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1. Introduction

The central idea of solving boundary value problems for differential equations in a do-
main requires the knowledge of the corresponding fundamental solutions, and this idea 
has a long history dating back to the works of mathematicians such as Gauss [21,22]
and Green [27]. Nowadays the appearing boundary layer operators and elements of the 
potential theory serve as major tools for the analysis and construction of solutions to 
boundary value problems. There is vast literature concerning modern theory of boundary 
layer operators and potential theory as well as their important applications. In addition, 
in last decades many interesting and promising works combining the group theory with 
the analysis of partial differential equations have been presented by many authors. For ex-
ample, nilpotent Lie groups play an important role in deriving sharp subelliptic estimates 
for differential operators on manifolds, starting from the seminal paper by Rothschild 
and Stein [37]. Moreover, in recent decades, there is a rapidly growing interest for sub-
Laplacians on Carnot groups (and also for operators on graded Lie groups), because 
these operators appear not only in theoretical settings (see e.g. Gromov [28] or Danielli, 
Garofalo and Nhieu [9] for general expositions from different points of view), but also 
in application settings such as mathematical models of crystal material and human vi-
sion (see, for example, [6] and [7]). Moreover, sub-Laplacians on homogeneous Carnot 
groups serve as approximations for general Hörmander’s sums of squares of vector fields 
on manifolds in view of the Rothschild–Stein lifting theorem [37] (see also [16,38]).

In this paper we discuss elements of the potential theory and the theory of boundary 
layer operators on homogeneous Carnot groups. As we are not relying on the use of the 
control distance but on the fundamental solutions everything remains exactly the same 
(without any changes) if we replace the words ‘homogeneous Carnot group’ by ‘stratified 
Lie group’. However, as a larger part of the current literature seems to use the former 
terminology we also adopt it for this paper.

From a different point of view than ours similar problems have been considered by 
Folland and Stein [17], Geller [24], Jerison [29], Romero [36], Capogna, Garofalo and
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Nhieu [19], Bonfiglioli, Lanconelli and Uguzzoni [4] and a number of other people. A gen-
eral setting of degenerate elliptic operators was considered by Bony [5].

One of the applications of the analysis of our paper is that we can use elements of the 
developed potential theory to construct new well-posed (solvable in the classical sense) 
boundary value problems in addition to using it in solving the known problems such 
as for Dirichlet and Neumann sub-Laplacians. Thus, we rely on the developed potential 
theory to derive trace formulae for the Newton potential of the sub-Laplacian to piecewise 
smooth surfaces and use these conditions to construct the analogue of Kac’s boundary 
value problem in the setting of homogeneous Carnot groups as well as Kac’s “principle 
of not feeling the boundary” for the sub-Laplacian. As in the classical case, the Kac 
boundary value problem also serves as an example of a boundary value problem which 
is explicitly solvable in any domain.

For example, for a bounded domain of the Euclidean space Ω ⊂ R
d, d ≥ 2, it is very 

well known that the solution to the Laplacian equation in R
d,

Δu(x) = f(x), x ∈ Ω, (1.1)

is given by the Green formula (or the Newton potential formula)

u(x) =
∫
Ω

εd(x− y)f(y)dy, x ∈ Ω, (1.2)

for suitable functions f supported in Ω. Here εd is the fundamental solution to Δ in Rd

given by

εd(x− y) =
{ 1

(2−d)sd
1

|x−y|d−2 , d ≥ 3,
1
2π log |x− y|, d = 2,

(1.3)

where sd = 2π
d
2

Γ( d
2 ) is the surface area of the unit sphere in Rd. An interesting question 

having several important applications is what boundary condition can be put on u on the 
(piecewise smooth) boundary ∂Ω so that equation (1.1) complemented by this boundary 
condition would have the solution in Ω still given by the same formula (1.2), with the 
same kernel εd given by (1.3). This amounts to finding the trace of the Newton potential 
(1.2) to the boundary surface ∂Ω.

It turns out that the answer to these questions is the integral boundary condition

−1
2u(x) +

∫
∂Ω

∂εd(x− y)
∂ny

u(y)dSy −
∫
∂Ω

εd(x− y)∂u(y)
∂ny

dSy = 0, x ∈ ∂Ω, (1.4)

where ∂
∂ny

denotes the outer normal derivative at a point y on ∂Ω. Thus, the trace of 
the Newton potential (1.2) on the boundary surface ∂Ω is determined by (1.4).
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The boundary condition (1.4) appeared in M. Kac’s work [30] where he called it 
and the subsequent spectral analysis “the principle of not feeling the boundary”. This 
was further expanded in Kac’s book [31] with several further applications to the spectral 
theory and the asymptotics of the Weyl’s eigenvalue counting function. Spectral problems 
related to the boundary value problem (1.1), (1.4) were considered in the papers [32,33,
40] and [39]. In general, the boundary value problem (1.1), (1.4) has various interesting 
properties and applications (see, for example, Kac [30,31] and Saito [45]). The boundary 
value problem (1.1), (1.4) can also be generalised for higher powers of the Laplacian, see 
[33,34].

The analogues of the problem (1.1), (1.4) for the Kohn Laplacian and its powers on 
the Heisenberg group have been recently investigated by the authors in [41], see also [13]
for the more general pseudo-differential analysis in the setting of the Heisenberg group.

One of the aims of this paper is to construct the analogues of boundary layer potentials 
for the sub-Laplacian on homogeneous Carnot groups and study continuity results for 
them, as well as to obtain an analogue of the boundary value problem (1.1), (1.4) on the 
homogeneous Carnot groups.

For the convenience of the reader let us now briefly recapture the main results of 
this paper. Let G be a homogeneous Carnot group of homogeneous dimension Q ≥ 3
with Haar measure dν, and let X1, . . . , XN1 be left-invariant vector fields giving the first 
stratum, with the sub-Laplacian

L =
N1∑
k=1

X2
k .

For precise definitions we refer to Section 2. Throughout this paper Ω ⊂ G will be an 
admissible domain:

Definition 1.1. We say that an open set Ω ⊂ G is an admissible domain if it is bounded 
and if its boundary ∂Ω is piecewise smooth and simple, that is, it has no self-intersections.

The condition for the boundary to be simple amounts to ∂Ω being orientable. Thus, 
in this paper:

• We establish in Proposition 3.1 the divergence formula (a version of the Stokes the-
orem) in the form

∫
Ω

N1∑
k=1

Xkfkdν =
∫
∂Ω

N1∑
k=1

〈fkXk, dν〉,

where the form 〈Xk, dν〉 is obtained from the natural pairing of dν (viewed as a form) 
with Xk, see (3.2)–(3.4) for the precise formula. We obtain the analogue of Green’s 
first formula: if v ∈ C1(Ω) 

⋂
C(Ω) and u ∈ C2(Ω) 

⋂
C1(Ω), then
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∫
Ω

(
(∇̃v)u + vLu

)
dν =

∫
∂Ω

v〈∇̃u, dν〉, (1.5)

where

∇̃u =
N1∑
k=1

(Xku)Xk,

see Proposition 3.2. Consequently, we apply it to give simple proofs of the exis-
tence and uniqueness for some boundary value problems of Dirichlet, von Neumann, 
mixed Dirichlet–Neumann, and Robin types for the sub-Laplacian, as well for the 
sub-Laplacian (stationary) Schrödinger operator, see Section 3. These formulations 
(except for the Dirichlet one) appear to be new. We also apply (1.5) to obtain a re-
fined “local” Hardy inequality in Section 7. The following analogue of Green’s second 
formula is also established: if u, v ∈ C2(Ω) 

⋂
C1(Ω), then∫

Ω

(uLv − vLu)dν =
∫
∂Ω

(u〈∇̃v, dν〉 − v〈∇̃u, dν〉), (1.6)

see Proposition 3.10. As a consequence we obtain several representation formulae for 
functions in Ω.
We note that up to here the obtained formulae can be also formulated in terms of the 
perimeter measure, see e.g. [19]. We outline a relation between these two integrations 
in Appendix A. However, the advantage of using the language of differential forms 
is in the possibility of making coordinate free formulations which will prove to be 
effective in the subsequent applications.

• We discuss the single layer potentials (for the sub-Laplacian L) in the form

Sju(x) =
∫
∂Ω

u(y)ε(x, y)〈Xj , dν(y)〉, j = 1, ..., N1,

where

ε(x, y) = ε(y, x) = ε(x−1y)

is the fundamental solution of the sub-Laplacian L on G,

Lε = δ,

see (3.1) for its formula. The advantage of this definition is that it becomes integrable 
over the whole boundary including also the characteristic points (in comparison, for 
example, to the one used by Jerison [29] which is not integrable over characteristic 
points). This becomes very useful for subsequent analysis. We show that if u ∈
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L∞(∂Ω) then Sju is continuous (Theorem 4.1). As the double layer potential we 
consider

Du(x) =
∫
∂Ω

u(y)〈∇̃ε(x, y), dν(y)〉,

where

∇̃ε =
N1∑
k=1

(Xkε)Xk,

and we establish its jump relations in Theorem 4.4. We use these potentials exten-
sively for further analysis.

• We establish trace formulae for the Newton potential operator

Nf(x) =
∫
G

ε(x, y)f(y)dν(y)

to arbitrary bounded piecewise smooth surfaces ∂Ω when suppf ⊂ Ω ⊂ G and f is 
in the Folland–Stein’s Hölder space. We then use this to introduce a version of Kac’s 
boundary value problem on homogeneous Carnot groups and Kac’s principle of “not 
feeling the boundary” for the sub-Laplacian L, see Section 5.

• We carry out the above analysis of traces and Kac’s problem also for poly-sub-
Laplacians Lm, see Section 6, for all integers m ≥ 1.

• In Section 7 we give another example of using the techniques from this paper, in 
particular of Green’s first formula, to obtain a “local” Hardy inequality on G. Namely, 
we show that for α ∈ R, α > 2 −Q and Q ≥ 3, we have

∫
Ω

dα|∇Gu|2 dν ≥
(
α + Q− 2

2

)2 ∫
Ω

dα
|∇Gd|2
d2 |u|2 dν

+ α + Q− 2
2(Q− 2)

∫
∂Ω

dα+Q−2|u|2〈∇̃d2−Q, dν〉,

for all u ∈ C1(Ω) 
⋂

C(Ω), where d is the L-gauge distance and

∇G = (X1, . . . , XN1).

