
Intra-Cluster Coalescing to Reduce GPU NoC Pressure

Lu Wang1, Xia Zhao1, David Kaeli2, Zhiying Wang3, and Lieven Eeckhout1

1Ghent University,{luluwang.wang, xia.zhao, lieven.eeckhout}@UGent.be
2Northeastern University, kaeli@ece.neu.edu

3National University of Defense Technology, zywang@nudt.edu.cn

Abstract—GPUs continue to increase the number of streaming
multiprocessors (SMs) to provide increasingly higher compute
capabilities. To construct a scalable crossbar network-on-chip
(NoC) that connects the SMs to the memory controllers, a cluster
structure is introduced in modern GPUs in which several SMs are
grouped together to share a network port. Because of network
port sharing, clustered GPUs face severe NoC congestion, which
creates a critical performance bottleneck.

In this paper, we target redundant network traffic to mitigate
GPU NoC congestion. In particular, we observe that in many
GPU-compute applications, different SMs in a cluster access
shared data. Issuing redundant requests to access the same
memory location wastes valuable NoC bandwidth — we find
on average 19.4% (and up to 48%) of the requests to be
redundant. To reduce redundant NoC traffic, we propose intra-
cluster coalescing (ICC) to merge memory requests from different
SMs in a cluster. Our evaluation results show that ICC achieves
an average performance improvement of 9.7% (and up to 33%)
over a conventional design.

I. INTRODUCTION

Graphics Processing Units (GPUs) are widely deployed in

modern computing systems to provide high performance for a

wide class of general-purpose applications. A GPU-compute

application typically consists of several kernels that are com-

posed of (up to hundreds of) thousands of threads. These

threads are organized into cooperative thread arrays (CTAs)

that are scheduled on streaming multiprocessors (SMs). To

continuously increase the raw computational power of modern

GPUs, the SM count keeps increasing. Whereas the Nvidia

Fermi GPU implemented 16 SMs, the recent Nvidia Pascal [1]

and the current Volta GPUs [2] feature 60 and 84 SMs,

respectively.
The SMs feature private L1 caches and are connected to the

L2 cache and memory controllers (MCs) through a Network-

on-Chip (NoC). With the large number of SMs we are ob-

serving today, designing a scalable NoC poses a challenge.

Typically, a crossbar is deployed as the GPU’s NoC due to its

low latency and high bandwidth [1]. However, a crossbar NoC

faces scalability issues as hardware costs increase quadratically

with increasing port count.
To address the GPU NoC scalability challenge, a cluster

structure is implemented in modern-day GPUs to group several

SMs into a cluster. For example, Pascal supports 6 clusters,

with each cluster consisting of 10 SMs [1]; Volta features

14 SMs per cluster for the same number of clusters [2]. By

sharing NoC ports among SMs in a cluster, the total number of

ports to the network is reduced and so is the overall hardware

cost of the crossbar NoC.

Previous research has shown that NoC congestion is a severe

GPU performance bottleneck for many memory-intensive ap-

plications [3], [4], [5]. Unfortunately, clustered GPUs further

exacerbate this performance issue. By sharing ports among

SMs in a cluster, congestion significantly increases as SMs

need to compete with each other in a cluster for network band-

width. This creates a new and critical performance challenge

for the NoC in clustered GPU organizations.

In this paper, we address the GPU NoC performance

bottleneck by reducing NoC traffic, and more specifically by

eliminating redundant NoC requests. We do this by coalescing

L1 cache misses from different SMs within a cluster before

sending them to the NoC. L1 cache miss coalescing not only

reduces NoC pressure, it also reduces L1 cache miss latency

leading to overall performance improvements.

Memory coalescing, or grouping memory accesses from

different threads to the same cache line in a single memory

request, is widely deployed in a GPU. More specifically, intra-

warp coalescing merges L1 cache accesses across threads

within a warp [6]; WarpPool merges L1 accesses across

warps within the same SM [7]; L1 MSHRs merge L1 misses

across warps within a single SM. However, to the best of our

knowledge, no prior work coalesces L1 misses across SMs
within a cluster.

In this paper, we make the observation that many GPU-

compute applications exhibit inter-CTA locality, as different

CTAs access the same cache line or access the same read-only

data. For clustered GPUs, this implies that memory requests

from CTAs that execute on the same cluster will access the

same cache lines. According to our experimental results, we

find that on average 19.4% (and up to 48%) of all L1 misses

originating from a cluster indeed access the same cache line.

These memory requests are redundant and can be eliminated.

In response, we propose intra-cluster coalescing (ICC)
to reduce GPU NoC pressure. Intra-cluster coalescing groups

memory requests, from different SMs in a cluster, to the same

L2 cache line to reduce NoC traffic. In particular, ICC records

the memory requests sent to the NoC, and when subsequent

memory requests access the same cache lines as outstanding

requests, ICC coalesces them. By doing so, ICC significantly

reduces NoC traffic.

In this paper, we make the following contributions:

• We observe that GPU-compute applications exhibit high

degrees of inter-CTA locality. We analyze and categorize

the sources of data sharing among CTAs.

990

2018 IEEE International Parallel and Distributed Processing Symposium

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPS.2018.00108

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

• We propose Intra-Cluster Coalescing (ICC) to track and

coalesce L1 cache misses from different SMs in a cluster

before issuing them across the NoC.

• We demonstrate the significant interaction between ICC

and CTA scheduling, i.e., ICC benefits more when the

CTA scheduling policy maps neighboring CTAs to the

same cluster to better exploit inter-CTA locality.

• We comprehensively evaluate ICC and demonstrate an

average performance improvement of 9.7%, and up to

33%, over a state-of-the-art distributed CTA scheduling

policy [8]. The hardware cost is limited to 276 bytes per

cluster.

II. BACKGROUND

Before motivating the problem we are addressing in this

paper more deeply, we first summarize some background

information.

A. GPU Thread Hierarchy

Using Nvidia’s terminology, a GPU-compute application

consists of kernels, grids, CTAs, warps and threads, organized

in a hierarchy. A kernel is a parallel code region that runs on

a GPU and consists of multiple grids, which in turn consists

of multiple CTAs. Each CTA is a batch of threads that can

coordinate with each other through synchronization using a

barrier instruction [9]. Threads in a CTA share a fast, on-

chip scratchpad memory called shared memory. Since all the

synchronization primitives are encapsulated within a CTA,

different CTAs can be executed in any order. This is an

important feature that we will explore to understand how the

mapping of CTAs to clusters affects intra-cluster locality.

