
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/325618935

Beyond Generic Lifecycles: Reusable Modeling of Custom-Fit Management

Workflows for Cloud Applications

Conference Paper · July 2018

DOI: 10.1109/CLOUD.2018.00048

CITATIONS

0
READS

46

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Service-oriented management of a virtualised future internet View project

EMD: Elastic Media Distribution View project

Merlijn Sebrechts

Ghent University

8 PUBLICATIONS   15 CITATIONS   

SEE PROFILE

Gregory Van Seghbroeck

Ghent University

32 PUBLICATIONS   128 CITATIONS   

SEE PROFILE

Tim Wauters

Ghent University

101 PUBLICATIONS   602 CITATIONS   

SEE PROFILE

Bruno Volckaert

Ghent University

114 PUBLICATIONS   544 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Merlijn Sebrechts on 07 June 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/325618935_Beyond_Generic_Lifecycles_Reusable_Modeling_of_Custom-Fit_Management_Workflows_for_Cloud_Applications?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/325618935_Beyond_Generic_Lifecycles_Reusable_Modeling_of_Custom-Fit_Management_Workflows_for_Cloud_Applications?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Service-oriented-management-of-a-virtualised-future-internet?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/EMD-Elastic-Media-Distribution?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Merlijn_Sebrechts?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Merlijn_Sebrechts?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ghent_University?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Merlijn_Sebrechts?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gregory_Van_Seghbroeck?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gregory_Van_Seghbroeck?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ghent_University?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gregory_Van_Seghbroeck?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tim_Wauters?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tim_Wauters?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ghent_University?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tim_Wauters?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruno_Volckaert?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruno_Volckaert?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ghent_University?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruno_Volckaert?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Merlijn_Sebrechts?enrichId=rgreq-fd9aca940fbfb7b27eff8d3af268ca61-XXX&enrichSource=Y292ZXJQYWdlOzMyNTYxODkzNTtBUzo2MzQ4MDUxMTI3OTkyMzJAMTUyODM2MDc0MTM2Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Beyond Generic Lifecycles:
Reusable Modeling of Custom-Fit Management Workflows for Cloud Applications

Merlijn Sebrechts∗, Cory Johns†, Gregory Van Seghbroeck∗, Tim Wauters∗, Bruno Volckaert∗ and Filip De Turck∗
∗ Ghent University - imec, IDLab, Department of Information Technology

Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium;
Email: merlijn.sebrechts@ugent.be

† Canonical Ltd, London, SE1 0SU, UK. Email: cory.johns@canonical.com

Abstract—Automated management and orchestration of
cloud applications have become increasingly important, partly
due to the large skills shortage in IT operations and the
increasing complexity of cloud applications. Cloud modeling
languages play an important role in this, both for describing
the structure of a cloud application and specifying the man-
agement actions around it. The TOSCA cloud model standard
recently defined declarative workflows as the preferred way
to specify these management actions but, as noted in the
standard itself, this is far from ideal. This paper draws lessons
from six years of using declarative workflows in Juju for
deploying and managing complex platforms such as OpenStack
and Kubernetes in production. This confirms the limitations:
declarative workflows are inflexible, hard to reuse, and allow
for related components to become silently incompatible. This
paper proposes the reactive pattern to solve these issues by
enabling the creation of emergent workflows using declarative
flags and handlers, which can be easily grouped into reusable
layers. After more than two years of using this pattern in
production as part of our charms.reactive framework, it is clear
that it enables reusability and ensures compatibility: 67% of
reactive charms share parts of the management workflow and
73% of reactive charms share a relationship workflow.

I. INTRODUCTION

Due to the large skills shortage in IT operations [1]
and the increasing complexity of cloud applications [2],
automated management and orchestration of cloud appli-
cations have become increasingly important. The OASIS
Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) [3] is a front-runner in this field: a standard
with large backing from both the industry and academia.
It provides a specification to create self-contained cloud
models that describe the structure of a cloud application in a
topology model, as well as the surrounding management and
orchestration processes in a workflow model. The order in
which these processes are to be executed is either explicitly
defined in an imperative workflow model or implicitly in
a declarative workflow model. The latter type is of great
importance to this research because it allows capturing the
knowledge on how to manage a cloud application in a
reusable way, which is crucial to solving the skills shortage
and the complexity of cloud applications [2]. Consequently,
the Juju cloud modeling language [4], which closely re-

sembles the TOSCA standard, has been using declarative
workflows since its inception. Section II introduces these
concepts and related work in greater detail.

