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Abstract—Constellation shaping is necessary to approach chan-
nel capacity for information rates above 1 bit/dim. Probabilistic
shaping shows a small gap to capacity, however a complex
distribution matcher is required to modify the source distribution.
Spherical shaping of lattice constellations also reduces the gap to
capacity, but practical Voronoi shaping is feasible in small dimen-
sions only. In this paper, our codebook is a real geometrically non-
uniform Gaussian-like constellation. We prove that this discrete
codebook achieves channel capacity when the number of points
goes to infinity. Then we build a special mapping to interface
between non-binary low-density codes and the codebook, allowing
the code alphabet size to be equal to the square root of the
codebook size. Excellent performance is shown with fast-encoding
and practical iterative probabilistic decoding, e.g. 0.7 dB gap to
capacity at 6 bits/s/Hz with a code defined over the ring Z/8Z.

I. INTRODUCTION

When targeting high transmission rates, it is necessary to

incorporate shaping with high-order modulations. Many dif-

ferent methods to attain shaping have been proposed over the

years, the unifying element among them is that of leveraging

codebooks that have a uniform (marginal) distribution over

a finite alphabet and then applying some operation to alter

the distribution to be more Gaussian-like. Examples include

applying a distribution matching mapping as proposed by

Gallager in a quite general context [1], cutting a spherical

region out of the full cubic lattice. Alternatively one can

replace the spherical shaping region with a lattice Voronoi

region which may be achieved via the technique of trellis

shaping [2]. As a practical embodiment of the latter approach,

one may take a coding lattice that allows for efficient iterative

decoding as envisaged in [3] and brought to fruition in [4].

It is also possible to directly shape via the direct sum of

a low-dimensional sub-lattice to get significant shaping gain

that adds up to the coding gain such as Leech-shaped LDA

constellations [5] reaching a gap to capacity of 0.8 dB with 2.7

bits/dim. Such performance is also attained via probabilistic

shaping where the sign bit of a constellation carries uniformly-

distributed parity bits [6]. The amplitude of probabilistic-

shaped constellations is usually forced to follow a Maxwell-

Boltzmann distribution, as suggested in [7], via the application

of a distribution matcher [8] [9] to the source symbols. Our

motivation in designing the real Gaussian-like codebook in this

paper is to find a simple alternative to both lattice shaping and

distribution matching.

Our approach for building a capacity-approaching codebook

is similar to the construction initiated by Sun and van Tilborg

in [10]. They proposed a non-uniform constellation on the

real line with a uniform probability distribution. Sun and van

Tilborg’s codebook is obtained by two steps: Equal probability

partitioning followed by a centroid computation. Our code-

book is obtained in one step as described in the next section.

Sun and van Tilborg’s approach was brought to the complex

plane by Méric [11]. Another recent approach based on tiling

triangles makes a circular bi-dimensional constellation for both

geometric and probabilistic shaping [12].

The present work describes a practical embodiment of the

geometrically non-uniform approach where the underlying

code is a non-binary (q-ary) low-density parity-check (LDPC)

code and the mapping is to the real line. As a rationale

for choosing this method, we note that it is known that the

ensemble average spectrum of regular q-ary LDPC codes, for

q prime, approaches that of an i.i.d. uniform code as the right

and left degrees of the tanner graph grow. This result was

first established in [13] (see also [3]) and was re-derived and

extended in [14], [15] where shaping and iterative decoding

were also applied. In particular the latter work provides a

useful benchmark for comparison of the results presented in

the present work; see Section V.

II. DEFINITION OF A MONO-DIMENSIONAL DISCRETE

GAUSSIAN CODEBOOK

Let p be a positive integer, p ≥ 2. The Gaussian codebook

G is a finite discrete set of p points on the real line, G =
{x0, x1, . . . , xp−1}, where xi ∈ R and xi < xi+1. The ring

Z/pZ of integers modulo p will be denoted by Zp. The discrete

set U = {u0, u1, . . . , up−1} has p equidistant points in the

interval [0, 1] given by

ui =
1

2p
+
i

p
, i = 0 . . . p− 1. (1)

Let s ∈ Zp = {0, 1, 2, . . . , p−1} be a symbol from a uniform

p-ary information source. The symbol s is mapped into a point

x(s) in G as follows:

• Map from Zp to U :

u(s) =
1

2p
+

(s+ ⌊p/2⌋) mod p

p
, (2)

where ⌊x⌋ is the greatest integer less than or equal to x.