B. GPU Architecture

Our baseline GPU architecture is shown in Figure 1: 12

clusters are connected via a crossbar NoC to 8 memory

controllers (MCs). Each MC has an associated L2 cache bank

for the memory partition that the MC serves, and has one

network port. Each cluster consists of 5 SMs, so there are 60

SMs in total. Each SM has a private L1 data cache, a read-

only texture cache, a constant cache and shared memory. An

L1 cache miss triggers a request to be sent over the NoC to

reach one of the L2 cache banks; in case of an L2 cache

miss, the request proceeds to main memory. In our baseline

architecture, we assume one NoC injection port buffer that

is shared by all SMs in a cluster. (In the evaluation section,

we will study the sensitivity of our design to the number of

clusters and the effective network ports per SM.) Each cluster

has a response FIFO queue to hold incoming packets from the

NoC; responses are directed to one of the SMs in the cluster

according to the control information in the packet.

C. CTA Scheduling

Scheduling on a GPU is done in three steps. First, a kernel

is launched on the GPU. In this work, we assume that only one

kernel is active at a given time. Second, the CTA scheduler

maps CTAs to the available SMs. The baseline CTA scheduler

follows a 2-level round-robin (RR) policy [10], which first

Fig. 1. Clustered GPU architecture: SMs within a cluster go through the NoC
to access the L2 cache and main memory to serve L1 cache misses.

schedules CTAs across clusters and then across SMs within

a cluster. In particular, CTA 1 is allocated to the first SM in

cluster #1, CTA 2 is allocated to the first SM in cluster #2,

and so on. Once all clusters are assigned one CTA, the next

iteration allocates a CTA to the second SM in each cluster,

etc., until all SMs are assigned one CTA. If an SM has enough

resources to execute more than one CTA, additional CTAs are

assigned — this is done in a round-robin manner similar to

the procedure just described. By doing so, a two-level RR

policy balances the load among clusters and SMs, so that all

clusters and SMs have a similar number of CTAs to execute.

The maximum number of CTAs that can be scheduled per

SM is determined by the SM’s resources. Finally, the warp

scheduler in each SM schedules warps (from one or more

CTAs) to execute, which we model to follow the Greedy-Then-

Oldest (GTO) policy [11].

III. MOTIVATION AND OPPORTUNITY

We now further motivate the problem and describe the

opportunity.

A. NoC Bandwidth Bottleneck

We first demonstrate that the NoC indeed constitutes a

performance bottleneck in a clustered GPU architecture. In

particular, we study how sensitive performance is to NoC

bandwidth. Figure 2 quantifies performance when increasing

the NoC bandwidth by 2×. To ensure an overall balanced

design, we also increase the LLC bandwidth accordingly.

This is done by increasing the clock frequency of the NoC

and LLC subsystems by 2×. From an implementation and

power perspective, this may not be a feasible design point,

however, it provides us with a meaningful measure for how

sensitive performance is to the available NoC (and LLC)

bandwidth. (Further details about our experimental setup are

given in Section VI.) We find that performance increases for

all benchmarks, up to 78%, with an average improvement

of 41.4%. This clearly demonstrates that NoC bandwidth

indeed is a severe bottleneck. Limited NoC bandwidth leads to

991

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

���

����

����

����

����

	

�

�
�
�

�

�
�
�
�

�
�
�
�

�
�

�
�
�
�

�
�
�

�
�
�
�
�

�
�
�
�

�
�

�

�
�
�

	
�
�
�

�

� ��
�
��
�
�
��

!
�
!
"
#�

Fig. 2. Quantifying the NoC bottleneck: IPC improvement when increasing
the NoC and LLC frequency by 2×. NoC (and LLC) bandwidth is a severe
performance bottleneck.

TABLE I
GPU COALESCING TECHNIQUES AND THEIR SCOPE.

Technique Scope

Intra-warp coalescing [6] Across threads in a warp

WarpPool [7] L1 accesses across warps in an SM

L1 MSHR [12] L1 misses across warps in an SM

ICC (this work) L1 misses across SMs in a cluster

congestion within a cluster for memory requests that need to

proceed through the NoC to reach the L2 cache and beyond.

B. Request Merging

GPU-compute applications exhibit various forms of locality

in the memory hierarchy. Merging memory requests is widely

deployed across the memory hierarchy in a GPU to increase

the effective memory system throughput. Table I provides a

comparison between existing techniques and our work.

Intra-warp locality, or different threads within the same

warp accessing the same or neighboring memory locations,

is the most common and obvious form of data locality present

in GPU-compute applications. To exploit this characteristic,

a memory coalescing unit merges multiple memory accesses

to the same cache line within the same warp before sending

the request to the L1 cache [6]. In other words, intra-warp
coalescing merges requests across threads within a warp.

This is easily done as different threads within a warp execute

in SIMD lockstep.

For memory-divergent applications, where different threads

in a warp request more than one cache line in a load or store

instruction, the memory coalescing unit becomes a memory

system throughput bottleneck because the different memory

requests now need to be serialized. Kloosterman et al. [7]

propose WarpPool which merges memory requests across
warps in an SM before accessing the L1 cache. By merging

requests from different warps in an SM, they increase the

effective L1 cache bandwidth. WarpPool does not address NoC

congestion though: WarpPool reduces the number of requests

to the L1 cache, but goes no further. SMs in the same cluster

that are accessing the same address, an address that presently

is not in the L1 cache, generate multiple NoC requests.

Miss Status Handling Registers (MSHRs) are used at the L1

cache level to track outstanding L1 cache misses and merge

multiple requests to the same cache line in the L2 cache

and beyond. This avoids having to send redundant requests

over the NoC to the next level in the cache hierarchy. Note

that L1 MSHRs eliminate redundant NoC requests originating

from a single SM. In other words, L1 cache MSHRs are

limited in scope and coalesce L1 cache misses across warps
within an SM. There may still be redundant NoC requests

originating from different SMs within a single cluster, as we

will demonstrate in this paper.

To summarize, although intra-warp coalescing and Warp-

Pool reduce the number of requests to the L1 cache and

although L1 MSHRs merge outstanding L1 cache misses, there

is no coalescing or merging happening for accesses to the L2

cache. In other words, different SMs within the same cluster

may issue multiple requests to the same or neighboring data

elements, which leads to redundant NoC traffic. In this paper,

we eliminate redundant NoC traffic by coalescing L1 cache
misses across SMs within a cluster before sending requests

to the L2 cache. By doing so, we increase the effective NoC

bandwidth.

C. Intra-Cluster Locality

In this paper, we observe and exploit the notion of intra-

cluster data locality in GPU-compute applications. In this

section, we first quantify intra-cluster locality, and we then

investigate its root cause.

