Assembly-Line-Compatible Electromagnetic Characterization of Antenna Substrates for Wearable Applications using Polynomial Chaos

Thomas Deckmyn
INTEC – IDLab
Ghent University – imec
Ghent, Belgium
thomas.deckmyn@ugent.be

Marco Rossi
RIS Department
Fraunhofer IZM
Berlin, Germany
marco.rossi@izm.fraunhofer.de

Sam Agneessens
INTEC – IDLab
Ghent University – imec
Ghent, Belgium
sam.agneessens@ugent.be

Hendrik Rogier
INTEC – IDLab
Ghent University – imec
Ghent, Belgium
hendrik.rogier@ugent.be

Dries Vande Ginste
INTEC – IDLab
Ghent University – imec
Ghent, Belgium
dries.vande ginste@ugent.be

Abstract—For the design and production of reliable devices applied in wearable components, characterization of the electromagnetic properties of materials is of paramount importance. Therefore, we propose a novel approach, based on a resonance-perturbation method, which compares simulations and performed measurements. An inset-fed patch antenna with a resonance frequency in the vicinity of the 2.45-GHz Industrial, Scientific, and Medical band enables us to quickly estimate the characteristics of a given material sample. In a first step, the two frequencies for which the simulated return loss of the fixture crosses a defined threshold are modeled as polynomial functions of the relative permittivity and loss tangent of the material under test. Then, the electromagnetic properties of the material are obtained by comparing the modeled and measured frequencies. The electromagnetic properties of several textile materials of interest are determined with this method. It is shown that the proposed technique is fast, precise, and nondestructive. Owing to this, it is suitable for integration into an assembly line, where substrate samples are straightforwardly characterized before being used for the manufacturing of actual antennas.

Keywords—Resonance perturbation method, substrate material characterization, textile antenna.

I. INTRODUCTION

Recently, the potential of smart textiles has been unearthed by research on wearable technologies. This has led to a true myriad of novel applications for integrated on-body systems [1], [2]. Such components for wearable applications are usually realized on common, low-cost textiles serving as substrates, while electrotextiles are exploited for the conductive parts. These components are usually lightweight, invisible, flexible and easily integratable into everyday clothing. However, the electromagnetic properties of textile materials, being loss tangent and permittivity, are not widely available. Additionally, they tend to be more inhomogeneous than conventional high-frequency laminates [4]. Taking all of the above into account, it is clear that an estimation of the electromagnetic properties of substrate materials is paramount for designers of wearable components. This claim is amplified by the impending industrialization of textile antenna production, caused by the widespread diffusion of wearable systems within the “Internet of Things”. As a result, a fast and reliable characterization technique is needed to cope with the production rate of an assembly line.
fixture crosses a given threshold, as a polynomial function of ε_r and $\tan \delta$. Finally, the comparison between modeled and measured frequencies yields the MUT’s electromagnetic properties.

Given the simple measurement fixture and the few full-wave simulations required to estimate the variation interval of ε_r, the construction of the model for a given material only takes a few minutes. Once these models are available, the extraction of ε_r and $\tan \delta$ is carried out at negligible computational cost for several samples of the same material. The proposed technique is applicable to thin substrates for ε_r up to 10 and $\tan \delta$ up to 0.1, and for frequencies below 10 GHz.

II. CHARACTERIZATION PROCEDURE

As applied in an assembly line (see Fig. 1), during the characterization procedure, the MUT is unrolled on top of an inset-fed patch antenna (see Fig. 2). For each sample, the assembly line stops, and a Styrofoam block presses the substrate onto the patch antenna to avoid air gaps without interfering with the return loss $|S_{11}|_{dB}$ measurement of the fixture.