• Map from U to the real line:

x(s) = φ−1(u(s)), or equivalently xi = φ−1(ui), (3)

for i = (s+⌊p/2⌋) mod p, where φ−1(u) is the inverse

function of φ(x),

φ(x) =

∫ x

−∞
f(t)dt, f(x) =

1√
2π
e−

x2

2 . (4)

φ(x) is the well-known distribution function of a zero-mean

unit-variance real Gaussian random variable. An illustration of

G is given in Figure 1 for different values of the constellation

size p. Note that for odd values of p, s = 0 is mapped to

x(0) = x(p−1)/2 = 0 whereas for even p, s = 0 and p − 1
are mapped to φ−1(12 ± 1

2p ). In both cases (even and odd p)

no points are mapped to infinity. We also define xmax as the

maximal Euclidean distance between the constellation G and

the origin,

xmax = |x0| = xp−1, (5)

and xmin as the minimal Euclidean distance between G \ {0}
and the origin,

xmin = |x⌊p/2⌋−1| = x⌊(p+1)/2⌋. (6)
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Fig. 1. Spectrogram-like illustration of the p points of the discrete Gaussian
codebook G for p = 16, p = 64, and p = 256 from top to bottom.

III. DISTANCE, ENERGY, AND MUTUAL INFORMATION

Let us determine the principal characteristics of the discrete

codebook G in terms of minimum distance, average energy,

and peak to average power ratio. We also prove that channel

capacity is achieved for p→ ∞ at the end of this section.

Proposition 1: The minimum Euclidean distance of the

discrete Gaussian codebook G satisfies

dmin(G) =
√
2π

p
+ o

(

1

p2

)

. (7)

Proof: Let κ = 1 for odd p and κ = 2 for even p, where

p ≥ 2. Using the smallest non-zero amplitude xmin in G, we

have dmin = κxmin. But xmin is solved from

xmin = φ−1

(

1

2
+

1

κp

)

(8)

The Taylor series of φ−1(u) around u = 1/2 reduces to

xmin =
√
2π
κp + o

(

1
p2

)

, where the second derivative is zero.

Finally, dmin = κxmin yields the announced result.

Proposition 2: The largest amplitude xmax in the constel-

lation G, defined by (5), satisfies

xmax ≤
√

2 log(p). (9)

Proof: The largest amplitude can be solved from

xmax = φ−1

(

1− 1

2p

)

. (10)

for any p ≥ 2. Then φ(xmax) = 1− 1
2p = 1−Q(xmax), where

Q(x) is the Gaussian tail function. Finally, 1
2p = Q(xmax) ≤

1
2e

− x2
max
2 gives the announced result.

Now we consider the average energy Es of G. All points

are equiprobable since we assume a uniform p-ary source.

Proposition 3: For any p = |G| ≥ 2, the second moment of

the constellation G = φ−1(U) satisfies

Es(G) =
∑p−1

i=0 x
2
i

p
< 1. (11)

Further, for p→ ∞, Es(G) → 1.

Proof: The function φ−1(u)2 is integrable
∫ 1

0

φ−1(u)2du =

∫ ∞

−∞
x2f(x)dx = 1. (12)

The second derivative of φ−1(u)2 is shown to be

(

φ−1(u)2
)′′

=
2(1 + x2)

f(x)2
> 0,

i.e. φ−1(u)2 is concave up. Now, call ∆i the sub-interval of

length |∆i| = 1/p centered on ui and apply Jensen’s inequality

1

|∆i|

∫

∆i

φ−1(u)2du > φ−1

(
∫

∆i

du

)2

to get
∫ ui+1/2p

ui−1/2p

φ−1(u)2du >
φ−1(ui)

2

p
. (13)

After summing all integrals over the p sub-intervals, we obtain

Mp =

∑p−1
i=0 φ

−1(ui)
2

p
<

∫ 1

0

φ−1(u)2du,

which becomes via (12)

Mp =

∑p−1
i=0 x

2
i

p
= Es(G) < 1.

The second part of this lemma is proven by redefining the

sub-interval ∆i = [ui−1, ui], i.e. moving the point ui from the

middle to the right. Consider the sum

Rp = 2

⌊p/2⌋−1
∑

i=1

φ−1(ui)
2

p

= 2

∫ 1

2

0

⌊p/2⌋−1
∑

i=1

φ−1(ui)
2Wp(u− i

p
)du,



where the indicator function Wp(u) is 1 in the win-

dow [−1
2p ,

1
2p ] and 0 outside. The sequence of func-

tions
∑⌊p/2⌋−1

i=1 φ−1(ui)
2Wp(u − i

p ) converges pointwise to

φ−1(u)2 which is also monotone decreasing in the interval

[0, 1/2], so the sequence of functions is also dominated by

φ−1(u)2. By Lebesgue’s dominated convergence theorem we

get the limit

lim
p→∞

Rp = 2

∫ 1

2

0

φ−1(u)2du = 1.

