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Large-scale wearable data reveal digital phenotypes for daily-
life stress detection
Elena Smets1,2, Emmanuel Rios Velazquez3, Giuseppina Schiavone3, Imen Chakroun2, Ellie D’Hondt2, Walter De Raedt2, Jan Cornelis2,
Olivier Janssens4, Sofie Van Hoecke4, Stephan Claes5, Ilse Van Diest6 and Chris Van Hoof1,2,3

Physiological signals have shown to be reliable indicators of stress in laboratory studies, yet large-scale ambulatory validation is
lacking. We present a large-scale cross-sectional study for ambulatory stress detection, consisting of 1002 subjects, containing
subjects’ demographics, baseline psychological information, and five consecutive days of free-living physiological and contextual
measurements, collected through wearable devices and smartphones. This dataset represents a healthy population, showing
associations between wearable physiological signals and self-reported daily-life stress. Using a data-driven approach, we identified
digital phenotypes characterized by self-reported poor health indicators and high depression, anxiety and stress scores that are
associated with blunted physiological responses to stress. These results emphasize the need for large-scale collections of multi-
sensor data, to build personalized stress models for precision medicine.

npj Digital Medicine            (2018) 1:67 ; https://doi.org/10.1038/s41746-018-0074-9

INTRODUCTION
Since Hans Selye’s definition of stress as “the nonspecific response
of the body to any demand”,1 many studies have revealed the
negative influence of an overload of stress on health and
wellbeing. Observational data suggest associations between
psychological stress and depression, cardiovascular disease,
sudden death, and myocardial infarction.2,3 Early detection and
prevention of the adverse consequences of stress are therefore of
utmost importance, and require personalized prevention and
treatment strategies that take individual variability into account, as
is suggested in the Precision Medicine Initiative.4

Towards precision medicine, digital phenotypes are a new
paradigm to extend our assessment of human illness beyond
traditional examinations.5 They represent a subject’s interactions
with digital technologies such as connected health devices and
smartphones to generate longitudinal, individual health profiles.
Leveraging data-driven approaches, these data can fundamentally
change our understanding of disease prognoses and provide new
insights towards disease prevention and early detection.5

The most widely used method and current gold-standard to
assess stress is by means of questionnaires, e.g., the Perceived
Stress Scale (PSS).6 However, these questionnaires are qualitative,
time-consuming, and reflect responses collected during spot-
checks only. This limits the accurate monitoring of stress and the
use of just-in-time interventions to reduce stress. Therefore,
research has focused on finding continuous and quantitative
physiological markers of stress,7 by exploiting measurable
functioning of the sympathetic nervous system’s fight-or-flight
response,8 such as skin conductance (SC), the electrocardiogram
(ECG), the electromyogram (EMG), blood pressure (BP), and skin

temperature (ST).9 These have shown to be reliable indicators of
stress in laboratory conditions.9

In recent years, the growing availability of wearable sensors has
led to increased research towards continuous, ambulatory
monitoring of stress. So far mainly small-scale studies of
20–50 subjects have been conducted.10–12 Multiple findings
suggest that physiological responses to stress tend to be
person-dependent.13,14 Therefore, large datasets are essential to
grasp subject-to-subject variability and develop personalized risk
profiles. Furthermore, in the majority of ambulatory trials, subjects’
demographics and psychological baseline profiles (e.g., self-
reported anxiety and depression levels) are either overlooked or
not assessed.10,11 Context information is often not measured,10,12

although it can also provide actionable insights.7,11

Here we present the SWEET study (Stress in the Work
EnvironmEnT): a comprehensive, cross-sectional study on an
office workers’ population of 1002 healthy volunteers, who were
monitored continuously for 5 consecutive days. We collected
baseline psychological information, 5 consecutive days of free-
living physiological data through wearables and smartphone-
based contextual measurements, self-reported stress through
ecological momentary assessments (EMAs) and physiological
responses to an application-based stress test. We show strong
associations between physiology, contextual information, and
behavior, highlighting the benefit of multi-sensor information to
improve our understanding of stress in daily life. We show that
physiological signals differ significantly according to reported
stress levels and identified stress digital phenotypes, characterized
by self-reported poor health and high depression, anxiety and
stress scores, that are associated with blunted physiological stress
responses. Building on preventive health, these findings and this
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comprehensive dataset of physiology, context, and stress in the
daily life, allow for multi-sensor models to detect stress in daily life.