1) Quantifying Intra-Cluster Locality: To quantify intra-

cluster locality, we first define the notion of a redundant
request. A data request is said to be redundant if it accesses a

cache block that has been accessed by a previous request from

the same cluster; the previous request needs to have happened

recently, within a given window size of requests prior to

the current request. (We will vary this window size when

we quantify intra-cluster locality.) We define Intra-Cluster
Locality (ICL) as

ICL =
no. redundant requests

total no. data requests
. (1)

To quantify intra-cluster locality, we track all data requests in a

cluster before they are injected into the NoC, i.e., after having

accessed the L1 cache, so this includes all L1 misses. We then

calculate the ratio of redundant requests to the total number

of data requests for different window sizes of past memory

requests. We consider window sizes ranging from 500 to 2000

cycles. The reason for this wide range is that we observe

L1 cache miss latencies ranging up to a couple thousands of

cycles, which we observe for some of our benchmarks that

suffer from severe NoC congestion.

Different applications exhibit different degrees of intra-

cluster locality, see Figure 3. On average, for a window size of

2000 cycles, we observe that 19.4% of the memory requests

are redundant. For HS and DCT, up to 48% and 45.4% of

the requests are redundant at the cluster level, respectively.

This result supports the hypothesis in this paper that it is

992

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

���

����

����

����

����

����

�
	
�

�
�

�
�
�

�

�
�

��
��
��

�
�

�
�

�
�
�

�
�

�
�

�
�
�

�
�

�
�
�

	
�

�
�
�

�

	
�

�
�

�
�

�
���
$�

�
%�
&
'
�$

�
�
(
'

�
�
'
%�
$�
)
(

�
*
%*
�

������+�'��*��$�'�� ��%��*��$�'��

� �!�

�!�

!!

� �!�!

�!�

Fig. 3. Intra-cluster locality (fraction redundant requests versus total number
of requests in a cluster) as a function of a past window of requests under the
distributed CTA scheduling policy. A distinction is made between cache line
sharing and data sharing. A substantial fraction of NoC requests are redundant
because of intra-cluster locality due to cache line sharing or data sharing.

possible to significantly reduce NoC traffic in clustered GPUs

by coalescing memory requests within a cluster.

2) Inter-CTA Locality: It is interesting to investigate where

intra-cluster locality comes from. Intra-cluster locality in fact

stems from inter-CTA locality because of data reuse among

CTAs mapped to SM cores in the same cluster. We identify

two categories of inter-CTA locality. Figure 3 quantifies their

relative contribution.

(1) Inter-CTA locality due to cache line sharing. Inter-CTA

locality may result from adjacent CTAs accessing neighboring

data items in the same cache line. If one cache line is big

enough to hold the data accessed by multiple CTAs, we may

observe this form of inter-CTA locality. The number of threads

within a CTA is typically a multiple of 32. It may be the case

that all threads within a CTA access less than a cache line

worth of data, e.g., 32 or 64 threads in a CTA access 128

or fewer bytes. Hence, for a cache line of 128 bytes, this

implies that different CTAs will access the same cache line,

exhibiting inter-CTA locality through the same cache line. A

couple benchmarks feature cache line sharing predominantly,

especially DCT and SRAD, see Figure 3.

(2) Inter-CTA locality due to data sharing. In many GPU-

compute applications, we observe that different CTAs access

the same (read-only) data. Data sharing may result from

different reuse patterns depending on how the CTAs are

organized.

We illustrate this using two benchmarks. Hotspot (HS), see

Figure 4 for a code excerpt, is a benchmark that exhibits high

intra-cluster locality. HS has its threads and CTAs organized in

a 2D structure. Different threads in different CTAs access the

same data through the power[] data structure. The computed

index is a linear combination of the two-dimensional index

of the thread and CTA. If this linear combination evaluates

to the same value, different threads from different CTAs will

access the same data, yielding inter-CTA locality.

LUD is another example 2D application, see Figure 5, in

which each submatrix Lij and Uij is processed by one CTA.

One iteration (one instance of the kernel) is used to calculate

the decomposition of one row and column of submatrices. For

example, in the first iteration, submatrices Lj1 and U1i are

int small_block_rows = BLOCK_SIZE - border_rows × 2;

int small_block_cols = BLOCK_SIZE - border_cols × 2;

int ty = small_block_rows ×blockIdx.y + threadIdx.y - border_rows;

int tx = small_block_rows × blockIdx.x + threadIdx.x - border_cols;

index=grid_cols×ty+tx

if (0<ty<grid_rows-1) && (0<tx<grid_cols - 1))

power_on_cuda[ty][tx] = power[index];

Fig. 4. Code excerpt for hotspot (HS). Different threads in different CTAs
access the same data through the power[] data structure if the index
evaluates to the same value.

���� ��� ������ ��� ������ ��� ���
�=���� 0 0��� ��� 0��� ��� ���

� �	�� 	�� 	��0 	�� 	��0 0 	��
�

First row/column sub-matrix calculation:

��� = ��� × 	��

 	�� =
��
�� ; 	�� =
��
�� ; ��� =
����� ; ��� =
�����

Fig. 5. Data sharing in LUD. L11 is reused for calculating submatrices U12

and U13 (reuse along rows), while U11 is reused for calculating submatrices
L21 and L31 (reuse along columns).

computed: L11 is reused for calculating submatrices U12 and

U13 (reuse along rows), while U11 is reused for calculating

submatrices L21 and L31 (reuse along columns).

IV. INTRA-CLUSTER COALESCING (ICC)

Based on the notion of inter-CTA locality, we propose intra-
cluster coalescing (ICC). The key idea is to merge requests

from different SMs in a cluster to the same L2 cache line

before issuing the request to the NoC.

A. ICC Unit

Figure 6 illustrates the overall architecture of the intra-

cluster coalescing unit. The central structure of the ICC unit

is the merge table. Its goal is to track all memory requests

coming from the SMs in the cluster before injecting them into

the network. To achieve this, the merge table contains multiple

entries. Each entry consists of three fields, namely an address

field, the SM list and a valid bit. An entry is responsible for

coalescing all memory requests to the same L2 cache line. The

merge table is implemented as a fully-associative cache.

When an SM core wants to inject a memory request into

the network, the ICC unit first searches the merge table using

the request’s address. If there already exists an entry for the

requested cache line (a merge table hit), the ICC unit will

append the ID of the requesting SM to the SM list. The

memory request will not be sent to the network — there

already is a request outstanding for that same L2 cache line.