On the other hand, Rp = Es(G) − 2
x2

0

p . But from (5) and

Proposition 2,
x2

0

p =
x2

max

p ≤ 2 log p
p vanishes with p. Finally,

we have Es → Rp → 1 when p→ ∞.

More elaborated algebra proves that Es(G) ≥ 1−O
(

log p
p

)

.

The mapping from U to R makes the non-uniform Gaussian-

like geometric distribution of G to have higher density around

the origin and less density at the tails. As the constellation

size p grows, the discrete induced non-uniform constellation

approaches the Gaussian one in the following sense, where

Xp and Up are two random variables.

Lemma 1: For any p, let Xp = φ−1(Up) be the induced

discrete constellation where Up is uniform over the discrete

set U defined in (1). Then the random variable Xp → N (0, 1)
in distribution as p→ ∞.

Proof: We follow in the footsteps of Hugo Méric [11].

Denote by

ψ(ω) =

∫ ∞

−∞
eiωxf(x)dx =

∫ 1

0

eiωφ−1(u)du (14)

the characteristic function of a standard Gaussian random

variable. Further denote the characteristic function of Xp by

ψp(ω) =
1

p

∑

ui

eiωφ−1(ui). (15)

Now since the function eiωφ−1(u) is continuous over the

interval [0, 1], it follows that the Riemann sum (15) converges

pointwise to the limit (14). That is, for every ω

lim
p→∞

ψp(ω) = ψ(ω).

Thus, by Lévy’s theorem, the cumulative distribution function

of Xp converges to that of the standard normal distribution,

i.e., we have weak convergence.

Combining Proposition 3 and Lemma 1, we have by the

conditions of Schwarte [16] that

Corollary 1: Given a positive power P and its correspond-

ing constellation scaling factor
√
P , let Xp be uniform over

the constellation
√
P ·G =

√
P ·φ−1(U) and let η ∼ N (0, σ2)

be an additive white Gaussian noise. Then, the mutual infor-

mation I (Xp;Xp + η) satisfies

lim
p→∞

I (Xp;Xp + η) =
1

2
log

(

1 +
P

σ2

)

(16)

and further limp→∞ E[X2
p ] = P .

In presence of a rate-Rc = K/N error-correcting code that

encodes the source symbols before codebook mapping, the

transmitted information rate is R = Rc × log2(p) bits per

dimension, or equivalently 2R bits/s/Hz. The standard signal-

to-noise ratio (SNR) per bit is defined as Eb/N0 = 1
R × P

2σ2

and Eb/N0(dB) = 10 log10(Eb/N0) in decibels. The mutual

information I (Xp;Xp + η) can now be written as IG(Eb/N0)
and its inverse function as Eb/N

G
0 (I).

Let a p-ASK constellation be defined by the mapping

x(s) = −(p − 1) + 2s on the real line [17]. The coding

rate Rc = IG(Eb/N0)/ log2(p) should be selected such that

the shaping gain, given by difference Eb/N
ASK
0 (I)(dB) −

Eb/N
G
0 (I)(dB), is maximized. Numerical plots of IG(Eb/N0)

tell us that the optimal choice is very close to Rc = 1/2.

Numerical examples at half-rate are found in Table I.

Table I. Shaping gain and gap to capacity for G with Rc =
1
2

.

Codebook size p 16 32 64 128 256

Shaping gain (dB) 0.583 0.815 0.998 1.136 1.241

Gap to capacity (dB) 0.182 0.136 0.104 0.083 0.064

IV. CODEBOOK MAPPING AND UNCODED ERROR RATE

Given the coding rate Rc = 1
2 selected for the rest of this

paper, two encoding-mapping methods are possible:

1) p-ary code and p-ary mapping. In this case, the symbols of

the Zp source are encoded by an error-correcting code defined

over Zp then mapped into a point of G via x(s) = φ−1(u(s),
s ∈ Zp as in (3). The main drawback of this method is the

high decoding complexity, since large values of p are required

to approach capacity. The main advantage is the direct transfer

of soft information from the channel output to the input of a

probabilistic LDPC decoder, without any loss.

