Proteomic response to the thaxtomin phytotoxin elicitor cellobiose and to the deletion of the cellulose utilization regulator CebR in *Streptomyces scabies*

Sören Planckaert¹, Samuel Jourdan², Isolde M. Francis³, Benoit Deflandre², Sébastien Rigali^{2,†,*}, and Bart Devreese^{1,†,*}

¹ Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium

² InBioS – Center for Protein Engineering, University of Liège, Institut de Chimie, B6a,
 B-4000, Liège, Belgium

³ Department of Biology, California State University Bakersfield, CA 93311-1022, Bakersfield, USA

⁺ These authors jointly supervised this work and are joint corresponding authors.

Bart Devreese Laboratory for Microbiology, Ghent University K.L. Ledeganckstraat 35, B-9000 Gent, Belgium Sébastien Rigali

Center for Protein Engineering

University of Liège

Institut de Chimie B6a, B-4000 Liège, Belgium

srigali@uliege.be

Abstract

Streptomyces scabies is responsible for common scab disease on root and tuber vegetables. Production of its main phytotoxin thaxtomin A is triggered upon transport of cellulose byproducts cellotriose and cellobiose, which disable the repression of the thaxtomin biosynthesis activator gene txtR by the cellulose utilization regulator CebR. To assess the intracellular response under conditions where S. scabies develops a virulent behavior, we performed a comparative proteomic analysis of wild-type S. scabies 87-22 and its cebR null mutant (hypervirulent phenotype) grown in the absence or presence of cellobiose. Our study revealed significant changes in abundance of proteins belonging to metabolic pathways known or predicted to be involved in pathogenicity of S. scabies. Among these, we identified proteins of the cello-oligosaccharide-mediated induction of thaxtomin production, the starch utilization system required for utilization of the carbohydrate stored in S. scabies's hosts, and siderophore synthesis utilization systems which are key features of pathogens in order to acquire iron once they colonized the host. Thus, proteomic analysis supported by targeted MS-based metabolite quantitative analysis revealed the central role of CebR as a regulator of virulence of S. scabies.

Keywords

Common scab disease, thaxtomin, proteomics, multiple reaction monitoring, siderophore, pyochelin, concanamycin, plant pathogen, CebR.

Introduction

Streptomyces species are Gram-positive, filamentous bacteria with a complex developmental life cycle involving the production of desiccation-resistant spores. The vast majority of *Streptomyces* spp. are soil saprophytes recycling nutrients in the environment. They are well known for the production of pharmaceutically and agriculturally important secondary metabolites such as antibiotics, anti-tumor agents, immunosuppressants, insecticides and pesticides.¹⁻² However, some Streptomyces species are recognized as plant pathogens amongst which Streptomyces scabies is the best characterized species, being responsible for an important plant disease called common scab (CS) via the production and secretion of the phytotoxin thaxtomin A as the main virulence factor.³ Thaxtomin A induces the formation of corky lesions on the surface of root and tubers crops, like potato, radish, beet and peanut reducing the marketability of these crops.⁴ Thaxtomins are cyclic dipeptides (2,5-diketopiperazines formed by the condensation of L-4nitrotryptophan and L-phenylalanine residues). The 4-nitroindole moiety is unique amongst microbial metabolites and is essential for virulence.⁵ The thaxtomin biosynthetic genes (txt) reside on a toxicogenic region of a pathogenic island (PAI) within the genome, while other putative virulence genes such as nec1 and tomA that are required for colonization of the plant host and detoxification of plant antimicrobial compounds, respectively, reside on a colonization region.⁶⁻⁸ Recent studies demonstrated that the mobilization of this PAI is responsible for newly emerged pathogenic species.^{7,9}

Different triggers originating from plant material are associated with thaxtomin A production, i.e. xylan degradation products ¹⁰; suberin, a lipidic plant polymer ¹¹; and degradation products of cellulose, cellobiose and cellotriose.¹² So far, only the cellooligosaccharide mediated pathway of thaxtomin A production has been detailed at the molecular level. The ATP-binding cassette (ABC) transporter system CebEFG-MsiK triggers virulence by transporting cellobiose and cellotriose into the cell.¹³ Cellobiose and, to a lesser extent, cellotriose interact with the cellulose utilization repressor CebR, which leads to the release of the repressor from its binding sites within the thaxtomin biosynthetic cluster.¹⁴ The loss of the interaction of CebR with its *cis*-acting sequences allows the expression of *txtR*, which encodes the AraC/XyIS family transcriptional activator allowing the expression of the thaxtomin A biosynthetic (txt) genes. Binding of cello-oligosaccharides to TxtR may increase the DNA-binding ability of TxtR and therefore the activation of the expression of txt genes resulting in the production of the phytotoxin.¹⁵ Finally, we recently showed that the bglC gene downstream of the cebEFG operon encodes for a betaglucosidase that releases glucose from both cellobiose and cellotriose. Deletion of *bgIC* strongly decreased the levels of thaxtomin production.¹⁶

Earlier proteomics work assessed the global response of *S. scabies* grown under conditions eliciting pathogenesis, such as in the presence of suberin, or inhibiting pathogenesis, in the $\Delta tatC$ mutant. ¹⁷⁻²⁰ Two-dimensional (2D)-PAGE coupled with N-terminal sequencing or tandem mass spectrometry showed the overproduction of proteins linked to bacterial stress response, specific metabolic pathways, and proteins known to be involved in secondary metabolism and morphological differentiation due to the presence of suberin.²⁰ Comparative

secretome analysis also demonstrated the production of a range of glycosyl hydrolases and other extracellular enzymes, possibly involved in the degradation of cellulose and suberin.¹⁹ The comparative proteomic study of a *S. scabies* mutant of the TAT secretion system ($\Delta tatC$) showed impaired virulence behavior and revealed novel proteins/genes essential for pathogenicity, again dominated by glycosyl hydrolases.¹⁸

In this work, we completed data analysis of a previously reported label-free proteomics dataset¹³ and performed complementary targeted proteomics and metabolite analysis using multiple reaction monitoring (MRM) to investigate the cello-oligosaccharide mediated pathway of the virulence behavior of *S. scabies* 87-22. More precisely, we assessed how the presence of the critical elicitor cellobiose and/or how the inactivation of the global regulator CebR influenced - separately or together – the response of the intracellular "virulome", *i.e.*, proteins associated with the pathogenic lifestyle of *S. scabies*.

Experimental procedures

Bacteria, growth conditions

Streptomyces scabies 87-22²¹ and Streptomyces scabies Δ scab57761 (Δ cebR)¹⁴ were used in the following experiments. Streptomyces strains were routinely grown at 28°C on International Streptomyces Project medium 4 (ISP-4, BD Biosciences). Cellobiose was purchased from Megazyme (Ireland). S. scabies 87-22 and its cebR null mutant were grown on ISP-4 plates with or without a 0.7% cellobiose supply as previously described.¹⁵ Growth curves were obtained by collecting the mycelium of S. scabies wild-type and Δ cebR strains inoculated on ISP-4 agar plates (with or without 0.7% cellobiose) covered with cellophane membranes (10⁷ spores per plate).

Discovery proteomic analysis

Methodology for sample preparation, tryptic digestion and data collection for the discovery proteomics analysis are reported in supplementary method file 1. Actually, we report here the detailed analysis and validation of a dataset that was already briefly described in supplementary information of previous work¹³. Herein, the 2D LC-MS^E data were no part of the discussion, as it entirely focused on the cellobiose import system. Identifications of the different biological replicates and the relative quantification levels are listed in Table S1 and S2, respectively.

The LCMS^E-based proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE²² partner repository with the dataset identifier PXD007820.

Protein functions were derived from the UniProt and KEGG databases.

Targeted proteomic analysis

Novel protein extracts were prepared as described above, from three biological replicates per condition. Protein extracts were spiked with Bovine Serum Albumin (MS-grade protein standard) (1:250 concentration ratio to protein extract) and digested as described above. The resulting peptide solutions were dissolved in 0.1% HCOOH in H₂O. The LC-MS/MS system consisted of a Waters NanoAcquity M-Class UPLC and an IonKey source connected to a Waters Xevo TQ-S triple quadrupole mass spectrometer. The IonKey source contained a 150 µm x 100 mm, 1.8 µm HSS T3, iKey separation device.

Briefly, 1 µl of each sample (0.1 µg) was injected and trapped for 5 min, 15 µl/min on a 300 µm x 50 mm, 5 µm, 100 Å Acquity UPLC M-Class Symmetry C18 Trap Colum (Waters). The peptides were separated on the iKey using a 20 min gradient of 3-50% acetonitrile (ACN) at a flow rate of 1 µl/min. The mobile phase consisted of 0.1% HCOOH in H₂O (Biosolve) as (A), and 0.1% HCOOH in ACN (Biosolve) as (B). The strong and weak solutions used to wash the auto-sampler were 0.1% HCOOH in H₂O and 0.1% HCOOH in acetonitrile/water/isopropanol (50:25:25, v/v/v), respectively.

The separated peptides were introduced into the Waters Xevo TQ-S mass spectrometer for quantification of the analytes in positive ion mode (ESI+). Detection was obtained by MRM mode with transitions of selected precursor ions at a set cone voltage and different collision energies and dwell times for each precursor (Table S3). Selection of precursors was based on predictions performed using Skyline.²³ Peptides were checked for proteotypicity using Unipept.²⁴ The following ESI-MS/MS parameters were set: capillary voltage, 3.6 kV; cone voltage, 35 V; source

temperature, 120°C. The collision gas argon was introduced into the collision cell at a flow rate of 0.19 ml/min. Data acquisition was performed by MassLynx 4.1 software and processed in Skyline. The imported data were subjected to a Savitsky-Golay Smoothing. The total area under the curve (AUC) for each proteotypic peptide was calculated and normalized to the spiked BSA standard. A student's t-test (two-tailed, homoscedastic) was executed to evaluate the differential protein abundance between the different conditions in a statistical way. The MRM results for each protein are documented in Table S4.

The MRM data have been deposited to Peptide Atlas²⁵ with the dataset identifier PASS01103.

Metabolite extraction and analysis

After 72 h and 96 h of growth at 28 °C, agar was collected, crushed and incubated with the same volume of methanol. After overnight incubation at 4°C under agitation, 20 ml of each supernatant was collected and filtered through a 0.22 μ m polyvinylidene difluoride (PVDF) filter. The different methanol extracts were first diluted ten times in 0.1% HCOOH in H₂O. The same LC-MS set-up was used as described above (Targeted proteomic analysis). 0.5 μ l of each diluted methanol extract was injected and trapped for 5 min, 15 μ l/min on a 300 μ m x 50 mm, 5 μ m, 100 Å Acquity UPLC M-Class Symmetry C18 Trap Colum (Waters). The metabolites were separated on the iKey using a 5 min gradient of 3-70% ACN at a flow rate of 3 μ l/min. Both the cone voltage and the collision voltage were set at 40 V. The precursor mass 325.06 [M+H]⁺ of pyochelin and its fragment ions 189.98 m/z, 172 m/z, 145.95 m/z, 127.96 m/z and 99.86 m/z, and the precursor mass 888.51 [M+Na]⁺

of concanamycin A and its fragment ions 679.42 m/z, 515.3 m/z, 396.2 m/z and 378.19 m/z were used to selectively quantify these metabolites. Selection of fragments were based on information in the GNPS public spectral library and our own optimization experiments. The other MS parameters were identical as in the targeted proteomic analysis. A student's t-test was performed on the AUC of the metabolite of interest in the different conditions. The performance of the M-class UPLC - Xevo TQ-S system was verified before and after the analysis. Therefore, the AUC of three enolase peptides (MassPREP Enolase Digestion Standard (50 fmol) (Waters) was checked. The AUC of the peptides NVNDVIAPAFVK (1350697 and 1348857), AADALLLK (2755420 and 2484611) and VNQIGTLSESIK (558514 and 538685) remained constant (data not shown).

Results and Discussion

Global proteome analysis

We analyzed the effect of cellobiose, an elicitor of thaxtomin A production, on the cellular proteome of *S. scabies* 87-22 on solid media. Agar plates were chosen because it allows monitoring the effect on sporulation, which is tightly linked to the production of many specialized metabolites. Arguing that inhibition of the DNA-binding ability of the cellulose utilization repressor CebR is responsible for cellobiose-mediated transcriptional regulation, we also studied the effect of a *cebR* deletion on the intracellular proteome of *S. scabies* 87-22 (wild-type). However, it should be stressed that the deletion of *cebR* does not simply result in the same cellular conditions as obtained by the external cellobiose supply. Indeed, the

strength of the interaction between a transcription factor and its *cis*-acting element, and therefore transcriptional control, is variable and, in this case, depends on the rate of cellobiose uptake and its intracellular consumption. Moreover, cellobiose is also a positive allosteric effector presumed to improve the transcriptional activation by binding to TxtR.^{15, 26} Finally, the glucose generated from cellobiose hydrolysis and related molecules resulting from subsequent catabolic and anabolic pathways are expected to influence the proteomic response by acting as nutrients.

Growth of S. scabies 87-22 wild-type and its cebR null mutant ($\Delta cebR$) on ISP-4 medium in the presence or absence of 0.7 % cellobiose are presented in Figure 1. With or without cellobiose supply, the $\Delta cebR$ mutant revealed a much faster growth compared to the wild type strain (Figure 1A). The addition of cellobiose enhanced the accumulation of biomass in both strains (Figure 1A) and inhibited the observed early morphological differentiation (sporulation) in $\Delta cebR$ (Figure 1B). The accelerated sporulation in strain $\Delta cebR$ further confirms the idea that the inactivation of *cebR* and the addition of cellobiose do not necessarily imply identical physiological responses. For our proteomic analysis, mycelia of both the wild-type and the $\Delta cebR$ strain were collected after two days i.e. when both strains are still at the exponential phase and did not initiate sporulation. After protein extraction and digestion, the peptides were separated with 2D-UPLC (high pH – low pH RPLC) and eluted peptides were analyzed online with a SYNAPT[™] HDMS Q-TOF mass spectrometer (Waters) via MS^E. A total of 451 proteins were identified from the crude extract of the wild-type mycelium grown on the ISP-4 medium in the absence of cellobiose, considering only the proteins that were found in at least two of the

three biological replicates. Of these, 338 proteins met the filtering criteria, *i.e.* at least two peptides per protein were identified and the identification passed the Green autocurate threshold (ProteinLYNX GLOBAL Server (PLGS)). Similarly, the analysis of the wild-type mycelium grown in the presence of cellobiose resulted in the identification of 482 proteins of which 345 proteins passed the filtering criteria. When the $\Delta cebR$ mutant was grown under the same culture conditions (ISP-4 with or without cellobiose 0.7%), 482 and 496 proteins were identified amongst which 360 and 345 proteins, respectively, passed the Green autocurate threshold and were identified by at least two peptides.

Table 1-3 and S3 list the proteins that displayed a 1.5-fold difference in abundance (Progenesis software, Waters) as a result of cellobiose supply and/or as a consequence of the gene deletion of *cebR*. These proteins were divided into functional groups based on their known or putative functions. A total of 53 proteins were significantly more abundant in the *cebR* knockout mutant alone and 29 proteins were solely affected positively by cellobiose, while 16 proteins were more abundant in both conditions. The fact that only 16 proteins out of the 98 proteins, which displayed higher abundance patterns, were shared between the two conditions studied suggests again that the absence of the cellobiose-responsive repressor CebR is not similar to the presence of cellobiose. This is further confirmed by the identification of 10 proteins that were more abundant in $\Delta cebR$, yet less expressed in the presence of cellobiose, while 7 proteins displayed the opposite pattern (Figure 2). The diminished abundance of certain proteins due to the deletion

of the CebR repressor suggests that this transcription factor has a regulon that extends beyond cellulose utilization genes and might control other regulatory proteins.

Response of proteins composing the cello-oligosaccharide mediated pathway leading to thaxtomin A production

Prior to a discussion of the global response of the "virulome" of S. scabies upon sensing of cellobiose and/or as a consequence of the *cebR* deletion, we first analyzed the fold-change in the abundance of proteins known to be part of the thaxtomin A production pathway. The proper experimental set-up is confirmed by the increased abundance of peptides from the thaxtomin synthetases TxtA and TxtB in both tested conditions (Table 2). Indeed, as previously demonstrated at the transcriptional level¹⁴⁻¹⁵, expression of thaxtomin synthetase A (TxtA), and thaxtomin synthetase B (TxtB) is upregulated in the presence of cellobiose, and in the cebR mutant (Table 2). This was confirmed by the LC-MRM experiment. Two proteotypic peptides for TxtA, LLGATDDPSDVALR and SVGLVLGR, and three proteotypic peptides for TxtB, LGGGTDIVVGTAAAAR, SDIEPELPAEAASR and TALDDVVAR were selected and quantitatively analyzed. Indeed, all TxtA and TxtB selected peptides were significantly more abundant in the *cebR* mutant (with or without cellobiose supply) and in the wild-type (87-22 strain) cultivated in the presence of cellobiose compared to the wild-type (Figure 2). In addition, higher abundance of TxtC (cytochrome P450type monooxygenase) and TxtE (L-tryptophan-nitrating cytochrome P450) peptides were also observed under the tested conditions (Table 2) confirming that the thaxtomin cluster is indeed under negative control of CebR and requires cellobiose

as environmental elicitor. It has to be noted that, in this case, the abundance of TxtA, TxtB, TxtC, and TxtE peptides was always higher in the presence of cellobiose compared to their abundance as a result of *cebR* deletion, suggesting that thaxtomin production is improved by the binding of cellobiose to the thaxtomin biosynthesis activator TxtR.¹⁵

Primary metabolism - Carbohydrate metabolism

As mentioned in the introduction and discussed in a recent opinion article²⁷, the utilization of cellobiose as an elicitor of pathogenicity is intriguing as this molecule is also the most abundant carbon source released from decomposing lignocellulose that will directly provide glucose for the central carbon metabolic pathways. Consumption of cellobiose and its further catabolism into glucose could therefore provide sufficient energy for *S. scabies* to simply behave as a saprophyte without concomitant triggering of a pathogenic lifestyle. In fact, the very first step towards glycolysis, i.e. the conversion of glucose units - generated by betaglucosidase (Bglc) activity¹⁶ into glucose-6-phosphate by the glucose kinase GlkA (SCAB 67551) seemed to be reduced in the presence of cellobiose as suggested by the 1.91-fold decrease of GlkA peptides. This effect would be mediated by cellobiose itself, without implying CebR, as the deletion of the transcription factor did not affect the negative effect of the carbohydrate on GlkA intracellular accumulation (Table 1). The fact that the first step towards glycolysis is impaired by cellobiose is possibly a key event for S. scabies to perceive this molecule as a signal inducing its pathogenic lifestyle instead of using it as a carbon source. In addition, the decreased abundance of the glucose kinase would be beneficial for cellobiose uptake as GlkA is

the protein that imposes carbon catabolite repression on the utilization of alternative and more complex carbon sources in streptomycetes.²⁸ Its reduced abundance would allow prioritization of import of di-and oligosaccharides such as those derived from cellulose and starch.