However, as noted in the TOSCA specification itself,
declarative workflows are inherently inflexible: every work-
flow needs to adhere to a single lifecycle defined by the
cloud modeling language. The real-world implications of
this issue have become painfully clear during 6 years of
managing complex platforms in production with Juju. Sec-
tion III reflects on this experience and identifies the main
shortcomings of the declarative approach.

This paper proposes the reactive pattern in Section IV
to address the limitations of declarative workflows. Specif-
ically, the reactive pattern allows creating custom-fit work-
flows, not limited by lifecycles, and enables more fine-
grained reuse than declarative workflows. Its implementation
is discussed in Section V and the evaluation of two years
of production use is discussed in Section VI. The reactive
pattern has resulted in widespread code reuse and increased
compatibility. Consequently, it forms a great battle-tested
foundation for improved workflow support in the TOSCA
standard.

II. BACKGROUND AND RELATED WORK

A. Cloud Modeling Languages

Model-based management of cloud applications is ubiqui-
tous [2] and can be traced back to the 1995 paper of Burgess
et al. where the idea of converging towards a predefined end-
state was proposed [5]: a system administrator declaratively
specifies what the desired end-state of the cloud application
is, and an orchestrator interprets that specification and iter-
atively executes the required actions to get the application
into that state. This idea has evolved over the years and has
resulted in the creation of topology-based cloud modeling
languages to enable better portability and reusability [3]:
the model of the cloud application consists of a graph of
components which are connected by their dependencies.
Each component is a self-contained description of part of
the cloud application and new models can be created by
rearranging the components thus making each component
reusable.



As said in the introduction, OASIS TOSCA [3] provides
a specification to create self-contained cloud models that
describe both a) the structure of a cloud application in a
topology model, and b) the management and orchestration
processes surrounding it in a workflow model. The topology
consists of a number of nodes connected to each other using
relationships. Relationships denote dependencies between
two nodes. A web app, for example, might have a rela-
tionship with a database to denote that the web app uses
the database for storage. The types of relationships possible
between nodes are defined by their node type in the form of
requirements and capabilities: a relationship connects a node
that requires a certain dependency to a node that provides
the same dependency. The structure of the workflow model
has changed over the past few years. TOSCA 1.0, released
in 2013, does not enforce a specific workflow language but
favors BPMN. TOSCA Simple YAML profile 1.0, released
in 2016, lost the ability to specify a workflow and only
with the 2018 release of TOSCA Simple YAML profile 1.1
have workflows been included again, now in two forms:
imperative and declarative workflows [6].

B. Imperative Workflows

Imperative workflows are often depicted as a set of
activities linked by a control flow. Each activity is a piece of
work that forms one logical step of a process. The control
flow describes the order in which the individual activities
are performed. These can be represented as a directed graph
where each node represents an activity and the vertices
describe the control flow. In an imperative workflow, the
order of execution is explicitly defined as part of the
workflow definition e.g. as a flow diagram. Many IT ser-
vice management practices such as Information Technology
Infrastructure Library (ITIL) [7] use imperative workflows
as high-level descriptions of IT business processes. Thus,
the use of such workflows in cloud modeling languages
makes it easy to align IT services with business needs.
The imperative workflows in a cloud model define how to
deploy, manage and undeploy a topology. Each activity is a
management action such as “install MySQL”, and the control
flow describes when each management action needs to be
performed. During deployment, the orchestrator executes the
workflow step by step until the entire topology is deployed.

The downside of using imperative workflows is that they
are defined for a specific topology instead of for one com-
ponent. Thus, when the topology is changed, the workflow
needs to be recreated. This is an inherent limitation of
imperative workflows: changing a constraint in an imperative
workflow description requires a complete rewrite of the
control flow [8]. Having to rewrite the workflow every time
a component in the topology changes, goes against the mod-
ular nature of topology-based cloud modeling languages.
Wagner et al. propose to define the imperative workflows
on the level of the individual nodes, and interconnect the

workflows of all the components in a topology using a
choreography. This approach however still requires manual
creation of the choreography because the orchestrator cannot
know how the individual workflows should be connected [9].

C. Declarative Workflows

Declarative workflows provide optimal reusability: the
declarative workflow for each component of a topology is
contained inside the description of that node. Adding the
node to the topology will automatically add all the manage-
ment activities to the global workflow. This is because the
control flow is not explicitly specified but rather implicitly
derived from the constraints of each activity. In TOSCA, the
constraints specify which lifecycle phase the activity is part
of, for example installing, configuring or starting. It is then
up to the orchestrator to decide when each lifecycle phase
for each component needs to be executed, so the orches-
trator “generates” an imperative workflow by merging all
activities from all nodes in the topology [10]. The lifecycles
themselves are however defined by the orchestrator which
presents the biggest drawback of declarative workflows in
TOSCA: workflows are limited to the states and transitions
defined in the orchestrator’s lifecycle.