If u = 0 on ∂Ω, the second (boundary) term vanishes, and the constant 
(

Q+α−2
2

)2
in 

the first term is known to be sharp. Since this last (boundary) term can be ≥ 0, this 
provides a refinement to the known Hardy inequality. Consequently, we also obtain 
refined versions of (local) uncertainty principles on G.
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For other types of the Hardy and other inequalities on Carnot groups as well as for 
a literature review on this subject we refer to [43], as well as to [42] for the setting 
of general homogeneous groups.

• We discuss how all the results can be extended to operators

LA =
N1∑

k,j=1

ak,jXkXj ,

where A = (ak,j)1≤k,j≤N1 is a positive-definite symmetric matrix, at least in the 
setting of free homogeneous Carnot groups; see Section 2.

In Section 2 we very briefly review the main concepts of homogeneous Carnot groups 
and fix the notation. In Section 3 we derive versions of Green’s first and second formu-
lae, and give applications to boundary value problems of different types. Boundary layer 
potentials for the sub-Laplacian on homogeneous Carnot groups are presented and anal-
ysed in Section 4. We derive trace formulae and give the analogues of Kac’s boundary 
value problem for the sub-Laplacian and higher powers of the sub-Laplacian in Section 5
and 6, respectively. In Section 7 we make a short discussion of a “local” Hardy inequality 
and a “local” uncertainty principle.

The authors would like to thank Nicola Garofalo and Valentino Magnani for enlight-
ening discussions.

2. Preliminaries

There are several equivalent definitions of homogeneous Carnot groups. We follow the 
definition in [4] (but see also e.g. [12,14] for the Lie algebra point of view):

Definition 2.1. A Lie group G = (RN , ◦) is called homogeneous Carnot group (or homo-
geneous stratified group) if it satisfies the following conditions:

(a) For some natural numbers N1 + ... + Nr = N the decomposition RN = R
N1 × ...

× R
Nr is valid, and for every λ > 0 the dilation δλ : RN → R

N given by

δλ(x) ≡ δλ(x(1), ..., x(r)) := (λx(1), ..., λrx(r))

is an automorphism of the group G. Here x(k) ∈ R
Nk for k = 1, ..., r.

(b) Let N1 be as in (a) and let X1, ..., XN1 be the left invariant vector fields on G
such that Xk(0) = ∂

∂xk
|0 for k = 1, ..., N1. Then

rank(Lie{X1, ..., XN1}) = N,

for every x ∈ R
N , i.e. the iterated commutators of X1, ..., XN1 span the Lie algebra of G.
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That is, we say that the triple G = (RN , ◦, δλ) is a homogeneous Carnot group. In 
Definition 2.1, r is called a step of G and the left invariant vector fields X1, ..., XN1

are called the (Jacobian) generators of G. We also note that a Lie group satisfying 
the condition (a) is called a homogeneous Lie group (modelled on RN but this is not 
restricting the generality). The number

Q =
r∑

k=1

kNk

is called the homogeneous dimension of G.
Throughout this paper we assume Q ≥ 3. This is not very restrictive since it effectively 

rules out only the spaces R and R2 where the fundamental solution assumes a different 
form and where most things are already known.

The second order differential operator

L =
N1∑
k=1

X2
k (2.1)

is called the (canonical) sub-Laplacian on G. In this paper we mainly consider the oper-
ator (2.1). The sub-Laplacian L is a left invariant homogeneous hypoelliptic differential 
operator and it is known that L is elliptic if and only if the step of G is equal to 1.

In general, many of our results can be extended to any second order hypoelliptic 
differential operators which are “equivalent” to the sub-Laplacian L. Let us very briefly 
discuss this matter in the spirit of [4].

Let A = (ak,j)1≤k,j≤N1 be a positive-definite symmetric matrix. Consider the following 
second order hypoelliptic differential operator based on the matrix A and the vector fields 
{X1, ..., XN1}, given by

LA =
N1∑

k,j=1

ak,jXkXj . (2.2)

For instance, in the Euclidean case (N1 = N), that is, for G = (RN , +), the constant 
coefficient second order operator of elliptic type

ΔA =
N∑

k,j=1

ak,j
∂2

∂xk∂xj
,

is transformed into

Δ =
N∑ ∂2

∂x2 ,

k=1 k
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under a linear change of coordinates in RN . Thus, the operator ΔA is “equivalent” to 
the operator Δ (in a new system of coordinates). Therefore, an essential question is 
whether this idea can be carried out for LA on the group G? In general, classical changes 
of basis fail to apply, that is, an additional assumption on the group G is needed in 
order to preserve the above idea. For example, the idea is preserved if G is a free Carnot 
group. Recall that the Carnot group G is called a free Carnot group if its Lie algebra 
is (isomorphic to) a free Lie algebra. For instance, the Heisenberg group H1 is a free 
Carnot group.

Theorem 2.2 ([4]). Let G be a free homogeneous Carnot group, and let A be a given 
positive-definite symmetric matrix. Let X = {X1, ..., XN1} be left-invariant vector fields 
in the first stratum of the free homogeneous Carnot group G with the corresponding 
sub-Laplacian (2.1). Let

Yk :=
N1∑
j=1

(
A

1
2

)
k,j

Xj , k = 1, ..., N1. (2.3)

Consider the related second order differential operator

LA =
N1∑
k=1

Y 2
k =

N1∑
k,j=1

ak,jXkXj .

Then there exists a Lie group automorphism TA of G such that

Yk(u ◦ TA) = (Xku) ◦ TA, k = 1, ..., N1,

LA(u ◦ TA) = (Lu) ◦ TA,

for every smooth function u : G → R. Moreover, TA has polynomial component functions 
and commutes with the dilations of G.

It can be also proved that if G is not a free Carnot group, then the automorphism 
TA may not exist. However, it can be shown that for any homogeneous Carnot group G
there exists a different homogeneous Carnot group G∗ = (RN , ∗, δλ), that is, with the 
same underlying manifold RN and the same group of dilations δλ as G, and a Lie-group 
isomorphism from G to G∗ turning LA (of G) into L (of G1) (see [4, Chapter 16.3]). See 
also [44] for analogues of such constructions on compact Lie groups.

3. Sub-Laplacian Green’s formulae and their consequences

In this section we will give some important lemmas for integration on G and their 
consequences for a number of boundary value problems of different types. These results 
will be also used in the other sections.
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It is known that the sub-Laplacian has a unique fundamental solution ε on G (see 
[15]),

Lε = δ,

and ε(x, y) = ε(y−1x) is homogeneous of degree −Q + 2 and represented in the form

ε(x, y) = [d(x, y)]2−Q, (3.1)

where d is the L-gauge.
We recall that the L-gauge (see [4]) is a symmetric homogeneous (quasi-) norm on 

the homogeneous Carnot group G = (RN , ◦, δλ), that is,

• d(x) > 0 if and only if x �= 0,
• d(δλ(x)) = λd(x) for all λ > 0 and x ∈ G,
• d(x−1) = d(x) for all x ∈ G.

Throughout this paper we keep the notation d for the L-gauge and use the following 
quasi-metric properties:

• d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y for all x, y ∈ G.
• There exists a positive constant C ≥ 1 such that

d(x, y) ≤ C(d(x, z) + d(z, y))

for all x, y, z ∈ G.

Let Q ≥ 3 be the homogeneous dimension of G, ∂Ω the boundary of an admissible do-
main Ω in G, dν the volume element on G, X = {X1, ..., XN1} left-invariant vector fields 
in the first stratum of a homogeneous Carnot group G, and 〈Xj , dν〉 the natural pairing 
between vector fields and differential forms, see (3.7), (3.8) and (3.10) for the derivation 
of the exact formula: more precisely, as we will see in the proof of Proposition 3.1, we 
can write

〈Xk, dν(x)〉 =
N1∧

j=1,j �=k

dx
(1)
j

r∧
l=2

Nl∧
m=1

θl,m, (3.2)

with

θl,m = −
N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))dx(1)

k + dx(l)
m , l = 2, . . . , r, m = 1, . . . , Nl, (3.3)

where a(l)
k,m is a δλ-homogeneous polynomial of degree l − 1 such that
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Xk = ∂

∂x
(1)
k

+
r∑

l=2

Nl∑
m=1

a
(l)
k,m(x(1), ..., x(l−1)) ∂

∂x
(l)
m

. (3.4)

We also recall that the standard Lebesque measure on RN is the Haar measure for G (see, 
e.g. [4, Proposition 1.3.21]). First we prove some important properties for integration. 
The following proposition can be also obtained using an abstract Cartan formula, see 
Appendix A, but here we give a direct explicit proof in order to derive an explicit formula 
for the forms θl,m in (3.3).

The advantage of using the language of differential forms here and in subsequent 
Green’s formulae (e.g. over the perimeter or the surface measure) is in the possibility of 
making coordinate free formulations which will prove to be effective in the proof of the 
Hardy inequality in the sequel.