The interaction between antenna and MUT shifts the resonance frequency f_r. We now estimate the properties of the MUT based on this shift, as it depends on the electromagnetic characteristics of the material. First, the variation interval of the relative permittivity $\Delta \varepsilon_r$ of the MUT is determined. To this end, we capitalize on the independence of the resonance frequency of the antenna from variations in the MUT’s $\tan \delta$. This holds for low-loss materials, such as typical textile substrates applied in antenna design [9]–[11]. We first simulate the structure for an MUT with a permittivity $\varepsilon_r^{\text{sim}}$ that yields a higher simulated resonance frequency f_r^{sim} than the measured one f_r^{meas}. Specifically, for unknown electromagnetic characteristics of the MUT, as for textile substrates, the initial value of $\varepsilon_r^{\text{sim}}$ is set to 1. In contrast, when properties of the MUT are known or provided by the manufacturer, $\varepsilon_r^{\text{sim}}$ is chosen as a lower bound of the known value. Next, we increase $\varepsilon_r^{\text{sim}}$ by $\Delta \varepsilon_r^{\text{sim}}$ until the simulations yield an f_r^{sim} lower than f_r^{meas}. In these simulations, the loss tangent $\tan \delta^{\text{sim}}$ of the MUT remains fixed and can be chosen arbitrarily small. The variation interval of ε_r is finally defined by

$$\Delta \varepsilon_r = [\max(\varepsilon_r^{\sim\text{sim}} - 2\Delta \varepsilon_r^{\text{sim}}, 1), \varepsilon_r^{\sim\text{sim}} + 2\Delta \varepsilon_r^{\text{sim}}]$$

(1)

with $\varepsilon_r^{\sim\text{sim}}$ the last simulated permittivity value. $\Delta \varepsilon_r^{\text{sim}}$ is chosen large enough such that $\Delta \varepsilon_r$ accounts for non-uniformity of the MUT, determined by only a few simulations. In all cases, $\Delta \varepsilon_r^{\text{sim}} = 0.1$ has proved to be a suitable choice.

Next, the algorithm extracts the electromagnetic properties of the MUT. First, since all textile materials considered in previous works exhibit a loss tangent $\tan \delta$ lower than 0.04 [9]–[11], we set $\Delta \tan \delta = [0, 0.1]$. Second, we set a threshold value $\tan \delta^{\text{th}}$ to half the peak magnitude of the measured $|S_{11}|_{\dB}$. This choice yields stable and accurate material properties. Then, we model the two frequencies f_r^{sim} and f_r^{sim} at which the antenna’s simulated return loss $|S_{11}|_{\dB}$ crosses $\tan \delta^{\text{th}}$ as functions of ε_r and $\tan \delta$.

![Fig. 2. Inset-fed patch antenna resonating at 2.25 GHz, with MUT on top.](Image)

| TABLE I. DIMENSIONS OF THE PATCH ANTENNA (SEE FIG. 2) OPERATING AT 2.25 GHz |
|---|---|
| Parameter at 2.25 GHz | Value (mm) |
| Patch length L | 36 |
| Patch width W | 36.5 |
| Inset length L_{in} | 10 |
| Inset width W_{in} | 3 |
| Feed length L_f | 10 |
| Feed width W_f | 1.2 |

$$f_r^{(i)}(x_1, x_2) = \sum_{k_1=0}^{P_1} \sum_{k_2=0}^{P_2} y_{k_1 k_2}^{(i)} \phi_{k_1}(x_1) \phi_{k_2}(x_2)$$

(2)

with $i = 1, 2$. $x_1, x_2 \in \Gamma = [-1, 1]$ are two normalized variables corresponding to ε_r and $\tan \delta$, respectively, defined by

$$\varepsilon_r = (1 + x_1) \left(\frac{\varepsilon_r^{\text{sim}}}{2} + \Delta \varepsilon_r^{\text{sim}} \right) + (1 - x_1) \frac{\max(\varepsilon_r^{\text{sim}} - 2\Delta \varepsilon_r^{\text{sim}}, 1)}{2}$$

(3)

$$\tan \delta = \frac{\Delta \tan \delta}{2} x_2 + \frac{\Delta \tan \delta}{2}.$$ (4)

The functions $\phi_{k_i}(x_i)$ are orthonormal Legendre polynomials of degree k_i corresponding to the ith variable ($i = 1, 2$). The total order P of expansions (2) is equal to $P_1 + P_2$, where P_1 and P_2 are the maximum values that can be achieved by k_1 and k_2, respectively. The coefficients $y_{k_1 k_2}^{(i)}$ are calculated by applying Galerkin weighting and an $R_1 \times R_2$-point Gauss-Legendre quadrature rule to (2), yielding
\[y_{k_1k_2}^{(i)} \approx \sum_{l_1=0}^{R_1} \sum_{l_2=0}^{R_2} w_{l_1} w_{l_2} \phi_{k_1}(x_{l_1}) \phi_{k_2}(x_{l_2}) f_{\text{sim}}^{(i)}(x_{l_1}x_{l_2}) \]