Furthermore, this also restricts the types of dependencies
possible between nodes. TOSCA specifies a number of
normative relationships that each carry specific meaning
about the dependency between related nodes. As an example,
the DependsOn relationship means that the target node needs
to be started before the source node is created. This directly
translates into how the orchestrator connects the declarative
workflows of these two components: the deployment work-
flow of the source node is executed when the target node
reaches the started state. As a result, declarative workflows
can only model dependencies which are explicitly defined
by the orchestrator. The current TOSCA specification, for
example, does not support circular dependencies [11], i.e.
dependencies where the control flow jumps back and forth
between two nodes multiple times.

III. LESSONS LEARNED: HISTORY OF DECLARATIVE
WORKFLOWS IN JUJU

Juju [4] is a cloud modeling language and orchestrator
created by Canonical that closely resembles the TOSCA
standard. Since its inception in 2012, Juju has been used in
production to deploy big software such as OpenStack and
Big Data clusters [12], and is at the core of BootStack and
the Canonical Distribution of Kubernetes.

A Juju charm is similar to a TOSCA node type: it repre-
sents one service in the cloud application and defines which
relationships it supports using requires and provides state-
ments. Juju also uses declarative workflows: the orchestrator
defines a number of lifecycle stages such as install, start
and config-changed, and executes a program called a hook
during each lifecycle stage. A hook is a workflow activity



and its name defines which lifecycle transition it performs.
Thus, the Juju orchestrator decides when hook code gets
executed, and the charm developer decides what operation
should be performed. A deployed instance of a charm is
called a unit and adding a unit to a model automatically
adds the hooks of its charm to the topology-wide declarative
management workflow. This approach resulted in a number
of issues.

The lifecycle provided by Juju does not match the
actual lifecycle of the managed services. Juju’s provided
lifecycle is too simple for most services, which require
many more lifecycle phases and transitions. This results
in a frequently used anti-pattern where all lifecycle stages
execute the exact same code which implements a rudimen-
tary state machine with if-then statements that mimics the
real lifecycle of the application. The state machine figures
out which actual lifecycle stage the application is in, and
executes the required actions. Expanding the lifecycle of
Juju’s orchestrator is not a good solution because each
service requires its own specialized lifecycle so a one-size-
fits-all lifecycle is simply not sufficient. Moreover, it should
not be up to the orchestrator to define what the lifecycle of
a service is, this should be defined by the service.

Reusing parts of the lifecycle of a single service
is difficult. Many services share components, and many
lifecycle steps are the same for multiple services. Many
services are installed using the distribution package manager,
for example, and need to be updated when security fixes are
released. Encapsulating this functionality in a way that it
allows being reused in other lifecycles is not possible. Over
the years, a number of charm helper libraries have been
created in order to increase code reuse, but the issue with
a library is that it only encapsulates how to do a certain
lifecycle action, not when that action should be performed.

The relationship lifecycle provided by Juju does not
match the actual relationship lifecycle of the managed
services. As explained in Section II, the use of declarative
lifecycles restricts the types of dependencies between two
nodes to the ones supported by the orchestrator. Juju sup-
ports only one type of dependency in which the lifecycles
of both units run concurrently. After the start hook of both
units, the relationship lifecycle runs and the units exchange
configuration values. In reality, however, many services
require knowing configuration values, such as the IP address
of a database, before starting. This causes developers to
create a state machine that completely ignores hooks such
as config-changed and start, and waits until the relation-
changed hook to actually configure and start the service.
This results in a discrepancy between the state that the
orchestrator thinks a service is in, and the actual state a
service is in.

Silent incompatible relationships. Because of the pre-
vious issue, the relationship lifecycles are actually imple-
mented by the charm, instead of by the orchestrator. The

orchestrator has therefore no way of verifying that two ends
of a relationship actually implement a compatible lifecycle.
This has resulted in many semi-compatible charms that im-
plement the same relationship according to the orchestrator,
but differ in subtle incompatible ways in practice.

IV. THE REACTIVE PATTERN

This paper proposes the reactive pattern as a funda-
mentally new approach to managing services using cloud
modeling languages. Such pattern allows the creation of
flexible and reusable emergent workflows that manage the
entire lifecycle of a modeled cloud application including
dependency management, initial deployment, second day
operations, topology changes and node type upgrades. Al-
though it was initially created for the Juju cloud modeling
language, the pattern itself is generic enough so that it
can be used in different cloud modeling languages such as
TOSCA or as the service engine in a Distributed Service
Orchestrator [13]. This section gradually introduces all the
primitives of the reactive pattern and explains their role and
how they address the shortcomings of declarative workflows.