If on the other hand, there is no entry allocated in the merge

table for that cache line (a merge table miss), the ICC unit

993

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. The intra-cluster coalescing (ICC) unit merges L1 cache misses across
SMs within a cluster.

will allocate a new entry (if the merge table has empty entries

available) and then send the memory request to the network;

the SM sending this request is added to the SM list and the

valid bit is set. If, under a merge table miss, all entries in the

merge table are occupied, the memory request will be injected

into the NoC directly. To increase the effective utilization of

the merge table, ICC only records the memory read requests

to global memory, as they account for a large fraction of

all memory requests and, in addition, have a big impact on

performance. We do not consider write requests, i.e., all write

requests bypass the merge table.

When a cluster receives a reply packet from the network, the

ICC unit first uses the reply address to index the merge table.

If there exists an entry for that address (a merge table hit), the

ICC unit will read the corresponding SM list and broadcast the

memory reply to all SMs in the list. Next, the corresponding

entry in the merge table is set to invalid, which means that the

entry can be re-used for other memory requests. If the address

cannot be found in the merge table (a merge table miss), the

reply will be delivered to the SM based on the destination

stored in the reply packet.

ICC enjoys two performance benefits. First, by design, the

total number of transactions sent to the network is reduced and

this relieves the network bottleneck. Second, average memory

access latency reduces for requests that hit in the merge table.

A request to an already outstanding request only sees the

remaining access latency, which is (much) smaller compared

to the latency of a newly initiated request.

B. Merge Table

The size of the merge table is likely to affect performance.

The larger the size, the higher the opportunity to exploit

intra-cluster locality. On the flip side, a larger merge table

also implies higher hardware cost and access latency; access

latency is something to consider since it is on the critical path

for every L1 cache miss.

The maximum possible size of the merge table is deter-

mined by the maximum number of in-flight memory requests.

Memory read requests in each SM first access the L1 cache,

and in case of a cache hit, the data is sent to the register

file. Otherwise, the memory request is sent to the next level

of cache. In the L1 cache, the MSHRs track the in-flight L1

cache misses and merge duplicate requests accessing the same

L2 cache lines. The number of MSHR entries controls the

number of memory requests that can be injected into the NoC,

i.e., when all MSHR entries are occupied, L1 cache misses

can no longer be serviced. From this point of this view, the

maximum size of the merge table is bounded by the number of

SMs per cluster multiplied by the number of L1 MSHR entries

per SM. This amounts to a maximum size of 5 × 32 = 160
entries for our clustered architecture.

Obviously, the size of the merge table can be set to a smaller

value to reduce the hardware cost and/or access latency. This

trade-off impacts our ability to coalesce memory requests

across the NoC. We set the size of the merge table to 48

entries in our setup. We find that whereas a maximum sized

merge table can coalesce 14.5% of the L1 cache misses, a

48-entry merge table captures the vast majority of those by

coalescing 12% of the L1 cache misses.

C. Cost Analysis

In our setup, we assume a 48-entry fully-associative merge

table. For GPU-compute applications with a 48-bit address

space [11] and a 128-byte cache line size, we need 41 bits to

record the address of the cache line. We further assume 5 bits

to record the SM list, i.e., the SMs waiting for that particular

cache line to come back from the memory subsystem. The

total hardware cost amounts to 2,208 bits or 276 bytes per

cluster. We use CACTI 6.5 [13] to compute the access latency

of the merge table and we find it to be less than one cycle at

1.4 GHz assuming a 40 nm chip technology. This is also what

we assume in our simulations, i.e., every L1 cache miss incurs

an additional one-cycle latency for accessing the merge table.

V. CTA SCHEDULING VERSUS ICC

Intra-cluster locality is not only a function of the algorithm

or its implementation. It is also greatly affected by how CTAs

are mapped to clusters. We consider four CTA scheduling

algorithms here, and we illustrate them using the example

shown in Figure 7. The example assumes 10 CTAs in total.

We further assume 2 clusters with 2 SMs per cluster; each SM

can execute two CTAs.

Two level round-robin follows the procedure previously

described in Section II-C. CTAs are first distributed across

clusters; once all clusters have one CTA assigned, we then

assign CTAs across SMs within a cluster; finally, when all

SMs across all clusters are assigned one CTA, we then assign

additional CTAs per SM — the assignment of additional CTAs

is done the same way. This CTA scheduling algorithm has

the advantage of distributing the CTAs uniformly across all

clusters and SMs in the system.

Global round-robin, or one-level round-robin, first distributes

CTAs across all SMs within a cluster and then across clusters,

i.e., it assigns a CTA to the first SM in the first cluster, then a

994

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

(2) Global round-robin (3) Greedy-clustering (4) Distributed CTA

7

Cluster 1 Cluster 2

(1) Two-level round-robin

SM1 SM2 SM3

Initial mapping

Mapping after CTA 1 finishes

1

10-CTA workload

3

SM4

5 8

2 4

6 6

Cluster 1 Cluster 2
SM1 SM2 SM3

1 2

SM4

5 8

3 4

7

1 2 3 4 5 6 7 8 9 10

4

Cluster 1 Cluster 2
SM2 SM3

1 2

SM4

3 8

5 6

7

SM1

4

Cluster 1 Cluster 2
SM2 SM3

1 2

SM4

3 9

6 7

8

SM1

(2) Global round-robin (3) Greedy-clustering (4) Distributed CTA

7

Cluster 1 Cluster 2
SM1 SM2 SM3

9 3

SM4

5 8

2 4

6 6

Cluster 1 Cluster 2
SM1 SM2 SM3

9 2

SM4

5 8

3 4

7 4

Cluster 1 Cluster 2
SM2 SM3

9 2

SM4

3 8

5 6

7

SM1

4

Cluster 1 Cluster 2
SM2 SM3

5 2

SM4

3 9

6 7

8

SM1

(1) Two-level round-robin

Fig. 7. Illustrating the four CTA scheduling algorithms for a 10-CTA
workload. We assume a GPU architecture with 2 clusters with 2 SMs each; we
can allocate 2 CTAs at most per SM. The top row shows the initial mapping
of CTAs to clusters and SMs; the bottom row shows the mapping of the next
CTA to schedule after CTA 1 finishes its execution.

second CTA is assigned to the second SM in the first cluster;

once all SMs in a given cluster are assigned one CTA, we then

move to the second cluster. Once all SMs across all clusters

have one CTA assigned, we then assign additional CTAs to

the SMs. The assignment of additional CTAs per SM is done

in the same manner.