2) q-ary code and q-ary mapping, where q =
√
p. Assume

that p is a square and let p = q2. We can write s = s1q + s2,

where s1, s2 ∈ Zq . Because K = N −K (half-rate code), we

assign most significant positions (i.e. s1) to the K information

symbols and the least significant positions (i.e. s2) to the K
parity symbols. The main drawback of this method is the

possible loss of information when converting channel soft

information into two soft information for s1 and s2. However,

the iterative probabilistic LDPC decoder allows the generation

of extrinsic information that can be used in the detection

process between the channel and the decoder. This is well-

known as turbo detection and decoding. Obviously, the great

advantage of this second method is an LDPC code defined

over Z√
p instead of Zp. Belief propagation on the LDPC

Tanner graph becomes much faster, e.g. q2 transitions in the

syndrome trellis representing a check node instead of p2. If a

field structure replaces the ring structure, a fast transform of

q log q is much appreciable than p log p [18] [19].

The two mappings are illustrated in Figure 2. The p-ary

mapping is in black color on the top. The q-ary mapping is

below the constellation, in red for the information symbol s1
and in blue for the parity symbol s2. For the sake of symmetry



around the origin, the definition of u(s) in the q-ary mapping

becomes, for s = s1q + s2 ∈ Zp:

u(s) =
1

2p
+

(s+ ⌊(p− q)/2⌋) mod p

p
. (17)
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Fig. 2. Codebook examples with p-ary and q-ary mappings, for two different
sizes p = 9 (q = 3) and p = 16 (q = 4).

Now we analyze the uncoded performance on an additive

white Gaussian noise (AWGN) channel. Define d(i, j) as the

distance between the ith and jth constellation points

d(i, j) =

{

|xi − xj | i, j ∈ {0, p− 1}
∞ elsewhere

(18)

The probability of error per symbol for p-ary mapping, without

coding, is Pre,s = Pr(s̃ 6= s), where s is the transmitted

symbol and s̃ is the detected symbol based on the nearest

point rule (symbol-by-symbol maximum-likelihood detection).

Similarly, let Pre,s1 = Pr(s̃1 6= s1) and Pre,s2 = Pr(s̃2 6=
s2) be the probability of error per information symbol and

the probability of error per parity symbol respectively, for

an uncoded codebook with q-ary mapping. Then, the two

following propositions are proven by applying basic notions

from Communication Theory [17],

Proposition 4: For a p-ary mapping, the probability of error

per symbol is

Pre,s =
2

p

p−2
∑

i=0

Q

(

d(i, i+ 1)

2σ

)

(19)

Proposition 5: For a q-ary mapping, the probability of error

per parity symbol is

Pre,s2 =
1

p

p−1
∑

i=0





⌈i/q⌉
∑

j=1

(

Q

(

d(i−jq−1,i−jq)
2 + d(i − jq, i)

σ

)

−Q
(

d(i−jq,i−jq+1)
2 + d(i − jq + 1, i)

σ

))

+Q

(

d(i − 1, i)

2σ

)

+Q

(

d(i, i+ 1)

2σ

)

−
q−⌈i/q⌉−1
∑

j=1

(

Q

(

d(i, i+ jq − 1) + d(i+jq−1,i+jq)
2

σ

)

−Q
(

d(i, i+ jq) + d(i,i+jq+1)
2

σ

))]

(20)

The probability of error per information symbol is, for q odd:

Pre,s1 =
1

p

p−1
∑

i=0

[

Q

(

d(q⌊i/q⌋−1,q⌊i/q⌋)
2 + d(q⌊i/q⌋, i)

σ

)

+ Q

(

d(i, q⌊i/q⌋+ (q − 1)) + d(q⌊i/q⌋+(q−1),q⌊i/q⌋+q
2

σ

)]

For q even, Pre,s1 is given by

1

p

[

p−1−q
∑

i=0

[

Q

(

d(q⌊i/q⌋−1+
q

2
,q⌊i/q⌋+

q

2
)

2
+ d(q⌊i/q⌋ + q

2
, i+ q

2
)

σ

)

+Q

(

d(i+ q
2
, q⌊i/q⌋ + (q − 1) + q

2
)

σ
+

d(q⌊i/q⌋+(q−1)+ q

2
,q⌊i/q⌋+q+ q

2
)

2

σ

)]

+

q

2
−1
∑

i=0

Q

(

d(i, q
2
− 1) +

d( q

2
−1, q

2
)

2

σ

)

+

p−1
∑

i=p− q

2

Q

(

d(p− q

2
−1,p− q

2
)

2
+ d(p− q

2
, i)

σ

)



 (21)

When σ2 ≪ 1, at high signal-to-noise ratio, the performance

on the AWGN channel is dictated by the figure of merit

d2min/Es. For p large enough, the ratio of these figures of

merit for p-ASK and G is
(

4

(p2 − 1)/3

)

/

(

2π/p2

1

)

≈ 6

π
= 2.81 dB. (22)

In other words, without coding, our discrete Gaussian-like

codebook shall exhibit a loss of 2.81 dB at high SNR with

respect to standard ASK modulation! Fortunately, in presence

of a strong code, only the low SNR range does matter. From

Propositions 4 & 5, we illustrate in Table II how G is beating

the p-ASK in the low SNR regime, near the capacity limit.

