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EXTENDED CAFFARELLI-KOHN-NIRENBERG INEQUALITIES,

AND REMAINDERS, STABILITY, AND SUPERWEIGHTS

FOR Lp-WEIGHTED HARDY INEQUALITIES

MICHAEL RUZHANSKY, DURVUDKHAN SURAGAN, AND NURGISSA YESSIRKEGENOV

Abstract. In this paper we give an extension of the classical Caffarelli-Kohn-
Nirenberg inequalities: we show that for 1 < p, q < ∞, 0 < r < ∞ with

p + q ≥ r, δ ∈ [0, 1] ∩
[
r−q
r

, p
r

]
with δr

p
+

(1−δ)r
q

= 1 and a, b, c ∈ R with

c = δ(a− 1) + b(1− δ), and for all functions f ∈ C∞
0 (Rn\{0}) we have

‖|x|cf‖Lr(Rn) ≤
∣∣∣∣

p

n− p(1− a)

∣∣∣∣
δ

‖|x|a∇f‖δLp(Rn)

∥∥∥|x|bf
∥∥∥1−δ

Lq(Rn)

for n 	= p(1 − a), where the constant
∣∣∣ p
n−p(1−a)

∣∣∣δ is sharp for p = q with

a− b = 1 or p 	= q with p(1− a) + bq 	= 0. In the critical case n = p(1− a) we
have

‖|x|cf‖Lr(Rn) ≤ pδ ‖|x|a log |x|∇f‖δLp(Rn)

∥∥∥|x|bf
∥∥∥1−δ

Lq(Rn)
.

Moreover, we also obtain anisotropic versions of these inequalities which can
be conveniently formulated in the language of Folland and Stein’s homoge-
neous groups. Consequently, we obtain remainder estimates for Lp-weighted
Hardy inequalities on homogeneous groups, which are also new in the Eu-
clidean setting of Rn. The critical Hardy inequalities of logarithmic type and
uncertainty type principles on homogeneous groups are obtained. Moreover,
we investigate another improved version of Lp-weighted Hardy inequalities in-
volving a distance and stability estimate. The relation between the critical
and the subcritical Hardy inequalities on homogeneous groups is also inves-
tigated. We also establish sharp Hardy type inequalities in Lp, 1 < p < ∞,

with superweights, i.e., with the weights of the form
(a+b|x|α)

β
p

|x|m allowing for

different choices of α and β. There are two reasons why we call the appearing
weights the superweights: the arbitrariness of the choice of any homogeneous
quasi-norm and a wide range of parameters.
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1. Introduction

The aim of this paper is to give an extension of the classical Caffarelli-Kohn-
Nirenberg (CKN) inequalities [CKN84] with respect to ranges of parameters and
to investigate the remainders and stability of the weighted Lp-Hardy inequalities.
Moreover, our methods also provide sharp constants for the CKN inequality for
known ranges of parameters as well as give an improvement by replacing the full
gradient by the radial derivative. We also obtain the critical case of the CKN
inequality with logarithmic terms, and investigate the remainders and other prop-
erties in the case when CKN inequalities reduce to the weighted Hardy inequalities.
For the latter, we also establish Lp-weighted Hardy inequalities with more general

weights of the form (a+b|x|α)
β
p

|x|m , allowing for different choices of m, α, and β.

1.1. Extended Caffarelli-Kohn-Nirenberg inequalities. Let us recall the clas-
sical Caffarelli-Kohn-Nirenberg inequality [CKN84]:

Theorem 1.1. Let n ∈ N and let p, q, r, a, b, d, δ ∈ R such that p, q ≥ 1, r > 0,
0 ≤ δ ≤ 1, and

(1.1)
1

p
+

a

n
,
1

q
+

b

n
,
1

r
+

c

n
> 0,

where c = δd+ (1− δ)b. Then there exists a positive constant C such that

(1.2) ‖|x|cf‖Lr(Rn) ≤ C‖|x|a|∇f |‖δLp(Rn)‖|x|bf‖1−δ
Lq(Rn)

holds for all f ∈ C∞
0 (Rn) if and only if the following conditions hold:

(1.3)
1

r
+

c

n
= δ

(
1

p
+

a− 1

n

)
+ (1− δ)

(
1

q
+

b

n

)
,

(1.4) a− d ≥ 0 if δ > 0,

(1.5) a− d ≤ 1 if δ > 0 and
1

r
+

c

n
=

1

p
+

a− 1

n
.

The first aim of this paper is to extend the CKN inequalities for general functions
with respect to widening the range of indices (1.1). Moreover, another improvement
will be achieved by replacing the full gradient ∇f in (1.2) by the radial derivative

Rf = ∂f
∂r . It turns out that such improved versions can be establsihed with sharp

constants, and to hold both in the isotropic and anisotropic settings.
To compare with Theorem 1.1 let us first formulate the isotropic version of our

extension in the usual setting of Rn.
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Theorem 1.2. Let n ∈ N, 1 < p, q < ∞, 0 < r < ∞, with p + q ≥ r, δ ∈
[0, 1]∩

[
r−q
r , p

r

]
and a, b, c ∈ R. Assume that δr

p + (1−δ)r
q = 1, c = δ(a−1)+b(1−δ).

If n 	= p(1− a), then for any function f ∈ C∞
0 (Rn\{0}) we have

(1.6) ‖|x|cf‖Lr(Rn) ≤
∣∣∣∣ p

n− p(1− a)

∣∣∣∣δ ∥∥∥∥|x|a( x

|x| · ∇f

)∥∥∥∥δ
Lp(Rn)

∥∥|x|bf∥∥1−δ

Lq(Rn)
.

In the critical case n = p(1− a) for any function f ∈ C∞
0 (Rn\{0}) we have

(1.7) ‖|x|cf‖Lr(Rn) ≤ pδ
∥∥∥∥|x|a log |x|( x

|x| · ∇f

)∥∥∥∥δ
Lp(Rn)

∥∥|x|bf∥∥1−δ

Lq(Rn)

for any homogeneous quasi-norm |·|. If |·| is the Euclidean norm on Rn, inequalities
(1.6) and (1.7) imply, respectively,

(1.8) ‖|x|cf‖Lr(Rn) ≤
∣∣∣∣ p

n− p(1− a)

∣∣∣∣δ ‖|x|a∇f‖δLp(Rn)

∥∥|x|bf∥∥1−δ

Lq(Rn)

for n 	= p(1− a), and

(1.9) ‖|x|cf‖Lr(Rn) ≤ pδ ‖|x|a log |x|∇f‖δLp(Rn)

∥∥|x|bf∥∥1−δ

Lq(Rn)

for n = p(1− a). The inequality (1.6) holds for any homogeneous quasi-norm | · |,
and the constant

∣∣∣ p
n−p(1−a)

∣∣∣δ is sharp for p = q with a − b = 1 or for p 	= q with

p(1 − a) + bq 	= 0. Furthermore, the constants
∣∣∣ p
n−p(1−a)

∣∣∣δ and pδ are sharp for

δ = 0, 1.

Note that if the conditions (1.1) hold, then the inequality (1.8) is contained in the
family of Caffarelli-Kohn-Nirenberg inequalities in Theorem 1.1. However, already
in this case, if we require p = q with a − b = 1 or p 	= q with p(1 − a) + bq 	= 0,
then (1.8) yields the inequality (1.2) with sharp constant. Moreover, the constants∣∣∣ p
n−p(1−a)

∣∣∣δ and pδ are sharp for δ = 0 or δ = 1. Our conditions δr
p + (1−δ)r

q = 1

and c = δ(a− 1)+ b(1− δ) imply the condition (1.3) of the Theorem 1.1, as well as
(1.4)-(1.5) which are all necessary for having estimates of this type, at least under
the conditions (1.1).

If the conditions (1.1) are not satisfied, then the inequality (1.8) is not covered
by Theorem 1.1. So, this gives an extension of Theorem 1.1 with respect to the
range of parameters. In this sense, we call the obtained inequalities to be ‘extended
Caffarelli-Kohn-Nirenberg’, from the point of view of an extension of the range of
parameters (although Theorem 1.2 does not imply Theorem 1.1). The conditions
(1.1) in Theorem 1.1 can be considered as ‘integrability’ conditions, in particular
ensuring the behaviour at the origin; however, both Theorem 1.2 and Theorem 1.1
apply to functions in C∞

0 (Rn\{0}).
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Let us give an example of an extension of the range of parameters:

Example 1.3. Let us take 1 < p = q = r < ∞, a = −n−2p
p , b = −n

p and

c = −n−δp
p . Then by (1.8) for all f ∈ C∞

0 (Rn\{0}) we have the inequality

(1.10)∥∥∥∥∥ f

|x|
n−δp

p

∥∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∥ ∇f

|x|
n−2p

p

∥∥∥∥∥
δ

Lp(Rn)

∥∥∥∥ f

|x|np

∥∥∥∥1−δ

Lp(Rn)

, 1 < p < ∞, 0 ≤ δ ≤ 1,

where ∇ is the standard gradient in R
n. Since we have

1

q
+

b

n
=

1

p
+

1

n

(
−n

p

)
= 0,

we see that (1.1) fails, so that the inequality (1.10) is not covered by Theorem 1.1.

Although these results are new already in the usual setting of Rn, our techniques
apply well also for the anisotropic structures. Consequently, it is convenient to work
in the setting of homogeneous groups developed by Folland and Stein [FS82] with
an idea of emphasising general results of harmonic analysis depending only on the
group and dilation structures. In particular, in this way we obtain results on the
anisotropic Rn, on the Heisenberg group, general stratified groups, graded groups,
etc. In the special case of stratified groups (or homogeneous Carnot groups), other
formulations using horizontal gradient are possible, and we refer to [RS17c] and
especially to [RS17b] and [RSY17b] for versions of such results and the discussion
of the corresponding literature.

The improved versions of the Caffarelli-Kohn-Nirenberg inequality for radially
symmetric functions with respect to the range of parameters was investigated in
[NDD12]. In [ZHD15] and [HZ11], weighted Hardy type inequalities were obtained
for the generalised Baouendi-Grushin vector fields, which is when γ = 0 gives the
standard gradient in R

n. We also refer to [HNZ11], [Han15] for weighted Hardy in-
equalities on the Heisenberg group, to [HZD11] and [ZHD14] on the H-type groups,
and a recent paper [Yac17] on Lie groups of polynomial growth as well as to the
references therein.