RESULTS
Dataset quality and compliance
A comprehensive summary of the intake questionnaire, including
subject demographics and psychological baseline information is
available in S1 Table. The measurements lasted 5 days per subject,
starting on Thursday morning and ending on Monday evening. An
overview of self-reported stress responses through EMAs and
compliance is available in S2 Table. Subjects provided on average
25 self-reported stress responses, with highly imbalanced data,
containing 50.4% no stress and only 0.3% extremely high stress,
reported on a five-point Likert scale. Therefore, the three highest
stress levels were merged, representing 14.3% of the data, so that
three, instead of five, levels of stress (S1= no stress, S2= light
stress, S3= high stress) were considered.
An overview of smartphone and wearable sensor data quality is

available in S3 Table and S4 Table, respectively. High quality
physiological data (the chest patch, measuring ECG and accelera-
tion (ACC), see Methods, had on average 86.4 ± 8.2% good quality
data; the Chillband, measuring SC, ST, and ACC, had on average
96.3 ± 2.2% good quality data), was complemented with
smartphone-based context information such as location and
audio features (see Methods). Using high quality physiological
signals, 18 features were calculated (6 ECG features, 8 SC features,
and 4 ST features) in a window of 5 min, with 4 min overlap. An
overview can be found in material and methods and S5 Table.
Further, we compared questionnaire-based lifestyle (e.g.,

practicing sports, smoking habits) and health indicators (e.g.,
sleep quality, depression levels). Our findings represent a large-
scale verification supporting previous work and confirm the value
of data sampled with validated questionnaires (S1 Fig. and S1
Text).

Associations between physiology, context, and behavior
We investigated correlations between physiology, context, and
behavior in order to improve our understanding of stress in daily
life.
Through EMAs we daily asked questions related to stress,

activity, food and beverage consumption, sleep quality, and
gastro-intestinal symptoms. Based on fixed day and night
intervals, circadian rhythms of the physiological signals can be
identified, namely lower average HR during the night and higher
SC and ST (mean HRday: 74.6 ± 12.7, mean HRnight: 63.0 ± 10.2,
Wilcoxon ranksum p < 0.001; mean SCday: 1.7 ± 2.7, mean SCnight:
2.8 ± 3.4, Wilcoxon ranksum p < 0.001; mean STday: 31.4 ± 2.1,
mean STnight: 33.1 ± 2.6, Wilcoxon ranksum p < 0.001, day=

06 am–23:59 pm, night= 00–06 am). During weekdays (i.e., Thurs-
day, Friday, and Monday) consumption of caffeinated beverages
or breakfast corresponded to higher stress levels (caffeine: 1.84 ±
0.81, breakfast: 1.87 ± 0.81, average: 1.77 ± 0.83, Wilcoxon ranksum
p < 0.001), while dinner or alcohol consumption, corresponded to
lower stress levels (dinner: 1.51 ± 0.71, alcohol: 1.30 ± 0.64,
average: 1.77 ± 0.83, Wilcoxon ranksum p < 0.001). During the
weekend (i.e., Saturday and Sunday), the consumption of alcohol
was associated with lower stress levels (alcohol: 1.34 ± 0.66,
average: 1.45 ± 0.71, Wilcoxon ranksum p= 0.001), other reported
consumptions did not show significant differences. A possible
confounder here could be time of the day since breakfast is
consumed most in the morning (82% of reports between 6 and
10 h), and alcohol and dinner most in the evening (alcohol: 61% of
reports between 18 and 22 h, dinner: 65% of reports between 18
and 22 h), caffeine was reported equally throughout the day, but
less during the evening (32% of reports between 6 and 10 h, 37%
between 10 and 14 h, 23% between 14 and 18 h, and 7% between
18 and 22 h).
Further, linear mixed effects models were computed to

investigate associations between repeated measures. A significant
negative association between self-reported stress and self-
reported pleasure (based on the Self Assessment Manikin (SAM))
was observed, with higher levels of self-reported stress corre-
sponding to decreasing levels of pleasure (Table 1). It can be
speculated that rating of high self-reported stress is likely
associated with the feeling of distress (negative stress) rather
than eustress (positive stress). The standard deviation of the
magnitude of acceleration (ACC SD), was associated with intensity
of movement as ACC SD was higher during self-reported high-
intensity activities (low-intensity, i.e., lying, sitting, and standing:
0.0175 ± 0.0089, high-intensity, i.e., walking, running, biking,
driving car, and other activities: 0.0189 ± 0.0096; Wilcoxon
ranksum p < 0.001) and HR and SC features increased with ACC
SD (Table 1) while ST decreased with ACC SD (Table 1). This
illustrates that physical activity is associated with changes in
physiology, highlighting the challenge of differentiating physio-
logical changes caused by physical activity from those caused by
stress.12,15 Therefore, to account for the confounding effect of
physical activity on physiology and stress, we excluded segments
of high activity in the subsequent analysis. Finally, increasing
activity levels (ACC SD), decreased the quality of physiological
signals (Table 1), an issue inherent to the free-living nature of the
study.
Five days of measurements of physiological data and accelera-

tion are shown in Fig. 1a, indicating daily variations in a healthy
population. Behavior and mood self-annotations captured
through EMA questionnaires and smart-phone sensor data are
shown for a single representative subject in Fig. 1b.