Table II. Probability of error for the uncoded codebook of size p = 256.

Gap (dB) to Codebook G p-ASK
Capacity Pre,s Pre,s1 Pre,s2 Pre,s Pre,s1 Pre,s2

0.00 0.867 0.224 0.865 0.910 0.229 0.909
0.50 0.861 0.211 0.859 0.905 0.216 0.905
1.00 0.854 0.200 0.853 0.899 0.204 0.899

V. PERFORMANCE WITH NON-BINARY LDPC CODING

The real discrete Gaussian-like codebook G with p = q2

points is encoded via a regular half-rate LDPC code over

the ring Zq according to the second method described in the

previous section. In the Tanner graph of the LDPC code, all N
variable nodes (except for the last one) have a degree dv = 2
and all N − K = K check nodes (except for the first one)

have a degree dc = 4. The adjacency matrix of the Tanner

graph has the form H2 = (A | B), where A is a square

K ×K pseudo-random sparse matrix of weight 2 per column

and per row. The K ×K matrix B = [bi,j ] is dual diagonal,

bi,i = 1, bi+1,i = 1, and the remaining entries are 0. The

final H matrix of the code, defining both the edges and the
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Fig. 4. Gaussian codebook G of size p = 256 versus 256-ASK, both with
identical 16-ary LDPC coding of length N = 1000000.

labels of the Tanner graph, is obtained from the binary matrix

H2 by replacing each entry equal to 1 by a unit of the ring

Zq . Due to lack of space, we cannot say more about the code

structure. Briefly, our (2, 4)-regular LDPC code is a turbo-like

repeat-accumulate code over Zq . Encoding is similar to Turbo

codes. Decoding can be made via belief propagation along the

edges of its Tanner graph.

The symbol error rate (SER) of information symbols versus

Eb/N0, for p = 64, is plotted in Figure 3 for different values

of the code length. The LDPC code is defined over Z8. About

125 decoding iterations were performed (per codeword) in

order to reach a stable SER. In our Monte Carlo simulation,

we measured at least 100 codeword errors and 500 symbol

errors per plotted point. In this scenario, the information rate

is R = 3 bits/dim, equivalent to 6 bits/s/Hz, with a gap to

capacity equal to 0.70 dB at SER in the range 10−5 . . . 10−6

for the longest code. The total gain at N = 1 million, with

respect to 64-ASK, is 1.35dB in the same range of SER.

Under similar conditions, SER versus Eb/N0 is plotted in

Figure 4 for p = 256. With a rate- 12 LDPC code defined over

Z16 and a real codebook G of size p = 256 points, the gap

to capacity is 0.87 dB (at 8 bits/s/Hz!) and the total gain is

1.71 dB with respect to a 256-ASK constellation.

VI. CONCLUSIONS

We proposed a simple alternative to probabilistic and to

lattice Voronoi shapings. We built a discrete Gaussian-like

codebook by mapping p equidistant points in [0, 1] to the

real line via the inverse distribution function of a normal

distribution. Half-rate turbo-like LDPC codes defined over the

ring Z/qZ, where q =
√
p, allow the Gaussian-like codebook

to operate near capacity at high spectral efficiency.

REFERENCES

[1] R. G. Gallager, Information theory and reliable communication, John
Wiley and Sons, 1968.

[2] G. D. Forney, “Trellis shaping,” IEEE Trans. Inf. Theory, vol. 38, no. 2,
pp. 281–300, Mar. 1992.

[3] U. Erez, “Coding with known interference and some results of lattices
for digital communication,” Ph.D. dissertation, Tel-Aviv University, 2002.
[Online] Available: http://www.eng.tau.ac.il/∼uri/theses/erez phd.pdf

[4] N. di Pietro, G. Zémor, and J. J. Boutros, “LDA lattices without dithering
achieve capacity on the Gaussian channel,” IEEE Trans. Inf. Theory,
vol. 64, no. 3, pp. 1561–1594, Mar. 2018.

[5] N. di Pietro and J. J. Boutros, “Leech constellations of Construction-
A lattices,” IEEE Trans. Commun., vol. 65, no. 11, pp. 4622–4631,
Nov. 2017.
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