Some results of this paper were announced in [RSY17a]. For Hardy inequalities
on homogeneous groups we refer to [RS17d].

In Section 2 we very briefly recall the necessary notions and fix the notation in
more detail. Assuming the notation there, Theorem 1.2 is the special case of the
following theorem that we prove in this paper:

Theorem 1.4. Let G be a homogeneous group of homogeneous dimension Q. Let
| · | be an arbitrary homogeneous quasi-norm on G. Let 1 < p, q < ∞, 0 < r < ∞
with p+q ≥ r, δ ∈ [0, 1]∩

[
r−q
r , pr

]
and a, b, c ∈ R. Assume that δr

p + (1−δ)r
q = 1 and

c = δ(a−1)+b(1−δ). Then for all f ∈ C∞
0 (G\{0}) we have the following Caffarelli-

Kohn-Nirenberg type inequalities, with R := d
d|x| being the radial derivative: If

Q 	= p(1− a), then

‖|x|cf‖Lr(G) ≤
∣∣∣∣ p

Q− p(1− a)

∣∣∣∣δ ‖|x|aRf‖δLp(G)

∥∥|x|bf∥∥1−δ

Lq(G)
,
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where the constant
∣∣∣ p
Q−p(1−a)

∣∣∣δ is sharp for p = q with a − b = 1 or p 	= q with

p(1− a) + bq 	= 0. If Q = p(1− a), then

‖|x|cf‖Lr(G) ≤ pδ ‖|x|a log |x|Rf‖δLp(G)

∥∥|x|bf∥∥1−δ

Lq(G)
.

Moreover, the constants
∣∣∣ p
Q−p(1−a)

∣∣∣δ and pδ are sharp for δ = 0, 1.

1.2. Lp-weighted Hardy inequalities. Let us recall the following Lp-weighted
Hardy inequality:

(1.11)

∫
Rn

|∇f(x)|p
|x|αp dx ≥

(
n− p− αp

p

)p ∫
Rn

|f(x)|p
|x|(α+1)p

dx

for every function f ∈ C∞
0 (Rn), where −∞ < α < n−p

p and 2 ≤ p < n. The inequal-

ity (1.11) is a special case of the Caffarelli-Kohn-Nirenberg inequalities [CKN84],
recalled also in Theorem 1.1. Since in this paper we are also interested in remain-
der estimates for the Lp-weighted Hardy inequality, let us introduce known results
in this direction. Overall, the study of remainders in Hardy and other related
inequalities is a classical topic going back to [BL85,BM97,BV97].

Ghoussoub and Moradifam [GM08] proved that there exists no strictly positive
function V ∈ C1(0,∞) such that the inequality∫

Rn

|∇f |2dx ≥
(
n− 2

2

)2 ∫
Rn

|f |2
|x|2 dx+

∫
Rn

V (|x|)|f |2dx

holds for any f ∈ W 1,2(Rn). Cianchi and Ferone [CF08] showed that for all 1 <
p < n there exists a constant C = C(p, n) such that∫

Rn

|∇f |pdx ≥
(
n− p

p

)p ∫
Rn

|f |p
|x|p dx (1 + Cdp(f)

2p∗
)

holds for all real-valued weakly differentiable functions f in R
n such that f and

|∇f | ∈ Lp(Rn) go to zero at infinity. Here

dpf = inf
c∈R

‖f − c|x|−
n−p
p ‖Lp∗,∞(Rn)

‖f‖Lp∗,p(Rn)

with p∗ = np
n−p , and Lτ,σ(Rn) is the Lorentz space for 0 < τ ≤ ∞ and 1 ≤ σ ≤ ∞.

In the case of a bounded domain Ω, Wang and Willem [WW03] for p = 2 and
Abdellaoui, Colorado, and Peral [ACP05] for 1 < p < ∞ investigated the improved
type of (1.11) (see also [ST15a] and [ST15b] for more details).

For more general Lie group discussions of the above inequalities we refer to recent
papers [RS17c], [RS17a], and [RS17b] as well as the references therein.

Sometimes the improved versions of different inequalities, or remainder esti-
mates, are called stability of the inequality if the estimates depend on certain
distances: see, e.g., [BJOS16] for stability of trace theorems, [CFW13] for stability
of Sobolev inequalities, etc.

We also note that Sano and Takahashi obtained the improved version of (1.11)
in [ST15a] for Ω = R

n and α = 0 and then in [ST15b] for any −∞ < α < n−p
p : Let

n ≥ 3, 2 ≤ p < n and −∞ < α < n−p
p . Let N ∈ N, t ∈ (0, 1), γ < min{1− t, p−N

p }
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and δ = N − n + N
1−t−γ

(
γ + n−p−αp

p

)
. Then there exists a constant C > 0 such

that the inequality

∫
Rn

|∇f |p
|x|αp dx−

(
n− p− αp

p

)p ∫
Rn

|f |p
|x|p(α+1)

dx ≥ C

(∫
Rn |f | N

1−t−γ |x|δdx
) p(1−t−γ)

Nt

(∫
Rn |f |p|x|−αpdx

) 1−t
t

holds for any radially symmetric function f ∈ W 1,p
0,α(R

n), f 	= 0.
For the convenience of the reader we now briefly recapture the main results of

this part of the paper, formulating them directly in the anisotropic cases following
the notation recalled in Section 2. Thus, we show that for a homogeneous group
G of homogeneous dimension Q and any homogeneous quasi-norm | · | we have the
following results:

• (Remainder estimates for the Lp-weighted Hardy inequality) Let

2 ≤ p < Q, −∞ < α < Q−p
p and δ1 = Q−p−αp−Q+pb

p , δ2 = Q−p−αp− bp
p−1

for any b ∈ R. Then for all functions f ∈ C∞
0 (G\{0}) we have∫

G

|Rf(x)|p
|x|αp dx−

(
Q− p− αp

p

)p ∫
G

|f(x)|p
|x|(α+1)p

dx

≥ Cp

(∫
G
|f(x)|p|x|δ1dx

)p(∫
G
|f(x)|p|x|δ2dx

)p−1 ,

where Cp = cp

∣∣∣Q(p−1)−pb
p2

∣∣∣p, R := d
d|x| is the radial derivative and cp =

min
0<t≤1/2

((1 − t)p − tp + ptp−1). This family is a new result already in the

standard setting of Rn.
• (Stability of Hardy inequalities) Let 2 ≤ p < Q and −∞ < α < Q−p

p .

Then for all radial functions f ∈ C∞
0 (G\{0}) we have the stability estimate∫

G

|Rf(x)|p
|x|αp dx−

(
Q− p− αp

p

)p ∫
G

|f(x)|p
|x|(α+1)p

dx

≥ cp

(
p− 1

p

)p

sup
R>0

dR(f, cf (R)fα)
p,

where cf (R) = R
Q−p−αp

p f̃(R) with f(x) = f̃(r), r = |x|, R := d
d|x| is the

radial derivative, cp is defined in Lemma 2.1, fα and dR(·, ·) are defined in
(4.1) and (4.2), respectively.

• (Critical Hardy inequalities of logarithmic type) Let 1 < γ < ∞ and
let max{1, γ − 1} < p < ∞. Then for all f ∈ C∞

0 (G\{0}) and all R > 0 we
have

p

γ − 1

∥∥∥∥∥∥∥∥
Rf

|x|
Q−p

p

(
log R

|x|

) γ−p
p

∥∥∥∥∥∥∥∥
Lp(G)

≥

∥∥∥∥∥∥∥
f − fR

|x|
Q
p

(
log R

|x|

) γ
p

∥∥∥∥∥∥∥
Lp(G)

,

where fR = f
(
R x

|x|

)
, where R := d

d|x| is the radial derivative, and the

constant p
γ−1 is optimal. In the Abelian case, this result was obtained in

[MOW15]. In the case γ = p this result on the homogeneous group was
proved in [RS16].
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• (Uncertainty inequalities) Let 1 < p < ∞ and q > 1 be such that
1
p + 1

q = 1
2 . Let 1 < γ < ∞ and max{1, γ − 1} < p < ∞. Then for any

R > 0 and f ∈ C∞
0 (G\{0}) we have the uncertainty inequalities∥∥∥∥∥∥∥∥

Rf

|x|
Q−p

p

(
log R

|x|

) γ−p
p

∥∥∥∥∥∥∥∥
Lp(G)

‖f‖Lq(G) ≥
γ − 1

p

∥∥∥∥∥∥∥
f(f − fR)

|x|
Q
p

(
log R

|x|

) γ
p

∥∥∥∥∥∥∥
L2(G)

,

where R := d
d|x| is the radial derivative (see (2.4)). Moreover,∥∥∥∥∥∥∥∥

Rf

|x|
Q−p

p

(
log R

|x|

) γ−p
p

∥∥∥∥∥∥∥∥
Lp(G)

∥∥∥∥∥∥∥
f − fR

|x|
Q

p′
(
log R

|x|

)2− γ
p

∥∥∥∥∥∥∥
Lp′ (G)

≥ γ − 1

p

∥∥∥∥∥∥ f − fR

|x|Q2 log R
|x|

∥∥∥∥∥∥
2

L2(G)

holds for 1
p + 1

p′ = 1.

• (Relation between critical and subcritical Hardy inequalities) Let
Q ≥ m+ 1 ≥ 3 with m ∈ N. Let | · | be a homogeneous quasi-norm. Then
for any nonnegative radial function g ∈ C1

0 (B
m(0, R)\{0}), there exists a

nonnegative radial function f ∈ C1
0 (B

Q(0, 1)\{0}) such that∫
BQ(0,1)

|Rf |mdx−
(
Q−m

m

)m ∫
BQ(0,1)

|f |m
|x|m dx

=
|σ|
|σ̃|

(
Q−m

m− 1

)m−1

×

⎛⎝∫
Bm(0,R)

|Rg|mdz −
(
m− 1

m

)m ∫
Bm(0,R)

|g|m

|z|m
(
log Re

|z|

)m dz

⎞⎠
holds true, where R := d

d|x| is the radial derivative, |σ| and |σ̃| are Q−1 and

m− 1 dimensional surface measure of the unit quasi-sphere, respectively.

