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Abstract—The precise (location) tracking of automated guided
vehicles will be key in enlarging the productivity, efficiency and
safety in the connected warehouse or production infrastructure.
Combining the modest price tag, the adequate coverage and
the potential centimetre accuracy makes Visible Light Position-
ing (VLP) systems appealing as replacements for the current,
high-cost, tracking systems. Model-fingerprinting-based received
signal strength (RSS) VLP enables the required accuracy. It
requires an elaborate optical channel model fingerprinted in a
fine-grained, and predefined positioning grid. Depending on the
grid’s granularity, constructing the fingerprint database demands
a significant computation and storage effort. This paper employs
response adaptive or sequential experimental design to form sparse
channel models, vastly reducing the storage and computation.
It is shown that model-fingerprinting-based RSS only requires
modelling less than 1 percent of the grid points, in an elementary
positioning cell. The sparse model can be re-evaluated as a way
to cope with environment changeover. Model recomputation as
a way of compensating for LED ageing is also studied.

Keywords — Visible Light Positioning, VLP, RSS, fingerprint,
storage, Response Adaptive, Sequential Experimental Design

I. INTRODUCTION

To improve production processes in terms of efficiency,
safety and environmental impact, several Governing Bodies
target using more automation and Internet of Things (IoT)
paradigms in industry, production and logistics. The European
Commission for example launched several initiatives with this
objective, such as Horizon 2020, Industry 4.0 and SmartFac-
tory. The goal is to form connected warehouses or connected
industry infrastructures, where a growing population of robots
and Automated Guided Vehicles (AGVs) should help enlarging
the productivity and help minimizing operating costs.

Consequently, market research companies perceive and even
forecast an increased demand for using automated guided
vehicles (AGVs) [1]. As of 2016, the AGV market was already
worth an estimated (USD) $1.12 billion [1]. Precisely (loca-
tion) tracking, efficiently and dynamically managing (routing)
automated transportation means is of uttermost importance in
increasing the overall efficiency of a value chain [2].

Currently, AGVs are guided via slotted wires in the floor
(difficult to dynamically adapt the routes), via guide tape
(which can be damaged, dirtied and does not allow reaching
arbitrary spaces), via costly pulsed or modulated lasers, via

RF-based solutions (limited accuracy), or via vision guid-
ance (large power consumption) [3]. Unfortunately, these
approaches seem to (at present) suffer from at least one
significant issue. Alternatively, the use of visible light for
location tracking i.e. Visible Light Positioning (VLP) may
empower low-cost AGVs, self-driving along any route.

Research has already demonstrated VLP’s viability, see
e.g. the studies of Zhou [4] and the localisation systems:
Epsilon (beaconing) [5], Luxapose (rolling shutter effect) [6],
Lightitude (received light strength model) [7] and others (more
information on VLP can be found in designated surveys [8]).
Published works proved that VLP can theoretically (either
based on the mathematical derivation of the Cramér-Rao lower
bound or based on simulations) provide an accuracy in the
order of centimetres. Some practical systems have shown
decimetre order accuracy, but these positioning resolutions
are usually obtained in idealised environments (e.g. at limited
receiver-LED distance) [8], [9]. Yet, the combination of the
limited cost (in terms of installation, changeover and envi-
ronmental impact), adequate coverage (due to the solid state
lighting revolution) and the potential centimetre accuracy of
VLP systems [8], [9], does make them highly appealing as
replacements for the current, high-cost, tracking systems.