The solid ISP-4 medium was chosen as it contains starch as the main carbon source, which is also the main storage polymer found in the tubers and roots of the hosts of S. scabies. It can therefore be assumed that cellobiose could act as the eliciting molecule, while starch would be used as most available carbon source after colonization of the plant host. Interestingly, the addition of cellobiose to the growth medium of *S. scabies* resulted in a 1.65-fold increase of the starch/maltose utilization repressor MalR.²⁹⁻³⁰ This response seemed to involve CebR as the *cebR* deletion also resulted in a 1.87-fold increased production of MalR. This overproduction of MalR has no significant effect on the abundance of proteins belonging to the MalR regulon in the cebR mutant grown with or without cellobiose (Table 1). Instead, the higher abundance of MalR resulted in a decreased accumulation of the ABC-type maltose/maltodextrin-binding protein MalE (-3.8-fold), the ABC transporter membrane component MalG (-2.65-fold), the intracellular alpha-glucosidase AgIA (-3.03-fold) when wild-type S. scabies was grown in the presence of cellobiose. To validate this important observation - as it connects virulence signaling to access of the food reservoir within the host - we performed a targeted proteomics experiment using MRM. The tryptic peptides ANLGIATVPAGTSGK, SEVGWTPAFAK and ITVNSPEAK were selected as the proteotypic peptides of MalE, while GYFDTIPFEIDEAGR and VDGLSPFGTFAR served as the ones of MalG. IFVAEAWTPVER

and LVLDEYAGER were picked as proteotypic peptides of the intracellular alphaglucosidase AgIA. The targeted proteomic experiments show that those proteins are indeed significantly less abundant when S. scabies 87-22 was grown in the presence of cellobiose (Figure 3). This would suggest that as long as cellobiose is available and incorporated as a signal for pathogenicity, it would postpone the utilization of starch available within tubers or roots by S. scabies. Interestingly, in the cebR null mutant, we observed a strong increase (4.06-fold) of peptides from the alpha-1,4 glucan phosphorylase (maltodextrin phosphorylase) GlgP (SCAB 27951) possibly involved in the phosphorolytic degradation of starch, while cellobiose itself had only a minor negative effect on the accumulation of GlgP. The fact that the deletion of cebR and cellobiose supply do not induce a similar proteomic response is counterintuitive as cellobiose is known to relieve the repression of CebR and constitutes the first example of a CebR controlled gene (directly or indirectly) for which induction is not dependent on cellobiose as an allosteric effector to prevent binding of CebR to its target *cis*-acting elements. The multiple ABC-type sugar importer ATPase MsiK involved in the uptake of tens of carbohydrates including cellulose and starch derived by-products³¹⁻³² as well as three enzymes of the pentose phosphate pathway (ZWF3, Tal, and TktA) also displayed a CebR-repressed but cellobiose-independent production pattern (Table 1). Finally, Enzyme I of the phosphoenol-pyruvate phosphotransferase system (PTS) displayed a 3.03-fold decrease in the presence of cellobiose. This enzyme is not only required for the PTS-dependent uptake of Nacetylglucosamine³³⁻³⁴ and fructose³⁵, but its inactivation has been shown to severely affect morphogenesis and metabolite production in S. coelicolor.³⁶⁻³⁷ Its

much lower abundance in the presence of cellobiose could therefore drastically affect the lifestyle of *S. scabies* well beyond its role in carbohydrate uptake.

Primary metabolism - Amino acids metabolism

The flux in amino acid metabolic pathways and the appropriate balance between anabolic and catabolic routes are predicted to be intricately linked to the pathogenic lifestyle of S. scabies. Indeed, the amino acids L-tryptophan and L-phenylalanine are the building blocks of thaxtomin phytotoxins. Nitric oxide for nitration of Ltryptophan in 4-nitro-L-tryptophan intermediate biosynthesis is provided by Larginine by the nitric oxide synthase TxtD. While the addition of tryptophan to the culture medium reduced the amount of thaxtomin A produced³⁸, feeding with 4nitro-L-tryptophan instead enhanced its production.³⁹ Moreover, L-tryptophan is also used to generate the plant hormone indole-3 acetic acid (IAA, auxin), which in some plant pathosystems contributes to the severity of host disease symptoms by increasing colonization and growth *in planta* through 'manipulation' of the hormone balance within the plant.⁴⁰ Tryptophan degradation is also able to provide anthranilate and chorismate, which are important intermediates of siderophore biosynthesis. Accordingly, enzymes associated with tryptophan, phenylalanine and tyrosine metabolism are the amino acid-related pathways where the highest number of proteins displayed significant abundance variation (Table 1). Tryptophan synthase beta chain TrpB (SCAB 68501) generates tryptophan from serine and has been found more abundantly in both the *cebR*-null mutant and the wild-type grown with cellobiose (1.52 and 1.57-fold, respectively). Two other enzymes associated with tryptophan metabolism were also more present in both tested conditions, namely

the tryptophan 2,3-dioxygenase KynA (2.31 and 6.18-fold, respectively) that will generate N-formylkynurenine, and the kynureninase KynU (2.19 and 2.30-fold, respectively) that will convert the latter into formylanthranilate or L-kynurenine in anthranilate.⁴¹ Finally, the chorismate mutase AroQ is 1.72-fold more abundant in the presence of cellobiose emphasizing again that the CebR regulon influences the pool of metabolites used for siderophore biosynthesis.

Additionally, three out of the four proteins involved in enzymatic reactions of the Sadenosyl-L-methionine (SAM) and L-homocysteine metabolic circuit (MetH, MetK, SahH) are more abundant either in the presence of cellobiose or in the *cebR* mutant (Table 1). SAM is an important methyl donor required for thaxtomin synthesis but it is also a second messenger involved in the synthesis of different antibiotics in streptomycetes.⁴²⁻⁴⁶ Alterations in the betaine/sarcosine pathway can be linked to SAM production as betaine can serve as substrate for methionine/SAM recycling from homocysteine.

Most other amino acid biosynthetic pathways seem to be repressed. In fact, overall protein translation is affected (see below). The cellobiose/CebR regulon might therefore be intricately associated with the production of specialized metabolites required for virulence while general protein synthesis is suppressed.

Genetic Information Processing – Housekeeping functions

All proteins identified of the 30S and the 50S ribosomal subunits that displayed >1.5 fold change in any of the experiments were less abundant in the *cebR* mutant

(average 1.7-fold less) as well as when cellobiose was externally supplied, although to a lesser extent. Except the elongation factor Tuf3, all other proteins involved in the translational process, GatB, GlyS, InfB, InfA, InfC and AviX1, were less abundant in the *cebR* mutant. Two proteins involved in peptide degradation, TldD and PrcB, were more abundant in the *cebR* knockout mutant, respectively 1.68-fold and 1.62fold (Table 3). Three chaperone proteins are also listed in Table 3, GroL1 (-1,77-fold) and GroEL2 (-1,67-fold) were negatively affected by $\Delta cebR$, while cellobiose had a negative effect on DnaK (-1.53-fold). These findings can be related to the growth curves, since both addition of cellobiose and deletion of the *cebR* gene result in faster growth and those cells are approaching the later exponential phase explaining reduced requirements to produce biomass.

The physiological and proteomic study of the role the twin arginine protein transport (TAT) showed that deletion of *tatC* abolished the virulence of *S. scabies*, demonstrating that key proteins for the onset of its pathogenic life style are secreted via the TAT pathway.¹⁸ Interestingly, the TatA component of the TAT pathway, (SCAB73591) is positively affected by cellobiose (2.07-fold change) therefore globally stimulating the secretion of TAT-dependent virulence associated proteins. Although our proteomics study involved soluble cellular protein extracts, few extracellular and membrane bound proteins secreted through the TAT pathway were identified i.e., i) the zinc-binding lipoprotein ZnuA (SCAB61981) (1.85-fold change upon supply of cellobiose), ii) a BldKB-like solute-binding component of an ABC transporter (SCAB31461), and iii) a secreted solute-binding protein (SCAB57661), the latter instead were 2.61 and 1.64-fold negatively affected by cellobiose, respectively.

Specialized, secondary metabolism

The discovery proteomics experiment revealed that action of cellobiose and the role of the cellulose utilization repressor CebR are not limited to thaxtomin A production but also affect the abundance of several enzymes involved in the biosynthesis of different secondary (or specialized) metabolites that could be involved in the virulence of S. scabies (Table 2). Among specialized metabolites, siderophores are not only known to be essential to obtain iron for a series of housekeeping functions, but have also been demonstrated to be key features in animal and plant pathogens.⁴⁷⁻⁴⁸ Indeed, the concentration of soluble iron within the host is known to be extremely low⁴⁹ which makes the ability to steal iron a vital strategy for any pathogen. In line with this need to acquire iron, the DesE protein presents one of the most overexpressed profiles upon addition of cellobiose with 4.79- and 13.15-fold increase in the wild-type and the *cebR* mutant, respectively (Table 2). DesE is an ABC-type ferri-siderophore binding protein, which in streptomycetes, is not only able to import their homemade siderophores but also xenosiderophores.⁵⁰⁻⁵¹ The induced production of DesE upon transport of cellobiose would maximize the chance of S. scabies to acquire iron from the most diverse sources in its environment. As siderophore synthesis is a costly process, acquisition of iron-carriers from the host or produced by other organisms would save energy for S. scabies and preserve building blocks for the construction of other specialized metabolites required for its pathogenic life-style. Also, deletion of DesE⁵² as well as the reduction of siderophore biosynthesis^{37, 53-55} resulted in the arrest of the sporulation process and/or altered metabolite production in streptomycetes suggesting a tight link between ironchelator uptake and the onset of the developmental program.

Next to DesE, CebR mutation has a negative impact on DmdR1 production (Figure 3). DmdR1 acts as a global regulator of iron homeostasis and is a negative regulator of desferrioxamine production providing an additional path to control siderophore production.⁵⁶

Surprisingly, unlike thaxtomin, the other identified proteins related to clusters of secondary metabolites displayed a dissimilar response to cellobiose supply compared to the inactivation of cebR (Table 2). This is for instance the case for the three identified proteins of the pyochelin biosynthetic gene cluster (PBGC), an AMP-binding NRPS ligase (SCAB1411) involved in the production of pyochelin, the ATP-binding subunit of an ABC transporter (SCAB1431) and its membrane component (SCAB1451) both suggested to import ferric-pyochelin⁵⁷. While cellobiose did not affect SCAB1411 and SCAB1431, and only weakly induced SCAB1451, the deletion of cebR resulted in a 4.21, 2.24, and 18.23-fold increase in abundance of these three proteins, respectively. Pyochelin is another siderophore, important to cope with the low availability of iron⁵⁸. This siderophore is best known from studies in *Pseudomonas aeruginosa* where it is a virulence factor.⁵⁹⁻⁶⁰ Its functional biosynthetic pathway was recently identified in the genome of Streptomyces scabies 87-22, but a mutant unable to produce pyochelin still displayed pathogenicity on excised potato tissues and radish seedlings.⁵⁷ To further validate these results, we performed targeted analysis of selected tryptic peptides of these enzymes by label-free liquid chromatography-multiple reaction monitoring LC-MRM mass spectrometry. Of the pyochelin-related proteins, respectively, three (TSFTEDGYFR, SLTFGALDLAADR and TTDGNLEVVGR), three (ETDLIAFLDGGR,

LPLGWFTPR and LPDGWATR) and two (EGAPAEPSGQAGLPATEVR and LLGALSAK) proteotypic peptides were used to quantify the protein levels. Figure 3 shows the negative correlation between the expression of CebR and three proteins from the large operon of the PBGC. All peptides of these proteins mentioned above are significantly more abundant in the $\triangle cebR$ mutant, both in the presence or absence of cellobiose. To confirm the production of the metabolite itself, pyochelin, we also performed a quantitative mass spectrometry assay to have direct evidence of the effect of CebR on its production. The selected precursor mass 325.06 [M+H]⁺ and its fragment ions 189.98 m/z, 172 m/z, 145.95 m/z, 127.96 m/z and 99.86 m/z were obtained from the GNPS Public Spectral Library and experimental evidence. The areas under the curves of these peaks are summarized in Figure 4 and are indicating a significant greater production of pyochelin in the cebR mutant, both in the presence or absence of cellobiose, when the cells were grown for 96 hours. The involvement of the cellulose utilization repressor CebR in the control of pyochelin production somehow suggests indeed that pyochelin is linked to pathogenesis.

A similar CebR-repressed pattern was observed for products of genes encoding a carbamoyltransferase (SCAB84021) and an O-methyltransferase (SCAB84051) which are believed to be part of the concanamycin A biosynthesis gene cluster.⁶¹ Concanamycins are polyketide macrolides, which function as vacuolar-type ATPase inhibitors with antifungal and anti-neoplastic activity.⁶²⁻⁶³ Both proteins did not respond to the presence of cellobiose but were more abundant in the *cebR* mutant compared to the wild-type with a 2.02 and 5.74-fold increased abundance, respectively. These results were validated by a targeted proteomic experiment (LC-MRM). AELYELWQQR, SADPTADLDGLVPR and VQVVDPAANER were selected as

proteotypic peptides for the carbamoyltransferase, while EDDLLLELR, VTDPQFTDADTAGIR and AGVDGLIDLR served as those for the O-methyltransferase. This experiment confirmed the greater abundance of both transferases in the knockout mutant (Figure 3). Similar to pyochelin, concanamycin A was targeted in the secretome of cells grown under the different conditions. The precursor mass 888.51 [M+Na]⁺ and its fragment ions 679.42 m/z, 515.3 m/z, 396.2 m/z and 378.19 m/z were selected for the MRM experiment based on information from the GNPS Public Spectral Library and experimental evidence. Concanamycin A could only be detected in the *cebR* mutant and solely after 96 hours of cultivation (Figure 4). Recently, the necrosis-inducing activity of concanamycin A and its synergistic effect with thaxtomin A was demonstrated in *S. scabies* 87-22⁶⁴ which could possibly explain why they are both negatively controlled by CebR.

Two proteins that are part of the coronafacoyl phytotoxin biosynthetic pathway, the type-II fatty acid dehydratase (SCAB79611, Cfa2) and acyl-CoA ligase (SCAB79671, CFL)⁶⁵, were found to be less abundant in the *cebR* mutant as well as when the wild-type was grown on ISP-4 medium supplemented with cellobiose (Table 2, Figure 3). The coronafacoyl compounds cause hypertrophy of potato tuber tissue and consist of amino acids (or amino acid derivatives) linked via an amide bond to the polyketide coronafacic acid (CFA)⁶⁶. Coronafacoyl-L-isoleucine is the most abundant form in *S. scabies* and exhibits bioactivity similar to that of coronatine in *Pseudomonas syringae*.⁶⁷ In this case, both *cebR* deletion and cellobiose altered the protein abundance in the same way (decrease) suggesting that CebR would directly or indirectly control the expression of a repressor of coronafacoyl phytotoxin

biosynthesis. SCAB79611 (Cfa2) and SCAB79671 (CFL) were targeted via LC-MRM through their proteotypic peptides AEVSGRPVAMTR and ILDYEPGK, and AAAEPAPDLTDTR, SQWLASGDIVR and FGWIGGAPTTYR, respectively. These data confirmed that both proteins were significantly more abundant in the total protein extracts of the wild-type strain compared to the *cebR* mutant (Figure 3). The lower abundance of proteins involved in the biosynthetic pathway of the coronafacoyl phytotoxins in both the presence of cellobiose and the *cebR* null mutant could reveal a competitive production between CFL and metabolites that are produced upon cellobiose induction. Thus, the PAS-LuxR family regulator CfaR is probably not the only protein responsible for the regulation of coronafacoyl phytotoxin production.⁶⁶ We searched for the presence of different coronafacoyl phytotoxins like coronafacoyl-L-isoleucine (CFA-L-Ile) and coronafacoyl-L-valine (CFA-L-Val) in the extracellular medium, but their presence in the secretome could not be confirmed.

Lastly, the inactivation of *cebR* also led to a higher abundance of two enzymes of which the corresponding genes reside in two unknown secondary metabolite clusters, though their responses towards CebR deletion and cellobiose addition were different. A TetR-family transcriptional regulator (SCAB72821) and a polyketide cyclase (SCAB72851) displayed a 2.06- and 2.64-fold change respectively in the CebR mutant. Like the proteins involved in concanamycin A and pyochelin biosynthesis, CebR apparently represses them, while cellobiose supply did not change their abundance. The other cluster of genes predicted to be involved in the synthesis of a secondary metabolite displayed opposite response patterns as a result

of cellobiose supply or the inactivation of *cebR*. Indeed, cellobiose significantly increased the abundance of four proteins of the scab3211–scab3361 locus.

Proteins globally involved in the developmental process of streptomycetes

As the deletion of *cebR* and/or the presence of cellobiose altered the abundance profiles of numerous proteins of secondary metabolite biosynthesis clusters without obvious CebR-binding sites in their vicinity (as predicted by PREDetector 3.1.⁶⁹, see supplementary file Table S5), we postulated that the observed effect might involve proteins known to globally affect the developmental program of Streptomyces species. Apart from PTS EI and MetK discussed in the sections above, at least seven other proteins (AfsK, BldKB, BldN, CutR, EshA, NsdB, and NusG) with significant altered abundance, are known to impact morphological and physiological differentiation in streptomycetes. Among them, SCAB 51861 presents the highest increase in abundance (14.83-fold) in the presence of cellobiose. This protein is the orthologue of AfsK, a serine/threonine kinase that phosphorylates serine and threonine residues of AfsR, a two-component system response regulator that plays an important role in signal transduction of metabolite production as well as in morphogenesis, polar growth and hyphal branching of several Streptomyces species.⁶⁷⁻⁶⁸ Autophosphorylation of AfsK has been shown to be increased by Sadenosyl-L-methionine (SAM). As discussed earlier, different proteins involved in SAM synthesis displayed a higher abundance in the presence of cellobiose and/or as a result of the deletion of *cebR* which could increase the level of phosphorylation of AfsK, and in turn the activity of its associated transcription factor AfsR. Based on the current data deduced from other model Streptomyces species, SAM/AfsK-dependent activation of AfsR could globally affect the secondary metabolism of S. scabies.

Among the other key Streptomyces developmental proteins, our proteomic analysis identified BldN and BldKB, which showed a 2.19 and 2.61-fold abundance decrease in the *cebR* null mutant and in the presence of cellobiose, respectively. Bld/bld (bald) proteins/genes in streptomycetes refer to genes which, when inactivated, block the sporulation process at the vegetative state and thus also lead to severe consequences in metabolite production. BldKB is the extracellular component of an ABC-type oligopeptide transporter (BldKABCDE) which upon gene deletion arrests the signaling cascade leading to the erection of aerial hyphae at its earliest stage.⁶⁹ BldKB is thought to bind and transport the earliest extracellular signal triggering the formation of aerial hyphae. Interestingly, expression of the BldK transporter is induced by SAM⁷⁰³ and the study of the proteomic response of *S. scabies* to suberin also identified components of this oligopeptide transporter among the proteins displaying an increased variation abundance.²⁰ BldN is a sigma factor required for expression of the chaplin and rodlin hydrophobic proteins that cover the surface of the Streptomyces spores.⁷¹⁻⁷² Interestingly, *bldN* and *bldkB* are *bld* genes that have been shown to be tightly related to iron homeostasis. Expression of *bldN* is highly induced by iron⁷³ and iron is able to restore aerial hyphae formation in the *bldKB* mutant.³⁷ The fact that these two known iron-associated *bld* genes have been highlighted by our proteomic approach is possibly a consequence or a cause of the drastic effect of cellobiose and/or cebR deletion on the abundance of proteins involved in siderophore biosynthesis (pyochelin, DmdR1) and ferri-siderophore transport (DesE). It further emphasizes the close link between the onset of pathogenicity and iron homeostasis. Both proteins involved in triggering sporulation are down regulated under conditions that trigger thaxtomin production, which could

explain why their respective deletion did not significantly affect the virulence of *S*. *scabies*.⁷⁴ It seems logical that once *S. scabies* senses the proper conditions for the onset of its pathogenic life style it down regulates BldK and BldN, which are essential proteins to enter the dormancy state (sporulation) while it overexpresses AfsK, a developmental protein required for activation of hyphal apical growth and branching.