1.3. Lp-Hardy inequalities with superweights. The classical Hardy inequali-
ties and their extensions, such as the Caffarelli-Kohn-Nirenberg inequalities, usually
involve the weights of the form 1

|x|m . In this paper, we also consider the weights of

the form (a+b|x|α)
β
p

|x|m allowing for different choices of α and β. If α = 0 or β = 0,

this reduces to traditional weights. So, we are interested in the case when αβ 	= 0
and, in fact, we obtain two families of inequalities depending on whether αβ > 0
or αβ < 0. Moreover, | · | in these expressions can be an arbitrary homogeneous
quasi-norm and the constants for the obtained inequalities are sharp. The freedom
in choosing parameters α, β, a, b,m and a quasi-norm led us to calling these weights
the ‘superweights’ in this context.

Again, the obtained estimates will include both the isotropic and anisotropic
settings of Rn, for which our range of obtained estimates appears also to be new.
Namely, already in the Euclidean case of Rn with the Euclidean norm, they extend
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the inequalities that have been known for p = 2 for some range of parameters from
[GM11] to the full range of 1 < p < ∞.

Therefore, we can again work on the homogeneous groups. To summarise, on a
homogeneous group G with homogeneous dimension Q for any homogeneous quasi-
norm | · | on G, all a, b > 0 and 1 < p < ∞ we prove that

• If αβ > 0 and pm ≤ Q− p, then for all f ∈ C∞
0 (G\{0}), we have

(1.12)
Q− pm− p

p

∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+1
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m Rf

∥∥∥∥∥
Lp(G)

.

If Q 	= pm+ p, then the constant Q−pm−p
p is sharp.

• If αβ < 0 and pm− αβ ≤ Q− p, then for all f ∈ C∞
0 (G\{0}), we have

(1.13)
Q− pm+ αβ − p

p

∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+1
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m Rf

∥∥∥∥∥
Lp(G)

.

If Q 	= pm+ p− αβ, then the constant Q−pm+αβ−p
p is sharp.

As noted before, the weights in the inequalities (1.12) and (1.13) are called

superweights since the constants Q−pm−p
p in (1.12) and Q−pm+αβ−p

p in (1.13) are

sharp for arbitrary homogeneous quasi-norm | · | of G and wide range of choices of
the allowed parameters α, β, a, b, and m. Directly from the inequalities (1.12) and
(1.13), choosing different α, β, a, b,m, and Q, one can obtain a number of Hardy
type inequalities which have various consequences and applications. For instance,
in the Abelian (isotropic or anisotropic) case G = (Rn,+), we have Q = n, so for
any quasi-norm | · | on Rn, all a, b > 0 and 1 < p < ∞ these imply new inequalities.
Thus, if αβ > 0 and pm ≤ n− p, then for all f ∈ C∞

0 (Rn\{0}), we have

(1.14)
n− pm− p

p

∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+1
f

∥∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m
df

d|x|

∥∥∥∥∥
Lp(Rn)

with the constant being sharp for n 	= pm+ p.
If αβ < 0 and pm− αβ ≤ n− p, then for all f ∈ C∞

0 (Rn\{0}), we have

(1.15)
n− pm+ αβ − p

p

∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+1
f

∥∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m
df

d|x|

∥∥∥∥∥
Lp(Rn)

with the sharp constant for n 	= pm + p − αβ. In the case of the standard Eu-
clidean distance |x| =

√
x2
1 + . . .+ x2

n by using the Schwartz inequality from the
inequalities (1.14) and (1.15) we obtain that if αβ > 0 and pm ≤ n− p, then for all
f ∈ C∞

0 (Rn\{0})

(1.16)
n− pm− p

p

∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+1
f

∥∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m ∇f

∥∥∥∥∥
Lp(Rn)

with the constant sharp for n 	= pm+ p.
If αβ < 0 and pm− αβ ≤ n− p, then for all f ∈ C∞

0 (Rn\{0}), we have

(1.17)
n− pm+ αβ − p

p

∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+1
f

∥∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m ∇f

∥∥∥∥∥
Lp(Rn)
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with the sharp constant for n 	= pm + p − αβ. The L2-version, that is, when
p = 2 the inequalities (1.16) and (1.17) were obtained in [GM11]. We also shall
note that these inequalities have interesting applications in theory of ODE (see
[GM11, Theorem 2.1]).

In Section 8 we give the main result of this part and give its short proof. Some
higher order versions of the obtained inequalities are discussed briefly in Section 9.

In Section 2 we briefly recall the main concepts of homogeneous groups and fix
the notation. In Section 5 we present critical Hardy inequalities of logarithmic
type and uncertainty type principles on homogeneous groups. The remainder es-
timates for Lp-weighted Hardy inequalities on homogeneous groups are proved in
Section 3. Moreover, in Section 4 we also investigate another improved version of
Lp-weighted Hardy inequalities involving a distance. In Section 6 the relation be-
tween the critical and the subcritical Hardy inequalities on homogeneous groups is
investigated. In Section 7 we introduce Caffarelli-Kohn-Nirenberg type inequalities
on homogenous groups and prove their extended version.

2. Preliminaries

In this section we very briefly recall the necessary notation concerning the setting
of homogeneous groups following Folland and Stein [FS82] as well as a recent treatise
[FR16]. We also recall a few other facts that will be used in the proofs. A connected
simply connected Lie group G is called a homogeneous group if its Lie algebra g is
equipped with a family of the following dilations:

Dλ = Exp(A lnλ) =

∞∑
k=0

1

k!
(ln(λ)A)k,

where A is a diagonalisable positive linear operator on g, and every Dλ is a mor-
phism of g, that is,

∀X,Y ∈ g, λ > 0, [DλX,DλY ] = Dλ[X,Y ],

holds. We recall that Q := TrA is called the homogeneous dimension of G.
A homogeneous group is a nilpotent (Lie) group and exponential mapping expG :

g → G of this group is a global diffeomorphism. Thus, this implies the dilation
structure, and this dilation is denoted by Dλx or just by λx, on homogeneous
groups.

Then we have

(2.1) |Dλ(S)| = λQ|S| and

∫
G

f(λx)dx = λ−Q

∫
G

f(x)dx.

Here dx is the Haar measure on homogeneous groups G and |S| is the volume of
a measurable set S ⊂ G. The Haar measure on a homogeneous group G is the
standard Lebesgue measure for Rn (see, for example, [FR16, Proposition 1.6.6]).

Let |·| be a homogeneous quasi-norm on G. Then the quasi-ball centred at x ∈ G

with radius R > 0 is defined by

B(x,R) := {y ∈ G : |x−1y| < R}.

The following notation will also be used in this paper:

Bc(x,R) := {y ∈ G : |x−1y| ≥ R}.
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We refer to [FS82] for the proof of the following important polar decomposition on
homogeneous Lie groups, which can also be found in [FR16, Section 3.1.7]: there
is a (unique) positive Borel measure σ on the unit quasi-sphere

(2.2) S := {x ∈ G : |x| = 1},

so that for every f ∈ L1(G) we have

(2.3)

∫
G

f(x)dx =

∫ ∞

0

∫
S

f(ry)rQ−1dσ(y)dr.

Let us now fix a basis {X1, . . . , Xn} of a Lie algebra g such that

AXk = νkXk

for every k, so that the matrix A can be taken to be A = diag(ν1, . . . , νn). Then
every Xk is homogeneous of degree νk and

Q = ν1 + · · ·+ νn.

The decomposition of exp−1
G

(x) in g defines the vector

e(x) = (e1(x), . . . , en(x))

by the formula

exp−1
G

(x) = e(x) · ∇ ≡
n∑

j=1

ej(x)Xj ,

where ∇ = (X1, . . . , Xn). It implies the equality

x = expG (e1(x)X1 + . . .+ en(x)Xn) .

Taking into account the homogeneity and denoting x = ry, y ∈ S, one has

e(x) = e(ry) = (rν1e1(y), . . . , r
νnen(y)).

So we have

d

d|x|f(x) =
d

dr
f(ry) =

d

dr
f(expG (rν1e1(y)X1 + . . .+ rνnen(y)Xn)).

We use the notation

(2.4) R :=
d

dr
,

that is,

(2.5)
d

d|x|f(x) = Rf(x) ∀x ∈ G,

for any homogeneous quasi-norm |x| on G. Let us recall the following lemma, which
will be used in our proof.

Lemma 2.1 ([FS08]). Let p ≥ 2 and let a, b be real numbers. Then there exists
cp > 0 such that

|a− b|p ≥ |a|p − p|a|p−2ab+ cp|b|p

holds, where cp = min
0<t≤1/2

((1− t)p − tp + ptp−1) is sharp in this inequality.



42 M. RUZHANSKY, D. SURAGAN, AND N. YESSIRKEGENOV

We will also use the following result (see [ORS16] and [RS16e]) with anisotropic
Caffarelli-Kohn-Nirenberg inequality:

Theorem 2.2 ([ORS16]). Let G be a homogeneous group of homogeneous dimen-
sion Q. Let | · | be a homogeneous quasi-norm. Let a, b ∈ R, and f ∈ C∞

0 (G\{0}).
Then we have

(2.6)

∣∣∣∣Q− (a+ b+ 1)

p

∣∣∣∣ ∫
G

|f |p
|x|a+b+1

dx ≤
(∫

G

|Rf |p
|x|ap dx

) 1
p

(∫
G

|f |p

|x|
bp

p−1

dx

) p−1
p

,

where R is defined in (2.4), 1 < p < ∞, and the constant
∣∣∣Q−(a+b+1)

p

∣∣∣ is sharp.

3. On remainder estimates of anisotropic Lp
-weighted

Hardy inequalities

In this section we obtain a family of remainder estimates in the weighted Lp-
Hardy inequalities, with a freedom of choosing the parameter b ∈ R. The obtained
remainder estimates are new already in the standard setting of Rn.