To obtain accurate 2D localisation of an AGV operat-
ing in an industrial hall corner, this paper employs model-
fingerprinting-based received signal strength (RSS). The latter
makes use of a precomputed propagation map, which accounts
for the relevant channel characteristics and which continu-
ously remains at the disposal of a photodiode (PD)-equipped
receiver. The propagation model holds RSS values for each
LED on all locations on a predefined positioning grid (e.g.
with a location resolution of 1 cm). The grid position which
holds the closest match between modelled and measured RSS
values is taken to be the receiver position. As opposed to the
works in literature, this paper defines its RSS values in terms
of the receiver photocurrent’s individual LED contributions, to
closer resemble a VLP system’s real-life deployment. It conse-
quently considers the angular dependence of the photodiode’s
responsivity. This angular dependence arises from Fresnel
losses (i.e. the photodiode’s surface reflectance changes with
the incidence angle) or from the photodiode package itself
[10], [11]. The extensive effort needed to either compute
(as in e.g. [12]) or store the propagation map, renders the



model-fingerprinting approach rather infeasible. Also, model
recomputation in response to infrastructure changeover, failure
(of e.g. a few LEDs) or performance decreasing factors is
greatly hindered. To minimize model (re)generation or storage,
this paper brings as novelty the response adaptive or sequential
experimental design paradigm (SED) [13]-[15] to Visible
Light Positioning. The SED principle allows greatly reducing
the channel model computation and storage. Model recompu-
tation as to compensate for LED ageing is also studied.

II. BACKGROUND

The domain of logistics/tracking and tracing leaves a
promising potential application for VLP, provided that it
can provide a highly accurate, robust and low cost solution.
Received Signal Strength (RSS)-based visible light-based lo-
calisation minimizes the system requirements: a sole PD or
image sensor suffices. RSS-based positioning estimates require
elaborate propagation (i.e. optical channel) models for them to
be accurate [9]. RSS-based VLP usually entails using either
trilateration or (manual) fingerprinting. Manual fingerprinting
brings accurate localisation with, but at the cost of substantial
effort. Trilateration relates an RSS value RSS; per LED;
(generally the incident (radiant) power Pg; or the induced
photocurrent Ipp ;) to the distance d; between the receiver’s
origin (zy, yu, zv) and each of the LEDs, before determining
the absolute position. In a general form, RS.S; cannot be
expressed as an invertible function of d;, due to the presence
of reflections. Limiting the complexity of the RSS; - d;
relation does impede highly accurate positioning. Combining
both positioning principles, coined model-fingerprinting-based
RSS, should allow for more truthful positioning estimates [12].
The localisation consists of the 3 steps shown in Fig. 1.

A. Model-fingerprinting-based RSS Localisation

K of the ubiquitously available LED fixtures are inten-
sity modulated. This is performed in such a way that the
individual LEDs’ contributions are separable at the receiver.
LEDs are mainly employed as they can be simultaneously used
for positioning (and communication) as well as for efficient
illumination purposes. In response to the incident light, the
receiver photodiode (PD) generates a ‘weak’ photocurrent Ipp
that is proportional (assuming a linearly operating PD [6]) to
the incident instantaneous radiant flux (i.e. ‘optical power’).
After being electronically processed (amplified, converted and
filtered), Ipp is decomposed into a photocurrent contribution
per LED; Ipp ;. {Ipp,} are also taken to be the RSS values,
used in the actual position estimation step (see Fig. 1). In
the third step of the VLP localisation procedure, the receiver
searches the closest match between modelled and observed
RSS values. (Offline) elaborately modelling and discretising
the propagation environment, allows precomputing those mod-
elled RSS values (i.e. forming a map of fingerprint values per
LED). Fingerprint matching is in essence an exhaustive algo-
rithm. This paper does not tinker with the exhaustive search
and uses the root-mean-square error (rMSE) as matching cost
function on the {Ipp;} set [12].