Table 1. Effects of repeated measures

Formula B ± SE Inferential statistics

Test statistic and df p-Value Significance

Stress~Pleasure+ (1 | subject) −0.22 ± 0.01 X2(2,3)= 1353.5 <0.001 *

SC mean~ACC SD+ (1 | subject) 0.93 ± 0.02 X2(3,4)= 2448.6 <0.001 *

HR mean~ACC SD+ (1 | subject) 12.04 ± 0.02 X2(3,4)= 488,051 <0.001 *

ST mean~ACC SD+ (1 | subject) −5.61 ± 0.02 X2(3,4)= 87,378 <0.001 *

SC Quality~ACC SD+ (1 | subject) −0.23 ± 0.0008 X2(3,4)= 90,652 <0.001 *

ECG Quality~ACC SD+ (1 | subject) −0.33 ± 0.0009 X2(3,4)= 115,642 <0.001 *

Results of the linear mixed effects models for repeated measures. For each model, the fixed effect coefficient is presented with standard error (B ± SE) and
inferential statistics on the significance of the effect, which were calculated by testing the change in model performance (based on Akaike’s information
criterion) when a given predictor (e.g., pleasure) was excluded from the model using an ANOVA test
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Associations between physiological signals and self-reported
stress levels
We aim to use physiological patterns to develop models for
psychophysiological stress detection. Therefore, we show here a
variety of associations between physiological features and self-
reported stress levels, in a healthy population. An overview of all
physiological features calculated is presented in S5 Table.
Mean differences of uncorrelated physiological features (r < 0.7),

normalized per subject, across self-reported daytime stress levels
(S1, S2, and S3) and nighttime (00–06 am, N), included as a
baseline rest condition, are shown in Fig. 2. Population variations
(averages and 95% CI) of physiological features across self-
reported stress levels and nighttime are presented in Table 2, an
extended version, including all physiological features, can be
found in S6 Table.
For all the time instances, S1–S3 and N, only periods in which

the activity level was lower than the empirical threshold (ACC SD
< 0.04)16 and good quality (Quality > 0.8) data were considered to
exclude artifacts and physiology variations due to physical activity.
All features, except ST slope and ST SD (i.e., ST standard deviation,
see S5 Table), were significantly different during nighttime (N)
compared to during daytime self-reported stress levels (S1, S2, S3)
(Fig. 2). ECG LF (i.e., the low frequency component of the RR signal,
see S5 Table) and LFHF (i.e., the ratio of LF and HF), mean HR, SC
area (i.e., the sum of the area of SC responses, see S5 Table) were

lower at night. The ST median, SC phasic (i.e., power of the phasic
SC component, see S5 Table), and ECG HF (i.e., the high frequency
component of the RR signal, see S5 Table) were higher at night.
Additionally, mean HR was significantly lower in S1 as compared

to S3. Mean HR has a strong negative correlation with RMSSD (i.e.,
root mean square of the successive RR differences, a time domain
HRV feature, see S5 Table) (mean HR, RMSSD: r=−0.99), which is
significantly higher in S1 as compared to S3 (see S6 Table). These
results confirm findings in laboratory studies reporting an increase
in HR and decrease in HRV with increasing stress levels.17–19 The
frequency domain HRV features, i.e., the LF signal, HF signal and
the ratio of LF and HF signals, did not change significantly during
S1 as compared to S2 and S3 and during S2 as compared to S3. In
literature, the HF component is thought to represent the cardiac
parasympathetic nerve activity, which is active during rest
conditions, and the LF component to represent the sympathetic
system, which is active during stress conditions.20 The LF and LFHF
components are therefore expected to be higher during stress
conditions and the HF component lower.20 However, varying
results have been reported in literature and in general RMSSD has
been reported to be more reliable than LFHF,20,21 in particular
because of the mechanical effects of respiration on HF power and
the influence of the prevailing heart rate on LF power.20

Furthermore, SC area was lower in S1 compared to S3, as reported
previously in ref. 22. SC phasic was lower in S2 compared to S3 and
lower in S1 compared to S3, as expected based on previous

Fig. 1 Physiology and context timeline. a Healthy-population physiological data over 5 days of measurements depicting smoothed daily
profiles of high quality (Quality > 0.8) physiological signals (mean HR, SC, and ST) and activity (ACC SD), averaged in 1min windows. b Self-
reported annotations (stress, pleasure, activity, consumptions, and wake up/bed times) and location, as indicated with vertical lines when
available for a representative subject. Location data are indicated as unique stay locations or commuting locations. An online version of a and
b can be downloaded from https://drive.google.com/open?id=1Z1q0YLG8cvUllSM84X3mgwmCCBjfO0M7
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laboratory research,23,24 indicating that higher stress levels are
associated with higher power of the phasic SC component. Finally,
the ST median was higher in S1 compared to S2 and S3, which
indicates that ST amplitude decreases with stress.25 For most of
the features no significant differences were found between S2 and
S3. This could either indicate that in general subjects have
difficulties in making distinctions between light and high stress
levels or that physiological features cannot distinguish between
these levels at a population level. Significant differences between
S1 and S3, the two most extremes of the stress scale, were found
for ST median, SC phasic, SC area, and ECG mean HR. A significant
difference between S2 and S3 was found only for SC phasic and
between S1 and S2 only for ST median.
Overall, the physiological signals measured in daily life showed

significant differences between night and different stress levels, in
line with previous findings of laboratory studies. These results

confirm on a large scale the potential of physiological signals for
detecting stress in daily life.