Theorem 3.1. Let G be a homogeneous group of homogeneous dimension Q ≥ 3.
Let | · | be a homogeneous quasi-norm. Let 2 ≤ p < Q, −∞ < α < Q−p

p and

δ1 = Q − p − αp − Q+pb
p , δ2 = Q − p − αp − bp

p−1 for any b ∈ R. Then for all

functions f ∈ C∞
0 (G\{0}) we have∫

G

|Rf(x)|p
|x|αp dx−

(
Q− p− αp

p

)p ∫
G

|f(x)|p
|x|(α+1)p

dx

(3.1) ≥ Cp

(∫
G
|f(x)|p|x|δ1dx

)p(∫
G
|f(x)|p|x|δ2dx

)p−1 ,

where R is defined in (2.4), Cp = cp

∣∣∣Q(p−1)−pb
p2

∣∣∣p, and
cp = min

0<t≤1/2
((1− t)p − tp + ptp−1).

Remark 3.2. Since the inequality (3.1) holds for any b ∈ R, choosing b = Q(p−1)
p so

that Cp = 0, we obtain the Lp-weighted Hardy inequalities on homogeneous groups:

(3.2)

∫
G

|Rf(x)|p
|x|αp dx ≥

(
Q− p− αp

p

)p ∫
G

|f(x)|p
|x|(α+1)p

dx,

−∞ < α <
Q− p

p
, 2 ≤ p < Q,

for all functions f ∈ C∞
0 (G\{0}). In the Abelian case G = (Rn,+) with Q = n,

the inequality (3.2) gives the Lp-weighted Hardy inequalities for any quasi-norm on
Rn: For any function f ∈ C∞

0 (Rn\{0}) we have∫
Rn

∣∣∣∣df(x)d|x|

∣∣∣∣p |x|−αpdx ≥
(
n− p− αp

p

)p ∫
Rn

|f(x)|p
|x|p(α+1)

dx,

where −∞ < α < n−p
p and 2 ≤ p < n. By Schwarz’s inequality with the standard

Euclidean distance |x| =
√
x2
1 + x2

2 + ...+ x2
n, we obtain the Euclidean form of the
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Lp-weighted Hardy inequalities on Rn:∫
Rn

|∇f(x)|p
|x|αp dx ≥

(
n− p− αp

p

)p ∫
Rn

|f(x)|p
|x|(α+1)p

dx,

−∞ < α <
n− p

p
, 2 ≤ p < n,

for any function f ∈ C∞
0 (Rn\{0}), where ∇ is the standard gradient in Rn.

Remark 3.3. We also note that in the Abelian case, (3.1) implies a new remainder
estimate for any quasi-norm on Rn: For any function f ∈ C∞

0 (Rn\{0}) and for any
b ∈ R, we obtain∫

Rn

∣∣∣∣df(x)d|x|

∣∣∣∣p |x|−αpdx−
(
n− p− αp

p

)p ∫
Rn

|f(x)|p
|x|p(α+1)

dx

(3.3) ≥ Cp

(∫
Rn |f(x)|p|x|δ1dx

)p(∫
Rn |f(x)|p|x|δ2dx

)p−1 , 2 ≤ p < n, −∞ < α <
n− p

p
.

As in Remark 3.2, by Schwarz’s inequality with the standard Euclidean distance,
we obtain the Euclidean version of the remainder estimate for Lp-weighted Hardy
inequalities: ∫

Rn

|∇f(x)|p

|x|αp dx−
(
n− p− αp

p

)p ∫
Rn

|f(x)|p
|x|(α+1)p

dx

(3.4) ≥ Cp

(∫
Rn |f(x)|p|x|δ1dx

)p(∫
Rn |f(x)|p|x|δ2dx

)p−1 , 2 ≤ p < n, −∞ < α <
n− p

p
,

for every function f ∈ C∞
0 (Rn\{0}) and for any b ∈ R, where ∇ is the standard

gradient in Rn.
Thus, we note that the remainder estimate (3.4) is new already in the standard

setting of Rn.

Proof of Theorem 3.1. First let us show the statement of Theorem 3.1 for a radial

function f ∈ C∞
0 (G\{0}). Since f is radial, f can be represented as f(x) = f̃(|x|).

By Brezis-Vázquez’s idea ([BV97]), we define

(3.5) g̃(r) = r
Q−p−αp

p f̃(r).

Since f̃ = f̃(r) ∈ C∞
0 (0,∞) and α < Q−p

p , we obtain g̃(0) = 0 and g̃(∞) = 0.

We set g(x) = g̃(|x|) for x ∈ G. Introducing polar coordinates (r, y) = (|x|, x
|x| ) ∈

(0,∞)×S on G and using (2.3), we have

J :=

∫
G

|Rf |p|x|−αpdx−
(
Q− p− αp

p

)p ∫
G

|f |p
|x|p(α+1)

dx

= |σ|
∫ ∞

0

∣∣∣∣ ddr f̃(r)
∣∣∣∣p r−αp+Q−1dr − |σ|

(
Q− p− αp

p

)p ∫ ∞

0

|f̃(r)|pr−p(α+1)+Q−1dr

= |σ|
∫ ∞

0

∣∣∣∣(Q− p− αp

p

)
r−

Q−αp
p g̃(r)− r−

Q−p−αp
p

d

dr
g̃(r)

∣∣∣∣p rQ−1−αpdr

−|σ|
(
Q− p− αp

p

)p ∫ ∞

0

|g̃(r)|pr−1dr,
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where |σ| is the Q − 1 dimensional surface measure of the unit quasi-sphere. Here
applying Lemma 2.1 to the integrand of the first term in the last expression above,
we get ∣∣∣∣(Q− p− αp

p

)
r−

Q−αp
p g̃(r)− r−

Q−p−αp
p

d

dr
g̃(r)

∣∣∣∣p rQ−1−αp

≥
((

Q− p− αp

p

)p

r−Q+αp|g̃(r)|p
)
rQ−1−αp

−p

(
Q− p− αp

p

)p−1

|g̃(r)|p−2g̃(r)
d

dr
g̃(r)r−(Q−αp

p )(p−1)r−(Q−p−αp
p )rQ−1−αp

+cp

∣∣∣∣ ddr g̃(r)
∣∣∣∣p r−Q+p+αprQ−1−αp

=

(
Q− p− αp

p

)p

r−1|g̃(r)|p − p

(
Q− p− αp

p

)p−1

|g̃(r)|p−2g̃(r)
d

dr
g̃(r)

+cp

∣∣∣∣ ddr g̃(r)
∣∣∣∣p rp−1.

Since g̃(0) = g̃(∞) = 0 and p ≥ 2, we note that

p

∫ ∞

0

|g̃(r)|p−2g̃(r)
d

dr
g̃(r)dr =

∫ ∞

0

d

dr
(|g̃(r)|p)dr = 0.

This gives a “ground state representation” ([FS08]) of the Hardy difference J :

(3.6) J ≥ cp|σ|
∫ ∞

0

∣∣∣∣ ddr g̃(r)
∣∣∣∣p rp−1dr = cp

∫
G

|Rg(x)|p|x|p−Qdx.

Putting a = Q−p
p in (2.6), we obtain for any b ∈ R, that

(3.7)

∣∣∣∣Q(p− 1)− pb

p2

∣∣∣∣ ∫
G

|g|p|x|−
Q+pb

p dx

≤
(∫

G

|Rg|p|x|p−Qdx

) 1
p
(∫

G

|g|p|x|−
bp

p−1 dx

) p−1
p

.

It gives that

(3.8) J ≥ cp

∫
G

|Rg(x)|p|x|p−Qdx ≥ cp

∣∣∣∣Q(p− 1)− pb

p2

∣∣∣∣p
(∫

G
|g|p|x|−

Q+pb
p dx

)p
(∫

G
|g|p|x|−

bp
p−1 dx

)p−1 .

Taking into account that g(x) = g̃(|x|), x ∈ G, and (3.5), one calculates∫
G

|x|−
Q+pb

p |g(x)|pdx = |σ|
∫ ∞

0

rQ−p−αp|f̃(r)|pr−
Q+pb

p rQ−1dr

=

∫
G

|f(x)|p|x|Q−p−αp−Q+pb
p dx =

∫
G

|f(x)|p|x|δ1dx.

On the other hand,∫
G

|x|−
bp

p−1 |g(x)|pdx = |σ|
∫ ∞

0

rQ−p−αp|f̃(r)|pr−
bp

p−1 rQ−1dr

=

∫
G

|f(x)|p|x|Q−p−αp− bp
p−1 dx =

∫
G

|f(x)|p|x|δ2dx.
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Putting these into (3.8), we obtain

(3.9) J ≥ cp

∣∣∣∣Q(p− 1)− pb

p2

∣∣∣∣p
(∫

G
|f(x)|p|x|δ1dx

)p(∫
G
|f(x)|p|x|δ2dx

)p−1 .

Now let us prove it for nonradial functions. We consider the radial function for a
nonradial function f :

(3.10) U(r) =

(
1

|σ|

∫
S

|f(ry)|pdσ(y)
) 1

p

.

Using the Hölder inequality, we calculate

d

dr
U(r) =

1

p

(
1

|σ|

∫
S

|f(ry)|pdσ(y)
) 1

p−1
1

|σ|

∫
S

p|f(ry)|p−2f(ry)
d

dr
f(ry)dσ(y)

≤
(

1

|σ|

∫
S

|f(ry)|pdσ(y)
) 1

p−1
1

|σ|

∫
S

|f(ry)|p−1

∣∣∣∣ ddr f(ry)
∣∣∣∣ dσ(y)

≤
(

1

|σ|

∫
S

|f(ry)|pdσ(y)
) 1

p−1
1

|σ|

(∫
S

∣∣∣∣ ddr f(ry)
∣∣∣∣p dσ(y))

1
p
(∫

S

|f(ry)|pdσ(y)
) p−1

p

=

(
1

|σ|

∫
S

∣∣∣∣ ddrf(ry)
∣∣∣∣p dσ(y))

1
p

.

Thus, we have

d

dr
U(r) ≤

(
1

|σ|

∫
S

∣∣∣∣ ddrf(ry)
∣∣∣∣p dσ(y))

1
p

.

It follows that

|σ|
∫ ∞

0

∣∣∣∣ ddrU(r)

∣∣∣∣p rQ−1−αpdr ≤ |σ|
∫ ∞

0

1

|σ|

∫
S

∣∣∣∣ ddr f(ry)
∣∣∣∣p rQ−1−αpdσ(y)dr

=

∫
G

|Rf |p |x|−αpdx,

that is,

(3.11)

∫
G

|RU |p |x|−αpdx ≤
∫
G

|Rf |p |x|−αpdx.