The industrial, producing or distributional hall may be a
particularly challenging positioning environment. It may entail
large (for VLP) transmitter-receiver distances, the presence
of (highly) reflective surfaces, and the disparity in, and con-
straints of to be retrofitted LED fixtures (the LEDs may be
tilted or even time-worn). To account for the performance-
impacting channel factors [16], [17] and all relevant VLP
system components (e.g. the LEDs’ radiation patterns), model-
fingerprint-based RSS requires extensive (and computationally
expensive) channel models (though efficient modelling ap-
proaches have been published, e.g. the combined deterministic
and modified Monte Carlo (CDMMC) channel model of Gu
et al [18] or the analytical method of Chen et al. [19]). The
propagation model holds RSS values for each LED on all
locations on a predefined positioning grid. This grid is usually
defined upfront (all samples selected at once) and is frequently
uniform and rectangular. Depending on the predefined gran-
ularity (e.g. a resolution of 1 cm?) and the exploration space
(e.g. an industrial hall with dimensions of 100 m by 100 m),
the grid requires (in complete form) significant storage e.g.
108 - K values, which with a precision of 8 bytes results in
approximately 298 GB of required storage for 400 LEDs.

B. Response adaptive modelling

The previous paragraph described the necessity for sparse
channel models in model-fingerprinting-based RSS. To intro-
duce sparseness in RSS fingerprints, Liu et al. [20] employ
‘ordinary’ kriging (i.e. spatial interpolation) to estimate the
RSS values at arbitrary locations given existing fingerprints.
The kriging procedure makes use of an empirical variogram,
a (fitted) mathematical model to interpolate. In VLP use
cases, in particular in highly reflective environments (i.e.
with (arbitrary) obstacles introducing a significant Non-Line-
of-Sight (NLOS) contribution), the empirical variogram may
prove difficult to fit. An improper variogram will subsequently
introduce significant channel model and positioning errors.
SparseLoc [21] introduced the Orthogonal Matching Pursuit
(OMP) algorithm (for WIFI), which compresses an RSS vector
per location by representing it with respect to a linear combi-
nation of a few base signals (forming a sparse dictionary).

For both techniques, a predefined number of samples are
selected up front (in one take), before running the sparse
modelling. This one-shot selection can be prone to both over-
sampling and undersampling [15]. Sequential Design (SED)
allows the sequential (i.e. iterative) generation of a space-
filling design. The sample collection’s outputs (here: the
optical channel gain) can be used for a next design iteration
by building a global Surrogate Model [15] (an approximation
function). Aerts et al. combined SED and surrogate modelling
for charting the RF-EMF exposure in urban areas [22].

Highly efficient space-filling SED algorithms can easily be
wielded by employing the Sequential Experimental Design
(SED) (MATLAB) Toolbox of Crombecq et al. [13], [14]. This
paper considers two algorithms, denoted LOLA-Voronoi [13]
and mec-intersite-proj-th [14]. Mc-intersite-proj-th is a Monte
Carlo sampling method that evaluates a criterium (based on
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Fig. 1. The model-fingerprinting-based RSS principle: measuring the RSS values, forming a channel model (creating the fingerprint) and fingerprint matching

the intersite (maximin) and projected distance) for the random
candidate points. The LOLA-Voronoi algorithm couples Monte
Carlo-based Voronoi tessellation (exploration) and local linear
approximations of the associated sample output (exploitation).

Details and mathematical analysis of the SED algorithms
can be found in [13]-[15]. The SED approaches can be
combined with other sparse modelling approaches i.a. Gaus-
sian Mixture Modelling (only store the Gaussian parameters),
Kriging [20] or sparse dictionaries [21].

III. SYSTEM DESCRIPTION

In this paper, all simulations are performed, and all models
are built for an AGV localisation use case. An AGV operates
in the corner part of what could be either an industrial,
manufacturing or distribution hall. The propagation room is
depicted in Fig. 2. This section discusses respectively the LED
transmitter infrastructure (in section III-A), the receiver VLP
setup and the optical channel (in section III-B).