Cellobiose also induced the abundance of the tetratricopeptide repeat (TPR) domain-containing protein NsdB (2.41-fold), the two-component system regulator CutR (1.81-fold), and the ScbR-like γ -butyrolactone binding regulator SlbR (1.98-fold). The inactivation of these three genes resulted in increased antibiotic production in *S. lividans* and/or *S. coelicolor*, suggesting that they both negatively affect the onset of secondary metabolism.⁷⁸⁻⁸⁰ Their overexpression in the presence of cellobiose could participate in balancing the production levels of the different metabolites produced by *S. scabies*.

Finally, the inactivation of *cebR* resulted in a 1.54-fold decrease of EshA, a cyclicnucleotide binding-domain protein essential for morphogenesis and streptomycin production in *S. griseus*⁷⁵⁻⁷⁶, and for actinorhodin production in *S. coelicolor*.⁷⁷ EshA accentuates the accumulation of deoxynucleoside triphosphates⁷⁶ and of the alarmone guanosine tetraphosphate ppGpp⁷⁸ involved in the stringent response inhibiting RNA synthesis and decreasing translation under shortage of amino acids. The decreased abundance of EshA in the *cebR* mutant therefore does not correlate with the observed decreased abundance of ribosomal proteins and proteins involved translation initiation and transcription elongation and termination factors (Table 3).

Proteins with unknown function

Finally, supplementary Table S6 lists 74 uncharacterized proteins with no or partial information on their biological function with significant (±1.5-fold, and p-value < 0.05) altered abundance under one or more of the tested conditions and strains. Among them, ten encode for transcription factors, alternative sigma factors, anti-sigma factors, and putative DNA-binding proteins, which further highlight the reach of the CebR/cellobiose regulon. The large majority of other proteins displayed high homology to hypothetical proteins conserved in streptomycetes and other Actinobacteria, while others seemed to be more specific to *S. scabies*. Among these uncharacterized proteins we observed some of the most important responses to either *cebR* deletion or cellobiose supply suggesting that the "virulome" of *S. scabies* would certainly imply novel key protagonists than those currently described in the literature.

Conclusions

Our comparative proteomics analysis confirmed the role of cellobiose via the cellulose utilization repressor CebR in the production of thaxtomin A, the main virulence factor of S. scabies. Considering that thaxtomin A is generated from the condensation of L-tryptophan and L-phenylalanine, we observed important modifications of metabolic fluxes in pathways related to biosynthesis of the building blocks of the phytotoxin. Our work also highlights close connections between the cellulose/CebR regulon and pathways predicted to play an important role in the pathogenic lifestyle of S. scabies such as the acquisition of iron through DesE for the import various types of ferri-siderophores. The wide impact of *cebR* deletion and/or cellobiose supply on clusters involved in secondary metabolite production suggests that CebR does not only control thaxtomin A production but is most likely a global regulator of the virulence of S. scabies, possibly through direct or indirect regulation of key developmental proteins such as BIdKB, BIdN, MetK, PTS EI, and AfsK, amongst others. In conclusion, our work through the combination of discovery proteomics, targeted proteomics, and targeted metabolomics revealed complex regulatory networks and pathways associated with the cellobiose/CebR-mediated pathogenic lifestyle of Streptomyces scabies, also providing new insights on possible novel key proteins triggering virulence.

Acknowledgments

This work is supported in part by the Belgian program of Interuniversity Attraction Poles initiated by the Federal Office for Scientific Technical and Cultural Affairs (PAI no. P7/44), by the PRODEX program initiated by the same Office, and by the FNRS (research project RFNRS.3342-T.0006.14-PDR [FRFC]). S.J.'s work is supported by an Aspirant grant from the FNRS. And S.R. is FRS-FNRS research associate.

Table legends

Table 1. List of proteins with significant change in abundance involved in general primary metabolism. Proteins were regarded as significant more/less abundant compared to the wild-type with ANOVA values of p < 0.05, regulation of \pm 1.5-fold, power > 0.8 and q-values < 0.05. The measured increase (in green) or decrease (in red) of the abundance of the detected proteins is illustrated by a color scale. (Glc)₂: cellobiose.

Table 2. List of proteins with significant change in abundance involved in specialized secondary metabolism and development. Proteins were regarded as significant more/less abundant compared to the wild-type with ANOVA values of p < 0.05, regulation of \pm 1.5-fold, power > 0.8 and q-values < 0.05. The measured increase (in green) or decrease (in red) of the abundance of the detected proteins is illustrated by a color scale. (Glc)₂: cellobiose.

Table 3. List of proteins with significant change in abundance involved in transcriptional and translational processes. Proteins were regarded as significant more/less abundant compared to the wild-type with ANOVA values of p < 0.05, regulation of ±1.5-fold, power > 0.8 and q-values < 0.05. The measured increase (in green) or decrease (in red) of the abundance of the detected proteins is illustrated by a color scale. (Glc)₂: cellobiose.

Figure legends

Figure 1. Growth and development of *S. scabies* 87-22 and its *cebR* deletion **mutant. A.** Growth curves presenting the mycelium collected from both strains grown on ISP4 with or without 0.7% cellobiose. **B.** Early onset of sporulation in the *cebR* null mutant grown in ISP4 covered with cellophane membranes. The addition of cellobiose inhibits the accelerated sporulation in strain $\Delta cebR$. Pictures were taken after 72 h of growth.

Figure 2. Number of proteins significantly increased/diminished in the presence of cellobiose and/or the *cebR* deletion mutant compared to the wild-type strain *Streptomyces scabies* 87-22. Figure was adapted from Venny 2.0 (BioinfoGP, ES) output.

Figure 3. Relative abundance of proteins involved in a carbohydrate and secondary metabolism in response to *cebR* deletion and/or cellobiose (CB) supply determined by targeted proteomics (LC-MRM). Proteins were extracted from *S. scabies* 87-22 and its *cebR* mutant strain grown in the presence/absence of cellobiose for 48h on ISP-4 agar. The plot displays the average normalized area under the curve for each peptide used as a marker for the different proteins. These results show significant normalized quantitative peptide abundances (p < 0.05) compared to the wild-type strain grown on ISP-4 agar without cellobiose (¹), with cellobiose (²) and/or the *cebR* null mutant grown without cellobiose (³). A statistical two-sided student's t-test (homoscedastic) was performed. The error bars plot the standard deviation (SD) of the three biological replicates.

Figure 4. Abundance of pyochelin and concanamycin A in response to *cebR* deletion and/or cellobiose (CB) supply determined by targeted metabolomics (LC-MRM). Metabolites were extracted from *S. scabies* 87-22 and its *cebR* mutant strain grown in the presence/absence of cellobiose for 72h and 96h on ISP-4 agar. The plot displays the area under the curve for each metabolite. These results show significant

quantitative abundances (p < 0.05) compared to the wild-type strain grown on ISP-4 agar without cellobiose (¹), with cellobiose (²) and/or the *cebR* null mutant grown without cellobiose (³). The significant difference between 72h and 96h is shown by (^{*}). A statistical two-sided student's t-test (homoscedastic) was performed. The error bars plot the SD of the three biological replicates.

- 1 SUPPORTING INFORMATION:
- 2 The following supporting information is available free of charge at ACS website
- 3 <u>http://pubs.acs.org</u>

4 Contents of Supporting Information File

- 5 **Method S1.** Detailed label-free proteomic methodology.
- 6
- 7 **Table S1.** Separate multi-tabbed excel file containing protein identifications from the
- 8 different biological replicates of the discovery proteomics experiment.
- 9 **Table S2.** Separate multi-tabbed excel file containing relative quantification levels of
- 10 the different comparisons.
- 11 **Table S3.** Lists of transitions selected for MRM validation of proteins with significant
- 12 change in abundance upon *cebR* deletion or cellobiose induction.
- 13 **Table S4**. Separate multi-tabbed excel file containing MRM results for each protein.
- 14 **Table S5.** Prediction CebR regulon in *Streptomyces scabies.*
- 15 **Table S6.** List of unknown and uncharacterized proteins with significant change in
- 16 abundance.
- 17

18 References

Procopio, R. E.; Silva, I. R.; Martins, M. K.; Azevedo, J. L.; Araujo, J. M.,
 Antibiotics produced by Streptomyces. *The Brazilian journal of infectious diseases :* an official publication of the Brazilian Society of Infectious Diseases 2012, 16 (5), 466 71.

23 2. Berdy, J., Bioactive microbial metabolites. *The Journal of antibiotics* 2005, *58*24 (1), 1-26.

Loria, R.; Bignell, D. R.; Moll, S.; Huguet-Tapia, J. C.; Joshi, M. V.; Johnson, E.
 G.; Seipke, R. F.; Gibson, D. M., Thaxtomin biosynthesis: the path to plant
 pathogenicity in the genus Streptomyces. *Antonie van Leeuwenhoek* 2008, 94 (1), 3 10.

King, R. R.; Calhoun, L. A., The thaxtomin phytotoxins: sources, synthesis,
 biosynthesis, biotransformation and biological activity. *Phytochemistry* 2009, *70* (7),
 833-41.

Barry, S. M.; Kers, J. A.; Johnson, E. G.; Song, L.; Aston, P. R.; Patel, B.;
 Krasnoff, S. B.; Crane, B. R.; Gibson, D. M.; Loria, R.; Challis, G. L., Cytochrome P450 catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis. *Nature chemical biology* **2012**, *8* (10), 814-6.

Huguet-Tapia, J. C.; Badger, J. H.; Loria, R.; Pettis, G. S., Streptomyces
 turgidiscabies Car8 contains a modular pathogenicity island that shares virulence
 genes with other actinobacterial plant pathogens. *Plasmid* 2011, 65 (2), 118-24.

Zhang, Y.; Bignell, D. R.; Zuo, R.; Fan, Q.; Huguet-Tapia, J. C.; Ding, Y.; Loria, R.,
 Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic Streptomyces spp.
 Molecular plant-microbe interactions : MPMI **2016**, *29* (8), 640-50.

Bignell, D. R.; Huguet-Tapia, J. C.; Joshi, M. V.; Pettis, G. S.; Loria, R., What
does it take to be a plant pathogen: genomic insights from Streptomyces species.
Antonie van Leeuwenhoek 2010, 98 (2), 179-94.

45 9. Zhang, Y.; Loria, R., Emergence of Novel Pathogenic Streptomyces Species by
46 Site-Specific Accretion and cis-Mobilization of Pathogenicity Islands. *Molecular plant-*47 *microbe interactions : MPMI* 2017, 30 (1), 72-82.

Wach, M. J.; Krasnoff, S. B.; Loria, R.; Gibson, D. M., Effect of carbohydrates
on the production of thaxtomin A by Streptomyces acidiscabies. *Archives of microbiology* 2007, *188* (1), 81-8.

- 51 11. Lerat, S.; Simao-Beaunoir, A. M.; Wu, R.; Beaudoin, N.; Beaulieu, C.,
- 52 Involvement of the plant polymer Suberin and the disaccharide cellobiose in

53 triggering thaxtomin A biosynthesis, a phytotoxin produced by the pathogenic agent

54 streptomyces scabies. *Phytopathology* **2010**, *100* (1), 91-6.
Johnson, E. G.; Joshi, M. V.; Gibson, D. M.; Loria, R., Cello-oligosaccharides
released from host plants induce pathogenicity in scab-causing Streptomyces
species. *Physiological and Molecular Plant Pathology* **2007**, *71* (1), 18-25.

Jourdan, S.; Francis, I. M.; Kim, M. J.; Salazar, J. J.; Planckaert, S.; Frere, J. M.;
Matagne, A.; Kerff, F.; Devreese, B.; Loria, R.; Rigali, S., The CebE/MsiK Transporter is
a Doorway to the Cello-oligosaccharide-mediated Induction of Streptomyces scabies
Pathogenicity. *Scientific reports* 2016, *6*, 27144.

Francis, I. M.; Jourdan, S.; Fanara, S.; Loria, R.; Rigali, S., The cellobiose sensor
CebR is the gatekeeper of Streptomyces scabies pathogenicity. *mBio* 2015, 6 (2),
e02018.

Joshi, M. V.; Bignell, D. R.; Johnson, E. G.; Sparks, J. P.; Gibson, D. M.; Loria, R.,
The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in
Streptomyces scabies. *Molecular microbiology* 2007, *66* (3), 633-42.

Jourdan, S.; Francis, I. M.; Deflandre, B.; Tenconi, E.; Riley, J.; Planckaert, S.;
Tocquin, P.; Martinet, L.; Devreese, B.; Loria, R.; Rigali, S., Contribution of the betaglucosidase BglC to the onset of the pathogenic lifestyle of Streptomyces scabies. *Molecular plant pathology* **2018**, *19* (6), 1480-1490.

Padilla-Reynaud, R.; Simao-Beaunoir, A. M.; Lerat, S.; Bernards, M. A.;
Beaulieu, C., Suberin Regulates the Production of Cellulolytic Enzymes in

Streptomyces scabiei, the Causal Agent of Potato Common Scab. *Microbes Environ* **2015**, *30* (3), 245-53.

Joshi, M. V.; Mann, S. G.; Antelmann, H.; Widdick, D. A.; Fyans, J. K.; Chandra,
G.; Hutchings, M. I.; Toth, I.; Hecker, M.; Loria, R.; Palmer, T., The twin arginine
protein transport pathway exports multiple virulence proteins in the plant pathogen

79 Streptomyces scabies. *Molecular microbiology* **2010,** 77 (1), 252-71.

Komeil, D.; Padilla-Reynaud, R.; Lerat, S.; Simao-Beaunoir, A. M.; Beaulieu, C.,
Comparative secretome analysis of Streptomyces scabiei during growth in the
presence or absence of potato suberin. *Proteome Sci* 2014, *12*, 35.

20. Lauzier, A.; Simao-Beaunoir, A. M.; Bourassa, S.; Poirier, G. G.; Talbot, B.;
Beaulieu, C., Effect of potato suberin on Streptomyces scabies proteome. *Molecular plant pathology* 2008, 9 (6), 753-62.

Loria, R.; Bukhalid, R. A.; Creath, R. A.; Leiner, R. H.; Olivier, M.; Steffens, J. C.,
Differential Production of Thaxtomins by Pathogenic Streptomyces species in Vitro. *Phytopathology* 1995, *85*, 537-541.

89 22. Vizcaino, J. A.; Csordas, A.; del-Toro, N.; Dianes, J. A.; Griss, J.; Lavidas, I.;

90 Mayer, G.; Perez-Riverol, Y.; Reisinger, F.; Ternent, T.; Xu, Q. W.; Wang, R.;

91 Hermjakob, H., 2016 update of the PRIDE database and its related tools. *Nucleic*

92 acids research **2016**, 44 (D1), D447-56.

93 23. MacLean, B.; Tomazela, D. M.; Shulman, N.; Chambers, M.; Finney, G. L.;

- 94 Frewen, B.; Kern, R.; Tabb, D. L.; Liebler, D. C.; MacCoss, M. J., Skyline: an open
- 95 source document editor for creating and analyzing targeted proteomics
- 96 experiments. *Bioinformatics* **2010**, *26* (7), 966-8.

97 24. Mesuere, B.; Van der Jeugt, F.; Devreese, B.; Vandamme, P.; Dawyndt, P., The
98 unique peptidome: Taxon-specific tryptic peptides as biomarkers for targeted
99 metaproteomics. *Proteomics* 2016, *16* (17), 2313-8.

Desiere, F.; Deutsch, E. W.; King, N. L.; Nesvizhskii, A. I.; Mallick, P.; Eng, J.;
Chen, S.; Eddes, J.; Loevenich, S. N.; Aebersold, R., The PeptideAtlas project. *Nucleic acids research* 2006, *34* (Database issue), D655-8.

Yang, J.; Tauschek, M.; Robins-Browne, R. M., Control of bacterial virulence
by AraC-like regulators that respond to chemical signals. *Trends Microbiol* 2011, *19*(3), 128-35.

106 27. Jourdan, S.; Francis, I. M.; Deflandre, B.; Loria, R.; Rigali, S., Tracking the
107 Subtle Mutations Driving Host Sensing by the Plant Pathogen Streptomyces scabies.
108 *mSphere* 2017, 2 (2), e00367-16.

109 28. Kwakman, J. H.; Postma, P. W., Glucose kinase has a regulatory role in carbon
110 catabolite repression in Streptomyces coelicolor. *Journal of bacteriology* **1994**, *176*111 (9), 2694-8.

van Wezel, G. P.; White, J.; Young, P.; Postma, P. W.; Bibb, M. J., Substrate
induction and glucose repression of maltose utilization by Streptomyces coelicolor
A3(2) is controlled by malR, a member of the lacl-galR family of regulatory genes. *Molecular microbiology* 1997, 23 (3), 537-49.

Schlosser, A.; Weber, A.; Schrempf, H., Synthesis of the Streptomyces lividans
maltodextrin ABC transporter depends on the presence of the regulator MalR. *FEMS microbiology letters* 2001, *196* (1), 77-83.

Hurtubise, Y.; Shareck, F.; Kluepfel, D.; Morosoli, R., A cellulase/xylanasenegative mutant of Streptomyces lividans 1326 defective in cellobiose and xylobiose
uptake is mutated in a gene encoding a protein homologous to ATP-binding proteins. *Molecular microbiology* 1995, *17* (2), 367-77.

32. Schlosser, A.; Kampers, T.; Schrempf, H., The Streptomyces ATP-binding
component MsiK assists in cellobiose and maltose transport. *Journal of bacteriology* **1997**, *179* (6), 2092-5.

Nothaft, H.; Dresel, D.; Willimek, A.; Mahr, K.; Niederweis, M.; Titgemeyer, F.,
The phosphotransferase system of Streptomyces coelicolor is biased for Nacetylglucosamine metabolism. *Journal of bacteriology* 2003, *185* (23), 7019-23.

34. Nothaft, H.; Rigali, S.; Boomsma, B.; Swiatek, M.; McDowall, K. J.; van Wezel,
G. P.; Titgemeyer, F., The permease gene nagE2 is the key to N-acetylglucosamine

sensing and utilization in Streptomyces coelicolor and is subject to multi-level
control. *Molecular microbiology* 2010, 75 (5), 1133-44.

133 35. Nothaft, H.; Parche, S.; Kamionka, A.; Titgemeyer, F., In vivo analysis of HPr
134 reveals a fructose-specific phosphotransferase system that confers high-affinity
135 uptake in Streptomyces coelicolor. *Journal of bacteriology* **2003**, *185* (3), 929-37.

Rigali, S.; Nothaft, H.; Noens, E. E.; Schlicht, M.; Colson, S.; Muller, M.; Joris,
B.; Koerten, H. K.; Hopwood, D. A.; Titgemeyer, F.; van Wezel, G. P., The sugar
phosphotransferase system of Streptomyces coelicolor is regulated by the GntRfamily regulator DasR and links N-acetylglucosamine metabolism to the control of
development. *Molecular microbiology* 2006, *61* (5), 1237-51.

141 37. Lambert, S.; Traxler, M. F.; Craig, M.; Maciejewska, M.; Ongena, M.; van
142 Wezel, G. P.; Kolter, R.; Rigali, S., Altered desferrioxamine-mediated iron utilization is
143 a common trait of bald mutants of Streptomyces coelicolor. *Metallomics : integrated*144 *biometal science* 2014, 6 (8), 1390-9.

145 38. Legault, G. S.; Lerat, S.; Nicolas, P.; Beaulieu, C., Tryptophan regulates
146 thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and
147 modifies its interactions with radish seedlings. *Phytopathology* 2011, *101* (9), 1045148 51.