Greedy-clustering assigns as many CTAs as possibly to the

first cluster before proceeding to the next, i.e., the first CTA is

assigned to the first SM and the second CTA is assigned to the

second SM in the first cluster; once all SMs in the cluster have

one CTA assigned, additional CTAs are assigned to the cluster

until all SMs can take no more additional CTAs. It then moves

to the next cluster. This greedy-clustering algorithm has the

advantage of fully utilizing the clusters and SMs that it uses.

However, for kernels with a limited number of CTAs, this

policy may lead to unbalanced execution, i.e., not all clusters

are assigned the same workload. While this is not a concern

for GPU-compute workloads that consist of a large number of

CTAs, it may be problematic for others.

These three CTA scheduling policies share the common

limitation that they expose limited intra-cluster locality. As

mentioned before, inter-CTA locality typically occurs be-

tween neighboring CTAs. Compared to the other two policies,

greedy-clustering may be advantageous because it assigns

neighboring CTAs to the same cluster. The number of neigh-

boring CTAs assigned to the same cluster under two-level

round-robin and global round-robin is more limited. However,

these three policies do not make any guarantees to exploit

intra-cluster locality during the execution. In particular, when

a CTA on an SM finishes execution, a new CTA needs to

be launched and this is done without considering the locality

between the new CTA and the CTAs already executing on the

cluster.

Distributed CTA scheduling, proposed in MCM-GPU [8],

addresses this issue by uniformly distributing CTAs across

���

����

����

����

����

����

�
�
�

�
��

�
�
�

��
�
�

	�

�
�

�
�

�

��

�

��
��
�

�
�

�
�
�

�
��
�

�
�
�

�
�

�
�

�
��

�
��

�
�
��

�
�

�
�

�
�

�
��

��
�

�
�

�
��
�

	� �!� ���������"��� #����,�� ������ # �"� ���������"��� ������"�����
���

Fig. 8. Intra-cluster locality for the different CTA scheduling polices. CTA
scheduling policies have a substantial impact on the exploitable intra-cluster
locality; distributed CTA scheduling yields the highest opportunity.

clusters, i.e., all clusters get the same number of CTAs

assigned in a pool of CTAs. In the example from Figure 7,

there are 10 CTAs in total. Distributed CTA scheduling first

splits up the set of CTAs evenly across the two clusters, i.e.,

CTAs 1 through 5 are assigned to cluster #1, and CTAs 6

through 10 are assigned to cluster #2. In the next step, it

maps a block of neighboring CTAs to each cluster from the

respective pools, i.e., CTAs 1 through 4 are mapped to cluster

#1, and CTAs 6 through 9 are mapped to cluster #2. This

is similar to greedy-clustering except that greedy-clustering

does this from a global pool of CTAs whereas distributed

CTA scheduling considers a per-cluster pool of CTAs. The

key difference with the other CTA scheduling policies appears

when a CTA finishes its execution, e.g., CTA 1 at the bottom

in Figure 7. The two-level round-robin, global round-robin

and greedy-clustering scheduling policies will then select and

assign the next CTA from the global CTA pool, i.e., CTA 9 is

selected and mapped to the cluster and SM where CTA 1 just

finished its execution, namely SM#1 in cluster #1. Distributed

CTA scheduling on the other hand selects the next CTA from

the cluster’s CTA pool to schedule, i.e., CTA 5 is mapped

to cluster #1. This is a major difference because this enables

distributed CTA scheduling to continuously optimize locality

and assign neighboring CTAs to the same cluster during the

entire execution.

Comparing CTA scheduling algorithms. Figure 8 quantifies

intra-cluster locality, as previously defined in Section III-C,

for the different CTA scheduling policies with a time win-

dow of 2000 cycles. Intra-cluster locality is the highest for

distributed CTA scheduling. The reason is because distributed

CTA scheduling maintains locality across neighboring CTAs,

not only at the beginning of the execution, but also when new

CTAs are launched.

Figure 9 reports performance (IPC) normalized to two-level

round-robin. We observe that the distributed CTA scheduling

policy significantly outperforms the other policies for a couple

benchmarks. On average, the difference is modest. In the

results section, we will report that ICC substantially improves

performance for the distributed CTA scheduling policy, mak-

995

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

$�

$ 	�

$ %�

$ &�

$ '�

(�

(�

(%�

)
	
�

�
��

�
�
�

�
�
�

	�

�
�
�
�

�

��

�
�
�

��
��
�

�
�
�
�
�

�
��
�

�
	
�

�
�
�

�

�
$�

�
+�-
�
�
��
	
�
�

��+���+�$�(���$����� �$���.��+(*%�$� �+���+�$�(���$����� ��*%$��(%�������

Fig. 9. Normalized IPC for the four CTA scheduling policies considered in
this paper: two-level round-robin, greedy-clustering, global round-robin and
distributed CTA scheduling. Distributed CTA scheduling outperforms the other
three policies on average.

TABLE II
SIMULATED GPU CONFIGURATION.

Parameter Value
Clock Frequency 1.4 GHz
Number of Clusters 12
Number of SMs per Cluster 5
Numbers of MC 8
Warp Schedulers / SM 2 (GTO)
L1 Cache / SM 48 KB

128 B line, 4-way assoc
LRU, 32-entry MSHR

Shared Memory / SM 64 KB
L2 Unified Cache 512 KB per MC

128 B line, 8-way assoc
LRU, 32-entry MSHR

NoC Topology 12 × 8 crossbar
NoC Channel width 64 B
NoC Bandwidth 716.8 GB/s
DRAM Bandwidth 720 GB/s
GDDR5 DRAM 1.4 GHz

tCL=12, tRP =12, tRC=40,
tRAS=28, tRCD=12, tRRD=6,
tCCD=2, tWR=12

TABLE III
BENCHMARKS CONSIDERED IN THIS STUDY.

Benchmark Suite Abbr.
hotspot Rodinia HS
b+trees Rodinia BT
backprop Rodinia BP
bfs Rodinia BFS
srad Rodinia SRAD
lud Rodinia LUD
2Dconv Polybench 2DCONV
matrixmul SDK MM
neuralnetwork GPGPUsim NN
FDTD3d SDK FDTD
dct8×8 SDK DCT

ing it the winner across the board.