In view of (3.10), we obtain∫
G

|U(|x|)|p|x|θdx = |σ|
∫ ∞

0

|U(r)|prθ+Q−1dr

(3.12) = |σ|
∫ ∞

0

1

|σ|

∫
S

|f(ry)|pdσ(y)rθ+Q−1dr =

∫
G

|f(x)|p|x|θdx

for any θ ∈ R. Then, it is easy to see that (3.11) and (3.12) imply that (3.1) holds
also for all nonradial functions. �
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4. Stability of anisotropic Lp
-weighted Hardy inequalities

In this section we establish a remainder estimate in the Lp-weighted Hardy in-
equality involving the distance to the set of extremisers: estimates of such type are
known as stability estimates in the literature. Let us denote

(4.1) fα(x) = |x|−
Q−p−αp

p

for −∞ < α < Q−p
p , and we set

(4.2) dR(f, g) :=

⎛⎝∫
G

|f(x)− g(x)|p∣∣∣log R
|x|

∣∣∣p |x|(α+1)p
dx

⎞⎠
1
p

for functions f and g for which the integral in (4.2) is finite.

Theorem 4.1. Let G be a homogeneous group of homogeneous dimension Q ≥ 3.
Let | · | be a homogeneous quasi-norm. Let 2 ≤ p < Q and −∞ < α < Q−p

p . Then

for all radial functions f ∈ C∞
0 (G\{0}) we have∫

G

|Rf |p
|x|αp dx−

(
Q− p− αp

p

)p ∫
G

|f |p
|x|(α+1)p

dx

(4.3) ≥ cp

(
p− 1

p

)p

sup
R>0

dR(f, cf (R)fα)
p,

where cf (R) = R
Q−p−αp

p f̃(R) with f(x) = f̃(r), |x| = r, R := d
d|x| is the radial

derivative, cp is defined in Lemma 2.1, fα and dR(·, ·) are defined in (4.1) and
(4.2), respectively.

Proof of Theorem 4.1. Since p ≥ 2, as in (3.6) in the proof of Theorem 3.1, we have

J(f) =

∫
G

|Rf |p|x|−αpdx−
(
Q− p− αp

p

)p ∫
G

|f |p
|x|(α+1)p

dx

(4.4) ≥ cp|σ|
∫ ∞

0

∣∣∣∣ ddr g̃
∣∣∣∣p rp−1dr = cp

∫
G

∣∣∣∣ ddr g
∣∣∣∣p |x|p−Qdx.

By Theorem 3.1 in [RS16] or Remark 5.3 with γ = p, we obtain

J(f) ≥ cp

∫
G

|Rg|p|x|p−Qdx ≥ cp

(
p− 1

p

)p ∫
G

∣∣∣g(x)− g(Rx
|x| )

∣∣∣p∣∣∣log R
|x|

∣∣∣p |x|Q dx

= cp

(
p− 1

p

)p ∫
G

∣∣∣|x|Q−p−αp
p f(x)−R

Q−p−αp
p f(Rx

|x| )
∣∣∣p∣∣∣log R

|x|

∣∣∣p |x|Q dx
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for any R > 0. Here using f(x) = f̃(r), r = |x|, one calculates

J(f) ≥ cp

(
p− 1

p

)p ∫
G

∣∣∣f(x)−R
Q−p−αp

p f̃(R)|x|−
Q−p−αp

p

∣∣∣p∣∣∣log R
|x|

∣∣∣p |x|(α+1)p
dx

= cp

(
p− 1

p

)p ∫
G

∣∣∣f(x)− cf (R)|x|−
Q−p−αp

p

∣∣∣p∣∣∣log R
|x|

∣∣∣p |x|(α+1)p
dx,

�

yielding (4.3).

5. Critical Hardy inequalities of logarithmic type

and uncertainty principle

In this section, we present critical Hardy inequalities of logarithmic type on
the homogeneous group G. In the Abelian isotropic case, the following result was
obtained in [MOW15]. In the case γ = p this result on the homogeneous group was
proved in [RS16].

Theorem 5.1. Let G be a homogeneous group of homogeneous dimension Q. Let
| · | be a homogeneous quasi-norm. Let 1 < γ < ∞ and max{1, γ − 1} < p < ∞.
Then for all f ∈ C∞

0 (G\{0}) and all R > 0 we have

(5.1)

∥∥∥∥∥∥∥
f − fR

|x|
Q
p

(
log R

|x|

) γ
p

∥∥∥∥∥∥∥
Lp(G)

≤ p

γ − 1

∥∥∥∥∥∥∥∥
Rf

|x|
Q−p

p

(
log R

|x|

) γ−p
p

∥∥∥∥∥∥∥∥
Lp(G)

,

where fR(x) = f
(
R x

|x|

)
, R is defined in (2.4), and the constant p

γ−1 is optimal.

Proof of Theorem 5.1. First, let us consider the integrals in (5.1) restricted to
B(0, R). Introducing polar coordinates (r, y) = (|x|, x

|x| ) ∈ (0,∞)×S on G, where

S is the quasi-sphere as in (8.3), and using (2.3), we have∫
B(0,R)

|f(x)− fR(x)|p

|x|Q
∣∣∣log R

|x|

∣∣∣γ dx

=

∫ R

0

∫
S

|f(ry)− f(Ry)|p

rQ
(
log R

r

)γ rQ−1dσ(y)dr

=

∫ R

0

d

dr

(
1

(γ − 1)
(
log R

r

)γ−1

∫
S

|f(ry)− f(Ry)|pdσ(y)
)
dr

− p

γ − 1
Re

∫ R

0

(
log

R

r

)−γ+1 ∫
S

|f(ry)− f(Ry)|p−2(f(ry)− f(Ry))
df(ry)

dr
dσ(y)dr

= − p

γ − 1
Re

∫ R

0

(
log

R

r

)−γ+1 ∫
S

|f(ry)−f(Ry)|p−2(f(ry)−f(Ry))
df(ry)

dr
dσ(y)dr,
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where p−γ+1 > 0, so that the boundary term at r = R vanishes due to inequalities

|f(ry)− f(Ry)| ≤ C(R− r),

log
R

r
≥ R− r

R
.

Then, by the Hölder inequality, we get∫ R

0

∫
S

|f(ry)− f(Ry)|p

r
(
log R

r

)γ dσ(y)dr

= − p

γ − 1
Re

∫ R

0

(
log

R

r

)−γ+1 ∫
S

|f(ry)−f(Ry)|p−2(f(ry)−f(Ry))
df(ry)

dr
dσ(y)dr

≤ p

γ − 1

∫ R

0

(
log

R

r

)−γ+1 ∫
S

|f(ry)− f(Ry)|p−1

∣∣∣∣df(ry)dr

∣∣∣∣ dσ(y)dr
≤ p

γ − 1

(∫ R

0

∫
S

|f(ry)− f(Ry)|p

r
(
log R

r

)γ dσ(y)dr

) p−1
p

×
(∫ R

0

∫
S

rp−1

(
log

R

r

)p−γ ∣∣∣∣df(ry)dr

∣∣∣∣p dσ(y)dr
) 1

p

.

Thus, we obtain ⎛⎝∫
B(0,R)

|f(x)− fR(x)|p

|x|Q
∣∣∣log R

|x|

∣∣∣γ dx

⎞⎠
1
p

(5.2) ≤ p

γ − 1

(∫
B(0,R)

|x|p−Q

∣∣∣∣log R

|x|

∣∣∣∣p−γ

|Rf(x)|p dx
) 1

p

.

Similarly, we have ⎛⎝∫
Bc(0,R)

|f(x)− fR(x)|p

|x|Q
∣∣∣log R

|x|

∣∣∣γ dx

⎞⎠
1
p

(5.3) ≤ p

γ − 1

(∫
Bc(0,R)

|x|p−Q

∣∣∣∣log R

|x|

∣∣∣∣p−γ

|Rf(x)|p dx
) 1

p

.

The inequalities (5.2) and (5.3) imply (5.1).
Now let us prove the optimality of the constant p

γ−1 in (5.1). The inequality

(5.1) gives that
(5.4)⎛⎝∫

B(0,R)

|f(x)|p

|x|Q
∣∣∣log R

|x|

∣∣∣γ
⎞⎠

1
p

≤ p

γ − 1

(∫
B(0,R)

|x|p−Q

∣∣∣∣log R

|x|

∣∣∣∣p−γ

|Rf(x)|pdx
) 1

p

.
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It is enough to prove the optimality of the constant p
γ−1 in (5.4). As in the Abelian

case (see [MOW15, Section 3]), we define the following sequence of functions:

fk(x) :=

⎧⎪⎪⎨⎪⎪⎩
(log(kR))

γ−1
p when |x| ≤ 1

k ,

(log R
|x| )

γ−1
p when 1

k ≤ |x| ≤ R
2 ,

2
R (log 2)

γ−1
p (R− |x|) when R

2 ≤ |x| ≤ R

for large k ∈ N. Letting f̃k(r) := fk(x) with r = |x| ≥ 0, we get

d

dr
f̃k(r) =

⎧⎪⎨⎪⎩
0 if r < 1

k ,

−γ−1
p r−1(log R

r )
γ−1
p −1 if 1

k < r < R
2 ,

− 2
R (log 2)

γ−1
p if R

2 < r < R.

Denoting by |σ| the Q− 1 dimensional surface measure of the unit quasi-sphere, by
a direct calculation one has∫

B(0,R)

|x|p−Q

∣∣∣∣log R

|x|

∣∣∣∣p−γ

|Rfk(x)|p dx = |σ|
∫ R

0

rp−1

∣∣∣∣log R

r

∣∣∣∣p−γ ∣∣∣∣ ddr f̃k(r)
∣∣∣∣p dr

= |σ|
(
γ − 1

p

)p ∫ R
2

1
k

r−1

(
log

R

r

)−1

dr

+ |σ|(log 2)γ−1

(
2

R

)p ∫ R

R
2

rp−1

(
log

R

r

)p−γ

dr

(5.5) = |σ|
(
γ − 1

p

)p

((log(log kR))− log(log 2)) + Cγ,p,

where

Cγ,p := 2p(log 2)γ−1|σ|
∫ log 2

0

sp−γe−psds.