Proposition 3.1 (Divergence formula). Let Ω ⊂ G be an admissible domain. Let fk ∈
C1(Ω) 

⋂
C(Ω), k = 1, . . . , N1. Then for each k = 1, . . . , N1, we have∫

Ω

Xkfkdν =
∫
∂Ω

fk〈Xk, dν〉. (3.5)

Consequently, we also have

∫
Ω

N1∑
k=1

Xkfkdν =
∫
∂Ω

N1∑
k=1

fk〈Xk, dν〉. (3.6)

Proof of Proposition 3.1. Recall (see e.g. [14, Section 3.1.5]) that the Jacobian basis 
{X1, ..., XN1} of G takes the form

Xk = ∂

∂x
(1)
k

+
r∑

l=2

Nl∑
m=1

a
(l)
k,m(x(1), ..., x(l−1)) ∂

∂x
(l)
m

, (3.7)

where a(l)
k,m is a δλ-homogeneous polynomial function of degree l−1. As in Definition 2.1, 

r is the step of G and x(l) ∈ R
Nl , l = 1, . . . , r. For any function f we obtain the following 

differentiation formula

df =
N1∑
k=1

∂f

∂x
(1)
k

dx
(1)
k +

r∑
l=2

Nl∑
m=1

∂f

∂x
(l)
m

dx(l)
m

=
N1∑
k=1

Xkfdx
(1)
k −

N1∑
k=1

r∑
l=2

Nl∑
m=1

a
(l)
k,m(x(1), . . . , x(l−1)) ∂f

∂x
(l)
m

dx
(l)
k

+
r∑ Nl∑ ∂f

∂x
(l) dx

(l)
m =

N1∑
Xkfdx

(1)
k

l=2 m=1 m k=1
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+
r∑

l=2

Nl∑
m=1

∂f

∂x
(l)
m

(−
N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))dx(1)

k + dx(l)
m )

=
N1∑
k=1

Xkfdx
(1)
k +

r∑
l=2

Nl∑
m=1

∂f

∂x
(l)
m

θl,m,

where

θl,m = −
N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))dx(1)

k + dx(l)
m , l = 2, . . . , r, m = 1, . . . , Nl. (3.8)

That is

df =
N1∑
k=1

Xkfdx
(1)
k +

r∑
l=2

Nl∑
m=1

∂f

∂x
(l)
m

θl,m. (3.9)

It is simple to see that

〈Xs, dx
(1)
j 〉 = ∂

∂x
(1)
s

dx
(1)
j = δsj ,

where δsj is the Kronecker delta, and

〈Xs, θl,m〉 =
(

∂

∂x
(1)
s

+
r∑

h=2

Nh∑
g=1

a(h)
s,g (x(1), ..., x(h−1)) ∂

∂x
(h)
g

)

·
(
−

N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))dx(1)

k + dx(l)
m

)

= −
N1∑
k=1

(
∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k

−
N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1)) ∂

∂x
(1)
s

dx
(1)
k + ∂

∂x
(1)
s

dx(l)
m

−
N1∑
k=1

r∑
h=2

Nh∑
g=1

a(h)
s,g (x(1), ..., x(h−1))

(
∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k

−
N1∑ r∑ Nh∑

a(h)
s,g (x(1), ..., x(h−1))a(l)

k,m(x(1), . . . , x(l−1)) ∂

∂x
(h) dx

(1)
k

k=1 h=2 g=1 g
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r∑
h=2

Nh∑
g=1

a(h)
s,g (x(1), ..., x(h−1)) ∂

∂x
(h)
g

dx(l)
m

= −
N1∑
k=1

(
∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k −

N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))δsk

−
N1∑
k=1

r∑
h=2

Nh∑
g=1

a(h)
s,g (x(1), ..., x(h−1))

(
∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k

+
r∑

h=2

Nh∑
g=1

a(h)
s,g (x(1), ..., x(h−1))δgmδhl =

−
N1∑
k=1

r∑
h=2

Nh∑
g=1

a(h)
s,g (x(1), ..., x(h−1))

(
∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k

−
N1∑
k=1

(
∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k =

−
N1∑
k=1

[ r∑
h=2

Nl∑
g=1

a(h)
s,g (x(1), ..., x(h−1))

(
∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

)

+ ∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1))

]
dx

(1)
k .

That is, we have

〈Xs, dx
(1)
j 〉 = δsj ,

for s, j = 1, . . . , N1, and

〈Xs, θl,m〉 =
N1∑
k=1

Ckdx(1)
k ,

for s = 1, . . . , N1, l = 2, . . . , r, m = 1, . . . , Nl. Here

Ck = −
r∑

h=2

Nl∑
g=1

a(h)
s,g (x(1), ..., x(h−1)) ∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

− ∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1)).

We have

dν := dν(x) =
N∧

dxj =
N1∧

dx
(1)
j

r∧ Nl∧
dx(l)

m =
N1∧

dx
(1)
j

r∧ Nl∧
θl,m,
j=1 j=1 l=2 m=1 j=1 l=2 m=1
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so

〈Xk, dν(x)〉 =
N1∧

j=1,j �=k

dx
(1)
j

r∧
l=2

Nl∧
m=1

θl,m. (3.10)

Therefore, by using Formula (3.9) we get

d(fs〈Xs, dν(x)〉) = dfs ∧ 〈Xs, dν(x)〉

=
N1∑
k=1

Xkfsdx
(1)
k ∧ 〈Xs, dν(x)〉

+
r∑

l=2

Nl∑
m=1

∂fs

∂x
(l)
m

θl,m ∧ 〈Xs, dν(x)〉 = Xsfsdν(x),

that is,

d(〈fkXk, dν(x)〉) = Xkfkdν(x), k = 1, . . . , N1. (3.11)

Now using the Stokes theorem (see e.g. [11, Theorem 26.3.1]) we obtain (3.5). Taking a 
sum over k we also obtain (3.6). �

We have the following analogue of Green’s first formula. This version was proved for 
the ball in [20] and for any smooth domain of the complex Heisenberg group in [36]. See 
also [4] and [19] for other analogues.

Proposition 3.2 (Green’s first formula). Let Ω ⊂ G be an admissible domain. Let v ∈
C1(Ω) 

⋂
C(Ω) and u ∈ C2(Ω) 

⋂
C1(Ω). Then∫

Ω

(
(∇̃v)u + vLu

)
dν =

∫
∂Ω

v〈∇̃u, dν〉, (3.12)

where L is the sub-Laplacian on G and

∇̃u =
N1∑
k=1

(Xku)Xk.

Proof of Proposition 3.2. Let fk = vXku, then

N1∑
k=1

Xkfk = (∇̃v)u + vLu.

Here as usual we understand the scalar expression for (∇̃v)u as
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(
∇̃v
)
u = ∇̃vu =

N1∑
k=1

(Xkv) (Xku) =
N1∑
k=1

XkvXku.

Otherwise, we may sometimes use the expression ∇̃(vu), of course, this is an operator. 
By using Divergence formula in Proposition 3.1 we obtain

∫
Ω

(
∇̃vu + vLu

)
dν =

∫
Ω

N1∑
k=1

Xkfkdν

=
∫
∂Ω

N1∑
k=1

〈fkXk, dν〉 =
∫
∂Ω

N1∑
k=1

〈vXkuXk, dν〉 =
∫
∂Ω

v〈∇̃u, dν〉,

completing the proof. �
When v = 1 Proposition 3.2 implies the following analogue of Gauss’ mean value 

formula for harmonic functions:

Corollary 3.3. If Lu = 0 in an admissible domain Ω ⊂ G, then∫
∂Ω

〈∇̃u, dν〉 = 0.

As in the classical potential theory, the Green formulae are still valid for functions 
with (weak) singularities provided we can approximate them by smooth functions. In this 
sense, without further justification we can apply these Green’s formulae, in particular, 
to the fundamental solution ε.

Then, for x ∈ Ω, taking v = 1 and u(y) = ε(x, y) we record the following consequence 
of Proposition 3.2:

Corollary 3.4. If Ω ⊂ G is an admissible domain, and x ∈ Ω, then∫
∂Ω

〈∇̃ε(x, y), dν(y)〉 = 1,

where ε is the fundamental solution of the sub-Laplacian.

Now we can prove the following uniqueness result by a classical potential theory 
method. We should mention that the following lemma is known and can be proved by 
other methods too, but given Green’s first formula in Proposition 3.2 its proof becomes 
elementary.

In addition to the more well-known Dirichlet boundary conditions we give examples 
of boundary conditions of different types, such as Neumann, Robin, mixed Dirichlet and 
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Robin, or different types of conditions on different parts of the boundary. For brevity, 
we restrict the consideration below to zero boundary conditions only, otherwise these 
problems may become very delicate due to the presence of characteristic points, see 
e.g. [8]. We hope to address these issues with our methods in a subsequent paper; overall, 
this is a very active area of research, see e.g. [3] and references therein also for other 
types of equations.

We also note that in the subsequently considered boundary value problems, we can 
assume without loss of generality (in the proofs) that functions are real valued since 
otherwise we can always take real and imaginary parts which would then satisfy the same 
equations. As usual, throughout this paper Ω is an admissible domain, see Definition 1.1.

Lemma 3.5. The Dirichlet boundary value problem

Lu(x) = 0, x ∈ Ω ⊂ G, (3.13)

u(x) = 0, x ∈ ∂Ω, (3.14)

has the unique trivial solution u ≡ 0 in the class of functions C2(Ω) 
⋂
C1(Ω).

Proof of Lemma 3.5. Set v = u in (3.12), then by (3.13) and (3.14) we get∫
Ω

∇̃uudν =
∫
Ω

(
∇̃uu + uLu

)
dν =

∫
∂Ω

u〈∇̃u, dν〉 = 0.

Therefore

∫
Ω

N1∑
k=1

|Xku|2dν = 0,

that is, Xku = 0, k = 1, ..., N1. Since any element of a Jacobian basis of G is represented 
by Lie brackets of {X1, ..., XN1}, we obtain that u is a constant, so u ≡ 0 on Ω by 
(3.14). �

This has the following simple extension to (stationary) Schrödinger operators:

Lemma 3.6. Let q : Ω → R be a non-negative bounded function that is, q ∈ L∞(Ω) and 
q(x) ≥ 0, x ∈ Ω. Then the Dirichlet boundary value problem for the Schrödinger equation

−Lu(x) + q(x)u(x) = 0, x ∈ Ω ⊂ G, (3.15)

u(x) = 0, x ∈ ∂Ω, (3.16)

has the unique trivial solution u ≡ 0 in the class of functions C2(Ω) 
⋂
C1(Ω).
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Proof of Lemma 3.6. As in proof of Lemma 3.5 using Green’s formula, from (3.15) and 
(3.16) we obtain

∫
Ω

∇̃uudν =
∫
Ω

(
∇̃uu + uLu

)
dν −

∫
Ω

q(y)|u(y)|2dν

=
∫
∂Ω

u〈∇̃u, dν〉 −
∫
Ω

q(y)|u(y)|2dν = −
∫
Ω

q(y)|u(y)|2dν.