VI. EXPERIMENTAL SETUP

We faithfully model the proposed ICC unit in the GPGPU-

Sim 3.2.2 simulator [14]. The merge table is set to hold up

���

����

����

����

 ���

�
�
�

�
��

�
�
�

��
	
�

	
�
�
�

�

	
�
��

�
�
�

�	
�	
�

�
�
�
	
�

�
��
�

�
�
�

�
�
�
�
�
�

��
�
��
�
�
$&
�
�
�
�
'
%�

�������$&('��$&��'� �$���.���(*%�$� ��&� ��$&('��$&��'� ��*%$��(%�������

Fig. 10. IPC improvement for intra-cluster coalescing (ICC) for the four CTA
scheduling policies considered in this paper: two-level round-robin, greedy-
clustering, global round-robin and distributed CTA scheduling. ICC is an
effective optimization for all four CTA scheduling policies but the highest
improvement is observed for distributed CTA scheduling.

to 48 entries; we assume a one-cycle access latency to the

merge table, which we account for in our simulations. We

also model the four CTA scheduling algorithms: 2-level round-

robin, global round-robin, greedy-cluster and distributed CTA

scheduling. Table II shows the simulated GPU configuration.

Our baseline includes intra-warp coalescing in which memory

requests are coalesced across threads within a warp before

sending them to the L1 cache [6]. We further assume 32

MSHR entries at both the L1 and L2 caches; the MSHRs

at the L1 cache coalesce L1 misses within an SM.

Table III lists the workloads used to evaluate our proposed

solution, and are taken from CUDA SDK [15], Rodinia [16]

and PolyBench [17]; NN comes with GPGPUsim [14]. We

choose a mix of high intra-cluster locality and low intra-cluster

locality applications to properly evaluate the performance

impact across a broad range of workloads.

VII. RESULTS

We now evaluate intra-cluster coalescing (ICC). This is done

in a number of steps. We start by quantifying overall perfor-

mance. We then investigate the main sources leading to the

performance improvements. We finally provide a sensitivity

analysis with respect to cluster size and the effective number

of NoC ports per SM.

A. Overall Performance

Figure 10 reports overall performance (IPC) improvements

through ICC for the four CTA scheduling policies considered

in this paper. We observe modest improvements for ICC under

two-level round-robin, greedy-clustering and global round-

robin scheduling, i.e., performance improves by 3.2%, 4.4%

and 4.3% on average, although LUD experiences a more

substantial improvement by 18.2%, 23.2% and 22.8%, respec-

tively.

Significantly higher performance improvements are ob-

served for ICC under the distributed CTA scheduling policy,

by 9.7% on average. Several benchmarks experience a substan-

tial performance improvement, i.e., LUD (33%), HS (30%),

2DCONV (16.8%) and DCT (21%). The high performance

996

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

!�

!!
�

!!"�

!!#�

!!"�

$�

$!
�

$!"�

$!#�

�
�

�
��

�

#$
�
�

�
�
%

&
�

�
�
��

�
�
�

��
��
�

�
�
�
�
�

�
��
�

�
	
�

�
�
�

�

&

�'
�
+�%
�
�
��
	
�
�

&+�'�+��&('�&�&��'� �����,&�+()*��� �+&��+��&('�&�&��'� ��)*���(*�������

Fig. 11. IPC for the four CTA scheduling policies with ICC normalized to
two-level round-robin scheduling without ICC. Distributed CTA scheduling
with ICC yields the best performance overall.

!��

$!��

!��

�!��

 !��

�!��

�
�

�
��

�
�
�

��
�
�

�
�
�
�

�

�
�
��

�
�
�

��
��
�

�
�
�
�
�

�
��
�

�
�
�

�

�
�

�
�
�
*�
&
'
��
&

��
)
�
�
�
��
$
��
�)
)
�
)
�

���'����&('���&��'� �����,���()*��� ��&� ���&('���&��'� ��)*���(*�������

Fig. 12. Fraction coalesced L1 cache misses through ICC for the four CTA
scheduling policies. ICC coalesces a significant fraction of the L1 cache
misses; this is especially the case for distributed CTA scheduling.

achieved for ICC under distributed CTA scheduling, as com-

pared to the alternative CTA scheduling policies, is due to the

fact that the distributed scheme optimizes inter-CTA locality

within a cluster during the entire execution. This fact creates

more opportunities to apply intra-cluster coalescing, resulting

in better performance.

Generally speaking, benchmarks with high intra-cluster lo-

cality, see Figure 8, benefit more from intra-cluster coalescing.

However, the correlation is not perfect. This is due to the

fact that intra-cluster locality quantifies the redundancy in read

requests only. Applications that have a relatively high fraction

of writes versus reads, e.g., DCT, do not benefit as much as

the intra-cluster locality metric would suggest (although the

improvement is still significant).

Figure 11 quantifies performance (IPC) for the four CTA

scheduling algorithms with ICC, relative to two-level round

robin without ICC. The key message is that distributed CTA

scheduling with ICC is the overall winner. We report an

average improvement by 15% and up to 40.8%. This is

an important result because it shows that distributed CTA

scheduling not only has the greatest opportunity for exploiting

intra-cluster locality, as shown in Figure 10, it also yields

the highest performance overall when deployed in conjunction

with ICC, see Figure 11.

Fig. 13. Average normalized L1 cache miss latency reduction for ICC under
the four CTA scheduling policies. ICC reduces the average L1 cache miss
latency significantly.

B. L1 Cache Miss Coalescing

We next investigate where the performance improvements

are coming from. To this end, we first quantify the fraction

of L1 cache misses that get coalesced through ICC, see

Figure 12. In line with the performance results just described,

we observe a relatively modest fraction of coalesced L1

misses for two-level round-robin scheduling (4% on average),

greedy-clustering (6% on average) and global round-robin

CTA scheduling (5.5% on average). We obtain substantially

better results under distributed CTA scheduling: 14% of the

L1 cache misses get coalesced on average, and up to 48.3%

(DCT), 27% (HS), 22.8% (LUD) and 14.7% (2DCONV).

These are also the benchmarks for which we observed the

highest performance improvement under ICC, see Figure 10.

Coalescing L2 accesses reduces NoC pressure, which in turn

leads to higher performance. Note the correlation is not

perfect though — this is a result of whether the coalesced L1

cache misses are on the critical path and/or affect bandwidth

saturation in the NoC and/or memory subsystem.

In contrast to what the intra-cluster locality metric reported

in Figure 8 suggests, we observe that for some applications,

e.g., HS and 2DCONV, ICC fails to coalesce a large fraction

of the redundant accesses. This is due to the fact that the

lifetime of an entry in the merge table is smaller than the 2000

cycles we assume for quantifying the amount of intra-cluster

locality.

C. L1 Cache Miss Latency Reduction

Next, we investigate this further by quantifying the L1

cache miss latency. Coalescing L1 cache misses not only

reduces NoC pressure, it also reduces the average L1 cache

miss latency, i.e., a request to the cache line of an already

outstanding cache line only sees the remaining latency, which

reduces the average L1 cache miss latency.