Just like with regular declarative workflows, the actual
management operations are encapsulated in activities which
are part of the node definitions. The novel part of this
pattern is how the control flow gets created: the orchestrator
does not define a lifecycle, it only defines a number of
events. Developers create custom event-based workflows
for each service and hook them into these events. These
workflows are created using constraint-based modeling [14]:
each activity defines a set of constraints which need to be
satisfied in order for them to execute. Unlike approaches like
DECLARE [15], these constraints are not explicitly tied to
events regarding the execution of other activities. Rather,
the constraints use semantic flags that can also represent a
number of different types of events such as the arrival in
a certain state, a change in the topology and service events
e.g. a crash.

A. Handlers and Flags

The reactive framework is based on the idea of handlers
reacting to flags. Handlers are the activities of the workflow:
pieces of code that perform management actions on the
cloud service. The control flow, the order in which handlers
get executed, is driven by flags: each handler defines which
flags it reacts to, i.e. which flags need to be set and/or
unset for the handler to execute. The framework executes
a handler when its preconditions are met, during which it
modifies the service, and can set and clear flags. This triggers
other handlers to run, until there are no more handlers whose
preconditions are met. In this sense, the reactive pattern uses
constraint-based modeling with arbitrary events.

The power of a flag is that it can represent almost any-
thing, from internal state such as “the service is running” and
“disk utilization is critically high” to topology modifications



such as “a new relation is established” or “this node has
been removed”. The following is a non-exhaustive list of
what semantic meaning a flag might hold.

• Lifecycle Stage: The orchestrator itself defines a num-
ber of flags that represent which lifecycle transition
it requests such as install, config-changed, and stop.
These are the reactive pattern’s counterpart to the hooks
and lifecycles of declarative workflows.

• Service state: Developers can define a number of flags
that represent low-level state of the service such as
“the webserver is installed” and “the SSL certificate
is registered”.

• Service events: A flag can also represent events that
happened in the past, and that might need to be handled,
such as “the service has crashed”, which might require
notifying a system administrator, even when the service
has successfully been restarted.

• Topology state and events: Flags can also represent
the topology or changes to it. A flag can indicate that a
new relation was created in the model or that a related
service in the topology has entered a certain state.

• Day 2 operations: A flag can signal that a backup is
requested, that an update is required, or that an SSL
certificate needs to be renewed.

Note that not all flags need to be set by the handlers
themselves. The operating system itself can set a flag when
a service crashes or when a certain time has passed, and the
orchestrator sets flags to indicate which lifecycle stage the
application is in and what the current state of the topology
is. This for example allows the workflow to hook into the
lifecycle provided by the orchestrator.

Definition 1: A handler is an activity that manages a
cloud resource, accompanied by a set of preconditions that,
using flags, states when that activity should execute.

Definition 2: A flag is a boolean identified by a unique
string that is a semantic representation of an event to be
used in a handler’s preconditions.

Figure 1 shows a custom workflow that emerges from a set
of handlers and their preconditions. Each activity is a handler
and the control flow emerges from their preconditions. The
orchestrator starts the workflow and sets the appropriate
flags when the domain name config is set and changed.
The operating system itself sets flags when 20 days have
passed and when an update is available to the packages.
The pseudocode for the handlers and their preconditions is
available online [16].

The resulting workflow shows that some activities such
as deploying the web app and registering the SSL certificate
can be executed in parallel. This however only regards the
control flow dependencies, not the actual dependencies of
the activities themselves: it does not matter which action is
run first, but the actions might not be able to run at the same
time.

Figure 1. This workflow emerges from the handlers, their preconditions
and their flags. Each handler is represented by an activity. The “stop web
app” handler is represented by two different activities because the next
activity depends on which activity was executed previously to “stop web
app”. The handlers are colored according to which aspect of the service
they manage.

In summary, flags and handlers allow the construction of
emergent workflows that hook into and expand the lifecycle
provided by the orchestrator. Because the emergent reactive
workflow hooks into the lifecycle provided by the orches-
trator using flags, it can leverage the existing techniques
to combine the declarative workflows of multiple compo-
nents into a single workflow that manages the entire cloud
application. Just like with declarative workflows, reactive
emergent workflows are shipped as part of the node type
of a component. When that component gets added to a
model, the accompanied workflow will be hooked into the
model’s global workflow. This approach thus eliminates the
downsides of TOSCA’s imperative workflows while allowing
for a greater level of flexibility.