Therefore,

0 ≤
∫
Ω

N1∑
k=1

|Xku|2dν = −
∫
Ω

q(y)|u(y)|2dν ≤ 0,

that is, u ≡ 0. �
Similarly, we obtain the following statement for the von Neumann type boundary con-

ditions. We note that von Neumann type boundary value problem for the sub-Laplacian 
have been known and studied, see e.g. [8]. However, here we offer a new measure-type 
condition for the von Neumann type boundary value problem for the sub-Laplacian:

Lemma 3.7. The boundary value problem

Lu(x) = 0, x ∈ Ω ⊂ G, (3.17)
N1∑
j=1

Xju〈Xj , dν〉 = 0 on ∂Ω, (3.18)

has a solution u ≡ const in the class of functions C2(Ω) 
⋂
C1(Ω).

Proof of Lemma 3.7. Set v = u in (3.12), then by (3.17) and (3.18) we get

∫
Ω

∇̃uudν =
∫
Ω

(
∇̃uu + uLu

)
dν =

∫
∂Ω

u〈∇̃u, dν〉 =
∫
∂Ω

u

N1∑
j=1

Xju〈Xj , dν〉 = 0.

Therefore

∫
Ω

N1∑
k=1

|Xku|2dν = 0,

that is, Xku = 0, k = 1, ..., N1. Since any element of a Jacobian basis of G is represented 
by Lie brackets of {X1, ..., XN1}, we obtain that u is a constant. �



500 M. Ruzhansky, D. Suragan / Advances in Mathematics 308 (2017) 483–528
Similarly, we can now also consider the Robin type boundary conditions as follows.

Lemma 3.8. Let ak : ∂Ω → R, k = 1, ..., N1, be bounded functions such that the measure

N1∑
j=1

aj〈Xj , dν〉 ≥ 0 (3.19)

is non-negative on ∂Ω. Then the boundary value problem

Lu(x) = 0, x ∈ Ω ⊂ G, (3.20)
N1∑
j=1

(aju + Xju)〈Xj , dν〉 = 0 on ∂Ω, (3.21)

has a solution u ≡ const in the class of functions C2(Ω) 
⋂

C1(Ω).
Moreover, if the integral of the measure (3.19) is positive, i.e. if

∫
∂Ω

N1∑
j=1

aj〈Xj , dν〉 > 0, (3.22)

then the boundary value problem (3.20)–(3.21) has the unique trivial solution u ≡ 0 in 
the class of functions C2(Ω) 

⋂
C1(Ω).

Proof of Lemma 3.8. Set v = u in (3.12), then by (3.20) and (3.21) we get

∫
Ω

∇̃uudν =
∫
Ω

(
∇̃uu + uLu

)
dν =

∫
∂Ω

u〈∇̃u, dν〉

=
∫
∂Ω

u

N1∑
j=1

Xju〈Xj , dν〉 = −
∫
∂Ω

u2
N1∑
j=1

aj〈Xj , dν〉, (3.23)

that is,

∫
Ω

N1∑
k=1

|Xku|2dν = −
∫
∂Ω

u2
N1∑
j=1

aj〈Xj , dν〉.

Therefore ∫
Ω

N1∑
k=1

|Xku|2dν = 0

and
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∫
∂Ω

u2
N1∑
j=1

aj〈Xj , dν〉 = 0.

As above the first equality implies that u is a constant. This proves the first part of the 
claim.

On the other hand, by the assumption (3.22) the second equality implies u = 0 on 
∂Ω, this means u ≡ 0 on Ω. �

We can also consider problems where Dirichlet or Robin conditions are imposed on 
different parts of the boundary:

Corollary 3.9. Let ak : ∂Ω → R, k = 1, ..., N1, be bounded functions such that the 
measure

N1∑
j=1

aj〈Xj , dν〉 ≥ 0 (3.24)

is non-negative on ∂Ω. Let ∂Ω1 ⊂ ∂Ω, ∂Ω1 �= {∅} and ∂Ω2 := ∂Ω\∂Ω1. Then the 
boundary value problem

Lu(x) = 0, x ∈ Ω ⊂ G, (3.25)

u = 0 on ∂Ω1, (3.26)

N1∑
j=1

(aju + Xju)〈Xj , dν〉 = 0 on ∂Ω2, (3.27)

has the unique trivial solution u ≡ 0 in the class of functions C2(Ω) 
⋂

C1(Ω).

The proof of Corollary 3.9 follows the same argument as that in the proof of 
Lemma 3.8, and we observe that the last equality in (3.23) is still valid on both parts 
∂Ω1 and ∂Ω2 of the boundary ∂Ω using conditions (3.26) and (3.27), respectively.

As a consequence of the Green’s first formula (3.12) we obtain the following analogue 
of Green’s second formula:

Proposition 3.10 (Green’s second formula). Let Ω ⊂ G be an admissible domain. Let 
u, v ∈ C2(Ω) 

⋂
C1(Ω). Then

∫
Ω

(uLv − vLu)dν =
∫
∂Ω

(u〈∇̃v, dν〉 − v〈∇̃u, dν〉). (3.28)
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Proof of Proposition 3.10. Rewriting (3.12) we have∫
Ω

(
(∇̃u)v + uLv

)
dν =

∫
∂Ω

u〈∇̃v, dν〉,

∫
Ω

(
(∇̃v)u + vLu

)
dν =

∫
∂Ω

v〈∇̃u, dν〉.

By subtracting the second identity from the first one and using

(∇̃u)v = (∇̃v)u

we obtain the desired result. �
Putting the fundamental solution ε instead of v in (3.28) we get the following repre-

sentation formulae that will be used later but are also of importance on their own. We 
list them in the following corollaries.

Corollary 3.11. Let u ∈ C2(Ω) 
⋂

C1(Ω). Then for x ∈ Ω we have

u(x) =
∫
Ω

ε(x, y)Lu(y)dν(y)

+
∫
∂Ω

u(y)〈∇̃ε(x, y), dν(y)〉 −
∫
∂Ω

ε(x, y)〈∇̃u(y), dν(y)〉. (3.29)

Corollary 3.12. Let u ∈ C2(Ω) 
⋂

C1(Ω) and Lu = 0 on Ω, then for x ∈ Ω we have

u(x) =
∫
∂Ω

u(y)〈∇̃ε(x, y), dν(y)〉 −
∫
∂Ω

ε(x, y)〈∇̃u(y), dν(y)〉. (3.30)

Corollary 3.13. Let u ∈ C2(Ω) 
⋂

C1(Ω) and

u(x) = 0, x ∈ ∂Ω, (3.31)

then

u(x) =
∫
Ω

ε(x, y)Lu(y)dν(y) −
∫
∂Ω

ε(x, y)〈∇̃u(y), dν(y)〉. (3.32)

Corollary 3.14. Let u ∈ C2(Ω) 
⋂

C1(Ω) and

N1∑
Xju〈Xj , dν〉 = 0 on ∂Ω, (3.33)
j=1
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then

u(x) =
∫
Ω

ε(x, y)Lu(y)dν(y) +
∫
∂Ω

u(y)〈∇̃ε(x, y), dν(y)〉. (3.34)

4. Single and double layer potentials of the sub-Laplacian

Recall that the sub-Laplacian has a unique fundamental solution ε on G, see (3.1), 
given by

ε(x, y) = [d(x, y)]2−Q,

where d is the L-gauge, so that the function ε is homogeneous of degree −Q + 2.
Let D ⊂ R

N be an open set with boundary ∂D. The set D is called a domain of 
class C1 if for each x0 ∈ ∂D there exist a neighbourhood Ux0 of x0, and a function 
φx0 ∈ C1(Ux0), with |∇φx0 | ≥ α > 0 in Ux0 , where ∇ is the standard gradient in RN , 
such that

D ∩ Ux0 = {x ∈ Ux0 | φx0(x) < 0},

∂D ∩ Ux0 = {x ∈ Ux0 | φx0(x) = 0}.

So let D be an open domain of class C1. A point x0 ∈ ∂D is called characteristic with 
respect to fields {X1, ..., XN1}, if given Ux0 , φx0 , as above, we have

X1φx0(x0) = 0, . . . , XN1φx0(x0) = 0.

Typically, bounded domains have non-empty collection (set) of all characteristic points. 
For example, any bounded domain of class C1 in the Heisenberg group Hn, whose bound-
ary is homeomorphic to the 2n-dimensional sphere S2n, has non-empty characteristic set 
(see, for example, [8]).

We record relevant single and double layer potentials for the sub-Laplacian. In [29], 
Jerison used the single layer potential defined by

S0u(x) =
∫
∂Ω

u(y)ε(y, x)dS(y),

which, however, is not integrable over characteristic points. We refer to [36] for examples. 
On the contrary, the functionals

Sju(x) =
∫

u(y)ε(y, x)〈Xj , dν(y)〉, j = 1, ..., N1, (4.1)

∂Ω
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where 〈Xj , dν〉 is the canonical pairing between vector fields and differential forms, are 
integrable over the whole boundary ∂Ω (see Lemma 4.1). Parallel to Sj , it will be natural 
to use the operator

Du(x) =
∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉, (4.2)

as a double layer potential, where

∇̃ε =
N1∑
k=1

(Xkε)Xk,

with Xk acting on the y-variable.
So let us define a family of single layer potentials by Formula (4.1). First we will prove 

the following lemma.

Lemma 4.1. Let ∂Ω be the boundary of an admissible domain Ω ⊂ G. Then

∫
∂Ω

[d(x, y)]2−Q〈Xj , dν(y)〉

is a convergent integral for any x ∈ G and x /∈ ∂Ω.