The average L1 cache miss latency reduction is quantified

in Figure 13. ICC, under the distributed CTA scheduling

policy, reduces the average L1 cache miss latency by 11.7%

on average. We observe good correlation with the fraction

of coalesced L1 cache misses as shown in Figure 12. We

observe the largest reduction in L1 cache miss latency for HS,

997

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

!�

!!
�

!!"�

!!��

����

��

����

����

����

����

	
� ���

� ���� ����
�� ���� ��� �����
���� ��
� ��� 	���
�

�
��

�
��
!
"
�#
�
�
�

��$�%&'!�&� ��$�%&'!�&�(�#��� ���$�%&'!�&� ���$�%&'!�&(#��� ���$�%&'!�&� ���$�%&'!�&(#��� �)�$�%&'!�&� �)�$�%&'!�&�(#���

Fig. 14. Evaluating ICC while varying the number of clusters for a total of 60 SMs assuming distributed CTA scheduling; IPC is reported normalized to 6
clusters. ICC consistently improves performance across different cluster sizes and across different effective NoC ports per SM.

LUD, 2DCONV and DCT. These are also the benchmarks

for which we observe the largest performance improvement.

Interestingly, we obtain a large reduction in L1 cache miss

latency for NN for most of the CTA scheduling policies,

which does not seem to translate into a significant performance

improvement. This is because NN has a relatively small L1

cache miss rate; hence, although we reduce the L1 cache miss

latency significantly, the impact on performance is not as big.

D. Sensitivity Analysis

Our baseline configuration assumed 12 clusters with 5 SMs

each and one NoC port per cluster. We now vary the number

of SMs per cluster and include configurations with 6, 10, 12

and 15 clusters. To keep the total number of SMs constant at

60, each cluster consists of 10, 6, 5 and 4 SMs, respectively.

We assume one NoC port per cluster, so the number of NoC

ports per SM effectively increases as we increase the number

of clusters.

Figure 14 reports normalized IPC for the four cluster

configurations, assuming distributed CTA scheduling. The key

message is that ICC is effective across different clustered GPU

architecture configurations. Even with as little as 4 SMs per

cluster sharing one NoC port (15 clusters in total), we still

observe an average performance improvement of 9% (and up

to 27.3%). We also observe the general trend that performance

increases as we increase the number of clusters. This is a

result of less NoC congestion, as there are more NoC ports

and fewer SMs competing for NoC bandwidth. Yet, we do

observe a significant performance improvement from intra-

cluster coalescing even when the NoC is less congested.

VIII. RELATED WORK

To the best of our knowledge, this is the first paper to target

coalescing memory requests across SMs within a cluster to

mitigate the NoC bottleneck in GPUs. We now discuss the

most closely related work in CTA scheduling, inter-SM local-

ity, GPU NoC optimization and memory access coalescing.

CTA scheduling. Several prior works exploit inter-CTA local-

ity to improve CTA scheduling. In particular, Lee et al. [18]

and Mao et al. [19] dispatch groups of two consecutive CTAs

onto the same SM to improve L1 cache performance by

exploiting locality between consecutive CTAs located in a

row. Chen et al. [20] propose a software-hardware cooperative

design to exploit spatial locality among different CTAs located

in different rows and columns. Li et al. [21] propose software

techniques to schedule CTAs with potential reuse on the same

SM to exploit inter-CTA locality on real GPU hardware. None

of these prior works explore CTA scheduling to improve intra-

cluster coalescing opportunities [22], [23].

Exploiting inter-SM locality. A couple papers exploit inter-

CTA locality. Tarjan and Skadron [24] propose a central

sharing tracker (ST) to exploit data sharing among SMs. They

consider a GPU architecture that lacks an on-chip last-level

cache (LLC). Through the ST, L1 misses are sent to other SMs

to obtain the data from another L1 cache (if available) instead

of accessing off-chip main memory. Li et al. [25] prioritize

memory requests to data that is shared across SMs. Neither

of these approaches consider inter-CTA locality as a potential

solution for the GPU NoC bottleneck in clustered GPUs.

GPU NoC optimization. Two recent works address the GPU

NoC bottleneck by exploiting inter-SM locality. In particular,

Zhao et al. [26] propose an inter-SM locality aware LLC

design to transfer few-to-many NoC traffic into many-to-many

traffic to increase the effective network bandwidth utilization.

Kim et al. [27] exploit packet coalescing to reduce data

redundancy in GPUs. These two prior works focus on a

mesh NoC. Although the latter work also exploits packet

coalescing, it coalesces redundant replies on each MC. This

only alleviates the MC bottleneck but the traffic caused by a

multicast operation to transfer the data back to the requesting

SMs is not addressed, which may lead to serialization delays

in the NoC routers. None of these prior works consider intra-

cluster locality to reduce GPU NoC pressure.

Bakhoda et al. [3] propose a checkerboard router to reduce

the NoC cost while providing multiple input ports for the

MCs to increase the injection rate. The bandwidth-efficient

NoC design by Jang et al. [28] leverages asymmetric virtual

channel (VC) partitions to assign more VCs to reply packets

which occupy a large portion of network traffic. Ziabari et

al. [5] propose asymmetric NoCs where the reply network

features high network bandwidth. Zhao et al. [29] propose a

ring-like NoC to provide high bandwidth for reply packets in

a cost-effective way. These previous works only focus on the

NoC topology, but could be combined with our intra-cluster

coalescing to further improve their performance.

998

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

Memory access coalescing. Intra-warp coalescing is widely

deployed in GPUs to group aligned memory accesses of differ-

ent threads in a warp [6]. To coalesce memory accesses from

different warps, WarpPool [7] merges requests between warps

within an SM to increase the effective L1 cache bandwidth.

These prior works only target memory access coalescing

within an SM. None of these notice and exploit the potential

of coalescing duplicate memory accesses from different SMs

within a cluster.

IX. CONCLUSION

Clustered GPUs face a severe NoC bottleneck with increas-

ing SM count. To mitigate network congestion, we propose

intra-cluster coalescing (ICC) by exploiting inter-CTA locality

observed in many GPU-compute applications. ICC coalesces

memory requests from different SMs in a cluster to the same

L2 cache line to reduce the overall number of requests and

replies sent over the NoC. We find that ICC coalesces 14%

of all L1 cache misses on average (and up to 48.3%). This

leads to an average 9.7% (and up to 33%) performance

improvement over a set of benchmarks with varying degrees of

inter-CTA locality. The overarching contribution of this paper

is the exploitation of inter-CTA locality, an inherent GPU-

compute workload characteristic, to tackle the emerging NoC

congestion bottleneck in clustered GPUs to improve overall

system performance by coalescing memory requests across

SMs within a cluster.

X. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feed-

back. This work is supported through the European Research

Council (ERC) Advanced Grant agreement No. 741097, Re-

search Foundation Flanders (FWO) grants No. G.0434.16N

and G.0144.17N, and the National Natural Science Foundation

of China through grants No. 61572508 and 61672526.

REFERENCES

[1] NVIDIA GP100 Pascal Architecture. NVIDIA Corporation.
[Online]. Available: https://www.nvidia.com/object/pascal-architecture-
whitepaper.html

[2] NVIDIA Tesla V100 Volta Architecture. NVIDIA Corporation.
[Online]. Available: http://www.nvidia.com/object/volta-architecture-
whitepaper.html

[3] A. Bakhoda, J. Kim, and T. M. Aamodt, “Throughput-Effective On-
Chip Networks for Manycore Accelerators,” in Proceedings of the 43rd
International Symposium on Microarchitecture (MICRO), Dec 2010.

[4] H. Kim, J. Kim, W. Seo, Y. Cho, and S. Ryu, “Providing Cost-
Effective On-Chip Network Bandwidth in GPGPUs,” in Proceedings
of International Conference on Computer Design (ICCD), Sept 2012.

[5] A. K. Ziabari, J. L. Abellán, Y. Ma, A. Joshi, and D. Kaeli, “Asymmetric
NoC Architectures for GPU Systems,” in Proceedings of the Interna-
tional Symposium on Networks-on-Chip (NOCS), Sept 2015.

[6] J. Hestness, S. W. Keckler, and D. A. Wood, “A Comparative Anal-
ysis of Microarchitecture Effects on CPU and GPU Memory System
Behavior,” in Proceedings of the International Symposium on Workload
Characterization (IISWC), Oct 2014.

[7] J. Kloosterman, J. Beaumont, M. Wollman, A. Sethia, R. Dreslinski,
T. Mudge, and S. Mahlke, “WarpPool: Sharing Requests with Inter-
Warp Coalescing for Throughput Processors,” in Proceedings of the
International Symposium on Microarchitecture (MICRO), Dec 2015.

[8] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A. Jaleel, C.-J. Wu, and D. Nellans, “MCM-GPU: Multi-Chip-Module
GPUs for Continued Performance Scalability,” in Proceedings of the
Annual International Symposium on Computer Architecture (ISCA), Jun
2017.

[9] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither More
nor Less: Optimizing Thread-level Parallelism for GPGPUs,” in Pro-
ceedings of the International Conference on Parallel Architectures and
Compilation Techniques (PACT), Sept 2013.

[10] A. Lopes, F. Pratas, L. Sousa, and A. Ilic, “Exploring GPU Performance,
Power and Energy-Efficiency Bounds with Cache-Aware Roofline Mod-
eling,” in Proceedings of the IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), April 2017.

[11] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious
Wavefront Scheduling,” in Proceedings of the International Symposium
on Microarchitecture (MICRO), Dec 2012.

[12] D. Kroft, “Lockup-free Instruction Fetch/Prefetch Cache Organization,”
in Proceedings of the Annual Symposium on Computer Architecture
(ISCA), May 1981.

[13] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A Tool to Model Large Caches,” HP Laboratories, 2009.

[14] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in
Proceedings of the International Symposium on Performance Analysis
of Systems and Software (ISPASS), Apr 2009.

[15] NVIDIA CUDA SDK Code Samples. NVIDIA Corporation. [Online].
Available: https://developer.nvidia.com/cuda-downloads

[16] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in Proceedings of the International Symposium on Workload
Characterization (IISWC), Oct 2009.

[17] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a High-Level Language Targeted to GPU Codes,” in
Innovative Parallel Computing (InPar), May 2012.

[18] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving GPGPU Resource Utilization Through Alternative Thread
Block Scheduling,” in Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA), Feb 2014.

[19] M. Mao, J. Hu, Y. Chen, and H. Li, “VWS: A Versatile Warp Scheduler
for Exploring Diverse Cache Localities of GPGPU Applications,” in
Proceedings of the Design Automation Conference (DAC), June 2015.

[20] L. J. Chen, H. Y. Cheng, P. H. Wang, and C. L. Yang, “Improving
GPGPU Performance via Cache Locality Aware Thread Block Schedul-
ing,” IEEE Computer Architecture Letters, 2017.

[21] A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal,
“Locality-Aware CTA Clustering for Modern GPUs,” in Proceedings
of International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Apr 2017.

[22] Y. Wang, D. Wang, S. Chen, Z. Liu, S. Chen, X. Chen, and X. Zhou,
“Iteration Interleaving-Based SIMD Lane Partition,” TACO, vol. 12,
no. 4, 2016.

[23] C. Li, S. Ma, S. Chen, Y. Guo, and P. Wang, “Express Ring: A Multi-
Layer and Non-Blocking NoC Architecture,” IEICE Electronic Express,
vol. 12, no. 3, 2015.

[24] D. Tarjan and K. Skadron, “The Sharing Tracker: Using Ideas from
Cache Coherence Hardware to Reduce Off-Chip Memory Traffic with
Non-Coherent Caches,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis
(SC), Nov 2010.

[25] D. Li and T. M. Aamodt, “Inter-Core Locality Aware Memory Schedul-
ing,” IEEE Computer Architecture Letters, vol. 15, no. 1, pp. 25–28, Jan
2016.

[26] X. Zhao, Y. Liu, A. Adileh, and L. Eeckhout, “LA-LLC: Inter-Core
Locality-Aware Last-Level Cache to Exploit Many-to-Many Traffic in
GPGPUs,” IEEE Computer Architecture Letters, vol. 16, no. 1, Jan 2017.

[27] K. H. Kim, R. Boyapati, J. Huang, Y. Jin, K. H. Yum, and E. J. Kim,
“Packet Coalescing Exploiting Data Redundancy in GPGPU Architec-
tures,” in Proceedings of the International Conference on Supercomput-
ing (ICS), June 2017.

[28] H. Jang, J. Kim, P. Gratz, K. H. Yum, and E. J. Kim, “Bandwidth-
Efficient On-Chip Interconnect Designs for GPGPUs,” in Proceedings
of the Design Automation Conference (DAC), June 2015.

[29] X. Zhao, S. Ma, C. Li, L. Eeckhout, and Z. Wang, “A Heterogeneous
Low-Cost and Low-Latency Ring-Chain Network for GPGPUs,” in Pro-
ceedings of the International Conference on Computer Design (ICCD),
Oct 2016.

999

Authorized licensed use limited to: University of Gent. Downloaded on September 28,2020 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