A. LED infrastructure

K = 6 incoherent white chip-on-board (COB) LEDs
are pre-empted for VLP purposes. The LEDs, designated
LED;, i« = 1..K, are hung from the ceiling at preset positions
(xs4, Ysi, h), © = 1.K, h = 6. The LEDs are intensity
modulated as to transmit signals, whose contributions to the
received photocurrent /pp are demultiplexable at the receiver
(using appropriate modulation techniques, see e.g. [23], [24]).
Both the LED coordinates and all needed demultiplexing
information is assumed to be provided to the receiver. As
in industry the LED-to-PD distance is generally amply large
(> 5 m), LED; are assumed modellable as Lambertian radi-
ating point sources (of order m; = 1). Each LED radiates
an early-lifetime optical power (i.e. a radiant flux amplitude)
P, ;(0) = P, ;. Over time, the LEDs’ luminous intensity will
dwindle i.e. LED ageing. As opposed to the sudden failure
behaviour of incandescent illumination, LED lighting’s radiant
flux degrades gradually over its (longer) operating time [25].
In this paper, the influence of LED ageing is modelled as an
exponential decay on the nominal transmitted flux P; ; [26]:
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where t,, and t represent the 70% lumen maintenance
operating time (L70) and the LED’s current lifetime (in hours)
respectively. (1) makes abstraction of the impact (e.g. in
spectrum) of each light loss factor (e.g. thermal effects) [27].

B. Receiver and Environment

Each AGYV is equipped with a single circular photodiode
(PD) (with active area Az = 1 cm? and field of view ¢ =
70°), located h,.. = 1 m above the ground plane. Knowing
the height of the AGYV, the localisation problem reduces to a
2D one. The centre position of the AGV coincides with the
PD’s centre. Assuming an optical channel that is both time-
invariant stationary and having a flat frequency characteristic
(over the operating range) and given the transmitted flux
P, ;(t), the generated photocurrent Ipp satisfies:

Z Ptz p(d}z)h

i=1..K

Ipp(t (' PD? hi }3D = 2
hfj}; p denotes the DC channel gain of the propagation from
LED,, and is used to estimate the receiver location (sec-

tion II-A). The receiver’s axially symmetric (angular) respon-
sivity Ry, (¢:) (Rp(¢:) = 0, |1;] > ) relates % epp to the

DC channel gain on radiant powers hg (1); designates the
incidence angle from LED;):
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Similarly as in most VLP related papers (Uysal et al. pro-
posed alternative visible light models in [28]), hgl) is modelled

in terms of a Line-of-Sight (LOS) h(z ‘Los (hgiLos =0, || >

1) and Non-Line-of-Sight (NLOS) components hcl 111,’205
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Both are expressed using the infrared (IR) light models pro-
posed by Kahn et al. [29]. The filter and concentrator gain are
set to 1 [29]. LED;’s radiation pattern R;(¢;,~;) reduces for a
Lambertian radiator to: Ri(éi,v:) = Re(¢i) = [m 1 cosm(gbi)}

7v; is the azimuth angle in the LED plane. hc,f,]\df?,)OS results

from reflections on walls and obstacles. It is modelled in terms
of (ideally infinitesimally) small surface elements A (with

Ry(¢i) = Rp

m=1
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Fig. 2. The side (a) and aerial view (b) of the VLP simulation room.
The discretisations of the reflectors are shown. {LED;} are indicated.

area dA). To limit computations, the subsequent analysis only
accounts for 1% order reflections.

i Ap - cos(;
hos = Ri(di)- RTW (4)
L dA-cos(0) Ag- ' )
h'Nibs = Re(d)- dczos( ). Ar ;208(¢)~L(9,»,9i) (5)
i,1 1,2

d;, ¢i, ¢ and 6; represent the LED;-to-PD distance, the irra-
diance angle at the LED for the LOS and NLOS component,
and the irradiance angle during reflection respectively. 6} and
1, cover the incidence angle at respectively the wall and PD.
Fig. 1b. shows the definition of the quantities above.

L(6;,0,) models the reflected radiation pattern as consisting
of both a diffuse and specular part i.e. according to Phong’s
model [30]. (6) renders Phong’s model with p, rq4, mq, ms
being the reflection coefficient of the surface, the fraction
of diffusivity, and the Lambertian orders of the diffuse and
specular component.