Johnson, E. G.; Krasnoff, S. B.; Bignell, D. R.; Chung, W. C.; Tao, T.; Parry, R. J.;
Loria, R.; Gibson, D. M., 4-Nitrotryptophan is a substrate for the non-ribosomal
peptide synthetase TxtB in the thaxtomin A biosynthetic pathway. *Molecular microbiology* 2009, *73* (3), 409-18.

40. Spaepen, S.; Vanderleyden, J., Auxin and plant-microbe interactions. *Cold Spring Harb Perspect Biol* **2011**, *3* (4), a001438

41. Zummo, F. P.; Marineo, S.; Pace, A.; Civiletti, F.; Giardina, A.; Puglia, A. M.,
Tryptophan catabolism via kynurenine production in Streptomyces coelicolor:
identification of three genes coding for the enzymes of tryptophan to anthranilate
pathway. *Applied microbiology and biotechnology* 2012, *94* (3), 719-28.

Kim, D. J.; Huh, J. H.; Yang, Y. Y.; Kang, C. M.; Lee, I. H.; Hyun, C. G.; Hong, S.
K.; Suh, J. W., Accumulation of S-adenosyl-L-methionine enhances production of
actinorhodin but inhibits sporulation in Streptomyces lividans TK23. *Journal of bacteriology* 2003, *185* (2), 592-600.

Pang, A. P.; Du, L.; Lin, C. Y.; Qiao, J.; Zhao, G. R., Co-overexpression of ImbW
and metK led to increased lincomycin A production and decreased byproduct
lincomycin B content in an industrial strain of Streptomyces lincolnensis. *Journal of applied microbiology* 2015, *119* (4), 1064-74.

44. Jin, Y. Y.; Cheng, J.; Yang, S. H.; Meng, L.; Palaniyandi, S. A.; Zhao, X. Q.; Suh, J.
W., S-adenosyl-L-methionine activates actinorhodin biosynthesis by increasing

autophosphorylation of the Ser/Thr protein kinase AfsK in Streptomyces coelicolor
A3(2). *Bioscience, biotechnology, and biochemistry* **2011**, *75* (5), 910-3.

45. Zhao, X.; Wang, Q.; Guo, W.; Cai, Y.; Wang, C.; Wang, S.; Xiang, S.; Song, Y.,
Overexpression of metK shows different effects on avermectin production in various
Streptomyces avermitilis strains. *World journal of microbiology & biotechnology* **2013**, 29 (10), 1869-75.

46. Butler, A. R.; Gandecha, A. R.; Cundliffe, E., Influence of ancillary genes,
encoding aspects of methionine metabolism, on tylosin biosynthesis in Streptomyces
fradiae. *The Journal of antibiotics* **2001**, *54* (8), 642-9.

47. Franza, T.; Expert, D., Role of iron homeostasis in the virulence of
phytopathogenic bacteria: an 'a la carte' menu. *Molecular plant pathology* 2013, *14*(4), 429-38.

181 48. Ratledge, C.; Dover, L. G., Iron metabolism in pathogenic bacteria. *Annu Rev*182 *Microbiol* 2000, *54*, 881-941.

49. Chu, B. C.; Garcia-Herrero, A.; Johanson, T. H.; Krewulak, K. D.; Lau, C. K.;
Peacock, R. S.; Slavinskaya, Z.; Vogel, H. J., Siderophore uptake in bacteria and the
battle for iron with the host; a bird's eye view. *Biometals* **2010**, *23* (4), 601-11.

Arias, A. A.; Lambert, S.; Martinet, L.; Adam, D.; Tenconi, E.; Hayette, M.-P.;
Ongena, M.; Rigali, S., Growth of desferrioxamine-deficient Streptomyces mutants
through xenosiderophore piracy of airborne fungal contaminations. *FEMS microbiology ecology* 2015, *91* (7), fiv080.

190 51. Patel, P.; Song, L.; Challis, G. L., Distinct extracytoplasmic siderophore binding
191 proteins recognize ferrioxamines and ferricoelichelin in Streptomyces coelicolor
192 A3(2). *Biochemistry* 2010, 49 (37), 8033-42.

193 52. Tierrafria, V. H.; Ramos-Aboites, H. E.; Gosset, G.; Barona-Gomez, F.,
194 Disruption of the siderophore-binding desE receptor gene in Streptomyces coelicolor
195 A3(2) results in impaired growth in spite of multiple iron-siderophore transport
196 systems. *Microbial biotechnology* 2011, 4 (2), 275-85.

197 53. Traxler, M. F.; Watrous, J. D.; Alexandrov, T.; Dorrestein, P. C.; Kolter, R.,
198 Interspecies interactions stimulate diversification of the Streptomyces coelicolor
199 secreted metabolome. *mBio* 2013, 4 (4), e00459-13.

S4. Craig, M.; Lambert, S.; Jourdan, S.; Tenconi, E.; Colson, S.; Maciejewska, M.;
Ongena, M.; Martin, J. F.; van Wezel, G.; Rigali, S., Unsuspected control of
siderophore production by N-acetylglucosamine in streptomycetes. *Environ Microbiol Rep* 2012, 4 (5), 512-21.

204 55. Yamanaka, K.; Oikawa, H.; Ogawa, H. O.; Hosono, K.; Shinmachi, F.; Takano,
205 H.; Sakuda, S.; Beppu, T.; Ueda, K., Desferrioxamine E produced by Streptomyces

206 griseus stimulates growth and development of Streptomyces tanashiensis.
207 *Microbiology* 2005, *151* (Pt 9), 2899-905.

56. Tunca, S.; Barreiro, C.; Coque, J. J.; Martin, J. F., Two overlapping antiparallel
genes encoding the iron regulator DmdR1 and the Adm proteins control siderophore
[correction of sedephore] and antibiotic biosynthesis in Streptomyces coelicolor
A3(2). *FEBS J* 2009, *276* (17), 4814-27.

57. Seipke, R. F.; Song, L.; Bicz, J.; Laskaris, P.; Yaxley, A. M.; Challis, G. L.; Loria,
R., The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin
biosynthetic pathway that is regulated by TetR- and AfsR-family proteins.

- 215 *Microbiology* **2011,** *157* (Pt 9), 2681-93.
- 216 58. Guerinot, M. L., Microbial iron transport. *Annu Rev Microbiol* **1994**, *48*, 743217 72.
- 218 59. Cornelis, P.; Dingemans, J., Pseudomonas aeruginosa adapts its iron uptake
 219 strategies in function of the type of infections. *Front Cell Infect Microbiol* **2013**, *3*, 75.

220 60. Takase, H.; Nitanai, H.; Hoshino, K.; Otani, T., Requirement of the
221 Pseudomonas aeruginosa tonB gene for high-affinity iron acquisition and infection.
222 Infect Immun 2000, 68 (8), 4498-504.

223 61. Yaxley, A. M., Study of the complete genome sequence of Streptomyces
224 scabies (or scabiei) 87.22. *PhD dissertation* 2009.

Kinashi, H.; Someno, K.; Sakaguchi, K., Isolation and Characterization of
Concanamycin-a, Concanamycin-B and Concanamycin-C. *J Antibiot* **1984**, *37* (11),
1333-1343.

Seki-Asano, M.; Okazaki, T.; Yamagishi, M.; Sakai, N.; Hanada, K.; Mizoue, K.,
Isolation and characterization of new 18-membered macrolides FD-891 and FD-892. *The Journal of antibiotics* 1994, 47 (11), 1226-33.

64. Natsume, M.; Tashiro, N.; Doi, A.; Nishi, Y.; Kawaide, H., Effects of
concanamycins produced by Streptomyces scabies on lesion type of common scab of
potato. *Journal of General Plant Pathology* 2017, *83* (2), 78-82.

Bignell, D. R.; Seipke, R. F.; Huguet-Tapia, J. C.; Chambers, A. H.; Parry, R. J.;
Loria, R., Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic
cluster that contributes to plant-microbe interactions. *Molecular plant-microbe interactions : MPMI* 2010, *23* (2), 161-75.

238 66. Cheng, Z.; Bown, L.; Tahlan, K.; Bignell, D. R., Regulation of coronafacoyl
239 phytotoxin production by the PAS-LuxR family regulator CfaR in the common scab
240 pathogen Streptomyces scabies. *PloS one* **2015**, *10* (3), e0122450.

241 67. Hempel, A. M.; Cantlay, S.; Molle, V.; Wang, S. B.; Naldrett, M. J.; Parker, J. L.;
242 Richards, D. M.; Jung, Y. G.; Buttner, M. J.; Flardh, K., The Ser/Thr protein kinase AfsK

243 regulates polar growth and hyphal branching in the filamentous bacteria

244 Streptomyces. *Proceedings of the National Academy of Sciences of the United States* 245 *of America* **2012,** *109* (35), E2371-9.

246 68. Umeyama, T.; Lee, P. C.; Horinouchi, S., Protein serine/threonine kinases in
247 signal transduction for secondary metabolism and morphogenesis in Streptomyces.
248 Applied microbiology and biotechnology 2002, 59 (4-5), 419-25.

249 69. Nodwell, J. R.; McGovern, K.; Losick, R., An oligopeptide permease
250 responsible for the import of an extracellular signal governing aerial mycelium
251 formation in Streptomyces coelicolor. *Molecular microbiology* **1996**, *22* (5), 881-93.

Park, H. S.; Shin, S. K.; Yang, Y. Y.; Kwon, H. J.; Suh, J. W., Accumulation of Sadenosylmethionine induced oligopeptide transporters including BldK to regulate
differentiation events in Streptomyces coelicolor M145. *FEMS microbiology letters* **2005**, *249* (2), 199-206.

256 71. Bibb, M. J.; Domonkos, A.; Chandra, G.; Buttner, M. J., Expression of the
257 chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is
258 controlled by sigma(BldN) and a cognate anti-sigma factor, RsbN. *Molecular*259 *microbiology* 2012, *84* (6), 1033-49.

260 72. Bibb, M. J.; Molle, V.; Buttner, M. J., sigma(BldN), an extracytoplasmic
261 function RNA polymerase sigma factor required for aerial mycelium formation in
262 Streptomyces coelicolor A3(2). *Journal of bacteriology* 2000, *182* (16), 4606-16.

73. Traxler, M. F.; Seyedsayamdost, M. R.; Clardy, J.; Kolter, R., Interspecies
modulation of bacterial development through iron competition and siderophore
piracy. *Molecular microbiology* 2012, *86* (3), 628-44.

266 74. Bignell, D. R.; Francis, I. M.; Fyans, J. K.; Loria, R., Thaxtomin A production and
267 virulence are controlled by several bld gene global regulators in Streptomyces
268 scabies. *Molecular plant-microbe interactions : MPMI* **2014**, *27* (8), 875-85.

Kwak, J.; McCue, L. A.; Trczianka, K.; Kendrick, K. E., Identification and
characterization of a developmentally regulated protein, EshA, required for
sporogenic hyphal branches in Streptomyces griseus. *Journal of bacteriology* 2001, *183* (10), 3004-15.

- 273 76. Saito, N.; Matsubara, K.; Watanabe, M.; Kato, F.; Ochi, K., Genetic and
 274 biochemical characterization of EshA, a protein that forms large multimers and
 275 affects developmental processes in Streptomyces griseus. *The Journal of biological*276 *chemistry* 2003, *278* (8), 5902-11.
- 277 77. Kawamoto, S.; Watanabe, M.; Saito, N.; Hesketh, A.; Vachalova, K.;
 278 Matsubara, K.; Ochi, K., Molecular and functional analyses of the gene (eshA)
 279 encoding the 52-kilodalton protein of Streptomyces coelicolor A3(2) required for
- antibiotic production. *Journal of bacteriology* **2001,** *183* (20), 6009-16.

281 78. Saito, N.; Xu, J.; Hosaka, T.; Okamoto, S.; Aoki, H.; Bibb, M. J.; Ochi, K., EshA

accentuates ppGpp accumulation and is conditionally required for antibiotic

production in Streptomyces coelicolor A3(2). *Journal of bacteriology* **2006**, *188* (13),

- 284 4952-61.

293 Table 1. Metabolism

Protein	Gene				nange (vs w	vild-type)
assignation	assignation	Name	Known of Putative function	∆cebR	+ (Glc) ₂	∆ <i>cebR</i> + (Glc)₂
Carbohydrate						
Glycolysis and	Gluconeogenesis					
C9Z433	SCAB_42161	Fba	Putative fructose 1.6-bisphosphate aldolase	1.59	1.02	1.55
C9YTW6	SCAB_67551	GlkA	Glucokinase	1.05	-1.91	-1.71
TCA cycle						
C9YVY6	SCAB_21101	SacA	Aconitate hydratase	1.44	-1.71	-
C9ZF68	SCAB_33551	FumB	Fumarate hydratase class I	1.79	-	-
C9YUT6	SCAB_35791	SucD	Succinyl-CoA ligase [ADP-forming] subunit alpha	-	2.09	-
Pentose phosp	hate pathway					
C9Z545	SCAB_11811	ZWF3	6-phosphogluconate dehydrogenase	1.57	1.38	1.94
C9YY12	SCAB_54161	PrsA2	Ribose-phosphate pyrophosphokinase	-1.85	2.33	1.27
C9YY83	SCAB_69911	Tal	Transaldolase	1.65	1.38	2.19
C9YY84	9YY84 SCAB_69921 TktA Transketolase		1.54	1.04	1.64	
Simple. oligo- a	ind complex carbo	ohydrates i	utilisation			
Cellulose, cello-	oligosaccharides d	and cellobic	ose utilization			
C9Z448	SCAB_57721	BgIC	Beta-glucosidase	3.00	2.69	6.83
C9Z449	SCAB_57731	CebG	Cellobiose/cellotriose ABC-transporter permease	3.03	2.21	3.83
C9Z451	SCAB_57751	CebE	cellobiose/cellotriose ABC-transporter binding	7.69	4.70	7.33
Starch, maltode	extrine, maltose ut	tilization				
C9Z6V6	SCAB_27951	GlgP	Alpha-1.4 glucan (maltodextrin) phosphorylase	4.06	-1.15	3.06
C9ZHD4	SCAB_66571	MalR	Starch/Maltose operon transcriptional repressor	1.87	1.65	2.01
C9ZHD5	SCAB_66581	MalE	Maltose ABC-transporter binding protein	1.54	-3.80	-1.32
C9ZHD7	SCAB_66601	MalG	Maltose ABC-transporter membrane component	1.07	-2.65	-2.23
C9ZHD8	SCAB_66611	AgIA	Alpha-glucosidase	-1.32	-3.03	-1.31
C9Z1A6	SCAB_71771	-	GH15 family glucoamylase and related GHs	-2.28	-1.73	-3.01
Xylose utilizatio	n					
C9YVX8	SCAB_21021	XylF	D-xylose ABC-transporter binding protein	-	-1.62	-
Multiple carboh	ydrate pathway t	ransporter,	/enzyme			
C9Z435	SCAB_42181	-	Sugar mutarotase (aldose epimerase family)	1.88	1.06	1.58
C9ZH37	SCAB_50161	MsiK	Multiple sugar ABC transporter ATP-binding subunit	1.99	1.06	1.73
C9Z9C1	SCAB_76201	PTS E1	PEP phosphotransferase system E1 (Fru and GlcNAc)	3.11 -		-
C9ZFY0	SCAB_79811	ThcA	Aldehyde dehydrogenase	2.05	-1.43	2.44
Amino sugar ai	nd nucleotide sug	ar metabol	lism			