Towards digital phenotypes for psychophysiological stress
detection
We used a data-driven approach to uncover digital phenotypes of
subjects’ daily life stress responses. We developed random forest
models using a leave-one-subject-out cross-validation to link
physiological features to self-reported stress. We used the
classifiers’ performances to identify and characterize digital
phenotypes representing subjects with similar psychological
baseline, physiological responses to stress and health indicators.
Only good quality (Quality > 0.8) and low activity (ACC SD <

0.04) data were included for 568 subjects, with complete data (i.e.,
simultaneous continuous recording from wearables and EMAs).
The remaining subjects had missing data in one of the two sensors
or lacked mobile EMA data, and were not included in this analysis.
To account for possible bias we compared baseline psychological
questionnaires of the excluded subjects and found no significant
difference with the included subjects (PSS included subjects:
14.2 ± 6.1, PSS excluded subjects: 14.6 ± 6.1, Wilcoxon ranksum p
= 0.19). The classification performance, as calculated using the
average F1-score across all subjects, was 0.43 (95% CI: 0.05–0.86),
which is slightly better than the F1-score of 0.36, obtained when
all samples are classified as the majority class (i.e., S1). The most
important features across all subjects were ST median, SC phasic
and SC diff2. An overview of feature importance is presented in
S2 Fig.
Subjects were categorized in groups of low performance (n=

216), with F1-score < 0.33 (performance as good as random),
medium performance (n= 249), with 0.33 < F1-score < 0.66 and
high performance (n= 103), with F1-score > 0.66. We compared
three aspects of each group: self-reported stress imbalance,
physiological dynamic range and demographics, and psychologi-
cal background information.
Subjects in the high performance group had on average a more

imbalanced dataset (86% no stress, 12% light stress, and 2% high
stress), compared to the low performance group (26% no stress,
45% light stress, and 29% high stress). This imbalance could
provide an explanation for the difference between low and high
performance. Additionally, on average subjects in the low
performance group reported 26 times (SDlow= 14) their stress
levels on the EMA’s, whereas for the medium and high
performance groups subjects reported their stress levels on
average 31 times (SDmedium= 13, SDhigh= 12). Although the
difference is small, the response rate for the low performance
group was significantly lower (p < 0.001) as compared to the
medium and high performance groups.

Fig. 2 Associations between physiological features and self-
reported stress levels. Each row represents a physiological feature,
columns represent the difference of the median of normalized
features during the night (N) (00–06 am) and stress levels (S1, S2,
and S3). Colors indicate positive (blue) or negative (red) differences.
For example, SC phasic is significantly higher (blue) during the night
as compared to during all reported stress levels, and significantly
lower (red) during S1 as compared to S2 and S3. Symbols: *p < 0.05,
**p < 0.005, ***p < 0.0005

Table 2. Physiological features across self-reported stress levels

Night (mean, 95% CI) S1 (mean, 95% CI) S2 (mean, 95% CI) S3 (mean, 95% CI)

ECG HF (×10−3) 0.69 (0.018, 3.6) 0.62 (0.016, 2.9) 0.66 (0.024, 2.8) 0.62 (0.023, 2.7)

ECG LF (×10−3) 1.1 (0.054, 5.0) 1.1 (0.074, 4.2) 1.1 (0.097, 4.0) 1.1 (0.1, 4.0)

ECG LFHF 3.5 (0.29,14.6) 3.8 (0.48, 15.0) 3.5 (0.51, 13.8) 3.7 (0.53, 14.4)

ECG mean HR 62.5 (47.3, 83.3) 72.1 (52.1,95.1) 73.4 (53.6, 95.5) 74.6 (56.0, 96.1)

SC area 0.71 (0, 6.2) 1.9 (0, 16.0) 1.7 (0, 14.5) 2.0 (0, 16.5)

SC phasic 18.3 (0, 157.5) 8.3 (0, 78.9) 7.7 (0, 72.5) 8.2 (0, 70.4)

ST median 32.9 (21.0, 36.0) 31.5 (27.0, 35.0) 31.2 (27.0, 34.0) 31.3 (28.0, 34.0)

ST slope (×10−3) 0.061 (−4.6, 4.7) 0.34 (-4.4, 4.9) 0.30 (-4.3, 4.9) 0.31 (−4.2, 4.9)

ST SD 0.10 (0, 0.50) 0.14 (0, 0.50) 0.13 (0, 0.50) 0.13 (0, 0.50)

Population mean and 95% confidence interval (CI) of physiological features during the night (00–06 am) and different stress levels (S1, S2, and S3).