B. Scope

A big advantage of cloud modeling languages stems
from the separated scope between nodes. A node can only
access information about another component if there is an
explicit relationship that shares that piece of information.
This property is also present in the reactive pattern. Flags in
the reactive pattern are unit-scoped: each instance of a node
type has its own set of flags. Handlers themselves are node-
type scoped: all instances of a single node-type have the
same set of handlers. This means that the emergent workflow
of each unit will be the same, but the current position in the



workflow might be different. The web app example from
Figure 1 is a single service that consists of a number of
components: an SSL encrypt certificate, a webserver and
a web app. When the web app scales out into multiple
instances, each instance will have its own set of flags, but
the handlers will be the same over each unit.

C. Layers

As mentioned previously, the web app example service
can be divided into three components: the webserver, the
SSL certificate and the web app. The emergent workflow
in Figure 1 shows each activity colored based on which
component it manages. As one can see, it is not possible to
divide the emergent workflow into three sub-workflows, one
for every component. With the reactive pattern, this becomes
possible since the workflow itself is just an emergent prop-
erty from the handlers and their preconditions: it only exists
at runtime. At design time, the handlers can be divided into
arbitrary groups because there are no explicit dependencies
between activities: the only dependencies are implicit with
the flags as an intermediary.

In the reactive pattern, each set of grouped handlers is
called a “layer”. Figure 2 shows the handlers from the web
app example divided into three layers. Each layer contains
the handlers that manage a specific part of the service: the
web app, the SSL certificate and the webserver. Adding a
layer to a node type results in the handlers of that layer being
added to the emergent workflow of that node type. This thus
greatly improves the reusability and allows developers to
focus on the components that they are an expert in, instead
of having to code the entire service. In a sense, this is aspect-
oriented programming: each layer contains the activities that
manage one specific aspect of the service. The flags define
the “cut points”, the points in which the aspects get injected
into the program code.

A layer is one level below a TOSCA node type: multiple
layers combined form one node type. From the viewpoint
of the orchestrator, all layers of the same node type share
the same lifecycle. The orchestrator does not coordinate the
lifecycles of each layer individually since the control flow
of a service is defined by the flags and the preconditions of
handlers. This also has the advantage that a model designer
does not come into contact with layers, the model designer
only sees a single node and layers are an “implementation
detail” of the node. Finally, this makes it possible to use
layers without needing any changes to TOSCA itself since
layers are “compiled” into a TOSCA node type, and the
orchestrator only interacts with the node type.

In order for layers to be reusable, it is important that
each layer defines what the semantic properties are of each
flag. Some flags might be for internal use in a layer itself,
while other flags are to be used by other layers to signal
this layer or to use in the preconditions of their handlers. It
is also important to define how these flags will be managed

Figure 2. Since the dependencies between handlers are implicit, the
handlers can be grouped by which aspect of the service they manage, even
though the emergent control flow goes back and forth between the layers
in an erratic manner.

by a layer: whether or not flags will be automatically set or
removed when certain conditions happen.

Furthermore, it is important to avoid conflicts between
layers. An example of a conflict is when two handlers, A
and B, react to the same flag, config.changed, and both clear
that flag during execution. Though it is not immediately
obvious, this results in non-deterministic behavior because
the workflow is executed sequentially and the preconditions
of flags are rechecked after execution of every handler. If
handler A runs first, it will clear the config.changed flag and
handler B will not even run. This in itself is wanted behavior:
a handler is never allowed to run if its preconditions are not
met. If handler A clears a flag during its execution, it signals
that the event that set the flag is handled, indicating that no
other handlers which handle the same event should run.

It is however entirely possible that multiple layers handle
the same event. Layers do not have explicit dependencies
on each other, so a handler cannot know, at the time of
clearing the flag, if the event is actually handled by every
layer. Triggers are used to avoid such conflicts.

Definition 3: A trigger is a causal, directed dependency
between two flags that sets or clears a flag immediately when
the other flag is set or cleared.

Immediately in this context means that when a flag
changes, the execution of handlers is paused until all triggers
are processed.

Using a trigger, a layer links the config.changed flag to
a custom flag for example layer-a.config.changed, such that
the custom flag is set immediately after config.changed is
set. This custom flag is meant for internal use in that layer
only and is thus prefixed with the layer’s name. Since a
trigger is one-way, the custom flag will not be cleared when
another layer clears config.changed. The developer can thus
safely use the custom flag in the preconditions of a handler
without having to worry that it will be cleared by another
layer before the handler has a chance to run.