Proof of Lemma 4.1. We have

∫
∂Ω

[d(x, y)]2−Q〈Xj , dν(y)〉

=
∫
Ω

Xj [d(x, y)]2−Qdν(y) ≤
∫
Ω

| Xj [d(x, y)]2−Q | dν(y)

≤
∫
BR

| Xj [d(x, y)]2−Q | dν(y) = C

R∫
0

r1−QrQ−1dr < ∞,

where BR := {y : d(x, y) < R} is a ball such that Ω ⊂ BR. �
Theorem 4.2. Let ∂Ω be the boundary of an admissible domain Ω ⊂ G. Let u be bounded 
on ∂Ω, that is, u ∈ L∞(∂Ω). Then the single layer potential Sju is continuous on G, for 
all j = 1, . . . , N1.
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Proof of Theorem 4.2. Let x ∈ G, x0 /∈ ∂Ω, then

|Sju(x) − Sju(x0)| = |
∫
∂Ω

u(y)(ε(y, x) − ε(y, x0))〈Xj , dν(y)〉|

≤ sup
y∈∂Ω

|u(y)||
∫
∂Ω

ε(y, x) − ε(y, x0)〈Xj , dν(y)〉|.

This means

lim
x→x0

Sju(x) = Sju(x0),

that is, the single layer potential Sju is continuous in G\∂Ω. Now let x ∈ G, x0 ∈ ∂Ω. 
Let Ωε := {y ∈ Ω : d(x0, y) < ε}. Then

|Sju(x) − Sju(x0)| = |
∫
∂Ω

u(y)(ε(y, x) − ε(y, x0))〈Xj , dν(y)〉|

= sup
y∈∂Ω

|u(y)| |
∫
∂Ω

(ε(y, x) − ε(y, x0))〈Xj , dν(y)〉|

= sup
y∈∂Ω

|u(y)| |
∫
Ω

Xj(ε(y, x) − ε(y, x0))dν(y)|

≤ sup
y∈∂Ω

|u(y)| lim
ε→0

(
|
∫

Ω\Ωε

Xj(ε(y, x) − ε(y, x0))dν(y)|

+ |
∫
Ωε

Xj(ε(y, x) − ε(y, x0))dν(y)|
)
,

where the first term tends to zero when x → x0. Now it is left to show that the second 
term tends to zero, and we have

lim
ε→0

∫
Ωε

Xj(ε(y, x) − ε(y, x0))dν(y)

= lim
ε→0

⎛⎝∫
Ωε

Xjε(y, x)dν(y) −
∫
Ωε

Xjε(y, x0)dν(y)

⎞⎠
= lim

ε→0
(C

ε∫
0

r1−QrQ−1dr) = C lim
ε→0

ε = 0.

This completes the proof. �
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We will prove the following lemma to prepare for establishing analogues of the Plemelj 
jump relations for the double layer potential D defined in (4.2).

Lemma 4.3. Let u ∈ C1(Ω) 
⋂
C(Ω), Ω ⊂ G, be an admissible domain with the boundary 

∂Ω and x0 ∈ ∂Ω. Then

lim
x→x0

∫
∂Ω

[u(y) − u(x)]〈∇̃ε(y, x), dν(y)〉

=
∫
∂Ω

[u(y) − u(x0)]〈∇̃ε(y, x0), dν(y)〉, x0 ∈ ∂Ω,

where ∇̃ε =
∑N1

k=1 (Xkε)Xk.

Proof of Lemma 4.3. In this proof we use the Einstein type notation, that is, if the index 
k is repeated in an integrant, then it means that we have a sum from 1 to N1 over k
(and both indices can enter as subscripts). For example,

∫
∂Ω

[u(y) − u(x)]Xkε(y, x)〈Xk, dν(y)〉 :=
N1∑
k=1

∫
∂Ω

[u(y) − u(x)]Xkε(y, x)〈Xk, dν(y)〉.

First, let us show that

lim
ε→0

∫
d(x,y)<ε

Xk {(u(y) − u(x))Xkε(y, x)} dν(y) = 0.

By using Proposition 3.1

lim
ε→0

|
∫

d(x,y)<ε

Xk {(u(y) − u(x))Xkε(y, x)} dν(y)|

≤ C1 lim
ε→0

∫
d(x,y)<ε

|Xkε(y, x)|dν(y)

+ lim
ε→0

∫
d(x,y)<ε

|(u(y) − u(x))XkXkε(y, x)|dν(y)

≤ C lim
ε→0

ε∫
0

dr = 0.

Therefore, we have
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∫
Ω

Xk {[u(y) − u(x)]Xkε(y, x)} dν(y)

=
∫
Ω

Xk {[u(y) − u(x)]Xkε(y, x)} dν(y)

+ lim
ε→0

∫
d(x,y)<ε

Xk {(u(y) − u(x))Xkε(y, x)} dν(y).

If we take Ωε = {y ∈ G : d(x, y) < ε}, then

lim
x→x0

∫
∂Ω

[u(y) − u(x)]Xkε(y, x)〈Xk, dν(y)〉

and by the Divergence formula (see Proposition 3.1) the above expression is

= lim
x→x0

∫
Ω

Xk {[u(y) − u(x)]Xkε(y, x)} dν(y)

= lim
x→x0

lim
ε→0

{ ∫
Ω\Ωε

Xk {[u(y) − u(x)]Xkε(y, x)} dν(y)

+
∫
Ωε

Xk {[u(y) − u(x)]Xkε(y, x)} dν(y)
}

=
∫
Ω

Xk {[u(y) − u(x0)]Xkε(y, x0)} dν(y).

That is,

lim
x→x0

∫
∂Ω

[u(y) − u(x)]Xkε(y, x)〈Xk, dν(y)〉

=
∫
Ω

Xk {[u(y) − u(x0)]Xkε(y, x0)} dν(y)

=
∫
∂Ω

[u(y) − u(x0)]Xkε(y, x0)〈Xk, dν(y)〉.

As we agreed this is the same as
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lim
x→x0

∫
∂Ω

[u(y) − u(x)]〈∇̃ε(y, x), dν(y)〉

=
∫
∂Ω

[u(y) − u(x0)]〈∇̃ε(y, x0), dν(y)〉, x0 ∈ ∂Ω,

where ∇̃ε =
∑N1

k=1 (Xkε)Xk. �
We now prove the Plemelj type jump relations for the double layer potential D in 

(4.2).

Theorem 4.4. Let Ω ⊂ G be an admissible domain and let u ∈ C1(Ω) 
⋂
C(Ω). Define

D0u(x0) :=
∫
∂Ω

u(y)〈∇̃ε(y, x0), dν(y)〉,

D+u(x0) := lim
x→x0, x∈Ω

∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉

and

D−u(x0) := lim
x→x0, x/∈Ω

∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉,

for x0 ∈ ∂Ω. Then D+u(x0), D−u(x0) and D0u(x0) exist and verify the following jump 
relations:

D+u(x0) −D−u(x0) = u(x0),

D0u(x0) −D−u(x0) = J (x0)u(x0),

D+u(x0) −D0u(x0) = (1 − J (x0))u(x0),

where the jump value J (x0) is given by the formula

J (x0) =
∫
∂Ω

〈∇̃ε(y, x0), dν(y)〉, x0 ∈ ∂Ω,

in the sense of the (Cauchy) principal value and ∇̃ε =
∑N1

k=1 (Xkε)Xk.
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Proof of Theorem 4.4. We have

lim
x→x0, x/∈∂Ω

∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉 =

lim
x→x0, x/∈∂Ω

(
∫
∂Ω

[u(y) − u(x)]〈∇̃ε(y, x), dν(y)〉 + u(x)
∫
∂Ω

〈∇̃ε(y, x), dν(y)〉).

Taking u = ε and v = 1 in the Green’s first formula (3.12) we get∫
∂Ω

〈∇̃ε(y, x), dν(y)〉 =
{

1, x ∈ Ω,
0, x /∈ Ω̄.

Therefore, using Lemma 4.3 we obtain

D+u(x0) =
∫
∂Ω

[u(y) − u(x0)]〈∇̃ε(y, x0), dν(y)〉 + u(x0), (4.3)

D−u(x0) =
∫
∂Ω

[u(y) − u(x0)]〈∇̃ε(y, x0), dν(y)〉. (4.4)

From here we obtain the first jump relation, i.e.

D+u(x0) −D−u(x0) = u(x0).

We also have

D0u(x0) =
∫
∂Ω

u(y)〈∇̃ε(y, x0), dν(y)〉

=
∫
∂Ω

[u(y) − u(x0)]〈∇̃ε(y, x0), dν(y)〉

+u(x0)
∫
∂Ω

〈∇̃ε(y, x0), dν(y)〉

=
∫
∂Ω

[u(y) − u(x0)]
〈
∇̃ε(y, x0), dν(y)

〉
+ J (x0)u(x0).

So we obtain

D0u(x0) =
∫
∂Ω

[u(y) − u(x0)]
〈
∇̃ε(y, x0), dν(y)

〉
+ J (x0)u(x0). (4.5)

Now subtracting (4.4) from (4.5) we get the second jump relation and subtracting (4.5)
from (4.3) we obtain the third one. �
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5. Traces and Kac’s problem for the sub-Laplacian

For 0 < α < 1, Folland and Stein (see [17] and see also [15]) defined the anisotropic 
Hölder spaces Γα(Ω), Ω ⊂ G, by

Γα(Ω) = {f : Ω → C : sup
x,y∈Ω
x�=y

|f(x) − f(y)|
[d(x, y)]α < ∞}.

For k ∈ N and 0 < α < 1, one defines Γk+α(Ω) as the space of all f : Ω → C such that 
all derivatives of f of order k belong to Γα(Ω). A bounded function f is called α-Hölder 
continuous in Ω ⊂ G if f ∈ Γα(Ω).

Let Ω ⊂ G be an admissible domain. Consider the following analogy of the Newton 
potential

u(x) =
∫
Ω

f(y)ε(y, x)dν(y), x ∈ Ω, f ∈ Γα(Ω), (5.1)

where

ε(y, x) = ε(x, y) = ε(y−1x, 0) = ε(y−1x)

is the fundamental solution (3.1) of the sub-Laplacian L, i.e.