E. Smets et al.

4

npj Digital Medicine (2018)    67 Scripps Research Translational Institute



However, we also found that for 15 out of 18 features, the high
performance group had a higher dynamic range (i.e., a larger
average difference per physiological feature between low and
high stress) as compared to the low performance group. In S2 Text
we show that this effect is significantly different as compared to
random assignment in three groups. Examples for mean HR,
phasic SC, and median ST, are shown in Fig. 3a–c respectively; a
complete summary for all features is provided in S3 Fig.
To account for possible confounders we further investigated

subjects’ demographics and psychological information, based on
the intake questionnaire, in the three groups. There was no
difference in gender in all three groups (X2 low-high performance:
p= 0.62, X2 low-medium performance: p= 0.41, X2 medium-high
performance: p= 0.92). On average subjects in the high perfor-
mance group reported a healthier lifestyle and lower baseline
depression, anxiety and stress levels than subjects in the low
performance group (Fig. 3d–f). They report to eat less take-out
(low performance group: 1.1 ± 1.3 times per week, high perfor-
mance group: 0.8 ± 0.9 times per week, Kruskal–Wallis p= 0.04), to
practice more sports (low performance group: 26% does not
practice sports, high performance group: 18% does not practice
sports, X2= 0.01), they have higher sleep quality based on the
Pittsburgh Sleep Quality Index (PSQI scores higher than 5 indicate
worse sleep quality; low performance group: 5.3 ± 2.5, high
performance group: 4.1 ± 2.3, Kruskal–Wallis p < 0.001) and score
lower on depression scale (Depression Anxiety Stress Scale (DASS)
—depression scale; low performance group: 3.5 ± 3.4, high
performance group: 1.4 ± 2.1, Kruskal–Wallis p < 0.001), anxiety
scale (DASS—anxiety scale; low performance group: 2.6 ± 2.9, high
performance group: 1.0 ± 1.7, Kruskal–Wallis p < 0.001) and stress
scales (DASS—stress scale; low performance group: 6.5 ± 3.9, high
performance group: 3.1 ± 3.2; PSS; low performance group: 17.1 ±
5.6, high performance group: 10.5 ± 5.5, Kruskal–Wallis p < 0.001)
as compared to subjects in the low performance group. Subjects
in the high performance group are also significantly older (low
performance group: 38.6 ± 10.0, high performance group: 41.7 ±
10.0, Kruskal–Wallis p= 0.007).

DISCUSSION
To assess stress we collected a dataset of 1002 subjects during five
consecutive days, including a wide variety of subject background
information, physiological data in ambulatory settings and
smartphone-based self-reports and contextual information. We
found significant differences between physiological features for
ECG, SC, and ST between different stress levels and nighttime
baseline, confirming laboratory findings and indicating the
potential of psychophysiological stress detection in daily life on
a large-scale population.
Additionally, we compared digital phenotypes based on

wearable and self-reported data emerging from a data-driven
analysis. Although the classification performance of the general-
ized models (F1-score= 0.43) does not allow use in practice yet,
we found that physiological responses to stress strongly differ
among subjects, distinguishing groups with small and large
dynamic ranges of the physiological features. These results
highlight the need for future research to focus on personalized
models as subjects differ in the magnitude and type of their
physiological stress response. These groups are also characterized
by different psychological baselines and demographics, where the
group with a more blunted physiological stress-reactivity (small
dynamic range) tend to report a less healthy lifestyle and higher
depression, anxiety and stress scores than the more responsive
group (large dynamic range). These findings suggest that self-
reported poor health and high depression scores are negatively
correlated to physiological reactivity. Similar findings have been
reported previously in laboratory research,26 but to date no
studies have investigated this relationship in real-life ambulatory
physiological recordings. In the current study, a general sample of
a healthy population was included, where ‘healthy’ was broadly
defined as being able to go to work. Although several subjects
scored high on the DASS or PSS scales, they were not diagnosed
with any clinical disorder as per the DSM-V guidelines. The
questionnaires merely provide a quantitative measure of distress
along the axes of depression, anxiety and stress, not a categorical
measure of clinical diagnoses. In future research, it would be

