mapping and will only contain
terms with at most 2 annihilation and 2 creation operators.
The only thing that is left to do is to guarantee that there is
exactly one fermion on every site i. This can be achieved
by adding to HFermi terms of the following form: Pi � 1�

�2ayi ai � 1��2byi bi � 1�. All the Pi are biquadratic and
commute with all the operators introduced earlier, and
hence the complete Hamiltonian will be block diagonal.
By making the weights of those terms large enough (a
constant times the norm of the Hamiltonian, which is at
most polynomial in N), we can always guarantee that the
ground state of the full Hamiltonian will have exactly one
fermion per site.

Let us now assume that we have an efficient algorithm
for N representability. We claim that this allows us to
efficiently determine the ground state energy of any 2-local
Hamiltonian on qubits, a problem which is known to be
QMA hard [7]. We start by transforming the Hamiltonian
Hqubit into HFermi, as described above. We then construct a
convex program that finds a 2-fermion density matrix �
that is N representable, and that minimizes the expectation
value of HFermi. Note that this program has polynomially
many variables, the set of N-representable states is convex,
and hHFermii is a linear function of �. Assuming that we
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have an efficient algorithm for N representability, we can
solve this convex program in polynomial time; this tells us
the ground state energy of HFermi, and hence of Hqubit.

Note that the interesting behavior in HFermi occurs in the
subspace of states with exactly N particles. Restricting
ourselves to this subspace, we have the identity ayi aj �

1
N�1a

y
i �
P
ka
y
k ak�aj, and we can write all the terms inHFermi

in the form ayi a
y
j alak.

Convex optimization algorithms usually require that the
set K of feasible solutions be full dimensional; i.e., K
cannot lie in a lower-dimensional subspace. So we have
to represent the state � in such a way that there are no
redundant variables. Let S be a complete set of 2-particle
observables [11], and let ‘ � jSj; note that ‘ 	 poly�d� 	
poly�N�. We represent � in terms of its expectation values
�S � Tr�S�� for all S 2 S; let ~� 2 R‘ denote the vector
of these expectation values. We define K to be the set of all
~� such that the corresponding state � is N representable.
The N-representability algorithm lets us test whether a
given point ~� is in K. We write our Hamiltonian in the
formH �

P
S2S�SS (plus a constant term). It is easy to see

that Tr�H�� �
P
S2S�S�S. Our convex program is as fol-

lows: find some ~�2K that minimizes f� ~�� �
P
S2S�S�S.

We can solve this convex program in polynomial time,
using the shallow-cut ellipsoid algorithm [12]. The algo-
rithm requires a guarantee that K is contained in a ball of
radius R centered at 0, and K contains a ball of radius r
centered at some point p. [The running time of the algo-
rithm grows polynomially in log�R=r�.] In our case, we can
set R �

���
‘
p

, and r � 1=poly�‘� [13] if we choose to center
the ball around the maximally mixed state. There is also
the issue of numerical precision. We only assumed the
existence of an algorithm for N representability having
precision 1=poly�N�; the algorithm may give incorrect
answers near the boundary of K. However, the ellipsoid
algorithm still works in this setting [12], and this is suffi-
cient to estimate the ground state energy with precision
1=poly�N�, and thus solve the local Hamiltonian problem.
This completes the proof that N representability is QMA
hard. In addition, we have shown that estimating the
ground state energy for local fermionic Hamiltonians is
QMA hard. �

Next, we show that N representability is in QMA. That
is, we construct a poly-time quantum verifier V that takes
two inputs: a description of the problem (that is, � and �);
and a ‘‘witness’’ �, which is a quantum state on polyno-
mially many qubits. The verifier V should have the follow-
ing property: if � is N representable, there exists a witness
� that causes V to output ‘‘true’’ with probability� p1; if �
is not N representable (within error tolerance �), then for
all possible states �, V outputs true with probability 	 p0;
and p1 � p0 � 1=poly�N�.

The idea is that, when � is N representable, the correct
witness � consists of (multiple copies of) an N-fermion
state � that satisfies Tr3;...;N��� � �. Then the verifier can
use quantum state tomography to compare � and �.

We represent the N-fermion state � using d qubits, via
the following mapping: �ay1 �

i1 . . . �ayd �
id j�i $ ji1i � . . . �

jidi. Call the resulting qubit state ~�. We use the Jordan-
Wigner transform to map the fermionic annihilation op-
erators to qubit operators: ai $ Ai � ���k<i�

z
k� � j0ih1ji.