CJIWUZ	SCAB_53131	GtaB	UTP-glucose-1-phosphate uridylyltransferase	-1.84	1.98	-
Amino acids r	netabolism					
Tryptophan, ph	enylalanine, and	tyrosine m	etabolism			
C9Z8D6	SCAB_28641	-	3-hydroxybutyryl-coA dehydrogenase	1.58	-	1.73
C9Z429	SCAB 42121	KynU	Kynureninase	2.19	2.30	2.40
C9Z430	SCAB 42131	KynA	Tryptophan 2.3-dioxygenase	2.31	6.18	2.77
C9ZC21	SCAB 46571	PheA	Prephenate dehydratase	-	-1.64	-
C9Z5T6	SCAB 58971	AroQ	Chorismate mutase	-	1.79	-
C9YTX6	SCAB 67661	AroH	Phospho-2-dehydro-3-deoxyheptonate aldolase	-1.59	-	-
C9YVG1	SCAB 68361	HisC	Histidinol-phosphate aminotransferase	-2.16	-	-
C9YVH5	SCAB 68501	TrpB	Tryptophan synthase beta chain	1.52	1.57	2.01
Valine, leucine.	and, isoleucine B	iosynthesis		1.01	2107	2.01
C97555	SCAB 26601	LeuD	3-isopropylmalate dehydratase small subunit	-1.56	-1.50	-1.62
C975A1	SCAB 27071	IlvN	Acetolactate synthase small subunit	-1 51	-	-
C97A08	SCAB 61851	LeuA	2-isopropylmalate synthase	-2 77	-1 76	-2 45
Methionine and	d cysteine metabo	lism		2.77	1.70	2.15
C97GT9	SCAB 34371	MetB	Cystathionine gamma-synthase	-1 66	-1 35	-1 79
C9Y7I1	SCAB 55181	SahH	Adenosylhomocysteinase	2.03	2 23	3 35
C97309	SCAB_33101	MotH	Methionine synthese	1 1/	1.58	1.62
C9Z303	SCAB_75311	Motk	S-adenosylmethionine synthase	1.14	1.50	1.02
Glutamate met	abolism	WELK	5-adenosymetholime synthase	1.01	_	1.54
C97204	SCAR 2/201	Glup	Glutamate untake system binding subunit		-1 95	-1 56
C92204	SCAB 66001	Glub GluA	Glutamine system binding subunit	-	-1.00	-1.50
	JCAD_00881	GINA	Giutannine synthetase	-	-1.55	-
Lysine biosynth	esis	Den A1	A budeness totale disinglights such as	1	1.52	1.42
C9ZZ34	SCAB_25191	DapAI	4-nyuroxy-tetranyurouipicolinate synthase	-	-1.52	-1.42
C9ZBW/	SCAB_31231	Dape	Succinyi-diaminopimelate desuccinyiase	1.55	-1.25	-
Glycine, serine	ana threonine me	etabolism		1	2.04	
C9Z3IVIZ	SCAB_25841	-	Betaine-aidenyde denydrogenase	-	2.84	-
092599	SCAB_27051	SerA	D-3-phosphoglycerate denydrogenase	-1.61	-	-
C92H61	SCAB_50401	ThrC3	I hreonine synthase	-1.23	1.51	-
C9Y1K4	SCAB_51101	SerC	Phosphoserine aminotransferase	-1.36	-1.54	-1.63
C9YXA3	SCAB_6921	SoxG	Sarcosine oxidase gamma subunit	1.80	-2.48	-
C9YXA4	SCAB_6931	SoxA	Sarcosine oxidase alpha subunit	3.03	-2.01	-
C9YXA7	SCAB_6961	-	Putative dehydrogenase	1.59	-1.99	-1.13
Arginine biosyn	thesis				r	
C9Z5Y7	SCAB_74301	ArgH	Argininosuccinate lyase	-1.81	-	-1.50
Metabolism o	of other amino a	icids				
Glutathione me	etabolism				1	
C9YV75	SCAB_52361	-	Glutathione peroxidase	2.13	-	-
Lipid metabol	ism					
Lipid metabol Fatty acid meta	ism Ibolism	r		1		
Lipid metabol Fatty acid meta C9YVX2	ism Ibolism SCAB_20961	-	Fatty acid oxidation complex alpha-subunit	-3.30	-	-2.41
Lipid metabol Fatty acid meta C9YVX2 C9YY49	ism bolism SCAB_20961 SCAB_54571	- FadA2	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase	-3.30 1.87	-1.40	<mark>-2.41</mark> 1.74
Lipid metabol Fatty acid meta C9YVX2 C9YY49 C9Z9F5	ism abolism SCAB_20961 SCAB_54571 SCAB_76541	- FadA2 FabG	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase	-3.30 1.87 1.96	-1.40 -1.34	-2.41 1.74 1.56
Lipid metabol Fatty acid meta C9YVX2 C9YY49 C9Z9F5 Steroid metabo	ism ibolism SCAB_20961 SCAB_54571 SCAB_76541 lism	- FadA2 FabG	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase	-3.30 1.87 1.96	- -1.40 -1.34	-2.41 1.74 1.56
Lipid metabol Fatty acid meta C9YVX2 C9YY49 C9Z9F5 Steroid metabo C9Z6Y6	ism ibolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271	- FadA2 FabG Che	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase	-3.30 1.87 1.96	-1.40 -1.34 -3.66	-2.41 1.74 1.56 -2.92
Lipid metabol Fatty acid meta C9YVX2 C9YY49 C9Z9F5 Steroid metabo C9Z6Y6 Nucleotide metabol	ism ibolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism	- FadA2 FabG Che	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase	-3.30 1.87 1.96	-1.40 -1.34 -3.66	-2.41 1.74 1.56 -2.92
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol Purine & pyrim	ism ibolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism	- FadA2 FabG Che	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase	-3.30 1.87 1.96	-1.40 -1.34 -3.66	-2.41 1.74 1.56 -2.92
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol Purine & pyrim C9YUW0	ism ibolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051	- FadA2 FabG Che GuaA	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase	-3.30 1.87 1.96 -	- -1.40 -1.34 -3.66 -1.51	-2.41 1.74 1.56 -2.92 -1.65
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9Z6Y6 Nucleotide metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YWT5	ism ibolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_69391	- FadA2 FabG Che GuaA PsuG	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase	-3.30 1.87 1.96 - - -1.58 -	- -1.40 -1.34 -3.66 -1.51 -1.77	-2.41 1.74 1.56 -2.92 -1.65
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YWT5 C9Z7K7	ism ibolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_69391 SCAB_75271	- FadA2 FabG Che GuaA PsuG Gmk	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase	-3.30 1.87 1.96 - - -1.58 - - 1.71	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30	-2.41 1.74 1.56 -2.92 -1.65 - -1.88
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YWT5 C9Z7K7 C9ZB78	ism ibolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_69391 SCAB_75271 SCAB_78051	- FadA2 FabG Che GuaA PsuG Gmk PurB	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase Adenylosuccinate lyase	-3.30 1.87 1.96 - - -1.58 - -1.71 -1.84	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YWT5 C9Z7K7 C9ZB78 C9YU37	ism ibolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_69391 SCAB_75271 SCAB_78051 SCAB_82101	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30 -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YWT5 C9Z7K7 C9ZB78 C9YU37 Energy metabol Energy metabol C9YUX2	ism bolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_69391 SCAB_75271 SCAB_78051 SCAB_78051 SCAB_282101 bolism	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30 - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YUW0 C9YUT5 C9Z7K7 C9ZB78 C9YU37 Energy metabol Oxidative phose	ism bolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism SCAB_36051 SCAB_36051 SCAB_69391 SCAB_75271 SCAB_78051 SCAB_78051 SCAB_2101 bolism bohorylation	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30 - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YUT5 C9Z7K7 C9ZB78 C9YU37 Energy metabol Oxidative phosponetabol C9YXV4	ism bolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_69391 SCAB_75271 SCAB_78051 SCAB_78051 SCAB_28101 polism phorylation SCAB_38011	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74 1.83	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30 - - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - - - - - - - - - - - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YUT5 C9Z7K7 C9ZB78 C9YU37 Energy metabol Oxidative phospose C9YXV4 C9YXV4	ism ibolism SCAB_20961 SCAB_54571 SCAB_76541 ilism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_69391 SCAB_75271 SCAB_78051 SCAB_78051 SCAB_28101 polism phorylation SCAB_38011 SCAB_38031	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT Nuol NuoG	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit NADH-quinone oxidoreductase subunit 1 NADH-quinone oxidoreductase	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74 1.83 1.45	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30 - - - - - - - - - - - - - - - - - - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - - - - - - - - - - - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YWT5 C9Z7K7 C9ZB78 C9YU37 Energy metabol Oxidative phosposition C9YXV4 C9YXV4 C9YXV6 C9YXV7	ism ibolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_36051 SCAB_75271 SCAB_75271 SCAB_78051 SCAB_2101 polism phorylation SCAB_38031 SCAB_38031 SCAB_38041	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT YagT NuoI NuoG NuoF	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase NADH dehydrogenase subunit	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74 1.83 1.45 1.64	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30 - - - - - - - - - - - - - - - - - - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - - - - - - - - - - - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YUW0 C9YUW5 C9Z7K7 C9ZB78 C9YU37 Energy metabl Oxidative phosy C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV6 C9YXV7 C9YXV9	ism ibolism SCAB_20961 SCAB_54571 SCAB_76541 ilism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_36051 SCAB_75271 SCAB_75271 SCAB_78051 SCAB_2101 polism phorylation SCAB_38031 SCAB_38041 SCAB_38041 SCAB_38061	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT YagT NuoI NuoG NuoF NuoD	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit NADH-quinone oxidoreductase subunit	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74 1.83 1.45 1.64 1.50	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30 - - - - - - - - - - - - - - - - - - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - - - - - - - - - - - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YWT5 C9Z7K7 C9ZB78 C9YU37 Energy metabl Oxidative phosy C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV6 C9YXV7 C9YXV9 C9YXV9 C9YXW0	ism bolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_36051 SCAB_75271 SCAB_75271 SCAB_78051 SCAB_78051 SCAB_38011 SCAB_38031 SCAB_38041 SCAB_38061 SCAB_38071	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT YagT NuoI NuoG NuoF NuoD NuoC	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guarylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit NADH-quinone oxidoreductase subunit 1 NADH-quinone oxidoreductase subunit NADH-quinone oxidoreductase subunit NADH-quinone oxidoreductase subunit NADH-quinone oxidoreductase subunit	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74 1.83 1.45 1.64 1.50 1.96	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30 - - - - - - - - - - - - - - - - - - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - - - - - - - - - - - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YWT5 C9Z7K7 C9ZB78 C9YU37 Energy metabl Oxidative phosy C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV7 C9YXV9 C9YXV0 C9YXU0 C9YTU0	ism bolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_36051 SCAB_75271 SCAB_75271 SCAB_75271 SCAB_78051 SCAB_38011 SCAB_38031 SCAB_38041 SCAB_38061 SCAB_38071 SCAB_38071 SCAB_67291	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT YagT NuoI NuoG NuoF NuoD NuoC CtaC	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guaylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit NADH-quinone oxidoreductase subunit 1 NADH-quinone oxidoreductase subunit	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74 1.83 1.45 1.64 1.50 1.96 -1 31	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30 - - - - - - - - - - - - - - - - - - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - - - - - - - - - - - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YUT5 C9Z7K7 C9ZB78 C9YU37 Energy metabol C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV7 C9YXV9 C9YXV9 C9YXW0 C9YTU0 Sulfur metabol	ism bolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_36051 SCAB_75271 SCAB_75271 SCAB_75271 SCAB_75271 SCAB_78051 SCAB_38011 SCAB_38031 SCAB_38041 SCAB_38061 SCAB_38071 SCAB_38071 SCAB_67291 ism	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT YagT NuoI NuoG NuoF NuoD NuoC CtaC	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guarylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74 1.83 1.45 1.64 1.50 1.96 -1.31	- -1.40 -1.34 -3.66 -1.51 -1.51 -1.77 -1.30 - - - - - - - - - - - - - - - - - - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - -1.88 - - - - - - - - - - - - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YUT5 C9Z7K7 C9ZB78 C9YU37 Energy metab Oxidative phos C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV7 C9YXV9 C9YXV9 C9YXV0 C9YTU0 Sulfur metaboli C9YU17	ism bolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_76541 etabolism idine metabolism SCAB_36051 SCAB_36051 SCAB_75271 SCAB_75271 SCAB_75271 SCAB_75271 SCAB_78051 SCAB_38011 SCAB_38031 SCAB_38041 SCAB_38041 SCAB_38071 SCAB_7721	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT YagT NuoI NuoG NuoF NuoD NuoC CtaC	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit C Cytochrome c oxidase subunit II	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74 1.83 1.45 1.64 1.50 1.96 -1.31 -1.79	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30 - - - - - - - - - - - - - - - - - - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - - - - - - - - - - - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YWT5 C9Z7K7 C9ZB78 C9YU37 Energy metab Oxidative phos C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV7 C9YXV9 C9YXV9 C9YXV9 C9YXV0 C9YU0 Sulfur metaboli C9YUJ7 C9YLI7	ism bolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_36051 SCAB_75271 SCAB_75271 SCAB_75271 SCAB_75271 SCAB_38011 SCAB_38031 SCAB_38041 SCAB_38041 SCAB_38071 SCAB_38071 SCAB_19771 SCAB_50411	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT YagT NuoI NuoG NuoF NuoD NuoC CtaC	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit I Nitrite/sulphite reductase Sulfur metabolism protein	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74 1.83 1.45 1.64 1.50 1.96 -1.31 -1.79 -2.22	- -1.40 -1.34 -3.66 - 1.51 -1.51 -1.77 -1.30 - - - - - - - - - - - - - - - - - - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - -1.88 - - - - - - - - - - - - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YWT5 C9Z7K7 C9ZB78 C9YU37 Energy metabol C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV7 C9YXV9 C9YXV9 C9YXV0 C9YXV0 C9YTU0 Sulfur metabolic C9YUJ7 C9ZH62 Metabolism of the second secon	ism bolism SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_36051 SCAB_75271 SCAB_75271 SCAB_75271 SCAB_78051 SCAB_38011 SCAB_38031 SCAB_38041 SCAB_38041 SCAB_38071 SCAB_38071 SCAB_19771 SCAB_50411 f cofactors and	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT YagT NuoI NuoG NuoF NuoD NuoC CtaC	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit C Cytochrome c oxidase subunit II Nitrite/sulphite reductase Sulfur metabolism protein	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74 1.83 1.45 1.64 1.50 1.96 -1.31 - -1.79 -2.22	- -1.40 -1.34 -3.66 - 1.51 -1.77 -1.30 - - - - - - - - - - - - - - - - - - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - - - - - - - - - - - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YWT5 C9Z7K7 C9ZB78 C9YU37 Energy metab Oxidative phosy C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV7 C9YXV9 C9YXV4 C9YXV9 C9YXV9 C9YXV0 C9YXV9 C9YXV0 C9YU0 Sulfur metabolism conditiones and	ism bolism SCAB_20961 SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_36051 SCAB_75271 SCAB_75271 SCAB_75271 SCAB_78051 SCAB_38011 SCAB_38031 SCAB_38041 SCAB_38041 SCAB_38051 SCAB_3	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT YagT NuoI NuoG NuoF NuoD NuoC CtaC - - vitamins	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit II Nitrite/sulphite reductase Sulfur metabolism protein	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74 1.83 1.45 1.64 1.50 1.96 -1.31 -1.79 -2.22	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30 - - - - - - - - - - - - - - - - - - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - - - - - - - - - - - -
Lipid metabol Fatty acid metabol C9YVX2 C9YY49 C9Z9F5 Steroid metabol C9Z6Y6 Nucleotide metabol C9YUW0 C9YUW0 C9YUW0 C9YWT5 C9Z7K7 C9ZB78 C9YU37 Energy metabol C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV4 C9YXV7 C9YXV9 C9YXV4 C9YXV9 C9YXV9 C9YXV0 C9YXV9 C9YXV0 C9YU0 Sulfur metabolism of Nicotinate and C9ZB0	ism bolism SCAB_20961 SCAB_20961 SCAB_54571 SCAB_76541 lism SCAB_28271 etabolism idine metabolism SCAB_36051 SCAB_36051 SCAB_75271 SCAB_75271 SCAB_75271 SCAB_78051 SCAB_38011 SCAB_38031 SCAB_38041 SCAB_38041 SCAB_38051 SCAB_38071 SCAB_38071 SCAB_3771 SCAB_3771 SCAB_307	- FadA2 FabG Che GuaA PsuG Gmk PurB YagT YagT NuoI NuoG NuoF NuoD NuoC CtaC - - - vitamins tabolism	Fatty acid oxidation complex alpha-subunit Acetyl-CoA C-acyltransferase 3-oxoacyl-[acyl-carrier protein] reductase Cholesterol esterase GMP synthase Pseudouridine-5'-phosphate glycosidase Guanylate kinase Adenylosuccinate lyase Xanthine dehydrogenase iron-sulfur-binding subunit NADH-quinone oxidoreductase subunit I NADH-quinone oxidoreductase subunit D NADH-quinone oxidoreductase subunit C Cytochrome c oxidase subunit II Nitrite/sulphite reductase Sulfur metabolism protein	-3.30 1.87 1.96 - -1.58 - -1.71 -1.84 -1.74 1.83 1.45 1.64 1.50 1.96 -1.31 -1.79 -2.22	- -1.40 -1.34 -3.66 -1.51 -1.77 -1.30 - - - - - - - - - - - - - - - - - - -	-2.41 1.74 1.56 -2.92 -1.65 - -1.88 - - -1.88 - - - - - - - - - - - - -

Porphyrin metabolism								
C9YZ88	SCAB_38711	AB_38711 HemL Glutamate-1-semialdehyde 2.1-aminomutase -1.63				-		
C9ZHA5	SCAB_66281	-	Heme oxygenase		-	-		
Thiamine meta	Thiamine metabolism							
C9ZBZ9 SCAB_46341 Thic Thiamine biosynthesis protein -1.67 - -								
Xenobiotics b	oiodegradation a	and meta	bolism					
C9Z1F7	SCAB_72331	-	Carboxymethylenebutenolidase	1.62	1.30	2.34		
Metabolism of	of terpenoids an	nd polyket	tides					
Biosynthesis of	Biosynthesis of enediyne antibiotics							
C9ZBT1 SCAB_30871 - NDP-hexose 4-ketoreductase -1.90 -1.55 -3.51								

Protein	Gene		Fold ch	ange (vs w	vild-type)	
assignation	assignation	Name	Known of Putative function	ΔcebR	+ (Glc)₂	Δ <i>cebR</i> + (Glc)₂
Specialized (s	econdary) meta	abolism				
Pyochelin						
C9ZDM0	SCAB_1411	-	AMP-binding NRPS ligase (Pyochelin)	4.21	-	3.94
C9YTN2	SCAB_1431	-	ABC transporter ATP-binding subunit (Pyochelin)	2.24	-	2.41
C9ZCY5	SCAB_1451	-	Transporter membrane component (Pyochelin)	18.23	1.66	19.00
Thaxtomin A						
C9ZDB8	SCAB_31761	TxtC	Cytochrome P450 monooxygenase	3.76	4.83	6.44
C9ZDC0	SCAB_31781	TxtB	Thaxtomin synthetase B	1.71	2.29	2.62
C9ZDC1	SCAB_31791	TxtA	Thaxtomin synthetase A	2.61	3.53	3.60
C9ZDC6	SCAB_31831	TxtE	L-tryptophan-nitrating cytochrome P450	2.42	2.77	2.47
Coronafacoyl p	hytotoxins	-	1	-		
C9ZED0	SCAB_79611	Cfa2	Polyketide dehydratase component	-1.86	-2.41	-5.90
C9ZED6	SCAB_79671	CFL	CoA ligase	-1.98	-	-2.77
Concanamycin	A	-	1			•
C9YYJ3	SCAB_84021	-	Carbomoyltransferase	2.02	-	-
C9YYJ6	SCAB_84051	-	O-methyltransferase	5.74	-	4.12
Unknown 1	T	1	1			-
C9ZG90	SCAB_3221	-	NRPS multienzyme	-79.31	35.43	-
C9ZG91	SCAB_3231	-	Oxidoreductase	-	1.80	-
C9ZG92	SCAB_3241	-	Thioesterase	-	6.56	3.90
C9ZG96	SCAB_3281	-	NRPS-associated AMP-binding protein	-	3.26	2.00
Unknown 2	1	1			-	
C9Z2W2	SCAB_72821	-	TetR-family transcriptional regulator	2.06	-	1.57
C9Z2W5	SCAB_72851	-	Putative polyketide cyclase	2.64	-	2.58
Development	associated pro	teins				
C9Z0H0	SCAB_24081	CutR	Two-component response regulator	-	1.81	-
C9ZD97	SCAB_31531	BIdKB	BIdKB-like ABC oligopeptide-binding transport	-	-2.61	-1.92
C9YZC9	SCAB_39121	BldN	AdsA-like sigma factor	-2.19	-	-1.71
C9YUD3	SCAB_5051	EshA	Cyclic nucleotide-binding protein	-1.54	-1.38	-
C9YV27	SCAB_51861	AfsK	Membrane protein	-	14.83	-1.56
C9Z060	SCAB_84991	NsdB	Tetratricopeptide repeat (TPR) domain protein	-1.36	2.41	-
C9Z393	SCAB_86731	SlbR	ScbR-like γ-butyrolactone binding regulator	-	1.98	-
Stress respon	se	1	1			•
C9Z719	SCAB_43471	F40	Cold shock protein	-1.76	-	-
C9YWU0	SCAB_69441	TerZ	Putative stress-induced export associated protein	-	-2.08	-1.73
C9ZHS9	SCAB_81661	TerD	Tellurium resistance protein	-	-1.55	-
Metal homeo	stasis					
Iron homeosta	sis					
C9ZCY1	SCAB_47401	DesE	(Xeno)siderophore-interacting protein	-1.22	4.79	10.76
C9ZCY3	SCAB_51401	DmdR1	Iron-dependent repressor	-2.59	1.56	-
C9ZAS1	SCAB_67681	Bfr	Bacterioferritin	1.45	-3.75	-
Zinc homeosta	sis	1	1	-		
C9YTX8	SCAB_61981	ZnuA	Metal-binding lipoprotein	-	1.85	3.06