Fig. 3 Comparison of subjects with low, medium and high classification performance. In a–c average features ECG mean HR, SC phasic, and ST
median are shown respectively for low (red), medium (yellow), and high performance (green) groups and compared with the entire
population average (black) in phases of no, light and high stress. In d–f baseline psychological information of subjects in low, medium, and
high performance groups are compared
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interesting to compare the results of this baseline population with
those of subjects with a clinical diagnosis, such as depression.
Although this dataset provides a wide variety of demographic

profiles, caution for bias is needed when analyzing and interpret-
ing the results. For example, subjects were mostly educated
employees with sedentary jobs. It is possible that highly educated
persons show different stress profiles compared with lower
educated persons, or that highly educated persons would be
better at wearing the wearable devices, which would bias the
results. Also, to translate these results to persons with more active
jobs or for example high performance athletes, additional
experiments are needed.
Identifying the concept of stress in ambulant conditions is

challenging as the gold standard is based on self-reports, which
could lead to bias and reduced classification accuracies as
compared to controlled laboratory studies in which stressors are
artificially induced. This raises the question whether indeed stress
is detected or rather an activation of the autonomic nervous
system (ANS). From a data analytical perspective, one could argue
stress is detected since the models are trained based on a, self-
reported, stress reference, however this can be also biased due to
subjective perception. From a psychophysiological perspective, it
is not clear whether the physiological sensing models can
differentiate between actual stress and arousal or an ANS
activation. Further research should compare the link between
physiological signals and self-reported stress-responses on the
one hand and self-reported pleasure, arousal and control levels
based on the SAM on the other hand to better differentiate stress
and arousal levels.
This manuscript focused on the prediction of stress using

physiological parameters. In the future, it could be investigated
how context information (e.g., location, noise levels, ambient
light), combined with physiological data, could be used to
improve the performance of stress detection models. Further, in
our study physiological data during high physical activity was
excluded. It could be investigated if accelerometer data could be
used to improve signal quality or to improve model performance,
by incorporating the accelerometer signal itself for stress
prediction and physical activity as an additional class. Additionally,
the links between physiology, sleep quality and gastro-intestinal
symptoms (Leuven Postprandial Distress Scale) for different
psychological profiles (e.g., high versus low depression, high
versus low stress), need to be investigated.
The results of this study provide a baseline for large-scale

ambulatory population monitoring to uncover blunted physiolo-
gical responses to stress. Furthermore, these findings have
important implications related to stress modeling strategies,
indicating that stress detection models should be tailored to
phenotypes by including multi-sensor data sources, as subjects
with different physiological responses to stress, display different
health statuses. This study exemplifies how large-scale, data-
driven analytics can be used to derive digital phenotypes and
generate new insights into stress detection and disease intercep-
tion in general. Continuous stress detection will form the basis to
enable highly personalized, just-in-time interventions for preven-
tive health.

METHODS
Experiment
This observational study was approved by the Research Ethical Committee
of UZ Leuven. The trial was conducted with 1002 subjects (484 male, 451
female, 67 did not fill in the questionnaire correctly), aged 39.4 ± 9.8,
recruited in 11 technology-oriented, banking, and public sector companies.
Subjects were included if they were active employees at the time of the
study, no other inclusion or exclusion criteria were applied. Subjects did
not receive any compensation for participating in the study apart from
having a chance at winning a restaurant or travel voucher. The experiment

was conducted over a time span of 2 years. The measurements lasted
5 days per subject, starting on Thursday morning and ending on Monday
evening (Fig. 4). All subjects signed the informed consent before
participating in the study.
Before the start of the experiment subjects completed an intake

questionnaire (S1 Table). The first part inquired personal information such
as age, gender, health problems, work situation, and lifestyle. Thereafter,
four psychological questionnaires were used to assess baseline stress,
depression, anxiety, sleep, and general health levels. These were the PSS,6

the PSQI,27 the DASS,28 and the RAND-36.29

On Thursday morning, the subjects received two wearable devices,
along with a user manual and a USB-stick containing instructions on how
to apply them. Two wearables were used to capture three physiological
signals unobtrusively: the ECG, SC, and ST. Both the devices also measure
3D ACC, which signal was used for estimating intensity of physical activity
and control for movement artifacts. Although EMG and BP are also
frequently used in laboratory settings, these are less feasible to measure
continuously in daily life. The first wearable was a chest patch (Fig. 4c),
which received regulatory approval and is able to measure the ECG and
ACC at a sampling rate of 256 and 32 Hz respectively. The second wearable
was the imec’s Chillband (Fig. 4c), a wrist-worn device, designed to
measure and record SC, ST, and ACC, sampled at 256, 1, and 32 Hz,
respectively. Subjects were advised to wear the Chillband the entire day,
but could take it off during the night, and to wear the chest patch the
entire day and night. Subjects were asked to remove the Chillband while
taking a shower and to remove Chillband and chest patch during vigorous
physical activities. The battery life of both sensors exceeded the duration
of the experiment. Data were recorded and stored on the devices’ internal
SD cards and uploaded to a central data platform at the end of the
experiment.
A custom-made smartphone application was used to trigger subjects to