Thus, an observable O � ayi a
y
j alak � a

y
k a
y
l ajai is trans-

formed into a qubit operator, and its expectation value can
be estimated efficiently using polynomially many copies of
the state ~�. See [13] for details.

We now describe the verifier V. The witness � consists of
several (i.e., polynomially many) blocks, where each block
has d qubits, supposedly representing one copy of the state
~�. On each block, V measures the observable

P
kj1ih1jk,

and if the outcome does not equal N, V outputs ‘‘false.’’
This projects each block onto the space of N-particle
states. Next, V performs measurements on each block, to
estimate the expectation values of ~�, for a suitable set of
observables. If these match the expectation values of �,
then V outputs ‘‘true,’’ and otherwise, V outputs ‘‘false.’’
One problem arises: when � is not N representable, the
prover could try to cheat by entangling the different blocks
of qubits. One can show that this does not fool the verifier,
using a Markov argument, as was done in [14]. This
suffices to show that N representability is in QMA. �

What can be said about the complexity of the pure-state
N-representability problem, where one has to decide
whether the reduced density operators arise from a pure-
state of N fermions? In that case, the verifier must check
whether the state he gets is pure. This can be done when he
gets two states � and � that are promised to be
uncorrelated; i.e., he gets the state � � �; then the verifier
can use the ‘‘swap test’’ to estimate the quantity Tr����,
and this can only be close to 1 when � is pure and � ’ �.

Indeed, if Tr��2� 	 1� ", then for all states �, Tr���� 	���������������������������
Tr��2�Tr��2�

p
	 �1� "�1=2 	 1� "=2.

However, this test becomes inconclusive if the verifier
gets a state that is not a product state � � �. So the above
argument does not suffice to show that pure-state N repre-
sentability is in QMA. However, it does show that the
problem is in QMA(k), a variant of QMAwhere the verifier
is promised to get a tensor product of k independent states
[15]. It has been conjectured that QMA(k) is strictly larger
than QMA, and indeed it is plausible that pure-state N
representability is harder than ordinary N representability.
It would be interesting to investigate whether this problem
is QMA(k) complete.

It is remarkable that checking consistency of 2-body
reduced density operators is so hard, while checking con-
sistency of 1-body reduced density operators is simple [2].
This can be understood from the previous discussion: in-
tuitively, 1-body density operators hayi aji correspond to
Hamiltonians only containing bilinear terms in ayi and aj;
such Hamiltonians can easily be diagonalized as they
represent systems of free fermions. As shown in [2], con-
sistency can be decided in that case based solely on the
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eigenvalues of the reduced density operators. A number of
related problems have been investigated recently [16]; in
particular, see [17].

These results have to be contrasted with our problem of
deciding N representability for 2-body density operators,
where the eigenvalues alone are not enough to decide
consistency but also the eigenvectors are relevant.
Actually, let us consider the simpler problem where only
the diagonal elements of the 2-body density operators
Dij � ha

y
i a
y
j ajaii are specified. Using the mapping from

spins to fermions discussed above, one easily finds that
theseDij correspond to local spin Hamiltonians which only
contain commuting �z operators. These are spin glasses,
and so the problem of deciding N representability of fDijg

is NP hard [18]. It was indeed pointed out a long time ago
that N representability restricted to the diagonal elements
is equivalent to a combinatorial problem [19] that was later
shown to be equivalent to the NP-hard problem of deciding
membership in the boolean quadric polytope [20].

Let us finally discuss the relevance of the above re-
sults in the context of quantum chemistry. We have shown
that determining ground state energies by means of the
N-representability problem is intractable in the worst case,
even on a quantum computer. This leaves open the possi-
bility of finding efficient algorithms that give accurate
results for particular physical systems (though they must
break down in the general case). Typically, such algorithms
rely on simpler approximations of the convex set of
N-representable two-particle density matrices. The hope
is that some physical systems may exhibit additional fea-
tures that make the problem easier. This seems to be the
case for, e.g., one-dimensional translational invariant spin
systems, where the density matrix renormalization group
allows for a systematic approximation of the convex set of
allowed reduced density operators from within [21]. This
might also be the case for some molecular systems, where
applying positivity conditions on the 3-particle reduced
density operators gives promising results (at least for
molecules up to a certain size) [22]; this gives an approxi-
mation of the convex set from the outside. The preceding
discussion shows that these methods cannot work in the
most general case; it would be very interesting to inves-
tigate the conditions under which these kinds of approx-
imations are justified.

In conclusion, we investigated the problem of N repre-
sentability, and characterized its computational complexity
by showing that it is QMA complete. Obviously, the theory
of quantum computing was a prerequisite to pinpoint the
complexity of this classic problem.
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