	296	Table 2. Specialized metabolism and other protein	is involved in Streptomyces developmen
--	-----	---	--

299 Table 3. Genetic Information Processing

Protein	Gene	Namo	Known or Putative function		nange (vs w	vild-type)	
assignation	assignation	Name	Known of Putative function	ΔcebR	+ (Glc)₂	∆ <i>cebR</i> + (Glc)₂	
Transcription	Transcription						
mRNA biogene	sis						
C9Z3S7	SCAB_26391	Rnc	Ribonuclease 3	1.96	1.07	1.52	
Transcription te	ermination		·		•		
C9Z8G5	SCAB_28931	Rho	Transcription termination factor	-2.10	-	-1.47	
RNA polymeras	e-associated pro	teins	1	-		1	
C9YWA8	SCAB_37251	NusG	Transcription antiterminator	-	1.76	-	
Transcription e	Transcription elogation				1.10	1.51	
C92G14	SCAB_34321	GreA	I ranscription elongation factor	-1./3	-1.19	-1.61	
Translation							
Ribosomal prot	CAR 26621	DollA	FOC ribecomal protain 112	1 71	1 50	1 67	
	SCAB_36631	RpIIVI	20S ribosomal protein S11	-1./1	-1.50	-1.67	
C91W52	SCAB_30081	Rpsk RpsE	20S ribosomal protein SE	-1.09	-1.50	-1 50	
C91W01	SCAB_36791	Role	50S ribosomal protein L6	-1.00	-1.55	-1.50	
C9YW66	SCAB_36821	RolF	50S ribosomal protein L5	-1 51	-1.64	-1.62	
C9YW68	SCAB_36841	RnIN	50S ribosomal protein L14	-1.63	-1.04	-1.02	
C9YW71	SCAB_36871	RolP	50S ribosomal protein L16	-1.75	-1.44	-1.53	
C9YW76	SCAB 36921	RpIW	50S ribosomal protein 123	-1.60	-1.37	-1.33	
C9YW77	SCAB 36931	RpID	50S ribosomal protein L4	-1.63	-1.42	-	
C9YW79	SCAB 36951	RpsJ	30S ribosomal protein S10	-1.74	-1.41	-	
C9YW94	SCAB 37111	RspG	30S ribosomal protein S7	-1.51	-1.38	-1.41	
C9YWA3	SCAB 37201	RpIL	50S ribosomal protein L7/L12	-1.90	-	-	
C9YWA6	SCAB 37231	RlpA	50S ribosomal protein L1	-1.79	-	-	
C9ZAN3	SCAB 46101	RpsF	30S ribosomal protein S6	-1.54	-	-	
C9ZAN6	SCAB 46131	Rpll	50S ribosomal protein L9	-1.52	-	-1.20	
C9YY11	SCAB 54151	RplY	50S ribosomal protein L25	-1.80	1.47	-	
C9Z7H2	SCAB_60151	RplU	50S ribosomal protein L21	-1.54	-1.43	-1.40	
C9Z7H3	SCAB_60161	RpmA	50S ribosomal protein L27	-1.68	-1.47	-	
C9Z4H9	SCAB_73971	Rpml	50S ribosomal protein L35	-1.56	-	-	
C9Z7K6	SCAB_75261	RpsM	30S ribosomal protein S13	-2.48	-	-1.67	
Aminoacyl-tRN	A biosynthesis						
C9Z5B3	SCAB_27201	GatB	Aspartyl/glutamyl-tRNA amidotransferase subunit B	-1.31	-1.55	-	
C9ZAS2	SCAB_62001	GlyS	Glycine-tRNA ligase	-2.12	1.85	-	
C9Z1L3	SCAB_85511	-	Methionyl-tRNA formyltransferase	-	2.13	3.42	
Translation fac	tors						
Initiation factor	S				1	I	
C9Z250	SCAB_25351	InfB	Translation initiation factor IF-2	-1.98	-	-	
C9YW55	SCAB_36711	InfA	Translation initiation factor IF-1	-2.38	-1.43	-1.97	
C9Z4H8	SCAB_73961	InfC	Translation initiation factor IF-3	-2.05	-	-1.60	
Elongation facto	ors	T£2	Flangation factor Tr	4 5 5			
C9ZB41	SCAB_//661	Tut3	Elongation factor IU	1.55	-	-	
			Ribosomo binding ATPasa	1 00	2 70		
Caldina contin	_ 3CAD_33441	AVIAL		-1.80	2.78	-	
Characters and	ng unu uegrada d folding setelaat						
Chaperones dhe	a joining catalyst	3					
Corteg	SCAR 42541	Dnak	Chaparana protain		1 52		
C923C9	SCAB_42341	Grol 1	60 kDa chaperonin	-1 77	-1.55	-	
C97H64	SCAB 50441	GroFL2	60 kDa chaperonin	-1.67	-	-	
C9Z7F9	SCAB 59931	Tig	Cell division trigger factor (PPIase)	-2.08	1.08	-1.14	
Protein export	20.0_00001	ö''		2.00	1.00	_	
C9Z4E2	SCAB 73591	TatA	Sec-independent protein translocase protein	-	2.07	2.48	
Peptide dearad	lation	1		1			
C9YZV3	SCAB 71311	TldD	Inhibitor of DNA gyrase	1.68	-	-	
C9Z4D0	SCAB_73471	PrcB	Proteasome subunit beta	1.62	1.48	-	
Replication a	nd repair	•			•		
DNA replication	1						
C9YWP5	SCAB 68981	PolA	DNA polymerase I	1.66	1.39	2.17	

Figure 1

WT

 $\Delta cebR$

В

Figure 2

CFL (CFA-like) (SCAB79671)

Figure 3

AAAEPAPDLTDTR SQWLASGDIVR FGWIGGAPTTYR

Figure 4

Supporting Information: Proteomic response to the thaxtomin phytotoxin elicitor cellobiose and to the deletion of the cellulose utilization regulator CebR in *Streptomyces scabies*

Sören Planckaert¹, Samuel Jourdan², Isolde M. Francis³, Benoit Deflandre², Sébastien Rigali^{2,†,*}, and Bart Devreese^{1,†,*}

¹ Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium

² InBioS – Center for Protein Engineering, University of Liège, Institut de Chimie, B6a, B-4000, Liège, Belgium

³ Department of Biology, California State University Bakersfield, CA 93311-1022, Bakersfield, USA

⁺ These authors jointly supervised this work and are joint corresponding authors.

Correspondence should be addressed to B.D. (bart.devreese@ugent.be) and S.R. (srigali@uliege.be)

Contents of Supporting Information File

Method S1. Detailed label-free proteomic methodology.

Table S1. Separate multi-tabbed excel file containing protein identifications from the different biological replicates of the discovery proteomics experiment.

Table S2. Separate multi-tabbed excel file containing relative quantification levels of the different comparisons.

Table S3. Lists of transitions selected for MRM validation of proteins with significant change in abundance upon *cebR* deletion or cellobiose induction.

Table S4. Separate multi-tabbed excel file containing MRM results for each protein.

Table S5. Prediction CebR regulon in Streptomyces scabies.

Table S6. List of unknown and uncharacterized proteins with significant change in abundance.

Method S1. Detailed label-free proteomic methodology.

This methodology is identical to the one used in Jourdan et al. (2016) doi:10.1038/srep27144

The protein lysate was mixed with 100% (w/v) TCA solution (Sigma-Aldrich) (4:1). The extract was then centrifuged at 16,000 x g for 30 min at 4°C. The supernatant was discarded and the pellet was washed twice with ice-cold acetone (Sigma-Aldrich). After each washing step the pellet was recovered by centrifugation at 16,000 x g for 30 min at 4°C. The resulting pellet was solubilized in 50 mM ammonium bicarbonate (Sigma-Aldrich) containing 2 M urea (GE Healthcare). The protein concentration was assessed by Bradford analysis using the PierceTM Coomassie Protein Assay Kit. Protein solutions (10 µg) were subsequently reduced, alkylated and digested with trypsin (Promega) overnight (1:50 w/w). Digested samples were dried and dissolved in 50 µl 20mM ammonium formate. This procedure was performed for three biological replicates.

Peptide mixtures (0.2 μ g/ μ l in 20 mM ammonium formate, pH 10) were separated on a NanoAcquity UPLC[®] system (Waters Corporation) in 2D mode. For the first dimension (high pH) the sample (1 µg) was loaded onto an XbridgeTM BEH130 C18 column (300 µm × 50 mm, 5 µm; Waters) at 3% solvent B1 (A1 & B1: 20 mM ammonium formate in water and ACN respectively, pH 10) at 2 µl/min. Peptides were eluted from the first dimension column in 5 fractions (11.1%, 14.5%, 17.4%, 20.8%, and 45.0% of solvent B1), and fractions were trapped on a Symmetry C18 trapping column (180 µm × 20 mm, 5 µm; Waters). For the second dimension (low pH) each fraction was separated on a HSS T3 C18 analytical column (75 μ m \times 250 mm, 1.8 μ m; Waters) at 40°C at 250 nl/min by increasing the acetonitrile concentration from 5 to 50% B2 (A2 & B2: 0.1% formic acid in water and ACN respectively, pH 2) over 60 min. The outlet of the column was directly connected to a PicoTip[™] Emitter (New Objective) mounted on a Nanolockspray source of a SYNAPT[™] G1 HDMS mass spectrometer (Waters). The time- of-flight (TOF) analyser was externally calibrated with MS/MS fragments of human [glu1]-fibrinopeptide B (Glu-fib) from m/z 72 to 1285, and the data were corrected post-acquisition using the monoisotopic mass of the doubly charged precursor of Glu-fib (m/z 785.8426) (lock mass correction). Accurate mass data were collected in a data independent positive mode of acquisition (MS^{E}) by alternating between low (5 V) and high (ranging from 15 to 35 V) energy scan functions (Geromanos et al., 2009). The selected m/z range was 125-2000 Da. The capillary voltage was set to 3.0 kV, the sampling cone voltage was 26 V and the extraction cone voltage 2.65 V. The source temperature was set at 65°C.

The acquired spectra (Waters.raw) were loaded to the Progenesis software (version 4.1, Nonlinear) for label free quantification. Peaks were then modelled in non-noisy areas to record their peak m/z value, intensity, area under the curve (AUC) and m/z width. After selecting a quality control sample (mixture of all samples) as a reference, the retention times of all other samples within the experiment are aligned to maximal overlay of the 2D feature maps. After alignment and feature exclusion, samples were divided into the appropriate condition. The identification was performed by ProteinLynx Global SERVER v2.5 Identity^E search engine (PLGS, Waters Streptomyces scabies 87-22 database Corporation) using (uniprotstreptomyces+AND+scabies, 27/05/2015, 8722 sequences). The precursor and fragment ion tolerance were determined automatically. The default protein identification criteria used included a maximal protein mass of 250,000 Da, a detection of minimal of three fragment ions per peptide, minimal seven fragment ions per protein and minimal two peptides per protein. Carbamidomethyl-cysteine (fixed) and methionine oxidation (variable) were selected as modifications. Maximally one missed cleavage and a false positive rate of 4% was allowed. After normalization of the raw abundances of all features and statistical analysis the different fractions were combined. For quantification, all unique peptides of an identified protein were included and the total cumulative abundance was calculated by summing the abundances of all peptides allocated to the respective protein. ANOVA values of p < 0.05, regulation of 1.5-fold or 0.66-fold, power > 0.8 and qvalues < 0.05 were regarded as significant for all further results.

Table S3. Lists of transitions selected for MRM validation of proteins with significant change in abundance upon *cebR* deletion or cellobiose induction.

	Protein name	Peptide sequence	Precursor (m/z)	Product ion (m/z)	Collision energy (V)
				1048.542185	24
		SLTFGALDLAADR	675.356616	901.473771	24
	Calicul AMD Lizzoa			773.415194	
	Salicyi-AIVIP ligase			887.389373	22
	(3CAD1411)	TSFTEDGYFR	611.772385	786.341694	22
				657.299101	
			580 708031	958.495235	20
		TIDGINEEVVOIR	580.798954	843.468292	20
				672.403901	
				876.472649	10
in		LPLGWFTPR	543.808376	763.388585	15
hel				706.367121	
yoc	ABC transporter permease/ATPase	LPDGWATR	458.237784	802.384228	16
á	(SCAB1431			705.331464	
				590.304521	
		ETDUAELDGGR	653.835516	848.462478	
				735.378414	23
				664.341300	
				659.408652	
	Major facilitator superfamily protein	LLGALSAK	386.749996	546.324588	13
				418.266010	
		FGAPAEPSGOAGLPATEVR	918 95795 <i>1</i>	141.171758	
		LUAPALI JUQAULI ATEVR	910.957954	128.267499	33
				1098.590198	

	Protein name	Peptide sequence	Precursor (m/z)	Product ion (m/z)	Collision energy (V)	
				958.531620		
		LDQSGPTVSQTVAR	729.880987	861.478856	26	
				760.431178		
	Iron-dependent repressor			687.378414		
	(SCAB1401)	DGLVGVAADR	486.759080	588.310000	17	
				531.288536		
			542 275005	833.399937		
			542.275095	704.357344	19	
				591.273280		
				970.495235		
	Carbamoyltransferase (SCAB84021)	VQVVDPAANER	599.314751	871.426821	21	
				657.331464		
				955.520721	25	
		SADPTADLDGLVPR	713.862262	884.483607		
				769.456664		
4		AELYELWQQR	668.338226	1135.589470	24	
in /				1022.505406		
nyc				859.442077		
nar				871.524744		
nca		EDDLLLELR	558.300778	756.497801	20	
Соі				643.413737		
				801.446494		
	O-methyltransferase	AGVDGLIDLR	514.790381	686.419551	18	
	(SCAB84051)			516.314023		
				1066.516364	29	
		VTDPQFTDADTAGIR	803.889009	919.447950		
				818.400272		

	Protein name	Peptide sequence	Precursor (m/z)	Product ion (m/z)	Collision energy (V)	
				614.398421		
		SVGLVLGR	400.753070	557.376957	14	
	Thaxtomin synthetase A (SCAB31791)			444.292893		
				987.474165		
		LLGATDDPSDVALR	721.877913	872.447222	26	
4				757.420279		
in /				1040.537100		
tom		SDIEPELPAEAASR	742.865002	943.484336	26	
hax	Thaxtomin synthetase B (SCAB31781)			814.441743		
F		TALDDVVAR	480.261456	787.430844		
				674.346780	17	
				559.319837		
		LGGGTDIVVGTAAAAR		928.557441	25	
			714.893897	815.473377		
				716.404963		
				821.403960		
		ILDYEPGK	467.747650	708.319896	16	
	Polyketide dehydratase component			593.292953		
	(SCAB79611)			887.487981		
		AEVSGRPVAMTR	637.337703	830.466518	23	
				674.365407		
	CoAligaça			822.410442	23	
	COA ligase (SCAB70671)	FGWIGGAPTTYR	663.335487	765.388979		
	(3CAD/30/1)			708.367515		

	Protein name	Peptide sequence	Precursor (m/z)	Product ion (m/z)	Collision energy (V)	
				888.442137		
		AAAEPAPDLTDTR	664.328056	817.405023	24	
				720.352259		
	CoA ligase			830.473043		
	(SCAB79671)			717.388979		
		SQWLASGDIVR	616.325119	646.351865	22	
				693.320230		
				564.277637		
				1205.656487		
		AQGVPFVLVDGFSPK VQAPFISPDDR	780.924666	961.535309	28	
				862.466895		
	Malp		622.817127	1017.499986		
				946.462872	- 22	
				849.410108		
			384.752538	655.413737	12	
		IGLALGPK		598.392273	13	
				485.308209		
				976.525078		
		SEVGWTPAFAK	596.803488	877.456664	21	
	MalE			634.355888		
	(SCAB66581)			845.436323		
		ITVNSPEAK	479.763831	744.388644	17	
				645.320230		

	Protein name	Peptide sequence	Precursor (m/z)	Product ion (m/z)	Collision energy (V)	
				1058.584050		
		ANLGIATVPAGTSGK	678.877716	888.478522	24	
	(3CAB00381)			817.441408		
		GYFDTIPFEIDEAGR		1362.653586		
			865.407034	1146.578964	31	
	MalG			1033.494900		
	(SCAB66601)	VDGLSPFGTFAR		1052.552356		
_			633.827494	882.446828	22	
				795.414800		
		LVLDEYAGER	582.798403	952.437051		
				839.352987	20	
	lpha-amylase			595.283451		
	(SCAB66611)	IFVAEAWTPTVER	759.901191	1159.574213	27	
				959.494506		
				888.457393		
				722.408317	16	
		AEFVEVTK	461.747650	575.339903	16	
				476.271489	16	
	BSA (PUZ769)			785.513117	18	
		QTALVELLK	507.813324	714.476003	18	
				601.391939	18	

PREDetector Regulon prediction report

Prediction results

Gene	Product	Sequence	Position	Score	Co-transc. genes	Co-transc. products
SCAB_RS02300 [SCAB_4971] (SCAB_RS02300)	hypothetical protein	TGGGAGCGCTCCCA	-158	15.6	NA	ΝΑ
SCAB_RS02295 [SCAB_4961] (SCAB_RS02295)	glucuronoxylanase xynC	TGGGAGCGCTCCCA	-66	15.6	ΝΑ	ΝΑ
SCAB_RS02775 [SCAB_5981] (SCAB_RS02775)	glycosyl hydrolase family 5	TGGGAGCGCTCCCA	-82	15.6	ΝΑ	ΝΑ
SCAB_RS04175 [SCAB_8871] (SCAB_RS04175)	glycosyl hydrolase family 5	TGGGAGCGCTCCCA	-90	15.6	NA	ΝΑ
SCAB_RS04180 [SCAB_8891] (SCAB_RS04180)	signal transduction histidine kinase	TGGGAGCGCTCCCA	-926	15.6	NA	ΝΑ
SCAB_RS07750 [SCAB_16431] (SCAB_RS07750)	endoglucanase	TGGGAGCGCTCCCA	-113	15.6	NA	ΝΑ
SCAB_RS07745 [SCAB_16421] (SCAB_RS07745)	Lacl family transcriptional regulator	TGGGAGCGCTCCCA	-200	15.6	NA	ΝΑ
SCAB_RS08030 [SCAB_17011] (SCAB_RS08030)	cellulose 1%2C4-beta-cellobiosidase	TGGGAGCGCTCCCA	-82	15.6	NA	ΝΑ
SCAB_RS08025 [SCAB_17001] (SCAB_RS08025)	cellulose 1%2C4-beta-cellobiosidase	TGGGAGCGCTCCCA	-311	15.6	ΝΑ	ΝΑ
SCAB_RS09970 [SCAB_21081] (SCAB_RS09970)	chitin-binding protein	TGGGAGCGCTCCCA	-237	15.6	NA	ΝΑ
SCAB_RS24385 [SCAB_51081] (SCAB_RS24385)	endoglucanase	TGGGAGCGCTCCCA	-54	15.6	NA	NA
SCAB_RS27575 [SCAB_57751]	sugar-binding protein	TGGGAGCGCTCCCA	-130	15.6	SCAB_RS27570 [SCAB_57741] (SCAB_RS27570); SCAB_RS27565 [SCAB_57731] (SCAB_RS27565)	sugar ABC transporter permease; carbohydrate ABC transporter permease