ε(x, y) = [d(x, y)]2−Q,

and u is a solution of

Lu = f

in Ω. The aim of this section is to find a boundary condition for u such that with this 
boundary condition the equation Lu = f has a unique solution in C2(Ω), say, and this 
solution is the Newton potential (5.1). This amounts to finding the trace of the integral 
operator in (5.1) on ∂Ω.

A starting point for us will be that if f ∈ Γα(Ω) for α > 0 then u defined by (5.1)
is twice differentiable and satisfies the equation Lu = f . We refer to Folland [15] for 
this property. These results extend those known for the Laplacian, in suitably redefined 
anisotropic Hölder spaces.

Our main result for the sub-Laplacian is the following variant of formula (1.4) in the 
introduction, now in the setting of Carnot groups.

Theorem 5.1. Let ε(y, x) = ε(y−1x) be the fundamental solution to L, so that

Lε = δ on G. (5.2)
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Let Ω ⊂ G be an admissible domain. For any f ∈ Γα(Ω), 0 < α < 1, suppf ⊂ Ω, the 
Newton potential (5.1) is the unique solution in C2(Ω) ∩ C1(Ω) of the equation

Lu = f in Ω, (5.3)

with the boundary condition

(1 − J (x))u(x) +
∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉

−
∫
∂Ω

ε(y, x)〈∇̃u(y), dν(y)〉 = 0, for x ∈ ∂Ω, (5.4)

where the jump value is given by the formula

J (x) =
∫
∂Ω

〈∇̃ε(y, x), dν(y)〉, (5.5)

with ∇̃ = ∇̃y defined by

∇̃g =
N1∑
k=1

(Xkg)Xk.

Proof of Theorem 5.1. Since the Newton potential

u(x) =
∫
Ω

f(y)ε(y, x)dν(y) (5.6)

is a solution of (5.3), from the aforementioned results of Folland it follows that u is 
locally in Γα+2(Ω, loc) and that it is twice differentiable in Ω. In particular, it follows 
that u ∈ C2(Ω) ∩ C1(Ω).

By Corollary 3.11 we have the following representation formula

u(x) =
∫
Ω

f(y)ε(y, x)dν(y) +
∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉

−
∫
∂Ω

ε(y, x)〈∇̃u(y), dν(y)〉, ∀x ∈ Ω, (5.7)

for u ∈ C2(Ω) ∩ C1(Ω).
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Since u(x) given by (5.6) is a solution of (5.3), using it in (5.7) we get∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉 −
∫
∂Ω

ε(y, x)〈∇̃u(y), dν(y)〉 = 0, for any x ∈ Ω. (5.8)

By using Theorem 4.2 and Theorem 4.4 as x ∈ Ω approaches the boundary ∂Ω from 
inside, we find that

(1 − J (x))u(x) +
∫
∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉

−
∫
∂Ω

ε(y, x)〈∇̃u(y), dν(y)〉 = 0, for any x ∈ ∂Ω. (5.9)

This shows that (5.1) is a solution of the boundary value problem (5.3) with the 
boundary condition (5.4).

Now let us prove its uniqueness. If the boundary value problem has two solutions u
and u1 then the function

w = u− u1 ∈ C2(Ω) ∩ C1(Ω)

satisfies the homogeneous equation

Lw = 0 in Ω, (5.10)

and the boundary condition (5.4), i.e.

(1 − J (x))w(x) +
∫
∂Ω

w(y)〈∇̃ε(y, x), dν(y)〉

−
∫
∂Ω

ε(y, x)〈∇̃w(y), dν(y)〉 = 0, x ∈ ∂Ω. (5.11)

Since f ≡ 0 in this case instead of (5.7) we have the following representation formula 
(see Corollary 3.12)

w(x) =
∫
∂Ω

w(y)〈∇̃ε(y, x), dν(y)〉 −
∫
∂Ω

ε(y, x)〈∇̃w(y), dν(y)〉, (5.12)

for any x ∈ Ω. As above, by using the properties of the double and single layer potentials 
as x → ∂Ω from interior, from (5.12) we obtain
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w(x) = (1 − J (x))w(x)

+
∫
∂Ω

w(y)〈∇̃ε(y, x), dν(y)〉 −
∫
∂Ω

ε(y, x)〈∇̃w, dν(y)〉, (5.13)

for any x ∈ ∂Ω. Comparing this with (5.11) we arrive at

w(x) = 0, x ∈ ∂Ω. (5.14)

The homogeneous equation (5.10) with the Dirichlet boundary condition (5.14) has 
only trivial solution w ≡ 0 in Ω, see Lemma 3.5. This shows that the boundary value 
problem (5.3) with the boundary condition (5.4) has a unique solution in C2(Ω) ∩C1(Ω). 
This completes the proof of Theorem 5.1. �
Remark 5.2. It follows from Theorem 5.1 that the kernel ε(y, x) = ε(y−1x), which is a 
fundamental solution of the sub-Laplacian, is the Green function of the boundary value 
problem (5.3), (5.4) in Ω. Therefore, the boundary value problem (5.3), (5.4) can serve 
as an example of an explicitly solvable boundary value problem for the sub-Laplacian in 
any (admissible) domain Ω on the homogeneous Carnot group.

6. Powers of the sub-Laplacian

As before, let Ω ⊂ G be an admissible domain. For m ∈ N, we denote Lm := LLm−1. 
Then for m = 1, 2, . . ., we consider the equation

Lmu(x) = f(x), x ∈ Ω, (6.1)

for a given f ∈ Γα(Ω). Let ε(y, x) = ε(y−1x) be the fundamental solution of the sub-
Laplacian as in (5.2). Let us now define

u(x) =
∫
Ω

f(y)εm(y, x)dν(y) (6.2)

in Ω ⊂ G, where εm(y, x) is a fundamental solution of (6.1) such that

Lm−1εm = ε, m = 1, 2, ....

We take, with a proper distributional interpretation, for m = 2, 3, . . .,

εm(y, x) =
∫
Ω

εm−1(y, ζ)ε(ζ, x)dν(ζ), y, x ∈ Ω, (6.3)

with

ε1(y, x) = ε(y, x).
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A simple calculation shows that the generalised Newton potential (6.2) is a solution 
of (6.1) in Ω. The aim of this section is to find boundary conditions on ∂Ω such that with 
these boundary conditions the equation (6.1) has a unique solution in C2m(Ω), which 
coincides with (6.2).

Although higher order hypoelliptic operators on the homogenous Carnot group may 
not have unique fundamental solutions, see Geller [23], in the case of the iterated sub-
Laplacian Lm we still have the uniqueness for our problem in the sense of the following 
theorem, and the uniqueness argument in its proof.

Theorem 6.1. Let Ω ⊂ G be an admissible domain. For any f ∈ Γα(Ω), 0 < α < 1, 
suppf ⊂ Ω, the generalised Newton potential (6.2) is a unique solution of the equation 
(6.1) in C2m(Ω) ∩ C2m−1(Ω) with m boundary conditions

(1 − J (x))Liu(x) +
m−i−1∑
j=0

∫
∂Ω

Lj+iu(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

−
m−i−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lj+iu(y)dν(y)〉 = 0, x ∈ ∂Ω, (6.4)

for all i = 0, 1, . . . , m − 1, where ∇̃ is given by

∇̃g =
N1∑
k=1

(Xkg)Xk

and J (x) is the jump function given by the formula (5.5).

Proof of Theorem 6.1. By applying Green’s second formula for each x ∈ Ω, as in (5.7)
(see Proposition 3.10), we obtain

u(x) =
∫
Ω

f(y)εm(y, x)dν(y)

=
∫
Ω

Lmu(y)εm(y, x)dν(y)

=
∫
Ω

Lm−1u(y)Lεm(y, x)dν(y)

−
∫
∂Ω

Lm−1u(y)〈∇̃εm(y, x), dν(y)〉

+
∫

εm(y, x)〈∇̃Lm−1u(y), dν(y)〉

∂Ω
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=
∫
Ω

Lm−2u(y)L2εm(y, x)dν(y)

−
∫
∂Ω

Lm−2u(y)〈∇̃Lεm(y, x), dν(y)〉

+
∫
∂Ω

Lεm(y, x)〈∇̃Lm−2u(y), dν(y)〉

−
∫
∂Ω

Lm−1u(y)〈∇̃εm(y, x), dν(y)〉

+
∫
∂Ω

εm(y, x)〈∇̃Lm−1u(y), dν(y)〉 = ...

= u(x) −
m−1∑
j=0

∫
∂Ω

Lju(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

+
m−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lju(y), dν(y)〉, x ∈ Ω.

This implies the identity

m−1∑
j=0

∫
∂Ω

Lju(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

−
m−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lju(y), dν(y)〉 = 0, x ∈ Ω. (6.5)

Note that here only the first term of the first summand, i.e., j = 0 term of the first 
summand: ∫

∂Ω

u(y)〈∇̃ε(y, x), dν(y)〉

is the double layer potential (see Theorem 4.4). The other terms of the summands are 
single layer type potentials, that is, they are continuous functions on G (see Theorem 4.2). 
By using the properties of the double and single layer potentials as x approaches the 
boundary ∂Ω from the interior, from (6.5) we obtain

(1 − J (x))u(x) +
m−1∑
j=0

∫
∂Ω

Lju(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

−
m−1∑
j=0

∫
Lm−1−jεm(y, x)〈∇̃Lju(y), dν(y)〉 = 0, x ∈ ∂Ω.
∂Ω
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Thus, this relation is one of the boundary conditions of (6.2). Let us derive the remaining 
boundary conditions. To this end, we write

Lm−iLiu = f, i = 0, 1, . . . ,m− 1, m = 1, 2, . . . , (6.6)

and carry out similar considerations just as above. This yields

Liu(x) =
∫
Ω

f(y)Liεm(y, x)dν(y)

=
∫
Ω

Lm−iLiu(y)Liεm(y, x)dν(y)

=
∫
Ω

Lm−i−1Liu(y)LLiεm(y, x)dν(y)

−
∫
∂Ω

Lm−i−1Liu(y)〈∇̃Liεm(y, x), dν(y)〉

+
∫
∂Ω

Liεm(y, x)〈∇̃Lm−i−1Liu(y), dν(y)〉

=
∫
Ω

Lm−i−2Liu(y)L2Liεm(y, x)dν(y)

−
∫
∂Ω

Lm−i−2Liu(y)〈∇̃LLiεm(y, x), dν(y)〉

+
∫
∂Ω

LLiεm(y, x)〈∇̃Lm−i−2Liu(y), dν(y)〉

−
∫
∂Ω

Lm−i−1Liu(y)〈∇̃Liεm(y, x), dν(y)〉

+
∫
∂Ω

Liεm(y, x)〈∇̃Lm−i−1Liu(y), dν(y)〉

= ... =
∫
Ω

Liu(y)Lm−iLiεm(y, x)dν(y)

−
m−i−1∑
j=0

∫
∂Ω

LjLiu(y)〈∇̃Lm−i−1−jLiεm(y, x), dν(y)〉

+
m−i−1∑
j=0

∫
Lm−i−1−jLiεm(y, x)〈∇̃LjLiu(y), dν(y)〉
∂Ω
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= Liu(x) −
m−i−1∑
j=0

∫
∂Ω

Lj+iu(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

+
m−i−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lj+iu(y), dν(y)〉, x ∈ Ω,

where Liεm is a fundamental solution of the equation (6.6), i.e.,

Lm−iLiεm = δ, i = 0, 1, . . . ,m− 1.