(5)

where \(x_{l_1} \) and \(x_{l_2} \) are the quadrature points, and \(w_{l_1} \) and \(w_{l_2} \) are the corresponding weights. The values \(f_{\text{sim}}^{(1)}(x_{l_1}x_{l_2}) \) and \(f_{\text{sim}}^{(2)}(x_{l_1}x_{l_2}) \) are evaluated by a full-wave electromagnetic field solver, such as Advanced Design System (ADS) Momentum. Finally, the measured values of \(f_{\text{meas}}^{(1)} \) and \(f_{\text{meas}}^{(2)} \), at which the measured \(|S_{11}| \) crosses the threshold \(t_{\text{dB}} \), are compared to the approximations (2) of \(f_{\text{sim}}^{(1)} \) and \(f_{\text{sim}}^{(2)} \). The solution of the resulting system of equations yields the values of \(\varepsilon_r \) and \(\tan \delta \) of the MUT as

\[
\sum_{k_1=0}^{P_1} \sum_{k_2=0}^{P_2} y_{k_1k_2}^{(i)} \phi_{k_1}(x_{l_1}) \phi_{k_2}(x_{l_2}) = f_{\text{meas}}^{(i)}, \quad i = 1, 2.
\]

(6)

In case the values of \(\varepsilon_r \) and \(\tan \delta \) do not belong to the variation intervals defined at the beginning, a larger value of \(\Delta \varepsilon_r^{\text{sim}} \) is substituted into (1) to enlarge the variation interval \(\Delta \varepsilon_r \) and a larger interval \(\Delta \tan \delta \) is considered. Then, we reconstruct the expansions (2) and reprocess the measured data until a valid solution is found. Moreover, if the MUT has already been characterized and a model is readily available, the newly measured values of \(f_{\text{meas}}^{(1)} \) and \(f_{\text{meas}}^{(2)} \) are directly introduced into the algorithm that determines \(\varepsilon_r \) and \(\tan \delta \). In that case, the properties of the material are immediately computed without resorting to full-wave simulations. Finally, we point out that the entire characterization process may be affected by uncertainties in the MUT thickness. To address this issue, the height \(h \) of the MUT can be included as a third variable \(x_{k} \) in (2), measured during the characterization process and then substituted for \(x_{k} \) before solving (6). However, we found that a variation as large as 25% in \(h \) results in absolute errors of less than 1% and 5% for \(\varepsilon_r \) and \(\tan \delta \), respectively. Therefore, we carry out the validation of the advocated technique by simply considering the MUT’s nominal thickness.

III. CHARACTERIZATION RESULTS

The characterization process of Section II is applied to a measurement fixture consisting of an inset-fed patch antenna (see Fig. 2), manufactured on a rigid I-Tera MT40 high-frequency laminate, with \(\varepsilon_r = 3.56 \), \(\tan \delta = 0.0035 \), and thickness \(h = 0.508 \) mm. The patch is etched in a 35-\(\mu \)m-thick copper layer. The antenna has been designed in ADS momentum to resonate at 2.25 GHz, thus allowing material characterization in the proximity of the 2.45 GHz Industrial, Scientific and Medical frequency band, which is very important for on-body communication. The design parameters of the antenna are reported in Table I. The extraction algorithm is implemented in mathematica, solving (7) in a numerical way.