(SCAB_RS27575)						
SCAB_RS27580 [SCAB_57761] (SCAB_RS27580)	Lacl family transcriptional regulator	TGGGAGCGCTCCCA	-499	15.6	SCAB_RS27585 (SCAB_RS27585)	DUF2191 domain-containing protein
SCAB_RS37770 [SCAB_78881] (SCAB_RS37770)	beta-mannosidase	TGGGAGCGCTCCCA	-85	15.6	ΝΑ	NA
SCAB_RS42910 [SCAB_89741] (SCAB_RS42910)	chitin-binding protein	TGGGAGCGCTCCCA	-116	15.6	ΝΑ	NA
SCAB_RS43070 [SCAB_90061] (SCAB_RS43070)	hypothetical protein	TGGGAGCGCTCCCA	-138	15.6	ΝΑ	NA
SCAB_RS43080 [SCAB_90081] (SCAB_RS43080)	glycosyl hydrolase family 5	TGGGAGCGCTCCCA	-60	15.6	ΝΑ	NA
SCAB_RS43085 [SCAB_90091] (SCAB_RS43085)	cellulose 1%2C4-beta-cellobiosidase	TGGGAGCGCTCCCA	-66	15.6	ΝΑ	NA
SCAB_RS43090 [SCAB_90101] (SCAB_RS43090)	cellulose 1%2C4-beta-cellobiosidase	TGGGAGCGCTCCCA	-761	15.6	ΝΑ	NA
SCAB_RS27560 [SCAB_57721] (SCAB_RS27560)	beta-glucosidase	TGGAAGCGCTCCCA	-13	15.1	ΝΑ	NA
SCAB_RS39425 [SCAB_82441] (SCAB_RS39425)	esterase	TGGGAGCGCTTCCA	-117	15.1	ΝΑ	NA
SCAB_RS39420 [SCAB_82421] (SCAB_RS39420)	pectate lyase	TGGGAGCGCTTCCA	-351	15.1	SCAB_RS39415 [SCAB_82411] (SCAB_RS39415)	pectate lyase
SCAB_RS15090 [SCAB_31801] (SCAB_RS15090)	cellobiose-dependent regulator TxtR	CGGGAGCGCTCCCA	-801	14.4	ΝΑ	NA
SCAB_RS15085 [SCAB_31791] (SCAB_RS15085)	non-ribosomal peptide synthetase	CGGGAGCGCTCCCA	-899	14.4	ΝΑ	NA
SCAB_RS37830 [SCAB_79011] (SCAB_RS37830)	acetylxylan esterase	TGGGAGCGCTCCCG	-94	14.4	ΝΑ	NA
SCAB_RS39240 [SCAB_82041] (SCAB_RS39240)	pectate lyase	TGGGAGCGCTCCCG	-285	14.4	ΝΑ	NA
SCAB_RS39235 [SCAB_82031] (SCAB_RS39235)	cellulose-binding protein	TGGGAGCGCTCCCG	-40	14.4	ΝΑ	NA
SCAB_RS43090 [SCAB_90101] (SCAB_RS43090)	cellulose 1%2C4-beta-cellobiosidase	CGGGAGCGCTCCCA	-192	14.4	ΝΑ	NA
SCAB_RS43085 [SCAB_90091] (SCAB_RS43085)	cellulose 1%2C4-beta-cellobiosidase	CGGGAGCGCTCCCA	-635	14.4	ΝΑ	NA
SCAB_RS07750 [SCAB_16431] (SCAB_RS07750)	endoglucanase	TGGAAGCGCTTCCA	-128	14.1	NA	NA
SCAB_RS07745 [SCAB_16421] (SCAB_RS07745)	Lacl family transcriptional regulator	TGGAAGCGCTTCCA	-185	14.1	NA	NA
SCAB_RS16490 [SCAB_34801] (SCAB_RS16490)	DNA-binding response regulator	TGGGAGCGCTCCAA	-35	14	NA	NA
SCAB_RS16485 (SCAB_RS16485)	SigE family RNA polymerase sigma factor	TGGGAGCGCTCCAA	-268	14	ΝΑ	NA

_							
SCAB_RS30100 [SCAB_63031] (SCAB_RS30100)	hypothetical protein	CGGAAGCGCTCCCA	458	13.9	NA	NA	
SCAB_RS07750 [SCAB_16431] (SCAB_RS07750)	endoglucanase	TGGGAGCGCTTCCG	-264	13.9	NA	NA	
SCAB_RS07745 [SCAB_16421] (SCAB_RS07745)	Lacl family transcriptional regulator	TGGGAGCGCTTCCG	-49	13.9	NA	NA	
SCAB_RS15080 [SCAB_31781] (SCAB_RS15080)	non-ribosomal peptide synthetase	GGGGAGCGCTCCCA	1507	13.6	ΝΑ	NA	
SCAB_RS34495 [SCAB_72101] (SCAB_RS34495)	hypothetical protein	TGGGAGCGCTCCCC	417	13.6	ΝΑ	NA	
SCAB_RS01525 (SCAB_RS01525)	non-ribosomal peptide synthetase	CGGGAGCGCTTCCA	1410	13.5	ΝΑ	NA	
SCAB_RS23415 [SCAB_49071] (SCAB_RS23415)	hypothetical protein	GGGGAGCGCTTCCA	-226	12.8	ΝΑ	NA	
SCAB_RS23420 [SCAB_49091] (SCAB_RS23420)	hypothetical protein	GGGGAGCGCTTCCA	-501	12.8	NA	NA	
SCAB_RS41050 [SCAB_85841] (SCAB_RS41050)	XRE family transcriptional regulator	AGGGAGCGCTCCCG	-34	12.8	SCAB_RS41055 [SCAB_85851] (SCAB_RS41055)	DUF397 domain-containing protein	
SCAB_RS41045 [SCAB_85831] (SCAB_RS41045)	hypothetical protein	AGGGAGCGCTCCCG	-284	12.8	ΝΑ	NA	
SCAB_RS27620 [SCAB_57831] (SCAB_RS27620)	AraC family transcriptional regulator	GGGGAGCGCTCCCG	818	12.2	ΝΑ	NA	
SCAB_RS40580 [SCAB_84861] (SCAB_RS40580)	penicillin amidase	CGGGAGCGCTCCCC	264	12.2	ΝΑ	NA	
SCAB_RS15910 [SCAB_33591] (SCAB_RS15910)	serine/threonine protein phosphatase	TGGGATCGCTCCCA	1718	11.8	ΝΑ	NA	
SCAB_RS28585 [SCAB_59891] (SCAB_RS28585)	serine/threonine-protein phosphatase	TGGGATCGCTCCCA	694	11.8	ΝΑ	NA	
SCAB_RS00510 [SCAB_1121] (SCAB_RS00510)	NADP oxidoreductase	GGGGAGCGCTTCCT	298	11.6	ΝΑ	NA	
SCAB_RS11705 [SCAB_24801] (SCAB_RS11705)	hypothetical protein	GGGGAGCGCTTCCG	349	11.6	ΝΑ	NA	
SCAB_RS20725 [SCAB_43591] (SCAB_RS20725)	bile acid:sodium symporter	GGGGAGCGCTTCCG	465	11.6	SCAB_RS20720 [SCAB_43581] (SCAB_RS20720)	hypothetical protein	
SCAB_RS35515 [SCAB_74201] (SCAB_RS35515)	N-acetyl-gamma-glutamyl-phosphate reductase	TGGGAGCGCTTCTA	327	11.4	SCAB_RS35520 [SCAB_74211] (SCAB_RS35520); SCAB_RS35525 [SCAB_74221] (argB); SCAB_RS35530 [SCAB_74231] (SCAB_RS35530); SCAB_RS35535 [SCAB_74241] (SCAB_RS35535)	bifunctional ornithine acetyltransferase/N-acetylglutamate synthase; acetylglutamate kinase; aspartate aminotransferase family protein; arginine repressor	
SCAB_RS39685 [SCAB_82971] (SCAB_RS39685)	cysteine synthase	TTGGAGCGCTTCCC	579	11.4	NA	NA	
SCAB_RS11540 [SCAB_24441] (SCAB_RS11540)	RNA polymerase sigma factor	CGGGAGCGCTTCCC	-393	11.4	SCAB_RS44705 (SCAB_RS44705)	IS5/IS1182 family transposase	
SCAB_RS09230 [SCAB_19511] (SCAB_RS09230)	riboflavin biosynthesis protein RibD	TGGGAGAGCTTCCA	531	11.3	NA	NA	
SCAB_RS08030		TOCALCOCTOCC	225				

[SCAB_17011]	cellulose 1%2C4-beta-cellobiosidase	IGGAALLGUILLLA	-235	11.3	NA	NA
SCAB_RS080307						
[SCAB_17001] (SCAB_RS08025)	cellulose 1%2C4-beta-cellobiosidase	TGGAACCGCTCCCA	-158	11.3	NA	NA
SCAB_RS07380 (SCAB_RS07380)	MarR family transcriptional regulator	CGGGAGCGCTCCAG	139	11.1	SCAB_RS07385 [SCAB_15641] (SCAB_RS07385)	IcIR family transcriptional regulator
SCAB_RS21630 [SCAB_45471] (SCAB_RS21630)	DUF2662 domain-containing protein	CGGGAGCGCTCCAG	97	11.1	SCAB_RS21635 [SCAB_45481] (SCAB_RS21635)	FHA domain-containing protein
SCAB_RS37425 [SCAB_78171] (SCAB_RS37425)	hypothetical protein	CTGGAGCGCTCCAA	201	11.1	NA	NA
SCAB_RS08740 [SCAB_18481] (SCAB_RS08740)	hypothetical protein	TGGGAGCGCACCCA	387	10.9	ΝΑ	ΝΑ
SCAB_RS40530 [SCAB_84761] (SCAB_RS40530)	ABC transporter substrate-binding protein	TTGAAGCGCTTCAA	-42	10.8	NA	ΝΑ
SCAB_RS10215 [SCAB_21571] (SCAB_RS10215)	amino acid permease	ACGGAGCGCTCCCA	1036	10.7	SCAB_RS10220 [SCAB_21581] (SCAB_RS10220)	glutamine synthetase
SCAB_RS23015 [SCAB_48261] (SCAB_RS23015)	phage portal protein	CGGGAGCGCTGCCA	12	10.7	NA	NA
SCAB_RS08905 [SCAB_18841] (SCAB_RS08905)	DNA-binding response regulator	GGGAAGCGCTTCCG	-326	10.7	NA	ΝΑ
SCAB_RS08900 [SCAB_18831] (SCAB_RS08900)	glycoside hydrolase family 68 protein	GGGAAGCGCTTCCG	-72	10.7	ΝΑ	ΝΑ
SCAB_RS11840 [SCAB_25101] (rimO)	30S ribosomal protein S12 methylthiotransferase RimO	AGGAAGCGCTCCAG	1062	10.6	SCAB_RS11835 [SCAB_25091] (pgsA); SCAB_RS11830 [SCAB_25081] (SCAB_RS11830)	CDP-diacylglycerolglycerol-3-phosphate 3-phosphatidyltransferase; CinA family protein
SCAB_RS16255 [SCAB_34281] (SCAB_RS16255)	ATP-binding protein	CGGGACCGCTCCCA	2277	10.6	NA	ΝΑ
SCAB_RS06435 [SCAB_13531] (SCAB_RS06435)	hypothetical protein	TGAGAGCGCTCCCT	-98	10.6	NA	ΝΑ
SCAB_RS06430 [SCAB_13521] (SCAB_RS06430)	Lacl family transcriptional regulator	TGAGAGCGCTCCCT	-70	10.6	ΝΑ	NA
SCAB_RS10915 [SCAB_23091] (SCAB_RS10915)	carbonic anhydrase	TGAGAGCGCTCCCG	-167	10.6	NA	ΝΑ
SCAB_RS13025 [SCAB_27461] (gcvT)	glycine cleavage system protein T	CGGGAGAGCTCCCA	-262	10.6	NA	NA
SCAB_RS13020 [SCAB_27451] (SCAB_RS13020)	ATP-binding protein	CGGGAGAGCTCCCA	-232	10.6	ΝΑ	ΝΑ
SCAB_RS05530 [SCAB_11651] (SCAB_RS05530)	Fpg/Nei family DNA glycosylase	CGGGAGCGCTCCAC	657	10.5	NA	ΝΑ
SCAB_RS43290 [SCAB_90571] (SCAB_RS43290)	oxidoreductase	GTGGAGCGCTCCCG	669	10.5	NA	NA
SCAB_RS19680 [SCAB_41391] (SCAB_RS19680)	WhiB family transcriptional regulator	GTGGAGCGCTCCCG	161	10.5	NA	NA
SCAB_RS19675 [SCAB_41381] (SCAB_RS19675)	anion-transporting ATPase	GTGGAGCGCTCCCG	347	10.5	NA	NA
SCAB_RS33755		TOCALCOCTTOCA	004	10.0		

[SCAB_70551] (SCAB_RS33755)	pectate iyase	IGGAACCGCIICCA	804	10.3	SCAB_RS33770 [SCAB_70581] (SCAB_RS33770); SCAB_RS33775 [SCAB_70591] (SCAB_RS33775)	pectinesterase; pectinesterase; nydrolase; pectate iyase
SCAB_RS28095 [SCAB_58881] (SCAB_RS28095)	hypothetical protein	AGGAAGCGCTGCCA	102	10.2	NA	NA
SCAB_RS31795 [SCAB_66591] (SCAB_RS31795)	sugar ABC transporter permease	TGGCAGCGCTTCCG	708	10.2	SCAB_RS31800 [SCAB_66601] (SCAB_RS31800)	ABC transporter permease
SCAB_RS39705 [SCAB_83021] (SCAB_RS39705)	sporulation protein	AGGAAGCGCTCCAT	2178	10.2	NA	NA
SCAB_RS40115 [SCAB_83891] (SCAB_RS40115)	polyketide synthase	TGGCAGCGCTTCCG	4311	10.2	ΝΑ	ΝΑ
SCAB_RS24510 [SCAB_51351] (SCAB_RS24510)	isopenicillin N synthase family oxygenase	AGGAAGCGCTCCGA	-402	10.2	NA	NA
SCAB_RS01065 [SCAB_2361] (SCAB_RS01065)	peptidoglycan-binding protein	TGGGAGCGTTTCCT	138	10.1	SCAB_RS01070 [SCAB_2371] (SCAB_RS01070)	XRE family transcriptional regulator
SCAB_RS07865 [SCAB_16671] (SCAB_RS07865)	TatD family hydrolase	CGGAAGGGCTCCCA	165	10.1	NA	NA
SCAB_RS30210 [SCAB_63281] (SCAB_RS30210)	secondary metabolite biosynthesis protein	TGGGAGCCCTTCCG	1017	10.1	NA	NA
SCAB_RS32000 [SCAB_67011] (SCAB_RS32000)	DUF4240 domain-containing protein	CGGAAGCGTTCCCA	498	10.1	ΝΑ	ΝΑ
SCAB_RS38850 [SCAB_81171] (SCAB_RS38850)	N-methyl-L-tryptophan oxidase	TGGGAGCGTTCCAA	189	10.1	ΝΑ	ΝΑ
SCAB_RS40975 [SCAB_85671] (SCAB_RS40975)	cyclase	TTGAAGCGCTCCAG	381	10.1	ΝΑ	ΝΑ
SCAB_RS41830 [SCAB_87491] (SCAB_RS41830)	sugar ABC transporter substrate- binding protein	TGGGAGCGTTTCCG	863	10.1	ΝΑ	ΝΑ
SCAB_RS43700 [SCAB_18181] (SCAB_RS43700)	hypothetical protein	AGGAAGCGGTCCCA	1290	10.1	ΝΑ	ΝΑ
SCAB_RS31755 [SCAB_66511] (SCAB_RS31755)	pyridoxamine 5'-phosphate oxidase family protein	TGGGATCGCTTCCT	-13	10.1	ΝΑ	ΝΑ
SCAB_RS13640 [SCAB_28761] (atpD)	F0F1 ATP synthase subunit beta	AGGAAGCGCTCCAC	1233	10	NA	NA
SCAB_RS24905 [SCAB_52201] (SCAB_RS24905)	TPR repeat protein	GTGGAGCGCTTCCT	1140	10	NA	ΝΑ
SCAB_RS25795 [SCAB_54081] (SCAB_RS25795)	glycosyltransferase family 4 protein	GGGGAGCGCTGCCA	1256	9.9	NA	NA
SCAB_RS00890 [SCAB_1991] (SCAB_RS00890)	FMN-dependent NADH-azoreductase	TGTGAGCGCTCCCC	60	9.8	NA	NA
SCAB_RS25415 [SCAB_53281] (SCAB_RS25415)	peptidase S41	CGGTAGCGCTTCCA	588	9.8	NA	NA
SCAB_RS29445 [SCAB_61611] (SCAB_RS29445)	peptidase S41	TGGAAGCGCTACCG	471	9.8	NA	NA
SCAB_RS32430 [SCAB_67881]	transglutaminase	GGTGAGCGCTCCCA	133	9.8	NA	NA

(SCAB_RS32430)						
SCAB_RS16870 [SCAB_35601] (trpS)	tryptophantRNA ligase	TGGGTGCGCTCCCG	870	9.7	NA	NA
SCAB_RS25065 [SCAB_52561] (SCAB_RS25065)	hypothetical protein	GTGAAGCGCTCCAA	186	9.7	ΝΑ	ΝΑ
SCAB_RS37840 [SCAB_79041] (SCAB_RS37840)	hypothetical protein	TGGGTGCGCTCCCG	576	9.7	NA	NA
SCAB_RS39840 [SCAB_83301] (SCAB_RS39840)	LuxR family transcriptional regulator	AGGGCGCGCTCCCA	2481	9.7	NA	NA
SCAB_RS18720 [SCAB_39371] (SCAB_RS18720)	DNA integrity scanning protein DisA	CGGGAGCGCCCCA	-35	9.7	NA	NA
SCAB_RS10275 [SCAB_21711] (SCAB_RS10275)	secondary metabolite protein	TGCGAGCGCTTCAA	100	9.6	NA	NA
SCAB_RS10540 [SCAB_22251] (SCAB_RS10540)	ATP-binding protein	TGGAAGCTCTCCCG	1173	9.6	NA	NA
SCAB_RS16730 [SCAB_35301] (SCAB_RS16730)	succinate dehydrogenase iron-sulfur subunit	CGCGAGCGCTTCCA	438	9.6	NA	ΝΑ
SCAB_RS21810 [SCAB_45901] (SCAB_RS21810)	chromosome partitioning protein ParB	TGGAAGCGATCCCG	451	9.6	NA	ΝΑ
SCAB_RS25290 [SCAB_53041] (SCAB_RS25290)	hypothetical protein	CTGAAGCGCTTCCT	141	9.6	NA	NA
SCAB_RS25295 [SCAB_53051] (SCAB_RS25295)	large conductance mechanosensitive channel protein MscL	TTGAAGCCCTCCCA	27	9.6	NA	ΝΑ
SCAB_RS33530 [SCAB_70111] (SCAB_RS33530)	QacE family quaternary ammonium compound efflux SMR transporter	AGTGAGCGCTTCCA	-132	9.6	SCAB_RS33535 [SCAB_70121] (SCAB_RS33535)	DNA-binding transcriptional regulator
SCAB_RS33525 [SCAB_70101] (SCAB_RS33525)	alpha-L-arabinofuranosidase	AGTGAGCGCTTCCA	-231	9.6	NA	NA
SCAB_RS14105 [SCAB_29731] (lon)	endopeptidase La	CTGGAGCGCTCCAG	831	9.4	NA	NA
SCAB_RS44785 (SCAB_RS44785)	restriction endonuclease subunit S	TGGATGCGCTTCCA	34	9.4	SCAB_RS13860 [SCAB_29211] (SCAB_RS13860); SCAB_RS13865 [SCAB_29221] (SCAB_RS13865); SCAB_RS44790 [SCAB_29231] (SCAB_RS44790)	type I restriction endonuclease subunit R; M48 family peptidase; helicase
SCAB_RS43085 [SCAB_90091] (SCAB_RS43085)	cellulose 1%2C4-beta-cellobiosidase	TGGGAGCGGTTCCC	-209	9.3	ΝΑ	NA
SCAB_RS43090 [SCAB_90101] (SCAB_RS43090)	cellulose 1%2C4-beta-cellobiosidase	TGGGAGCGGTTCCC	-618	9.3	NA	NA
SCAB_RS08325 [SCAB_17621] (ccrA)	crotonyl-CoA carboxylase/reductase	TGGAAGCGCTTCGG	882	9.2	SCAB_RS08330 [SCAB_17631] (SCAB_RS08330); SCAB_RS08335 [SCAB_17641] (SCAB_RS08335); SCAB_RS08340 [SCAB_17651] (SCAB_RS08340); SCAB_RS08345 [SCAB_17661] (SCAB_RS08345)	protein meaA; CoA ester lyase; MaoC family dehydratase; acyl-CoA dehydrogenase
SCAB_RS11465 [SCAB_24271] (SCAB_RS11465)	insulinase family protein	TTGGTGCGCTCCCA	237	9.2	SCAB_RS11460 [SCAB_24261] (SCAB_RS11460)	insulinase family protein
SCAB_RS24075 [SCAB_50451] (SCAB_RS24075)	12-oxophytodienoate reductase	TGGGAGCGCACCAA	564	9.2	NA	NA
SCAB_RS27180 [SCAB_56971] (SCAB_RS27180)	hypothetical protein	TGGGTGCGCTTCCT	255	9.2	SCAB_RS27185 [SCAB_56981] (SCAB_RS27185)	hypothetical protein
SCAB_RS33235 [SCAB_69521]	amino acid ABC transporter permease	CGGTAGCGCTCCCG	102	9.2	NA	NA