D. Interface layers and Endpoints

Much like layers contain reusable handlers to manage
individual services, interface layers contain reusable han-
dlers to manage the relationship between two nodes. Unlike
regular layers, a single interface layer contains handlers for
two nodes because an interface layer implements both sides
of the relationship. An interface layer is thus a declarative
model of the communication between two nodes. This again
makes it possible for the orchestrator to know whether a
relationship between two nodes is possible: if two nodes
share the same interface layer, the relationship is possible.

Relationships in TOSCA serve two purposes during or-
chestration: they are used to connect the control flow of two
nodes in a way that the dependency is resolved, and they are
used to exchange information such as IP addresses in order
to configure both services correctly.

The control flow of a single component in the reactive
pattern is defined by the flags. It is however not desirable to
share all the flags of one node with another node, since
that creates deep dependencies between nodes, loses the
modularity and limits the reusability of a layer. Thus, all
sharing of state and data happens explicitly by the handlers
of the interface layer so that the dependencies between the
implementation of two nodes are limited to the handlers of
the interface layer, which is not an issue since the interface
layer is already shared between two nodes.

Each time the relationship and its data gets changed,
the orchestrator notifies the interface layer by setting flags
that denote lower-level relationship events such as end-
point.x.joined, when a relationship is established, end-
point.x.changed, when relationship data changes, and end-
point.x.departed when a relationship is removed. These
lower-level flags are the internal API of an interface, they
are only to be used by relationship handlers which react to
these events, read and write relationship data and manage
higher-level flags. Regular layers should only react to the
higher-level flags since those are regarded as the “external
API” of the interface.

As an example, in the MySQL case of an interface which
is used to connect a node that provides a MySQL database
to a client, the MySQL side will have the higher-level flags
table.requested, to denote that a client has requested the
creation of a table, and user.requested which is set when
a client requests the creation of a user account. The layer
that manages the MySQL database will contain a number
of handlers that react to these flags to create the requested
tables and users, and will call back to the endpoint object
to notify that the requests are executed.

Endpoints are the key to the second purpose for relation-
ships: sharing information between nodes. An endpoint is
an object that represents one side of the relationship. It
publishes and reads the relationship data to communicate
with the endpoint at the other side and it translates the

Figure 3. The architecture of the charms.reactive framework: when the
orchestrator executes a hook, the reactive framework initiates and runs the
handlers whose preconditions are true.

raw relationship data into high-level objects to be used by
handlers.

V. IMPLEMENTATION

A. The “charms.reactive” framework

The charms.reactive framework is our implementation
of the reactive pattern built on top of Juju’s declarative
workflows1. It is written in Python 3. Handlers are decorated
python functions or executable files that implement the
external handler api.

A reactive charm is built from layers. Each layer is a
directory with a number of handlers and a layer.yaml file
that holds metadata such as the name of the layer, and
the dependencies of this layer i.e. what other layers this
layer uses. The charm build tool is used to compile a layer
and its dependencies into a charm. It downloads all the
dependencies from the layer-index 2, merges all the layers
and packages the result into a deployable charm.

Figure 3 shows the architecture of the framework. Much
like the state machines mentioned in Section II, the frame-
work ties into the Juju hooks so that any hook simply
executes the framework. It then decides which handlers to
run based on the preconditions of the handlers. When there
are no more handlers to run, the framework exits the hook.
According to the Juju orchestrator, a reactive charm is thus
no different from a regular charm.

At the start of each hook, the reactive framework loads
the flags from persistent storage, sets and clears the managed
flags based on the hook and the information from the orches-
trator, and starts to execute the handlers whose preconditions
are met, as shown in Listing 1. A handler is considered
matching if the preconditions are true and the handler did
not yet run in the current hook or the flags referenced in its
preconditions have changed since the last time it ran.

All handlers on the same unit are executed sequentially,
even if the emergent control flow allows concurrent execu-
tion, since the reactive pattern does not provide a way for
handlers to define whether or not two handlers can actually

1https://charmsreactive.readthedocs.io/en/latest/
2https://github.com/juju/layer-index



Listing 1. Pseudocode for a run of the reactive framework
set and clear managed flags
add matching handler to the queue

while queue is not empty:
for each handler in queue:

run handler
if handler failed:

revert flag changes
fail hook

remove handler from queue
remove not matching handlers from queue

add matching handler to queue
if max iterations reached:

revert flag changes
fail hook

run concurrently. This is however still an improvement over
TOSCA’s declarative workflows, where even the activities of
related nodes are run sequentially. The order in which the
reactive framework runs handlers when multiple handlers
match is undefined but deterministic: every run will result
in the same order, but a charm developer should not rely on
any order.