fill-out the EMAs (Fig. 4b). Previous research has shown correlations
between stress and sleep efficiency30 and between stress and digestive
diseases (e.g., irritable bowel syndrome).31 Therefore, the sleep quality of
the previous night was inquired every morning and gastro-intestinal
symptoms experienced during the day were inquired every evening with
the Leuven Postprandial Distress Scale.32 Twelve times per day, the
smartphone application requested the subjects to indicate their level of
stress. The requests were sent at random times and at least 30 min apart.
The request consisted of four brief questions (Q1–Q4 in Fig. 4b) pertaining
to the past hour: first, the SAM33 was used as a visual scale to assess
pleasure, arousal and dominance (i.e., level of control), i.e., affective
emotions related to stress. The pleasure level could be used to differentiate
“good” stress from “bad” stress, i.e., eustress versus distress, where eustress
reflects the transition of the body to a lower allostatic load (i.e., “the price
the body pays for being forced to adapt to unfavorable psychosocial or
physical situations”34) and distress to a higher allostatic load.34 Second, the
maximum stress level was annotated on a 5-point Likert scale, i.e., not at
all, slightly, moderately, very and extremely stressed. Since eating and
drinking behavior and physical activity can influence physiology,13,35 the
third and fourth questions were used to indicate food and beverage
consumption (i.e., caffeine, alcohol, soft drinks, breakfast, lunch, dinner,
snack, or none) and activity levels (i.e., lying down, sitting, standing,
walking, running, biking, driving the car, or something else), for which
subjects could select multiple answers.
To assess individual physiological stress responses to a known common

stressor, the Montreal Imaging Stress Task,36—based on the well-known
Trier Social Stress Test—was included in the smartphone application (Fig.
4b). Each subject underwent this stress test during the first day of the
experiment (Thursday) at a suitable moment (i.e., given enough time and
in a quiet environment). The test consists of a 5min rest period (relaxing
music and images), a 5 min control period (simple mathematic tasks, no
time restrictions or social control), a 5 min stress task (mathematic tasks
with time restrictions and social control) and again a 5min rest period
(relaxing music and images).
Further, the smartphone application was used, conditional on subjects

permission, to collect contextual data, i.e., location, smartphone usage,
audio-features, movement, SMS/call/mail logs, and environmental sensors
(Fig. 4d). Location data can be used to investigate the correlation between
stress levels and locations, e.g., stress at home versus at work. Many
research has already indicated that social support has a large influence on
stress and health-related effects caused by stress.37 Audio features could
be used to detect conversations and social interaction. SMS, call, and mail
logs could be used as a proxy for workload and environmental sensors
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could provide a link between physiology and environment, e.g., higher
environmental temperatures could be correlated with higher ST and SC.38

On Monday evening subjects returned the sensors. Finally, subjects
completed a questionnaire about sensor comfort. As a follow-up on mental
health, a year later a reminder was sent to retake the DASS.

Data analysis—preprocessing
Raw sensor data and subject self-assessments were synchronized using
UTC timestamps. Quality indicators and feature extraction algorithms were
applied subsequently. Assessing the quality of the signals is necessary
since these are prone to artifacts due to motion or incorrect sensor
attachment.
The ECG quality indicator is based on Orphanidou et al.,39 which has

shown a sensitivity for artifact detection of 94% and a specificity of 97%,

and consists out of three rules and a template matching, verified on 10-s
segments of ECG data: first, the extracted HR should be within 40 and
180 bpm. Second, the maximum gap between successive R-peaks cannot
exceed 3 s. Third, the ratio of the maximum beat-to-beat interval to the
minimum beat-to-beat interval within the segment should be less than 2.2.
If all rules are satisfied, an adaptive QRS template matching is performed.
The 10-s segment is either classified as of good or of bad quality.
In the SC quality indicator,40 the ratio of lost versus overall signal is

calculated for each 5-s window. The signal is deemed lost if its value is
below 0.001 µS. If this ratio is above 0.9, the signal is classified as of bad
quality. Next, the algorithm searches for anomalies. For each second the
maximum increase of a signal value is set to 20% and the maximum
decrease to 10%, as suggested by Boucsein et al.41 If SC values within the
segment do not satisfy these conditions the segment is classified as of bad
quality.

Fig. 4 Study protocol. a Protocol timeline: starting with online intake questionnaires, followed by a 5-day trial, ending with a follow-up
questionnaire just after the experiment and 1 year later. b Ecological momentary assessments (EMAs): once per subject the Montreal Imaging
Stress Task is performed containing a series of mental arithmetic challenges. Once per day a sleep diary and gastro-intestinal symptoms diary
are filled in and 12 times a day stress levels are recorded. c Physiological recordings: Chillband and chest patch to measure SC, ST, ECG, and
acceleration. d Smartphone sensor data: overview of the data recorded
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Previous research defined the ST range at the wrist between 20 and 40 °
C.42 Therefore, ST values outside this range are classified as of bad quality.

