Service Specific Management and Orchestration for
a Content Delivery Network

Thomas Soenen*, Wouter Tavernier®, George Xilouris T, Stavros Kolometsos T, Felipe Vicens i
Einar Meyerson Uriarte and Shuaib Siddiqui §
*Ghent University - imec, T NSCR Demokritos, i ATOS, § i2CAT Foundation Barcelona - Spain

Abstract—Any non-trivial network service requires service
specific orchestration to meet its carrier-grade requirements
regarding resiliency, availability, etc. How the network service
components are mapped on the substrate, how VNFs get recon-
figured after a monitored event or how they scale, only network
service/function developers know how to execute such workflows
to guarantee an optimal QoS. It is therefore of paramount impor-
tance that NFV Service Platforms allow developer specified input
when performing such life cycle events, instead of defining generic
workflows. Within the scope of the SONATA and 5GTANGO
projects, a mechanism was designed that allows developers to cre-
ate and execute Service and Function Specific Managers. These
managers are processes, created by the developer, that define
service or function specific orchestration behaviour. The SONATA
Service Platform executes these managers to overwrite generic
Service Platform behaviour, creating developer customised life
cycle workflows. We will demonstrate the development, testing
and operational execution of these managers by using a Content
Delivery Network which requires specific placement and scaling
behaviour.

I. INTRODUCTION

Introducing Software Defined Networking and Network
Function Virtualization to telecom networks aims, among other
targets, to lower the cost of network and service operations. To
achieve this, management and orchestration processes must be
automated as much as possible. Network services should be
mapped and instantiated on-demand, dynamically reconfigured
in case of monitored events and terminated upon customer
request, all without human intervention from the operator.
Automating such management and orchestration workflows
in a generic way will not suffice, as any non-trivial network
service requires service specific orchestration behaviour for all
such workflows to provide a good QoS. Deciding where in the
infrastructure VNFs are deployed, when to reconfigure VNFs
if their load increases or how to scale the service or VNF
influences the QoS of the network service and can only be
defined by the developer. As such, mechanisms are needed
where automated workflows are combined with developer
defined input describing how to orchestrate the network service
or function.

The SONATA [1] Service Platform is an NFV MANO
Platform. It incorporates a modular orchestrator that bridges
the gap between telecom business needs and its available re-
sources. It automates end-to-end network service instantiation,
(re-)configuration and termination workflows by managing and
orchestrating the infrastructure. One of its main features is that
it allows the inclusion of Service and Function Specific Man-
agers by the service and function developers in their respective

TTUoss/Ess T T
i

Ll s
o Service Service Service 1
i || Lifecycle PLaPclerY_]em Specific Specific — i
] !__Manager ugin Manager 1 Managerx J ! ||
" s 1

i

i Function
—" Lifecycle

; Manager

[
Function Al
Specific P!
vl

Function
Specific
Manager 1 Manager x

WIM VM Based VIM

VM Based VIM

PoP #1 PoP #2 -

- \ Monitoring | WS probe
VM Server Server

probe

Monitoring
Server

Ws
Server

Fig. 1: SONATA ETSI conform Architecture

descriptors. These managers are processes that are packaged in
Docker containers and consume the Service Platform MANO
API. They contain service or function specific logic that can
overwrite the generic orchestration behaviour of the Service
Platform. This allows to highly customise the orchestration
on a per service/function basis, allowing to optimise how they
are managed at runtime and thus improve their performance
and QoS, however defined.

This specific manager mechanism is the feature that we
highlight in this demo paper. We will demonstrate how such
Service and Function Specific Managers can be developed
and tested and how much power and freedom they give the
developer in customising the Service Platform by showcasing
a Content Delivery Network that uses them. Both specific
placement and scaling behaviour are injected into the Service
Platform, increasing the QoS of the user. To the best of our
knowledge, there are no other MANO platforms available that
offer this degree of customisation flexibility.

II. SONATA SERVICE PLATFORM

The SONATA Service Platform!, see Fig. 1, encapsulates an
ETSI conform and modular MANO framework? [1]. Its plug-
in based design make it flexible and agile, so interoperability
with other components and customisation by the operator are
easily achieved. All modules are developed as microservices

Uhttps://github.com/sonata-nfv
Zhttps://github.com/sonata-nfv/son-mano-framework

source — TeamViewer

EEEEEFEEE T LR

(a) Demo setup

(b) CDN user

def start_event(self, content):

This method handles a VNF start event for an FSM.
L06. info("Performing life cycle start event")
L0G.info("content: " + str{content.keys()))
private_key = os.environ["private_key"]