From the previous relations, we obtain the identities

m−i−1∑
j=0

∫
∂Ω

Lj+iu(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

−
m−i−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lj+iu(y), dν(y)〉 = 0

for any x ∈ Ω and i = 0, 1, . . . , m − 1. By using the properties of the double and single 
layer potentials as x approaches the boundary ∂Ω from the interior of Ω, we find that

(1 − J (x))Liu(x) +
m−i−1∑
j=0

∫
∂Ω

Lj+iu(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

−
m−i−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lj+iu(y), dν(y)〉 = 0, x ∈ ∂Ω,

are all boundary conditions of (6.2) for each i = 0, 1, . . . , m − 1.

Conversely, let us show that if a function w ∈ C2m(Ω) ∩ C2m−1(Ω) satisfies the 
equation Lmw = f and the boundary conditions (6.4), then it coincides with the solution 
(6.2). Indeed, otherwise the function

v = u− w ∈ C2m(Ω) ∩ C2m−1(Ω),

where u is the generalised Newton potential (6.2), satisfies the homogeneous equation

Lmv = 0 (6.7)

and the boundary conditions (6.4), i.e.
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Ii(v)(x) := (1 − J (x))Liv(x) +
m−i−1∑
j=0

∫
∂Ω

Lj+iv(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

−
m−i−1∑
j=0

∫
∂Ω

Lm−1−jεm(y, x)〈∇̃Lj+iv(y), dν(y)〉 = 0, i = 0, 1, . . . ,m− 1,

for x ∈ ∂Ω. By applying the Green formula to the function v ∈ C2m(Ω) ∩C2m−1(Ω) and 
by following the lines of the above argument, we obtain

0 =
∫
Ω

Lmv(x)Liεm(y, x)dν(y)

=
∫
Ω

Lm−iLiv(x)Liεm(y, x)dν(y)

=
∫
Ω

Lm−1v(x)LLiεm(y, x)dν(y)

−
∫
∂Ω

Lm−1v(x)〈∇̃Liεm(y, x), dν(y)〉

+
∫
∂Ω

Liεm(y, x)〈∇̃Lm−1v(x), dν(y)〉

=
∫
Ω

Lm−2v(x)L2Liεm(y, x)dν(y)

−
∫
∂Ω

Lm−2v(x)〈∇̃Li+1εm(y, x), dν(y)〉

+
∫
∂Ω

Li+1εm(y, x)〈∇̃Lm−2v(x), dν(y)〉

−
∫
∂Ω

Lm−1v(x)〈∇̃Liεm(y, x), dν(y)〉

+
∫
∂Ω

Liεm(y, x)〈∇̃Lm−1v(x), dν(y)〉 = ...

= Liv(x) −
m−i−1∑
j=0

∫
∂Ω

Lj+iv(y)〈∇̃Lm−1−jεm(y, x), dν(y)〉

+
m−i−1∑
j=0

∫
Lm−1−jεm(y, x)〈∇̃Lj+iv(y), dν(y)〉, i = 0, 1, . . . ,m− 1.
∂Ω
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By passing to the limit as x → ∂Ω from interior, we obtain the relations

Liv(x) |x∈∂Ω= Ii(v)(x) |x∈∂Ω= 0, i = 0, 1, . . . ,m− 1. (6.8)

Assuming for the moment the uniqueness of the solution of the boundary value prob-
lem

Lmv = 0, (6.9)

Liv |∂Ω= 0, i = 0, 1, . . . ,m− 1,

we get that v = u − w ≡ 0, for all x ∈ Ω, i.e. w coincides with u in Ω. Thus (6.2) is the 
unique solution of the boundary value problem (6.1), (6.4) in Ω.

It remains to show that the boundary value problem (6.9) has a unique solution in 
C2m(Ω) ∩ C2m−1(Ω). Denoting

ṽ := Lm−1v,

this follows by induction from the uniqueness in C2(Ω) ∩ C1(Ω) of the problem

Lṽ = 0,

ṽ |∂Ω= 0.

The proof of Theorem 6.1 is complete. �
Remark 6.2. It follows from Theorem 6.1 that the kernel (6.3), which is a fundamental 
solution of the equation (6.1), is the Green function of the boundary value problem (6.1), 
(6.4) in Ω. Therefore, the boundary value problem (6.1), (6.4) can serve as an example 
of an explicitly solvable boundary value problem for the iterated sub-Laplacian in any 
(admissible) domain Ω on the homogeneous Carnot group.

7. Refined Hardy inequality and uncertainty principles

Here we give another example of the use of the developed techniques to prove a refined 
version of the Hardy inequality for homogenous Carnot groups. Let u ∈ C∞

0 (G\{0}), 
α ∈ R, Q ≥ 3, and α > 2 − Q. Then it was shown in [25] that we have the Hardy 
inequality ∫

G

dα|∇Gu|2 dν ≥
(
Q + α− 2

2

)2 ∫
G

dα
|∇Gd|2
d2 |u|2 dν, (7.1)

and the constant 
(

Q+α−2
2

)2
is sharp. In the case of G = (RN , +), this recovers the Hardy 

inequality: here Q = N , d(x) = |x| is the Euclidean norm, and with α = 0, this gives the 
classical Hardy inequality
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∫
RN

|∇u(x)|2dx ≥
(
N − 2

2

)2 ∫
RN

|u(x)|2
|x|2 dx, N ≥ 3, (7.2)

where ∇ is the standard gradient in RN , u ∈ C∞
0 (RN\0), and the constant 

(
N−2

2
)2 is 

sharp. On the Heisenberg group versions of (7.1) were obtained in [18,26] using explicit 
formulae for the fundamental solution of L and of the distance function d. We refer to 
[10,25] and more recent work [35] to for other references on this subject, and to [1] and 
[2] for Besov space versions of Hardy inequalities on the Heisenberg group and on graded 
groups, respectively.

We now present a refined local version of this inequality with an additional boundary 
term on the right hand side of the inequality (7.1). The following Proposition 7.1 also im-
plies inequality (7.1) if we take the domain Ω containing the support of u ∈ C∞

0 (G\{0}), 
so that the boundary term in (7.3) is then equal to zero on ∂Ω. The (very short) proof 
of Proposition 7.1 relies on Green’s first formula that we obtained in Proposition 3.2.

Proposition 7.1. Let Ω ⊂ G be an admissible domain with 0 /∈ ∂Ω and let α ∈ R, 
α > 2 − Q, and Q ≥ 3. Let u ∈ C1(Ω) 

⋂
C(Ω). Then the following generalised local 

Hardy inequality is valid

∫
Ω

dα|∇Gu|2 dν ≥
(
Q + α− 2

2

)2 ∫
Ω

dα
|∇Gd|2
d2 |u|2 dν

+ Q + α− 2
2(Q− 2)

∫
∂Ω

dQ+α−2|u|2〈∇̃d2−Q, dν〉, (7.3)

where d is the L-gauge and ∇G = (X1, . . . , XN1).

If u = 0 on ∂Ω, Proposition 7.1 reduces to (7.1). Moreover, it follows from Remark 7.2
and the range of α that the boundary term in (7.3) can be positive:

Q + α− 2
2(Q− 2)

∫
∂Ω

dQ+α−2|u|2〈∇̃d2−Q, dν〉 > 0. (7.4)

Since it is known that the constant 
(

Q+α−2
2

)2
in (7.3) (or rather in (7.1)) is sharp, the 

local inequality (7.3) gives a refinement to (7.1). We also note that in comparison to 
(7.1), we do not assume in Proposition 7.1 that 0 is not in the support of the function u
since for α > 2 −Q all the integrals in (7.3) are convergent.

Even if 0 ∈ ∂Ω, the statement of Proposition 7.1 remains true if 0 /∈ ∂Ω ∩ suppu.

Remark 7.2. Let us show that the last (boundary) term in (7.3) sometimes changes 
its sign. For this purpose when u = e−

R
2 d, R > 0, applying Green’s first formula (see 

Proposition 3.2) we calculate
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∫
∂Ω

dQ+α−2e−Rd〈∇̃d2−Q, dν〉 =
∫
Ω

∇̃(dQ+α−2e−Rd)d2−Qdν

+ 1
βd

∫
Ω

dQ+α−2e−RdLβdd
2−Qdν =

=
∫
Ω

∇̃(dQ+α−2e−Rd)d2−Qdν =
N1∑
k=1

∫
Ω

Xk(dQ+α−2e−Rd)Xkd
2−Qdν

=
N1∑
k=1

∫
Ω

(
(Q + α− 2)dQ+α−2−1e−RdXkd−RdQ+α−2e−RdXkd

)
(2 −Q)d2−Q−1Xkd dν.