Since p− γ + 1 > 0, we get Cγ,q < ∞. On the other hand, we see∫
B(0,R)

|fk(x)|p

|x|Q
∣∣∣log R

|x|

∣∣∣γ dx = |σ|
∫ R

0

|f̃k(r)|p

r
∣∣log R

r

∣∣γ dr
= |σ|(log(kR))γ−1

∫ 1
k

0

r−1

(
log

R

r

)−γ

dr + |σ|
∫ R

2

1
k

r−1

(
log

R

r

)−1

dr

+|σ|(log 2)γ−1

(
2

R

)p ∫ R

R
2

r−1(R− r)p
(
log

R

r

)−γ

dr

(5.6) =
|σ|

γ − 1
+ |σ|(log(log(kR))− log(log(2))) + CR,γ,p,

where

CR,γ,p := (log 2)γ−1

(
2

R

)p

|σ|
∫ R

R
2

r−1(R− r)p
(
log

R

r

)−γ

dr.
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The inequality log R
r ≥ R−r

R for all r ≤ R and the assumption p − γ > −1 imply
CR,γ,p < ∞. Then, by (5.5) and (5.6), we have(∫

B(0,R)

|x|p−Q

∣∣∣∣log R

|x|

∣∣∣∣p−γ

|Rfk(x)|p dx
)

×

⎛⎝∫
B(0,R)

|fk(x)|p

|x|Q
∣∣∣log R

|x|

∣∣∣γ dx
⎞⎠−1

→
(
γ − 1

p

)p

as k → ∞, which implies that the constant p
γ−1 in (5.4) is optimal. �

Corollary 5.2 (Uncertainty type principle on G). Let 1 < p < ∞ and q > 1 be
such that 1

p + 1
q = 1

2 . Let 1 < γ < ∞ and max{1, γ − 1} < p < ∞. Then for any

R > 0 and f ∈ C∞
0 (G\{0}) we have

(5.7)

∥∥∥∥∥∥∥∥
Rf

|x|
Q−p

p

(
log R

|x|

) γ−p
p

∥∥∥∥∥∥∥∥
Lp(G)

‖f‖Lq(G) ≥
γ − 1

p

∥∥∥∥∥∥∥
f(f − fR)

|x|
Q
p

(
log R

|x|

) γ
p

∥∥∥∥∥∥∥
L2(G)

.

Moreover,

(5.8)

∥∥∥∥∥∥∥∥
Rf

|x|
Q−p

p

(
log R

|x|

) γ−p
p

∥∥∥∥∥∥∥∥
Lp(G)

∥∥∥∥∥∥∥
f − fR

|x|
Q

p′
(
log R

|x|

)2− γ
p

∥∥∥∥∥∥∥
Lp′ (G)

≥ γ − 1

p

∥∥∥∥∥∥ f − fR

|x|Q2 log R
|x|

∥∥∥∥∥∥
2

L2(G)

holds for 1
p + 1

p′ = 1.

Proof of Corollary 5.2. By (5.1), we have∥∥∥∥∥∥∥∥
Rf

|x|
Q−p

p

(
log R

|x|

) γ−p
p

∥∥∥∥∥∥∥∥
Lp(G)

‖f‖Lq(G) ≥
γ − 1

p

∥∥∥∥∥∥∥
f − fR

|x|
Q
p

(
log R

|x|

) γ
p

∥∥∥∥∥∥∥
Lp(G)

‖f‖Lq(G)

=
γ − 1

p

⎛⎜⎜⎝∫
G

∣∣∣∣∣∣∣
f(x)− fR(x)

|x|
Q
p

(
log R

|x|

) γ
p

∣∣∣∣∣∣∣
2 p

2

dx

⎞⎟⎟⎠
1
2

2
p (∫

G

|f(x)|2
q
2 dx

) 1
2

2
q

,

and using the Hölder inequality, we obtain∥∥∥∥∥|x| p−Q
p

(
log

R

|x|

) p−γ
p

Rf

∥∥∥∥∥
Lp(G)

‖f‖Lq(G)

≥ γ − 1

p

⎛⎜⎝∫
G

∣∣∣∣∣∣∣
f(x)(f(x)− fR(x))

|x|
Q
p

(
log R

|x|

) γ
p

∣∣∣∣∣∣∣
2

dx

⎞⎟⎠
1
2

=
γ − 1

p

∥∥∥∥∥∥∥
f(f − fR)

|x|
Q
p

(
log R

|x|

) γ
p

∥∥∥∥∥∥∥
L2(G)

.
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Similarly, one can prove (5.8). �

Remark 5.3. When γ = p, Theorem 5.1 gives [RS16, Theorem 3.1]:

(5.9)

∥∥∥∥∥∥ f − fR

|x|
Q
p log R

|x|

∥∥∥∥∥∥
Lp(G)

≤ p

p− 1

∥∥∥|x| p−Q
p Rf

∥∥∥
Lp(G)

, 1 < p < ∞,

for all R > 0.

6. Critical and subcritical Hardy inequalities

In this section, we study the relation between the critical and the subcritical
Hardy inequalities on homogeneous groups.

Proposition 6.1. Let G be a homogeneous group of homogeneous dimension Q ≥
m + 1 ≥ 3 with m ∈ N. Let | · | be a homogeneous quasi-norm. Then for any
nonnegative radial function g ∈ C1

0 (B
m(0, R)\{0}), there exists a nonnegative radial

function f ∈ C1
0 (B

Q(0, 1)\{0}) such that

(6.1)

∫
BQ(0,1)

|Rf |mdx−
(
Q−m

m

)m ∫
BQ(0,1)

|f |m
|x|m dx

=
|σ|
|σ̃|

(
Q−m

m− 1

)m−1
⎛⎝∫

Bm(0,R)

|Rg|mdz−
(
m− 1

m

)m∫
Bm(0,R)

|g|m

|z|m
(
log Re

|z|

)m dz

⎞⎠

holds true, where R is defined in (2.4), |σ| and |σ̃| are Q−1 and m−1 dimensional
surface measure of the unit quasi-sphere, respectively.

Proof of Proposition 6.1. Let r = |x|, x ∈ G and s = |z|, z ∈ G̃, where G̃ is a
homogeneous group of homogeneous dimension m. Let us define a radial func-
tion f = f(x) ∈ C1

0 (B
Q(0, 1)\{0}) for a nonnegative radial function g = g(z) ∈

C1
0 (B

m(0, R)\{0}):

(6.2) f(r) = g(s(r)),

where s(r) = R exp(1− r−
Q−m
m−1 ), that is,

r−
Q−m
m−1 = log

Re

s
, s′(r) =

Q−m

m− 1
r−

Q−m
m−1 −1s(r).
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Here we see that s′(r) > 0 for r ∈ [0, 1] and s(0) = 0, s(1) = R. Since g(s) ≡ 0
near s = R, we also note that f ≡ 0 near r = 1. Then a direct calculation shows∫

BQ(0,1)

|Rf |mdx−
(
Q−m

m

)m ∫
BQ(0,1)

|f |m
|x|m dx

= |σ|
∫ 1

0

|f ′(r)|mrQ−1dr −
(
Q−m

m

)m

|σ|
∫ 1

0

fm(r)rQ−m−1dr

= |σ|
∫ R

0

|g′(s)s′(r(s))|mrQ−1(s)
ds

s′(r(s))

−
(
Q−m

m

)m

|σ|
∫ R

0

gm(s)rQ−m−1(s)
ds

s′(r(s))

= |σ|
(
Q−m

m− 1

)m−1 ∫ R

0

|g′(s)|msm−1ds

−
(
Q−m

m

)m
m− 1

Q−m
|σ|
∫ R

0

gm(s)

s
(
log Re

s

)m ds

=
|σ|
|σ̃|

(
Q−m

m− 1

)m−1

×

⎛⎝∫
Bm(0,R)

|Rg|mdz −
(
m− 1

m

)m ∫
Bm(0,R)

|g|m

|z|m
(
log Re

|z|

)m dz

⎞⎠ ,

yielding (6.1). �

7. Extended Caffarelli-Kohn-Nirenberg inequalities

In this section, we introduce new Caffarelli-Kohn-Nirenberg type inequalities in
the Euclidean setting of Rn as well as on homogeneous groups. For the convenience
of the reader we recall Theorem 1.4 and then also explain how it implies Theorem
1.2:

Theorem 7.1. Let G be a homogeneous group of homogeneous dimension Q. Let
| · | be a homogeneous quasi-norm. Let 1 < p, q < ∞, 0 < r < ∞ with p + q ≥ r

and δ ∈ [0, 1] ∩
[
r−q
r , p

r

]
and a, b, c ∈ R. Assume that δr

p + (1−δ)r
q = 1 and

c = δ(a− 1) + b(1− δ). Then we have the following Caffarelli-Kohn-Nirenberg type
inequalities for all f ∈ C∞

0 (G\{0}):
If Q 	= p(1− a), then

(7.1) ‖|x|cf‖Lr(G) ≤
∣∣∣∣ p

Q− p(1− a)

∣∣∣∣δ ‖|x|aRf‖δLp(G)

∥∥|x|bf∥∥1−δ

Lq(G)
.

If Q = p(1− a), then

(7.2) ‖|x|cf‖Lr(G) ≤ pδ ‖|x|a log |x|Rf‖δLp(G)

∥∥|x|bf∥∥1−δ

Lq(G)
.

The constant in the inequality (7.1) is sharp for p = q with a− b = 1 or p 	= q with
p(1− a) + bq 	= 0. Moreover, the constants in (7.1) and (7.2) are sharp for δ = 0
or δ = 1. Here R := d

d|x| is the radial derivative.
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Remark 7.2. Our conditions δr
p + (1−δ)r

q = 1 and c = δ(a− 1) + b(1− δ) imply the

condition (1.3) of Theorem 1.1, and in our case a− d = 1.

Remark 7.3. In the Abelian caseG = (Rn,+) andQ = n, (7.2) implies a new type of
Caffarelli-Kohn-Nirenberg inequality for any quasi-norm on Rn: Let 1 < p, q < ∞,
0 < r < ∞ with p + q ≥ r and δ ∈ [0, 1] ∩

[
r−q
r , p

r

]
and a, b, c ∈ R. Assume that

δr
p + (1−δ)r

q = 1, n = p(1 − a), and c = δ(a − 1) + b(1 − δ). Then we have the

Caffarelli-Kohn-Nirenberg type inequality for any function f ∈ C∞
0 (Rn\{0}) and

for any homogeneous quasi-norm | · |:

(7.3) ‖|x|cf‖Lr(Rn) ≤ pδ
∥∥∥∥|x|a log |x|( df

d|x|

)∥∥∥∥δ
Lp(Rn)

∥∥|x|bf∥∥1−δ

Lq(Rn)
.