\begin{table}[h]
\centering
\caption{Table II. NOMINAL CHARACTERISTICS OF THE CONSIDERED MATERIALS}
\begin{tabular}{|c|c|c|c|}
\hline
Material & Manufacturer & Composition & h (mm) \\
\hline
3-D black & Leandro Manual Arajo 3003 & 100% polyester & 2.65 \\
3-D gold & Leandro Manual Arajo 3013 & 100% polyester & 3.068 \\
3-D white & Leandro Manual Arajo 3015 & 100% polyester & 4.14 \\
Corktex & Corticeira Amorim 8245 & 100% cork & 1.1 \\
EVA green & - & 100% EVA & 2.01 \\
Fake leather & - & 100% polyester & 0.831 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Table III. RESULTS OF THE CHARACTERIZATION PROCEDURE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Material & Setup Time & \(\varepsilon_r \) & \(\sigma_r \) & \(\tan \delta \) & \(\sigma_{\tan \delta} \) \\
\hline
3-D black & 14 min 52 s & 1.120 & 1.74e-2 & 0.00634 & 2.30e-3 \\
3-D gold & 14 min 52 s & 1.118 & 1.70e-2 & 0.00668 & 2.25e-3 \\
3-D white & 14 min 52 s & 1.133 & 6.10e-3 & 0.03490 & 8.83e-4 \\
Corktex & 16 min 13 s & 1.295 & 1.32e-2 & 0.04640 & 1.07e-3 \\
EVA green & 14 min 52 s & 1.103 & 1.15e-3 & 0.03990 & 8.25e-4 \\
Fake leather & 16 min 13 s & 1.266 & 4.63e-3 & 0.04510 & 1.81e-3 \\
\hline
\end{tabular}
\end{table}

A. Characterization of Textile Substrates

We now characterize six substrates of potential interest for antenna production. Their normal characteristics are reported in Table II. In particular, 3-D fabrics are applied in the manufacturing of protective clothing, e.g., for firefighters, whereas fake leather and EVA substrates are popular in fashion design and sport clothing, respectively. In contrast, cork is becoming more and more important in the production of components for cars and other vehicles.

A sample of each material was placed on top of the patch antenna, and the corresponding reflection loss \(|S_{11}| \) was measured. Then, for each new material, the characterization procedure of Section II was carried out. Since the materials were expected to exhibit a low permittivity, \(\varepsilon_r^{\text{sim}} \) was set to 1, whereas \(\Delta \varepsilon_r^{\text{sim}} \) was kept equal to 0.1. The loss tangent \(\tan \delta^{\text{sim}} \) was set to the mean value of the variation interval \(\Delta \tan \delta \), being 0.05. The threshold \(t_{\text{dB}} \) was kept equal to \(-8\) dB for all substrates. All the models converged with orders of expansion \(P_1 = P_2 = 2 \).
For each material, a square sample was measured by positioning it such that each time one different side is aligned with the microstrip feed of the antenna and by repeating the procedure by turning it upside down. The mean value and the variance of the results for both the permittivity and the loss tangent, as well as the setup time, are reported in Table III. For each material, the extraction of all eight results took 1.28 s.

As a final validation two prototypes of a probe-fed textile patch antenna were designed with CST Microwave Studio to resonate between 2 and 3 GHz. They were manufactured with the 3-D black and the 3-D gold substrates. A commercial e-textile with resistivity $\rho_e = 0.18 \, \Omega/$sq and thickness 80 μm was applied for both the ground plane and the patch. The first antenna consist of a 45.37-mm-long and 35-mm-wide rectangular patch, with the feed positioned at 8.5 mm from the center toward the short edge of the patch. In contrast, the second prototype exhibits a square patch length of 52.5 mm and feed at 15 mm from the center of the patch. Both measured and simulated $|S_{11}|_{\text{dB}}$ of both antennas are shown in Fig. 3. We notice that a very good agreement between measurements and simulations is found for the prototype manufactured with the 3-D gold substrate. The measured resonance peak of the prototype manufactured with the 3-D black material is slightly shifted with respect to the simulated one. Such a shift corresponds to a difference in the material’s ε_r as small as 0.04 with respect to the value obtained by the characterization process. This we ascribe to the presence of the glue applied to attach both the patch and the ground plane to the substrate [10]. Such an effect may also be accounted for during antenna fabrication.

IV. CONCLUSION

A novel technique was proposed for the characterization of the electromagnetic properties of substrate materials for textile antenna design. This non-destructive method is based on an inset-fed patch antenna interacting with an MUT. The frequency values for which the resonance peak of the return loss $|S_{11}|_{\text{dB}}$ crossed a given threshold value are modeled as functions of the relative permittivity ε_r and the loss tangent $\tan \delta$. The comparison between these functions and the measured data yield the electromagnetic properties of the material under test. The proposed approach has proven to be fast, accurate, and flexible. Therefore, it is compatible with an assembly-line fabrication, thus considerably improving the efficiency of the production of textile antennas.

REFERENCES