Interpret payload
nfr = content{"wnfr']
mgnt_ip = content['vafr'][virtual_deployment units'1[0]["vnfc_instance(

ssh_client = Client(mgnt ip, 'ubuntu', LOG, key filename=private key, €
ssh_client . sendCommand('sudo ifconfig ens4 up')
ssh_client.sendCommand('sudo ifconfig enss up')
ssh_client.sendCommand('sudo dhclient -r ens4')

ssh_client . sendCommand('sudo dhclient ensd')
ssh_client.sendCommand('sudo dhclient -r enss
ssh_client.sendCommand('sudo apt install -y npenvs»utch switch')
ssh_client.sendCommand('sudo ovs-vsctl add-br bro')
ssh_client.sendCommand('sudo ovs-vsctl add-port bro ensd’)
ssh_client.sendCommand ('sudo ovs-vsctl add- pnn bre enss')
ssh_client.sendCommand ('sudo ifconfig bro u

ssh_client.sendCommand('sudo ovs-vsctl set brldge bro stp_enable=true')

(¢) FSM code segment

Fig. 2: Prototype illustrations.

and deployed as individual Docker containers. Network service
workflows such as instantiation, (re-)configuration and termi-
nation are implemented by the NFV Orchestrator (NFVO)
through the Service Lifecycle Manager (SLM) microservice,
while network function workflows are realised by the VNF
Manager (VNFM) through the Function Lifecycle Manager
(FLM). To allow network service and function developers to
customise these MANO workflows, Service Specific Managers
(SSM) and Function Specific Managers (FSM) can be created.
These specific managers are processes that incorporate service
or function specific orchestration behaviour. They are coded
by the developer, which can use the SONATA Software
Development Kit (SDK) CLI tools® to develop and test them,
and packaged in Docker containers. They need to consume
the correct MANO Framework API*, which is facilitated over
a RabbitMQ message bus, to be usable. SSMs overwrite
generic NFVO behaviour with service specific instructions,
while FSMs do the same for the VNFM. When the Service
Platform needs to execute a network service life cycle event,
it will first check whether one or more SSMs are associated
with this service and workflow. If that is the case, the Service
Platform will execute this SSM, i.e. Docker container, instead
of executing the generic workflow. A similar behaviour can
be expected for network function life cycle events and FSMs.
SSMs and FSMs only customise the orchestration behaviour
for the network service or VNF they are associated with.
For example, when an operator receives a new service re-
quest, the service instantiation workflow is executed to deploy
it. The first step is calculating a resource mapping of the
different network functions and virtual links of the service on
the infrastructure substrate of the operator. Both the operator
and the developer benefit from controlling the objective of
this placement algorithm. With our SSM/FSM mechanism,
the operator can decide whether itself or the developer gets
this control. The developer can implement his or hers desired
placement algorithm that optimises the QoS of the service and
package it as a valid SSM by using the SDK CLI tools. When
going through the service instantiation workflow, the Service
Platform will check if a Placement SSM is associated with this
workflow, execute the Docker container and provide it with the
required input (i.e. infrastructure topology and descriptors) by

3https://github.com/sonata-nfv/son-cli
“https://github.com/sonata-nfv/son-mano-framework/wiki/ssm-fsm

sending a message on the message bus. Once it calculated the
placement, the container responds with the mapping. For this
service, the generic placement algorithm is not invoked.

More complex SSM/FSM structures can be created that
provide developers with great Service Platform customisation
capabilities. FSMs can configure VNFs. Such an FSM con-
tains logic that can access a VNF instance (i.e. a VM or
a container) and change its configuration, such as changing
forwarding rules, configuring interfaces or changing the mode
of a VNF. FSMs can configure VNFs differently, depending on
the input that the FSM receives. This input can be defined by a
Configuration SSM, which sends different inputs to each FSM,
depending on the required configuration. Such a Configuration
SSM receives all monitoring data that is collected by the
SONATA Monitoring Framework related to that service. The
Configuration SSM can now use this data to optimise the QoS
of the network service, e.g. by adding new VNFs and extra
interfaces to existing VNFs to scale a network service.

Since these SSMs and FSMs are executed within the Service
Platform, they need to consume to correct Service Platform
MANO APIs. To aid the developer with this, the SDK provides
CLI tools that help developing and testing them standalone.
The SSM and FSM docker containers are deployed locally
and injected with various mocked payloads, and it is validated
whether they respond correctly.

III. DEMONSTRATION SCENARIO

This demo will demonstrate three things:

o The ease of developing and testing SSMs and FSMs by
using the SDK CLI tools.

e A Placement SSM overwriting the default placement
functionality of the Service Platform.

e A combination of Configuration SSM and FSMs that
dynamically scale a Content Delivery Network.

These demonstrations showcase the high degree of Service
Platform orchestration customisation that is obtained by the
developer by using SSMs and FSMs, and the ease of devel-
oping them. The network service that will be used for this
demonstration is a Content Delivery Network (CDN). This
network connects a user with a content server, and contains
three VNF: i) a vCache VM image that caches content, ii)
a VITC VM that classifies traffic and iii)) a vITU VM that
transcodes traffic. For the service to perform optimally, the

vCache and the vTC should be located close to the user, while
the vTU should be located close to the content server. The
vTC analyses the video requests that are made by the user,
and informs the vTU of this. If the vTU notices that some of
the video requests require an encoding that is not provided by
the content server, the vTU will transcode the video.