By the Schwarz inequality with the standard Euclidean distance given by |x| =√
x2
1 + x2

2 + ...+ x2
n, we obtain the Euclidean form of the Caffarelli-Kohn-Nirenberg

type inequality:

(7.4) ‖|x|cf‖Lr(Rn) ≤ pδ ‖|x|a log |x|∇f‖δLp(Rn)

∥∥|x|bf∥∥1−δ

Lq(Rn)
,

where ∇ is the standard gradient in Rn. Similarly, we write the inequality (7.1)
in the Abelian case: Let 1 < p, q < ∞, 0 < r < ∞ with p + q ≥ r and δ ∈
[0, 1] ∩

[
r−q
r , p

r

]
and a, b, c ∈ R. Assume that δr

p + (1−δ)r
q = 1, n 	= p(1 − a), and

c = δ(a − 1) + b(1 − δ). Then we have Caffarelli-Kohn-Nirenberg type inequality
for any function f ∈ C∞

0 (Rn\{0}) and for any homogeneous quasi-norm | · |:

(7.5) ‖|x|cf‖Lr(Rn) ≤
∣∣∣∣ p

n− p(1− a)

∣∣∣∣δ ∥∥∥∥|x|a( df

d|x|

)∥∥∥∥δ
Lp(Rn)

∥∥|x|bf∥∥1−δ

Lq(Rn)
.

Then, using the Schwarz inequality with the standard Euclidean distance given by
|x| =

√
x2
1 + x2

2 + ...+ x2
n, we obtain the Euclidean form of the Caffarelli-Kohn-

Nirenberg type inequality:

(7.6) ‖|x|cf‖Lr(Rn) ≤
∣∣∣∣ p

n− p(1− a)

∣∣∣∣δ ‖|x|a∇f‖δLp(Rn)

∥∥|x|bf∥∥1−δ

Lq(Rn)
.

Note that if

(7.7)
1

p
+

a

n
> 0,

1

q
+

b

n
> 0, and

1

r
+

c

n
> 0

hold; then the inequality (7.6) is contained in the family of Caffarelli-Kohn-Niren-
berg inequalities [CKN84]. In this case, if we require p = q with a− b = 1 or p 	= q
with p(1−a)+ bq 	= 0, then we obtain the inequality (7.6) with the sharp constant.

Moreover, the constants
∣∣∣ p
n−p(1−a)

∣∣∣δ and pδ are sharp for δ = 0 or δ = 1. If (7.7)

is not satisfied, then the inequality (7.6) is not covered by Theorem 1.1 because
condition (1.1) fails. So we obtain a new range of the Caffarelli-Kohn-Nirenberg
inequality [CKN84].

Thus, the inequalities (7.4) and (7.6) are new already in the Abelian case and,
moreover, (7.1) and (7.2) hold for any choice of homogeneous quasi-norm.

The proof of Theorem 7.1 will be based on the following family of weighted
Hardy inequalities that was obtained in [RSY16, Theorem 3.4], where E = |x|R is
the Euler operator.
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Theorem 7.4 ([RSY16]). Let G be a homogeneous group of homogeneous dimen-
sion Q and let α ∈ R. Then for all complex-valued functions f ∈ C∞

0 (G\{0}),
1 < p < ∞, and any homogeneous quasi-norm | · | on G for αp 	= Q we have

(7.8)

∥∥∥∥ f

|x|α

∥∥∥∥
Lp(G)

≤
∣∣∣∣ p

Q− αp

∣∣∣∣ ∥∥∥∥ 1

|x|αEf
∥∥∥∥
Lp(G)

.

If αp 	= Q, then the constant
∣∣∣ p
Q−αp

∣∣∣ is sharp. For αp = Q we have

(7.9)

∥∥∥∥∥ f

|x|
Q
p

∥∥∥∥∥
Lp(G)

≤ p

∥∥∥∥∥ log |x||x|
Q
p

Ef

∥∥∥∥∥
Lp(G)

,

where the constant p is sharp.

We briefly recall its proof for the convenience of the reader but also since it will
be useful in our argument.

Proof of Theorem 7.4. Using integration by parts, for αp 	= Q we obtain∫
G

|f(x)|p
|x|αp dx =

∫ ∞

0

∫
S

|f(ry)|prQ−1−αpdσ(y)dr

= − p

Q− αp

∫ ∞

0

rQ−αpRe

∫
S

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

≤
∣∣∣∣ p

Q− αp

∣∣∣∣ ∫
G

|Ef(x)||f(x)|p−1

|x|αp dx =

∣∣∣∣ p

Q− αp

∣∣∣∣ ∫
G

|Ef(x)||f(x)|p−1

|x|α+α(p−1)
dx.

By Hölder’s inequality, it follows that∫
G

|f(x)|p
|x|αp dx ≤

∣∣∣∣ p

Q− αp

∣∣∣∣ (∫
G

|Ef(x)|p
|x|αp dx

) 1
p
(∫

G

|f(x)|p
|x|αp dx

) p−1
p

,

which gives (7.8).
Now we show the sharpness of the constant. We need to check the equality

condition in the above Hölder’s inequality. Let us consider the function

(7.10) g(x) =
1

|x|C ,

where C ∈ R, C 	= 0 and αp 	= Q. Then by a direct calculation we obtain

(7.11)

∣∣∣∣ 1C
∣∣∣∣p( |Eg(x)|

|x|α

)p

=

(
|g(x)|p−1

|x|α(p−1)

) p
p−1

,

which satisfies the equality condition in Hölder’s inequality. This gives the sharpness

of the constant
∣∣∣ p
Q−αp

∣∣∣ in (7.8).

Now let us prove (7.9). Using integration by parts, we have∫
G

|f(x)|p
|x|Q dx =

∫ ∞

0

∫
S

|f(ry)|prQ−1−Qdσ(y)dr

= −p

∫ ∞

0

log rRe

∫
S

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

≤ p

∫
G

|Ef(x)||f(x)|p−1

|x|Q | log |x||dx = p

∫
G

|Ef(x)| log |x|||
|x|

Q
p

|f(x)|p−1

|x|
Q(p−1)

p

dx.
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By Hölder’s inequality, it follows that∫
G

|f(x)|p
|x|Q dx ≤ p

(∫
G

|Ef(x)|p| log |x||p
|x|Q dx

) 1
p
(∫

G

|f(x)|p
|x|Q dx

) p−1
p

,

which gives (7.9).
Now we show the sharpness of the constant. We need to check the equality

condition in the above Hölder’s inequality. Let us consider the function

h(x) = (log |x|)C ,

where C ∈ R and C 	= 0. Then by a direct calculation we obtain

(7.12)

∣∣∣∣ 1C
∣∣∣∣p
(
|Eh(x)|| log |x||

|x|
Q
p

)p

=

(
|h(x)|p−1

|x|
Q(p−1)

p

) p
p−1

,

which satisfies the equality condition in Hölder’s inequality. This gives the sharpness
of the constant p in (7.9). �

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Case δ = 0. In this case, we have q = r and b = c by
δr
p + (1−δ)r

q = 1 and c = δ(a − 1) + b(1 − δ), respectively. Then, the inequalities

(7.1) and (7.2) are equivalent to the trivial estimate

‖|x|bf‖Lq(G) ≤
∥∥|x|bf∥∥

Lq(G)
.

Case δ = 1. Notice that in this case, p = r and a − 1 = c. By Theorem 7.4, we
have for Q+ pc = Q+ p(a− 1) 	= 0 the inequality

‖|x|cf‖Lr(G) ≤
∣∣∣∣ p

Q+ pc

∣∣∣∣ ‖|x|cEf‖Lr(G),

where E = |x|R is the Euler operator. Taking this into account, we get

‖|x|cf‖Lr(G) ≤
∣∣∣∣ p

Q+ pc

∣∣∣∣ ‖|x|c+1Rf‖Lr(G)

=

∣∣∣∣ p

Q− p(1− a)

∣∣∣∣ ‖|x|aRf‖Lp(G),

which implies (7.1). For Q+ pc = Q+ p(a− 1) = 0 by Theorem 7.4 we obtain

‖|x|cf‖Lr(G) ≤ p‖|x|c log |x|Ef‖Lr(G) = p‖|x|c+1 log |x|Rf‖Lr(G)

= p‖|x|a log |x|Rf‖Lp(G)

which gives (7.2). In this case, the constants in (7.1) and (7.2) are sharp, since the
constants in Theorem 7.4 are sharp.

Case δ ∈ (0, 1) ∩
[
r−q
r , p

r

]
. Taking into account c = δ(a − 1) + b(1 − δ), a direct

calculation gives

‖|x|cf‖Lr(G) =

(∫
G

|x|cr|f(x)|rdx
) 1

r

=

(∫
G

|f(x)|δr
|x|δr(1−a)

· |f(x)|
(1−δ)r

|x|−br(1−δ)
dx

) 1
r

.
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Since we have δ ∈ (0, 1)∩
[
r−q
r , p

r

]
and p+ q ≥ r, then by using Hölder’s inequality

for δr
p + (1−δ)r

q = 1, we obtain

‖|x|cf‖Lr(G) ≤
(∫

G

|f(x)|p
|x|p(1−a)

dx

) δ
p
(∫

G

|f(x)|q
|x|−bq

dx

) 1−δ
q

(7.13) =

∥∥∥∥ f

|x|1−a

∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x|−b

∥∥∥∥1−δ

Lq(G)

.

Here we note that when p = q and a− b = 1 Hölder’s equality condition is held for
any function. We also note that in the case p 	= q the function

(7.14) h(x) = |x|
1

(p−q)
(p(1−a)+bq)

satisfies Hölder’s equality condition:

|h|p
|x|p(1−a)

=
|h|q
|x|−bq

.