From Juju’s standpoint, a hook is transactional: if a hook
fails, Juju will rollback the state changes of that hook and try
the hook again. This fixes transient failures. For this reason,
the reactive framework itself also rolls back all changes to
flags when a handler fails. This protects against transient
failures as shown by Wettinger et al. [17]. Juju’s approach
to this does not eliminate the need for idempotency because
the orchestrator does not roll back the actual changes to the
service so the service might be in an inconsistent state, and
handlers might run multiple times when the hook is retried.

B. Lessons learned

In the initial version of the charms.reactive framework,
flags were called states, which confused developers be-
cause they thought they were building finite state machines
(FSMs). It is possible to build an FSM with the reactive
pattern, but the pattern is a lot more powerful since it also al-
lows event-based programming. Flags are a much more neu-
tral term which does not imply any specific model of compu-
tation. As an example, some of the relationship flags repre-
sent events instead of states. The relationship.{name}.joined
flag is a state: it is set when the relationship reaches the
joined state, and is cleared when the relationship leaves
that state. However, the relationship.{name}.departed flag
represents an event: it is set every time a unit departs from
a relationship and is manually cleared by a handler that
“handled” the departure. In contrast, if this event were a
state, it would be set when the first unit departs a relationship
and never be cleared since that unit remains departed, even
when that departure has been “handled”.

In the current implementation of the reactive framework,
handlers whose preconditions are true are re-executed in ev-

0

34%
1 27%

2

25% >2
14%

Reused layers per charm
0

28%
1

23%

2
22%

3

17%
>3

10%

Reused interfaces per charm

Figure 4. Number of reused layers and interfaces per charm.

1

42%

2 19%

3-10

17%

11-20

13%
>20

9%

Charms per layer
1

36%

2 30%

3-10

23%
>10

11%

Charms per interface layer

Figure 5. Number of times each layer is used.

ery hook. This however turned out to be counter-intuitive for
developers, especially new developers without experience
writing non-reactive charms. Since the reactive framework
is a layer on top of Juju’s declarative workflow, and hooks
are thus hidden, having such a reliance on their lifecycle
adds unnecessary complexity for developers. It is however
not possible to change this behavior currently because this
will break backwards compatibility.

VI. IN PRACTICE

This section shows the results of using the reactive pattern
in Juju for more than two years, since our implementation
has become available. The results shown in this section are
obtained using the public Juju charm store api 3. A cached
copy of the data and the full code to download and process
it is available on Github [16].

The charm store contains a total of 529 active charms:
charms that have been downloaded in the last month. Of
those, only 176 or 33% use the reactive framework. The
relatively young age of the framework plays a big role in
this: many charms were built before the reactive framework,
and porting these charms to the reactive framework is not
trivial, since it requires a complete rewrite of the charm code.

Figure 4 shows the number of reused layers and interfaces
per charm, i.e. the number of layers and interfaces which are
also used by another charm. This shows that the reactive
framework has indeed made it possible to reuse workflow
code across charms: two-thirds of actively-used reactive
charms share at least one layer with another charm. This
is an incredibly high number compared to the workflows in
TOSCA, where node templates simply can not share any

3https://github.com/juju/charmstore/blob/v5-unstable/docs/API.md



workflow code. However, there is a lot of unused potential
because 41% of layers are used in only one charm as shown
in Figure 5.

Figure 4 also shows that interface layers are also heavily
reused: 73% of charms use at least one interface layer
that is shared with another charm, which improves the
compatibility of charms implementing the same interface.
However, not all interface layers have this benefit: 36% of
interface layers are only used once, as shown in Figure 5.
This is because of the high number of non-reactive charms:
these interface layers are used to connect reactive charms to
non-reactive charms.

VII. CONCLUSION

Six years of managing cloud applications in production
using declarative workflows shows that their inflexibility
limits their usefulness. Moreover, they don’t provide enough
opportunity for code reuse, causing duplicated effort and al-
lowing connected workflows managing different services to
become silently incompatible. The reactive pattern proposed
in this paper addresses these issues by allowing declarative
specification of workflows that match the actual lifecycles
of the services and by enabling aspect-based grouping of
workflow activities into reusable layers.