Our demo setup is as follows (see Fig. 2a). Our testbeds
provide two clusters of servers, each representing one datacen-
ter. OpenStack is used to manage the virtualised infrastructure
of each datacenter (also referred to as Point of Presence
or PoP). The two datacenters are connected in an software-
defined WAN, that is controlled through OpenDaylight. One
PoP is located in the access network of the content server, the
other PoP in that of the users. The SONATA Service Platform,
which runs on a dedicated server, orchestrates both PoPs and
the underlying network. In this Service Platform, the service
packages® required for the demo are already available. The
SONATA SDK is installed on the same dedicated server. The
VM images of the three VNFs are available in the databases
of each PoP. Required for this demonstration:

o A power socket
¢ A secondary monitor
o wired/wireless Internet to connect to the testbeds.

A. Scenario 1: SSM and FSM developing and testing

In order to ease the process of developing SSMs and FSMs,
and assuring that they are without errors, we developed an
SDK CLI tool son-smS. This tool is the subject of this first
demo scenario. For this scenario, the vCache VM is instan-
tiated in one of the PoPs. We will (all tasks are performed
using son-sm):

o create a new FSM template

o add some code to the FSM that configures the vCache

(Fig. 2c shows an FSM code snippet)

o generate mocked FSM input based on the characteristics

of the deployed vCache

¢ locally execute the FSM

« access the vCache to check if configuration succeed

o iterate the previous two steps to debug and test the FSM

o package and publish the FSM as Docker container and

add it to the descriptor

Hereby, we demonstrate the ease of developing and testing
SSMs and FSMs conform the SONATA MANO APIs.

B. Scenario 2: Service Specific Placement

Optimally, the vCache is located on the PoP close to the
users to serve them quicker and to relax the core. Requests
originate close to the users, so locating the vT'C close to them
allows for a quicker request analysis. Transcoding traffic near
the content server prevents individual transcoding at each PoP,
therefore the vT'U should be located on the PoP close to the
content server. Among other, the Placement SSM receives the

Shttps://github.com/sonata-nfv/son-vcdn-pilot
Shttps://github.com/sonata-nfv/son-sm

following information from the MANO Framework: the loca-
tion of i) each datacenter, ii) the destination (i.e. the content
server) and iii) the source (i.e. the user). the CDN Placement
SSM will use this info to determine which datacenter is closest
to the content server, and which to the user, and map the VNFs
on them accordingly. For this scenario, we will:

o instantiate a complete CDN with a Placement SSM
(implemented as described above) through the SONATA
Service Platform

o instantiate a CDN without a Placement SSM, that there-
fore will use the generic placement functionality

o show that the resulting placement is different by accessing
the OpenStack dashboards of each PoP

o show that the sub optimal generic placement results in a
lower quality of the streamed video

Hereby, we demonstrate how the SSM/FSM mechanism
allows the developer to optimise the performance of a service
by overwriting the placement functionality.

C. Scenario 3: Dynamic and Custom Scaling

Here, we show the extended capabilities of the SSM/FSM
mechanism. We start from a CDN in minimal configuration,
i.e. without the vTU, to save resources. Once some transcoding
requests are noticed by the vTC, the service will scale up
and dynamically add the vTU to the chain. This is realised
as follows. The developer defines transcoding requests as a
monitoring metric for this service. Once such requests are
monitored, the Configuration SSM is informed. This Config-
uration SSM, as it is created by the developer, instructs the
Service Platform to deploy the vITU on the PoP close to the
content server and to include it in the chain. It also instructs
the vTC and vCache to reconfigure accordingly through there
respective Configuration FSMs. During the demo, we will:

o demonstrate how a custom monitoring metric and thresh-

old can be defined by the developer,

« show that crossing this threshold instantiates the vI'U and

includes it in the service chain and

o show that the vTC starts using the vIU and the re-

ceived encoding on the user side (accessible through
TeamViewer as shown on Fig. 2b) has changed.

Hereby, we showcase the ease by which developers can set
up advanced structures that customise the Service Platform’s
orchestration so that the service scales as desired. It also shows
that it can reconfigure chains and add VNFs to services at
runtime, triggered by custom monitoring metrics and without
the need for human intervention by the operator.

ACKNOWLEDGEMENT
Funded by the European Commission H2020 5G-PPP
projects SONATA (671517) and SGTANGO (761493).
REFERENCES

[1] H. Karl et al, “Devops for network function virtualisation: an ar-
chitectural approach,” Transactions on Emerging Telecommunications
Technologies, vol. 27, no. 9, pp. 1206-1215, 2016.