If Q 	= p(1− a), then by Theorem 7.4, we have∥∥∥∥ f

|x|1−a

∥∥∥∥δ
Lp(G)

≤
∣∣∣∣ p

Q− p(1− a)

∣∣∣∣δ ∥∥∥∥ Ef

|x|1−a

∥∥∥∥δ
Lp(G)

(7.15) =

∣∣∣∣ p

Q− p(1− a)

∣∣∣∣δ ∥∥∥∥ Rf

|x|−a

∥∥∥∥δ
Lp(G)

, 1 < p < ∞.

Putting this in (7.13), one has

‖|x|cf‖Lr(G) ≤
∣∣∣∣ p

Q− p(1− a)

∣∣∣∣δ ∥∥∥∥ Rf

|x|−a

∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x|−b

∥∥∥∥1−δ

Lq(G)

.

We note that in the case p = q, a − b = 1 Hölder’s equality condition of the
inequalities (7.13) and (7.15) holds true for g(x) in (7.10).Moreover, in the case
p 	= q, p(1 − a) + bq 	= 0 Hölder’s equality condition of the inequalities (7.13) and
(7.15) holds true for h(x) in (7.14). Therefore, the constant in (7.1) is sharp when
p = q, a− b = 1 or p 	= q, p(1− a) + bq 	= 0.

Now let us consider the case Q = p(1− a). Using Theorem 7.4, one has∥∥∥∥ f

|x|1−a

∥∥∥∥δ
Lp(G)

≤ pδ
∥∥∥∥ log |x||x|1−a

Ef

∥∥∥∥δ
Lp(G)

, 1 < p < ∞.

Then, putting this in (7.13), we obtain

‖|x|cf‖Lr(G) ≤ pδ
∥∥∥∥ log |x||x|1−a

Ef

∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x|−b

∥∥∥∥1−δ

Lq(G)

= pδ
∥∥∥∥ log |x||x|−a

Rf

∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x|−b

∥∥∥∥1−δ

Lq(G)

.

�
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8. Lp
-Hardy inequalities with superweights

We now discuss versions of Hardy inequalities with more general weights, that
we call superweights. The following is the main result of this section.

Theorem 8.1. Let G be a homogeneous group of homogeneous dimension Q and
let | · | be a homogeneous quasi-norm on G. Let a, b > 0 and 1 < p < ∞, Q ≥ 1.

(i) If αβ > 0 and pm ≤ Q− p, then for all f ∈ C∞
0 (G\{0}), we have

(8.1)
Q− pm− p

p

∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+1
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m Rf

∥∥∥∥∥
Lp(G)

.

If Q 	= pm+ p, then the constant Q−pm−p
p is sharp.

(ii) If αβ < 0 and pm− αβ ≤ Q− p, then for all f ∈ C∞
0 (G\{0}), we have

(8.2)
Q− pm+ αβ − p

p

∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+1
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m Rf

∥∥∥∥∥
Lp(G)

.

If Q 	= pm+ p− αβ, then the constant Q−pm+αβ−p
p is sharp.

Proof of Theorem 8.1. We may assume that Q 	= pm+p since for Q = pm+p there
is nothing to prove. Introducing polar coordinates (r, y) = (|x|, x

|x| ) ∈ (0,∞) × S

on G, where S is the unit quasi-sphere

(8.3) S := {x ∈ G : |x| = 1},

and using the polar decomposition on homogeneous groups (see, for example, [FS82]
or [FR16]), we have

(8.4)

∫
G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx =

∫ ∞

0

∫
S

(a+ brα)β

rpm+p
|f(ry)|prQ−1dσ(y)dr.

(i) Since a, b > 0, αβ > 0 and m < Q−p
p we obtain∫

G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx

≤
∫ ∞

0

∫
S

(a+ brα)βrQ−1−pm−p

(
αβbrα

(a+ brα)(Q− pm− p)
+ 1

)
|f(ry)|pdσ(y)dr

=

∫ ∞

0

∫
S

d

dr

(
(a+ brα)βrQ−pm−p

Q− pm− p

)
|f(ry)|pdσ(y)dr

= − p

Q− pm− p

∫ ∞

0

(a+ brα)βrQ−pm−pRe

∫
S

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

≤
∣∣∣∣ p

Q− pm− p

∣∣∣∣ ∫
G

(a+ b|x|α)β|Rf(x)||f(x)|p−1

|x|pm+p−1
dx

=
p

Q− pm− p

∫
G

(a+ b|x|α)
β(p−1)

p |f(x)|p−1

|x|(m+1)(p−1)

(a+ b|x|α)
β
p

|x|m |Rf(x)|dx.
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By Hölder’s inequality, it follows that

∫
G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx

≤ p

Q− pm− p

(∫
G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx
) p−1

p
(∫

G

(a+ b|x|α)β
|x|pm |Rf(x)|pdx

) 1
p

,

which gives (8.1).
Now we show the sharpness of the constant. We need to check the equality

condition in the above Hölder’s inequality. Let us consider the function

g(x) = |x|C ,

where C ∈ R, C 	= 0 and Q 	= pm+ p. Then by a direct calculation we obtain

(8.5)

∣∣∣∣ 1C
∣∣∣∣p
(
(a+ b|x|α)

β
p |Rg(x)|

|x|m

)p

=

(
(a+ b|x|α)

β(p−1)
p |g(x)|p−1

|x|(m+1)(p−1)

) p
p−1

,

which satisfies the equality condition in Hölder’s inequality. This gives the sharpness
of the constant Q−pm−p

p in (8.1).

Let us now prove Part (ii). Here we also assume that Q 	= pm + p − αβ since
for Q = pm+ p− αβ there is nothing to prove. Using the polar decomposition, we
have the equality (8.4). Since αβ < 0 and pm− αβ < Q− p we obtain

∫
G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx

≤
∫ ∞

0

∫
S

(a+ brα)βrQ−1−pm−p

(
brα

a+ brα
+

a

a+ brα

· Q− pm− p

Q− pm− p+ αβ

)
|f(ry)|pdσ(y)dr

=

∫ ∞

0

∫
S

(a+ brα)βrQ−1−pm−p

Q− pm− p+ αβ

(
αβbrα

a+ brα
+Q− pm− p

)
|f(ry)|pdσ(y)dr

=

∫ ∞

0

∫
S

d

dr

(
(a+ brα)βrQ−pm−p

Q− pm− p+ αβ

)
|f(ry)|pdσ(y)dr

= − p

Q− pm− p+ αβ

∫ ∞

0

(a+ brα)βrQ−pm−pRe

∫
S

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

≤
∣∣∣∣ p

Q− pm− p+ αβ

∣∣∣∣ ∫
G

(a+ b|x|α)β|Rf(x)||f(x)|p−1

|x|pm+p−1
dx

=
p

Q− pm− p+ αβ

∫
G

(a+ b|x|α)
β(p−1)

p |f(x)|p−1

|x|(m+1)(p−1)

(a+ b|x|α)
β
p

|x|m |Rf(x)|dx.
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By Hölder’s inequality, it follows that∫
G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx

≤ p

Q− pm− p+ αβ

(∫
G

(a+ b|x|α)β
|x|pm+p

|f(x)|pdx
) p−1

p

×
(∫

G

(a+ b|x|α)β
|x|pm |Rf(x)|pdx

) 1
p

,

which gives (8.2).
Now we show the sharpness of the constant. We need to check the equality

condition in the above Hölder’s inequality. Let us consider the function

h(x) = |x|C ,
where C ∈ R, C 	= 0 and Q 	= pm+ p−αβ. Then by a direct calculation we obtain

(8.6)

∣∣∣∣ 1C
∣∣∣∣p
(
(a+ b|x|α)

β
p |Rh(x)|

|x|m

)p

=

(
(a+ b|x|α)

β(p−1)
p |h(x)|p−1

|x|(m+1)(p−1)

) p
p−1

,

which satisfies the equality condition in Hölder’s inequality. This gives the sharpness
of the constant Q−pm−p+αβ

p in (8.2). �

9. Higher order inequalities

In this section we present higher order Lp-Hardy type inequalities with super-
weights by iterating the obtained inequalities (8.1) and (8.2).

Theorem 9.1. Let G be a homogeneous group of homogeneous dimension Q and let
| · | be a homogeneous quasi-norm on G. Let a, b > 0 and 1 < p < ∞, Q ≥ 1, k ∈ N.

(i) If αβ > 0 and pm ≤ Q− p, then for all f ∈ C∞
0 (G\{0}), we have

(9.1)⎡⎣k−1∏
j=0

(
Q− p

p
− (m+ j)

)⎤⎦∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+k
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m Rkf

∥∥∥∥∥
Lp(G)

.

(ii) If αβ < 0 and pm− αβ ≤ Q− p, then for all f ∈ C∞
0 (G\{0}), we have

(9.2)⎡⎣k−1∏
j=0

(
Q− p+ αβ

p
−(m+ j)

)⎤⎦∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+k
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m Rkf

∥∥∥∥∥
Lp(G)

.

In the case of k = 1 (9.1) gives inequality (8.1) and (9.2) gives inequality (8.2).

Proof of Theorem 9.1. We can iterate (8.1), that is, we have

(9.3)
Q− pm− p

p

∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+1
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m Rf

∥∥∥∥∥
Lp(G)

.

In (9.3) replacing f by Rf we obtain

(9.4)
Q− pm− p

p

∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+1
Rf

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m R2f

∥∥∥∥∥
Lp(G)

.
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On the other hand, replacing m by m+ 1, (9.3) gives

(9.5)
Q− p(m+ 1)− p

p

∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+2
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m+1
Rf

∥∥∥∥∥
Lp(G)

.

Combining this with (9.4) we obtain

Q− pm− p

p
· Q− p(m+ 1)− p

p

∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+2
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m R2f

∥∥∥∥∥
Lp(G)

.

This iteration process gives

k−1∏
j=0

(
Q− p

p
− (m+ j)

)∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+k
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m Rkf

∥∥∥∥∥
Lp(G)

.

Similarly, we have for αβ < 0, pm− αβ ≤ Q− 2 and f ∈ C∞
0 (G\{0})

k−1∏
j=0

(
Q− p+ αβ

p
− (m+ j)

)∥∥∥∥∥ (a+ b|x|α)
β
p

|x|m+k
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ (a+ b|x|α)

β
p

|x|m Rkf

∥∥∥∥∥
Lp(G)

,

completing the proof. �
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