Let α = 0, Q = 3, and Ω 
⋂

Ω 1
R

= {∅}, where Ω 1
R

= {x ∈ G : d(x) < 1
R}. Then we get

∫
∂Ω

de−Rd〈∇̃d−1, dν〉 =
N1∑
k=1

∫
Ω

(Rd−1 − d−2)e−Rd(Xkd)2 dν > 0

can be positive, that is, we give an example which shows that the boundary term can be 
positive. Similarly, if u := C = const, then we get

∫
∂Ω

dQ+α−2C2〈∇̃d2−Q, dν〉

= C2
N1∑
k=1

∫
Ω

(
(Q + α− 2)dQ+α−2−1Xkd

)
(2 −Q)d2−Q−1Xkd dν

= −C2(Q + α− 2)(Q− 2)
N1∑
k=1

∫
Ω

dα−2(Xkd)2dν < 0,

which shows that the boundary term can also be negative.

Proof of Proposition 7.1. Without loss of generality we can assume that u is real-valued. 
In this case, recalling that

(∇̃u)u =
N1∑
k=1

(Xku)Xku = |∇Gu|2,

(7.3) reduces to



522 M. Ruzhansky, D. Suragan / Advances in Mathematics 308 (2017) 483–528
∫
Ω

dα(∇̃u)u dν ≥
(
Q + α− 2

2

)2 ∫
Ω

dα
(∇̃d)d
d2 u2 dν

+ Q + α− 2
2(Q− 2)

∫
∂Ω

dQ+α−2u2〈∇̃d2−Q, dν〉, (7.5)

which we will now prove. Setting u = dγq for some γ �= 0 to be chosen later, we have

(∇̃u)u = (∇̃dγq)dγq =
N1∑
k=1

Xk(dγq)Xk(dγq)

= γ2d2γ−2
N1∑
k=1

(Xkd)2q2 + 2γd2γ−1q

N1∑
k=1

XkdXkq + d2γ
N1∑
k=1

(Xkq)2

= γ2d2γ−2((∇̃d)d)q2 + 2γd2γ−1q(∇̃d)q + d2γ(∇̃q)q.

Multiplying both sides of the above equality by dα and applying Green’s first formula 
(see Proposition 3.2), we get

∫
Ω

dα(∇̃u)udν = γ2
∫
Ω

dα+2γ−2((∇̃d)d) q2dν + γ

α + 2γ

∫
∂Ω

q2〈∇̃dα+2γ , dν〉

− γ

α + 2γ

∫
Ω

(Ldα+2γ)q2dν +
∫
Ω

dα+2γ(∇̃q)qdν ≥
∫
Ω

γ2dα+2γ−2((∇̃d)d) q2dν

+ γ

α + 2γ

∫
∂Ω

q2〈∇̃dα+2γ , dν〉 − γ

α + 2γ

∫
Ω

(Ldα+2γ)q2dν. (7.6)

On the other hand, it can be readily checked that we have

− γ

α + 2γLd
α+2γ = −γ(α+ 2γ +Q− 2)dα+2γ−2(∇̃d)d− γ

2 −Q
dα+2γ+Q−2Ld2−Q. (7.7)

Since q2 = d−2γu2, substituting (7.7) into (7.6) we obtain

∫
Ω

dα(∇̃u)udν ≥ (−γ2 − γ(α + Q− 2))
∫
Ω

dα
(∇̃d)d
d2 u2dν

− γ

2 −Q

∫
Ω

(Ld2−Q)dα+Q−2u2dx + γ

α + 2γ

∫
∂Ω

d−2γu2〈∇̃dα+2γ , dν〉.

Recall that ε = βdd
2−Q, Q ≥ 3, is the fundamental solution of the sub-Laplacian L, 

therefore
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∫
Ω

(Ld2−Q)dα+Q−2u2dx = 0, α > 2 −Q,

independent of whether 0 belongs to Ω or not, since Ld2−Q = 1
βd
δ in G. Thus

∫
Ω

dα(∇̃u)udν ≥ (−γ2 − γ(α + Q− 2))
∫
Ω

dα
(∇̃d)d
d2 u2dν

+ γ

α + 2γ

∫
∂Ω

d−2γu2〈∇̃dα+2γ , dν〉.

Taking γ = 2−Q−α
2 , we obtain (7.5). �

Proposition 7.1 implies the following local uncertainly principles.

Corollary 7.3 (Uncertainly principle on Ω). Let Ω ⊂ G be an admissible domain with 
0 /∈ ∂Ω and let u ∈ C1(Ω) 

⋂
C(Ω). Then

⎛⎝∫
Ω

d2|∇Gd|2|u|2dν

⎞⎠⎛⎝∫
Ω

|∇Gu|2dν

⎞⎠ ≥
(
Q− 2

2

)2
⎛⎝∫

Ω

|∇Gd|2|u|2dν

⎞⎠2

+ 1
2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉

⎛⎝∫
Ω

d2|∇Gd|2|u|2dν

⎞⎠ (7.8)

and also

⎛⎝∫
Ω

d2

|∇Gd|2
|u|2dν

⎞⎠⎛⎝∫
Ω

|∇Gu|2dν

⎞⎠ ≥
(
Q− 2

2

)2
⎛⎝∫

Ω

|u|2dν

⎞⎠2

+ 1
2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉

⎛⎝∫
Ω

d2

|∇Gd|2
|u|2dν

⎞⎠ . (7.9)

Proof. Again, assuming u is real-valued, and taking α = 0 in the inequality (7.5) we get⎛⎝∫
Ω

d2((∇̃d)d)|u|2dν

⎞⎠⎛⎝∫
Ω

(∇̃u)udν

⎞⎠ ≥

(
Q− 2

2

)2
⎛⎝∫ d2((∇̃d)d)|u|2dν

⎞⎠∫ (∇̃d)d
d2 |u|2 dν
Ω Ω
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+1
2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉

⎛⎝∫
Ω

d2|∇Gd|2|u|2dν

⎞⎠

≥
(
Q− 2

2

)2
⎛⎝∫

Ω

((∇̃d)d)|u|2dν

⎞⎠2

+ 1
2

∫
∂Ω

dQ−2|u|2〈∇̃d2−Q, dν〉

⎛⎝∫
Ω

d2|∇Gd|2|u|2dν

⎞⎠ ,

where we have used the Hölder inequality in the last line. This shows (7.8). The proof 
of (7.9) is similar. �

By Remark 7.2, the last (boundary) terms in (7.8) and (7.9) can be positive. Thus, they 
provide refinements to the uncertainty principles on G when we take u ∈ C∞

0 (G\{0}) and 
then Ω large enough so that it contains the support of u, so that these (boundary) terms 
on ∂Ω vanish. In the Euclidean case G = (RN , +) with d(x) = |x|, we have |∇d| = 1, so 
that both (7.8) and (7.9) imply the classical uncertainty principle for Ω ⊂ R

N ,

⎛⎝∫
Ω

|x|2|u(x)|2dx

⎞⎠⎛⎝∫
Ω

|∇u(x)|2dx

⎞⎠ ≥
(
N − 2

2

)2
⎛⎝∫

Ω

|u(x)|2dx

⎞⎠2

, N ≥ 3.

Appendix A. Boundary forms and measures

In this section we briefly describe the relation between the forms 〈Xj, dν〉, perimeter 
measure, and the surface measure on the boundary ∂Ω. We would like to thank Valentino 
Magnani for a discussion on this topic as well as Nicola Garofalo for useful comments.

Let LX denote the Lie derivative with respect to the vector field X. The Cartan 
formula for LX gives

LX = d ıX + ıX d,

where

ıXdν = 〈X, dν〉

is the contraction of the volume form dν = dx1 ∧ . . . ∧ dxn by X. For any left invariant 
vector field Xj we have

∫
Xjϕdν =

∫
div (ϕXj)dν =

∫
LϕXj

dν =
∫

d(ıϕXj
dν) =

∫
ϕ〈Xj , dν〉, (8.1)
Ω Ω Ω Ω ∂Ω
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where we use the Cartan formula and the Stokes formula in the last two equalities, 
respectively. This explains Proposition 3.1 from the general point of view of differential 
forms. Now, recall that the perimeter measure on ∂Ω, which we may assume piecewise 
smooth here for simplicity, is given by

σH(∂Ω) = sup

⎧⎨⎩
N1∑
i=1

∫
∂Ω

ψi〈Xi, dν〉 : ψ = (ψ1, . . . , ψN1), |ψ| ≤ 1, ψ ∈ C1

⎫⎬⎭ .

Denoting by 〈·, ·〉E the Euclidean scalar product, we write

|vH | :=

⎛⎝ N1∑
j=1

〈v,Xj〉2E

⎞⎠
1
2

and

|vH |j := 〈v,Xj〉E
|vH | ,

where v is a vector, which will be later the outer unit (with respect to the horizontal 
stratum) vector on ∂Ω. If dS is the surface measure on ∂Ω, we have

dσH = |vH |dS,

and all these relations are well-defined because the perimeter measure of the set of 
characteristic points of a smooth domain Ω is zero. We can now calculate∫

Ω

Xjϕdν =
∫
Ω

div(ϕXj)dν =
∫
∂Ω

ϕ ıXj
(dν) =

∫
∂Ω

ϕ〈v,Xj〉EdS

=
∫
∂Ω

ϕ
〈v,Xj〉E
|vH | |vH |dS =

∫
∂Ω

ϕ|vH |j dσH .

Combining this with (8.1) we obtain∫
∂Ω

ϕ〈Xj , dν〉 =
∫
∂Ω

ϕ|vH |j dσH . (8.2)

Let us now assume that Xj are orthonormal on g, and let

X =
N1∑
j=1

fjXj .

We write
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vH =
N1∑
j=1

〈v,Xj〉EXj

for a vector v with |vH | = 1. Then we have

〈X, vH〉g =
N1∑
j=1

fj |vH |j .

Now, applying (8.2) with ϕ = fj and summing over j, we get

∫
∂Ω

N1∑
j=1

fj〈Xj , dν〉 =
∫
∂Ω

〈X, vH〉g dσH , X =
N1∑
j=1

fjXj , (8.3)

which gives a link between the form in (3.6) and the perimeter measure dσH .
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