Data analysis—physiological feature extraction
Eighteen physiological features of interested as investigated previously in
refs 10,11,23,43–49 were included in our study: 6 features for ECG, including
mean HR and time and frequency domain HRV features, 8 SC features,
including tonic and phasic features, and 4 ST features. For accelerometer-
based activity we included the standard deviation of the accelerometer
magnitude (ACC SD).16 A complete list of all features is available in S5
Table, a codebook including the Python code to compute the features is
included in S3 Text. All features were calculated in a window of 5min with
4min overlap. This is the minimum window required to calculate HRV
features such as the root mean squared difference of successive RR
intervals (RMSSD)50 due to the inherent regulation periodicity.51 The 4min
overlap was set to obtain a resolution of smoothed processed data of one
sample per minute.

Statistical analysis
Statistical tests were performed using the nonparametric Wilcoxon
ranksum test for comparisons of continuous variables. To assess
differences of continuous variables across multiple demographic groups
we used the Kruskal–Wallis test. The X2 test was used for comparisons of
categorical variables. Two-sided p-values of <0.05 were considered
statistically significant. All statistical tests requiring multiple comparisons
were corrected based on the Benjamini–Hochberg procedure with a false
discovery rate of 0.05. Associations between longitudinal data (e.g.,
questionnaires presented 12 times per day, or continuous wearable data)
were assessed using linear mixed effects models, using the lme4 R
package,52 with self-reported pleasure or continuous wearable feature data
as fixed effects and the subjects as random effect. A Gaussian family was
used to model continuous variables (e.g., ACC SD), while a Poisson family
was used to model stress responses. An ANOVA test was used to assess
whether model parameters differed significantly from zero by comparing
the change in model performance (Akaike’s information criterion) when a
fixed effect (e.g., pleasure) was excluded from the model. Correlations
between stationary data (e.g., questionnaires with single responses) were
calculated using the Spearman correlation coefficient (r).
Location data were anonymized based on a random translation and

rotation. Locations were clustered as unique stay locations, i.e., average
location in more than 60min within a radius of 1 km and commuting.
Only good quality physiological data (good QI in ≥80% of data points in

the 5 min window) were used and features were normalized (z-normal-
ization) per subject. Redundant features were removed based on
correlations (max r= 0.7), resulting in a reduced feature set. Since self-
reported stress responses (based on the maximum stress during the last
hour, i.e., Q2 in Fig. 4b) were highly imbalanced (S2 Table), the three
highest stress levels were merged, representing 14.3% of the data, so that
three, instead of five, levels of stress (S1= no stress, S2= light stress, S3=
high stress) were considered.
Based on these data, associations between physiological features and

self-reported stress levels were investigated. For each stress level the
median of the normalized features across the entire population was
calculated. Additionally, the median during the night (N) (00–06 am) was
included as baseline. For each feature, the differences between medians of
different states were computed: N–S1, N–S2, N–S3, S1–S2, S2–S3, and
S1–S3. A Wilcoxon-test was performed to investigate significant differences
and corrected for multiple comparisons.
A machine learning model was developed to predict stress levels based

on physiological responses. Subjects reporting only one stress level (e.g.,
only “no stress”) were discarded. Since self-reported stress levels reflect the
situation of the last hour, the stress value reported was registered for the
60 data points pertaining to that entire hour. We included only data for
windows of at least 10 min of good quality and low physical activity (ACC
SD ≤ 0.04, based on ref. 16 and adapted according to subject’s self-reported
activity levels). A false discovery rate supervised feature selection was
applied on the training set on uncorrelated features, according to the
Benjamini–Hochberg procedure (Python scikit-learn, alpha= 0.05). We
trained Random Forest models in a leave-one-subject-out approach. This
means a model was trained based on the data of all subjects but one and
tested on the data of that subject. This procedure was repeated until all
subjects were tested exactly once. We used the F1-score, a weighted
average between precision and recall, to evaluate the model’s

performance on the left-out-subject. As comparison, we also calculated
the F1-score for all subjects if the Random Forest model classified all
samples as the majority class, i.e., S1.
We further evaluated subject’s physiological response, demographics,

and psychological information based on individual model performance.
Subjects were categorized in groups of low performance, with F1-score <
0.33 (performance as good as random), medium performance, with 0.33 <
F1-score < 0.66 and high performance, with F1-score > 0.66. For each
group we evaluated three characteristics: first, we evaluated the imbalance
of the self-reported stress levels, as a higher imbalance (e.g., mainly
reporting S1), could lead to a higher classification performance. Second,
we investigated the average dynamic range of each group, where the
dynamic range represents the average difference per physiological feature
of each group between low (S1) and high (S3) self-reported stress levels. A
higher dynamic range could be beneficial for model performance, as the
feature can better differentiate between low and high stress. Third, we
investigated subject’s demographics and psychological information based
on the intake questionnaire. A Wilcoxon ranksum test was performed to
investigate significant differences across low and high performance
groups, we corrected for multiple comparisons. All data analyses were
performed using Python (version 2.7).

Code availability
All analyses were performed using Python (version 2.7) and scikit-learn
(version 0.18.1). Detailed information on the functions that were used are
listed in the Methods section. A detailed codebook on feature calculation is
presented in S3 Text. Other code can be shared upon request to the
authors.
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