(SCAB_RS33235)				l		
SCAB_RS38930 [SCAB_81381] (SCAB_RS38930)	membrane protein	TGGGTGCGCTTCCT	105	9.2	ΝΑ	ΝΑ
SCAB_RS30085 (SCAB_RS30085)	hypothetical protein	CGGCAGCGCTCCCG	-51	9.2	SCAB_RS30090 [SCAB_63011] (SCAB_RS30090)	alpha/beta hydrolase
SCAB_RS04620 [SCAB_9771] (SCAB_RS04620)	cobaltochelatase subunit CobN	CGGTAGCGCTCCAA	2526	9.1	NA	ΝΑ
SCAB_RS04690 [SCAB_9921] (SCAB_RS04690)	hypothetical protein	AGGAAGAGCTTCCA	465	9.1	NA	ΝΑ
SCAB_RS12110 [SCAB_25621] (SCAB_RS12110)	hypothetical protein	ATGGAGCGCTGCCA	609	9.1	SCAB_RS12105 [SCAB_25611] (SCAB_RS12105); SCAB_RS12100 [SCAB_25601] (SCAB_RS12100)	sugar ABC transporter permease; carbohydrate ABC transporter permease
SCAB_RS14145 [SCAB_29811] (SCAB_RS14145)	hypothetical protein	TGGAAGGGCTTCCT	207	9.1	SCAB_RS14150 [SCAB_29821] (SCAB_RS14150)	PadR family transcriptional regulator
SCAB_RS15825 [SCAB_33421] (SCAB_RS15825)	hypothetical protein	CGGAAGGGCTTCCA	336	9.1	NA	ΝΑ
SCAB_RS19350 [SCAB_40651] (SCAB_RS19350)	hypothetical protein	CGGAACCGCTTCCA	1449	9.1	NA	ΝΑ
SCAB_RS19595 [SCAB_41221] (SCAB_RS19595)	hypothetical protein	AGGAAGCTCTTCCA	1230	9.1	NA	NA
SCAB_RS20310 [SCAB_42651] (SCAB_RS20310)	hypothetical protein	TGGCAGCGCTCCAG	622	9.1	NA	NA
SCAB_RS26950 [SCAB_56491] (SCAB_RS26950)	DUF2017 domain-containing protein	TCGAAGCGCTCCCC	13	9.1	ΝΑ	NA
SCAB_RS32435 [SCAB_67891] (SCAB_RS32435)	DUF58 domain-containing protein	AGGGAGCGCTGCCG	606	9.1	ΝΑ	ΝΑ
SCAB_RS35910 [SCAB_74971] (SCAB_RS35910)	DUF349 domain-containing protein	CGGAAGCGGTTCCA	738	9.1	NA	ΝΑ
SCAB_RS38170 [SCAB_79741] (SCAB_RS38170)	alpha/beta hydrolase	GAGGAGCGCTTCCA	229	9.1	NA	NA
SCAB_RS09065 [SCAB_19181] (SCAB_RS09065)	gfo/ldh/MocA family oxidoreductase	AGAAAGCGCTTCCA	-44	9.1	NA	NA
SCAB_RS09060 [SCAB_19171] (SCAB_RS09060)	carbohydrate ABC transporter substrate-binding protein	AGAAAGCGCTTCCA	-35	9.1	SCAB_RS09055 [SCAB_19161] (SCAB_RS09055); SCAB_RS09050 [SCAB_19151] (SCAB_RS09050); SCAB_RS09045 [SCAB_19141] (SCAB_RS09045); SCAB_RS09040 [SCAB_19131] (SCAB_RS09040)	sugar ABC transporter permease; carbohydrate ABC transporter permease; hypothetical protein; ankyrin repeat domain-containing protein
SCAB_RS01040 [SCAB_2311] (SCAB_RS01040)	XRE family transcriptional regulator	GGGGAGCGGTTCCA	1	9	ΝΑ	ΝΑ
SCAB_RS01525 (SCAB_RS01525)	non-ribosomal peptide synthetase	CCGGAGCGCTCCCG	6963	9	ΝΑ	NA
SCAB_RS01675 [SCAB_3621] (SCAB_RS01675)	serine/threonine protein kinase	CGGGAGGGCTCCCG	1879	9	NA	NA
SCAB_RS02185 [SCAB_4741] (SCAB_RS02185)	AraC family transcriptional regulator	CTGGAGCGCTCCGA	816	9	NA	NA
SCAB_RS03175 [SCAB_6821] (SCAB_RS03175)	ABC transporter substrate-binding protein	AGGGAGCGCTCGCG	1482	9	SCAB_RS03170 [SCAB_6811] (SCAB_RS03170)	ABC transporter permease
SCAB_RS04410						

[SCAB_9351] (SCAB_RS04410)	transposase	CGGGATCGCTCCCG	1153	9	NA	NA
SCAB_RS08925 [SCAB_18881] (SCAB_RS08925)	MBL fold metallo-hydrolase	CGGGAGCGGTCCCG	366	9	NA	NA
SCAB_RS09135 [SCAB_19321] (SCAB_RS09135)	ATP-binding protein	CGGGACCGCTCCCT	17	9	NA	NA
SCAB_RS12010 [SCAB_25411] (SCAB_RS12010)	kinase	TGGAAGGGCTCCCC	103	9	NA	NA
SCAB_RS15905 [SCAB_33581] (SCAB_RS15905)	DUF402 domain-containing protein	GGGGACCGCTTCCA	99	9	NA	NA
SCAB_RS17865 [SCAB_37621] (SCAB_RS17865)	hypothetical protein	AGGGAGCGGTCCCG	341	9	NA	NA
SCAB_RS18370 [SCAB_38701] (SCAB_RS18370)	histidine phosphatase family protein	AGGGAGCGCTCACG	670	9	NA	NA
SCAB_RS20585 [SCAB_43271] (SCAB_RS20585)	monooxygenase	CGGGAGCGGTCCCG	1618	9	NA	NA
SCAB_RS22160 [SCAB_46631] (SCAB_RS22160)	hypothetical protein	AGGGAGCGTTCCCG	129	9	NA	NA
SCAB_RS26290 [SCAB_55121] (SCAB_RS26290)	DUF3499 domain-containing protein	TGGAAGCGCTCGCC	280	9	NA	NA
SCAB_RS26565 [SCAB_55671] (SCAB_RS26565)	serine/threonine protein kinase	CGGGAGCGCTCCGT	195	9	NA	NA
SCAB_RS29605 [SCAB_61931] (SCAB_RS29605)	isoprenyl transferase	TGGAAGCGCTCGCC	273	9	SCAB_RS29610 [SCAB_61941] (SCAB_RS29610)	hypothetical protein
SCAB_RS30545 [SCAB_64011] (SCAB_RS30545)	MarR family transcriptional regulator	GGGGAGCGGTTCCA	160	9	SCAB_RS30540 [SCAB_64001] (SCAB_RS30540)	N-acetyltransferase
SCAB_RS33825 [SCAB_70691] (SCAB_RS33825)	sigma factor	CGCGAGCGCTCCCT	387	9	NA	NA
SCAB_RS34575 [SCAB_72271] (SCAB_RS34575)	membrane protein	TCGGAGCGCTCCAG	408	9	NA	NA
SCAB_RS35615 [SCAB_74401] (SCAB_RS35615)	methionine ABC transporter ATP- binding protein	AAGGAGCGCTCCCG	372	9	SCAB_RS35620 [SCAB_74411] (SCAB_RS35620)	ABC transporter permease
SCAB_RS38640 [SCAB_80731] (SCAB_RS38640)	phospholipid carrier-dependent glycosyltransferase	CGGGAGCGGTCCCG	783	9	NA	NA
SCAB_RS39070 [SCAB_81681] (SCAB_RS39070)	hypothetical protein	CGGGAGCGCTCCGG	186	9	SCAB_RS39075 [SCAB_81691] (SCAB_RS39075)	membrane protein
SCAB_RS41450 [SCAB_86661] (SCAB_RS41450)	Lacl family transcriptional regulator	GGCGAGCGCTTCCA	796	9	NA	NA
SCAB_RS45095 [SCAB_42902] (SCAB_RS45095)	hypothetical protein	GGCGAGCGCTTCCA	151	9	NA	NA
SCAB_RS14800 [SCAB_31161] (SCAB_RS14800)	O-methyltransferase	AGGGAGGGCTCCCG	617	9	NA	NA
SCAB_RS21270	hypothetical protein	CGGGAGCGCTCGCG	-44	9	NA	NA

[SCAB_44752] (SCAB_RS21270)				-		
SCAB_RS21265 [SCAB_44751] (SCAB_RS21265)	hypothetical protein	CGGGAGCGCTCGCG	-217	9	NA	NA
SCAB_RS37170 [SCAB_77641] (SCAB_RS37170)	TVP38/TMEM64 family protein	CCGGAGCGCTCCCG	11	9	NA	NA
SCAB_RS37165 [SCAB_77631] (SCAB_RS37165)	cupin	CCGGAGCGCTCCCG	12	9	NA	NA

Matrix sequences

>cebEFG_SCAB_RS27575(57751)_RS27570(57741)_RS27565(57731)_[S.scabiei_87.22] TGGGAGCGCTCCCA >bglC SCAB RS24385(51081) [S.scabiei 87.22] TGGAAGCGCTCCCA >txtA_SCAB_RS15085(31791)_[S.scabiei_87.22] TGGGAGCGCTCCCG >txtR_SCAB_RS15090(31801)_[S.scabiei_87.22] CGGGAGCGCTCCCA >txtB SCAB RS15080(31781) [S.scabiei 87.22] GGGGAGCGCTCCCA >SCAB_RS16485(34791)_sigma-factor_[S.scabiei_87.22] TTGGAGCGCTCCCA >afsQ1-2 SCAB RS16490-RS16495(34801-34811) [S.scabiei 87.22] TGGGAGCGCTCCAA >SCAB_RS41045(85831)_hypothetical-protein_[S.scabiei_87.22] CGGGAGCGCTCCCT >SCAB RS41050(85841) transcriptional-regulator [S.scabiei 87.22] AGGGAGCGCTCCCG >SCAB_RS23415(49071)_MFS-transporter-sporulation-associated_[S.scabiei_87.22] TGGAAGCGCTCCCC >SCAB RS23420(49091) hypothetical-protein [S.scabiei 87.22] GGGGAGCGCTTCCA >SCAB_RS07745(16421)_Lacl-family-transcriptional-regulator_[S.scabiei_87.22] CGGAAGCGCTCCCA >CelA1 SCAB RS07750(16431) [S.scabiei 87.22] TGGGAGCGCTTCCG >bglC_SGR_RS23585(4738)_[S.griseus_subsp.griseus_NRBC13350] AGGGAGCGCTCCCA >SGR_RS00890(199)_chitin-binding_protein_[S.griseus_subsp.griseus_NRBC13350] CGGGAGCGCTCCCC >SGR_RS16785(3391)_N-acyltransferase_[S.griseus_subsp.griseus_NRBC13350] CGGGAGCGCTCCCG

Table S6. List of unknown and uncharacterized proteins with significant change in abundance. Proteins were regarded as significant more/less abundant compared to the wild-type with ANOVA values of p < 0.05, regulation of \pm 1.5-fold, power > 0.8 and q-values < 0.05. The measured increase (in green) or decrease (in red) of the abundance of the detected proteins is illustrated by a color scale. (Glc)₂: cellobiose.

				Fold change			
Protein	Gene			(vs wild-tv	/pe)	
assignation	assignation	Name	Putative or predicted function			$\Lambda cehR +$	
assignation	assignation			∆cebR			
Hypothetical p	roteins and prote	ins with unkno	wn function				
C9ZBB0	SCAB_0241	-	Uncharacterized protein	2.94	-	1.70	
C9ZCZ1	SCAB_1511	-	Putative carbamoyltransferase	3.14	1.23	6.92	
C9ZD03	SCAB_1641	-	Hypothetical protein	3.98	-	30.42	
C9ZEK6	SCAB_2511	-	Putative secreted protein	2.51	-	2.32	
C9Z898	SCAB_13691	-	Conserved membrane protein	-	2.13	1.53	
C9ZD54	SCAB_16471	-	Putative DNA-binding protein	1.91	-	1.29	
C9ZGJ8	SCAB_18411	-	Putative secreted protein	-	-4.77	-3.53	
C9YT46	SCAB_19381	-	Conserved hypothetical protein	2.66	2.06	4.93	
C9YUS2	SCAB_20571	-	Conserved hypothetical protein	1.55	-	-	
C9YZ06	SCAB_23481	-	Putative nucleotide sugar epimerase/dehydratase	2.34	-	-	
C9Z0H5	SCAB_24131	-	FAD-dependent oxidoreductase	2.53	-	-	
C9Z569	SCAB_26751	RarB-like	Dynein regulation protein LC7	-1.78	-2.77	-3.12	
C9Z5D4	SCAB_27411	-	Oligopeptide-binding transport system protein	1.76	-1.92	-	
C9ZAB5	SCAB_30041	-	Crp/Fnr family transcriptional regulator	-1.76	-1.36	-2.39	
C9ZBX1	SCAB_31271	FdxA1	Ferredoxin	-	-1.60	-	
C9ZBY9	SCAB_31461	-	BldKB-like transport system extracellular solute- binding protein	1.39	1.80	2.46	
С9ҮТ92	SCAB_34981	-	BMP family ABC transporter substrate-binding protein	-	-1.71	-1.31	
C9YTD0	SCAB 35361	-	Putative secreted protein	2.10	-1.87	-	
C9YUZ0	SCAB 36351	-	Transcription regulation protein	5.95	-	14.12	
C9YZD3	SCAB 39161	BdtA	DNA-binding protein (BldD target)	1.61	-1.41	-	
C9Z0R8	SCAB 39511		Lsr2-like (surface antigen) protein	-	-1.63	-	
C9Z0X0	SCAB 40041	-	Putative lipoprotein	-1.33	-1.60	-2.75	
C9Z3Z7	SCAB 41791	-	Hypothetical Nucleoid-associated protein	-1.46	2.26	-	
C9Z8Q6	SCAB 44691	-	Putative secreted protein	2.08	-1.73	-1.17	
C9Z8S1	SCAB 44831	-	Conserved hypothetical protein	1.55	-	-	
C9ZAI3	SCAB 45561	-	Penicillin-binding kinase	-3.96	-	-	
C9ZAJ3	SCAB 45661	-	Possible nosiheptide resistance regulator	1.65	-	2.15	
C9ZC44	SCAB_46811	-	Protease	-	1.94	-	
C9ZGX7	SCAB_49521	-	Two-component system response regulator (CopR-like)	-	4.61	3.71	
C9ZH08	SCAB 49851	-	Conserved hypothetical protein	-	2.04	2.11	
C9ZH23	SCAB 50001	-	Hypothetical protein	-	-2.29	-3.15	
C9ZH71	SCAB 50511	-	Putative membrane protein	-26.24	-	-15.67	
C9ZH85	SCAB 50651	-	Conserved hypothetical protein	-	-1.58	-	
C9YTI6	SCAB_50921	-	Putative secreted protein	2.96	-1.41	2.14	
С9ҮТКЗ	SCAB_51091	-	Secreted peptidase	1.83	-1.30	-	
C9YTN9	SCAB_51491	-	Conserved hypothetical protein	-	-1.57	-	
C9YTP4	SCAB_51541	-	Putative calcium binding protein	-	-1.70	-1.73	
C9YV95	SCAB_52551	-	Sigma factor	-3.70	-3.22	-6.07	
C9YV96	SCAB_52561	-	Conserved membrane protein (possibly associated with metal resistance)	-4.10	1.42	-3.70	
C9YY32	SCAB_54381	-	Putative lipoprotein	-	-1.66	-	
C9YZG8	SCAB_54951	-	Putative membrane protein	-	-1.63	-	
C9YZK6		-	Conserved hypothetical protein	-1.57		-1.56	
C9Z120	SCAB_56051	-	Putative oxidoreductase	1.51	-	-	
C9Z2I9	SCAB_56741	-	Putative secreted protein	-	-1.90	-1.96	
C9Z2N1		-	Preprotein translocase subunit	1.74	1.16	-	
C9Z2T0	SCAB_57661	-	Secreted solute-binding protein		-1.64		
C9Z481	SCAB_58071	-	Conserved hypothetical protein	1.78	-	1.85	

C9Z4C1	SCAB_58491	-	Anti-sigma regulatory factor (AbaA-like)	-1.74	-	-
C9Z5W8	SCAB_59311	-	Putative ABC transporter ATP-binding subunit	-	1.53	-
C9Z7C5	SCAB_59701	-	Aminopeptidase	2.23	-1.19	-
C9Z7C6	SCAB_59711	-	Conserved hypothetical protein	3.54	-	3.06
C9ZAQ7	SCAB_61831	-	Secreted metalloendopeptidase	1.80	-2.86	-1.85
C9ZDZ7	SCAB_64231	-	Putative oxidoreductase	1.50	1.90	3.07
C9ZE05	SCAB_64311	-	Conserved hypothetical protein	1.03	2.15	-
C9ZFP0	SCAB_65281	-	Putative O-methyltransferase	1.57	1.52	2.41
C9YTY7	SCAB_67771	-	Putative transcriptional regulator	-3.19	-	-
C9YVG8	SCAB_68431	-	Conserved hypothetical TIGR03085 protein	2.21	-	2.07
C9YWP0	SCAB_68931	-	Putative secreted branched chain amino acid binding protein	1.45	-1.83	-
C9YY97	SCAB 70061	-	ABC transporter ATP-binding subunit	-2.20	1.34	-
C9YZU8	SCAB 71261	-	Conserved hypothetical protein	1.78	1.52	-
C9YZX7	SCAB_71571	-	Putative sporulation protein	-	-2.05	-2.00
C9Z2Z5	SCAB_73171	-	Conserved hypothetical protein	2.10	1.46	2.71
C9Z4H0	SCAB_73871	-	Conserved hypothetical protein	1.22	-1.94	-
C9Z613	SCAB_74581	-	Putative thioredoxin-like protein	-1.51	-1.40	-
C9Z7Q9	SCAB_75831	-	Conserved membrane protein	-	3.41	1.83
C9Z9D0	SCAB_76291	-	Conserved hypothetical protein	1.44	1.92	-
С9ҮҮР6	SCAB_7641	-	Conserved hypothetical protein	1.96	-	1.44
C9YYR3	SCAB_7821	-	Ferredoxin/ferredoxin-NADP reductase	-	2.04	-
C9ZCN6	SCAB_78601	-	Putative mur ligase family	-1.85	-	-
C9YWX5	SCAB_82771	-	Peptidase	7.90	-1.25	-
C9YX10	SCAB_83121	-	Mut-like domain signature (antimutator)	-3.46	2.01	-2.73
C9Z393	SCAB_86731	-	Regulatory protein	-	1.98	-
C9Z7Z8	SCAB_89681	-	Putative TetR-family transcriptional regulator	-1.64	-	-
C9Z9U4	SCAB_90901	-	Putative secreted protein	1.38	-1.56	-1.54