The results of two years of production use show the re-
active pattern’s benefits: 67% of reactive charms use shared
layers and 73% of reactive charms use shared interfaces.
This shows that the reactive pattern solves the issues of
declarative workflows and even though it originated from
the Juju ecosystem, it is generic enough so that it can form
the basis for improved workflow support in other cloud
modeling languages such as TOSCA.

ACKNOWLEDGMENT

This work was supported by the Research Foundation
Flanders (FWO) under Grant n G059615N - “Service-
oriented management of a virtualised future internet”.

Special thanks to Alex Kavanagh and Stuart Bishop for
many insightful discussions on the reactive pattern and their
contributions to the charms.reactive framework.

REFERENCES

[1] D. Russel and M. Chuba, “Top Challenges Facing I&O
Leaders in 2017 and What to Do About Them,” Gartner, Tech.
Rep. G00324370, Feb. 2017.

[2] D. Weerasiri, M. C. Barukh, B. Benatallah, Q. Z. Sheng,
and R. Ranjan, “A Taxonomy and Survey of Cloud Resource
Orchestration Techniques,” ACM Comput. Surv., vol. 50,
no. 2, pp. 26:1–26:41, May 2017.

[3] TOSCA Technical Committee, “OASIS Topology and
Orchestration Specification for Cloud Applications
(TOSCA) Technical Committee | Charter,” Dec. 2013.
[Online]. Available: https://www.oasis-open.org/committees/
tosca/charter.php

[4] “Ubuntu Juju: Operate big software at scale on any cloud,”
https://jujucharms.com/. Accessed October 3, 2017. [Online].
Available: https://jujucharms.com/

[5] M. Burgess and O. College, “Cfengine: a site configuration
engine,” in in USENIX Computing systems, Vol, 1995.

[6] M. Rutkowski and L. Boutier, “TOSCA Simple Profile in
YAML Version 1.1,” Jan. 2018.

[7] Cabinet Office, ITIL Service Strategy 2011 Edition. Norwich:
The Stationery Office, 2011.

[8] R. R. Mukkamala, “A Formal Model For Declarative Work-
flows: Dynamic Condition Response Graphs,” PhD Thesis,
IT-Universitetet i Kbenhavn, Denmark, 2012.

[9] S. Wagner, U. Breitenbcher, O. Kopp, A. Wei, and F. Ley-
mann, “Fostering the Reuse of TOSCA-based Applications
by Merging BPEL Management Plans,” in Cloud Computing
and Services Science, Apr. 2016.

[10] D. Calcaterra, V. Cartelli, G. D. Modica, and O. Tomarchio,
“Combining TOSCA and BPMN to Enable Automated Cloud
Service Provisioning,” Feb. 2018, pp. 187–196.

[11] T. A. Lascu, J. Mauro, and G. Zavattaro, “Automatic
deployment of component-based applications,” Science of
Computer Programming, vol. 113, pp. 261–284, Dec. 2015.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167642315001409

[12] K. Tsakalozos, C. Johns, K. Monroe, P. VanderGiessen,
A. Mcleod, and A. Rosales, “Open big data infrastructures
to everyone,” in 2016 IEEE International Conference on Big
Data (Big Data), Dec. 2016, pp. 2127–2129.

[13] M. Sebrechts, T. Vanhove, G. Van Seghbroeck, T. Wauters,
B. Volckaert, and F. De Turck, “Distributed Service Orches-
tration: Eventually Consistent Cloud Operation and Integra-
tion,” in 2016 IEEE International Conference on Mobile
Services (MS), Jun. 2016, pp. 156–159.

[14] M. Pesic, M. Schonenberg, N. Sidorova, and W. M. van der
Aalst, “Constraint-based workflow models: Change made
easy,” in OTM Confederated International Conferences” On
the Move to Meaningful Internet Systems”, 2007.

[15] M. Pesic, H. Schonenberg, and W. M. P. v. d. Aalst, “DE-
CLARE: Full Support for Loosely-Structured Processes,” in
11th IEEE International Enterprise Distributed Object Com-
puting Conference (EDOC 2007), Oct. 2007.

[16] Merlijn Sebrechts, “Code and results of reac-
tive pattern.” May 2018, original-date: 2018-05-
07T12:37:20Z. [Online]. Available: https://github.com/
IBCNServices/reactive-pattern-results

[17] J. Wettinger, U. Breitenbcher, and F. Leymann,
“Compensation-Based vs. Convergent Deployment
Automation for Services Operated in the Cloud,” in
Service-Oriented Computing, X. Franch, A. K. Ghose, G. A.
Lewis, and S. Bhiri, Eds., Nov. 2014.

View publication statsView publication stats

https://www.researchgate.net/publication/325618935