C. Simulation Configuration

All simulations are performed inside the room, depicted in
Fig. 2. The AGV’s area of activity measures 6 m by 7 m and is
enclosed by a north and west uniform (grey Portland cement-
based [31]) concrete wall (with mg = 1, rg = 1, p = 04
[30]). The room is uniformly meshed with a grid point every
2.5 cm (i.e. unless explicitly specified). Part of the west wall
is covered with a metallic storage rack (mqg = 1, mgs = 6,
rq = 0.2, p = 0.85) of 1.5 m width and 4.5 m height. The
rack, which has a frame thickness of 10 cm, stretches over
3 m and harbours 3 shelves each with 3 pallet stacks. Each
stack consists of 10 wooden pallets (mqg =1, rqg =1, p = 0.2)
of dimensions 1.2 m x 0.8 m x 14.4 cm. The walls, the rack’s
side panels, the rack’s frame and the pallets are per dimension
discretised into 45, 20, 15 and 10 surface elements.

The reference coordinate system X-Y is located at the
floor’s centre. The inter-LED distance is set to 2.5 m. The
LEDs, whose coordinates are ([{0, 2.5}, {—2.5, 0, 2.5}, 6]),
are fabricated to transmit a nominal P; ; of 5 W. The receiver
photodiode, characterised by a maximum responsivity Rp of
0.5 A/W, exhibits noisy behaviour. The noise influence is
modelled in terms of an input-referred current noise, which
is assumed to be both additive and Gaussian with a zero mean
and a o2 variance (a noise component is added to (2)).

The localisation accuracy is consistently evaluated in terms
of the rMSE between the estimated (xp, yp, hrec) and
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Fig. 3. The influence of input-referred current 7ms noise o on the positioning
accuracy (rMSE) pgo for the uniform grid

the actual (zy, yu, hrec) position, defined as: rMSE =
V(@p —zu)2+ (yp —yuv)? in [m]. poo denotes the 90
percentile rMSE. The considered sparse modelling techniques
can be applied in complete industrial halls. To limit the
computational effort, it is assumed that the AGV’s operating
area is obtainable from a complete model (e.g. by being an
elementary positioning cell which compose the industrial hall).

IV. SPARSE MODEL EVALUATION

An optical channel that closely resembles real-life propa-
gation is vital to ensure highly-accurate positioning estimates
(i.e. step 2 of the localisation approach as depicted in Fig. 1).
As stated in section II, a practical model-fingerprinting-based
localisation system requires curtailing the computation, storage
and matching procedure. Furthermore, due to i.a. infrastructure
changeover or (partial) failure, the channel model may need to
be updated as to ensure a reasonable positioning performance.

The requirement of minimizing the latency/downtime and
storage advocates the use of a sparse representation of the
optical channel. This section evaluates the use of non-grid-
based Sequential Experimental Design (see section II-B).

Section I'V-B identifies the response model (i.e. the output)
best used in the sequential design, i.e. both for the mc-intersite-
proj-th and LOLA-Voronoi algorithm. It also indicates the level
of sparseness that can be introduced, whilst maintaining the
capability to well-approximate the channel over a complete
uniform grid. Well-approximating means not heavily compro-
mising the positioning performance. Section IV-A provides the
baseline, with which to compare the sparse modelling perfor-
mance. It discusses the extent of the influence of input-referred
current 7ms noise o on the positioning accuracy. Section IV-B
also compares sparsely modelling the optical channel with
the expensive (uniform grid) baseline model. Section IV-C
focusses on the actual application of the sparse models. To
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combat ageing, the sparse representation is employed to (more)
quickly recompute a propagation model update.

A. Positioning on a Uniform Grid

Before the adequacy of sparse models can be quantified,
this part first discusses the influence of o on the positioning
performance for every grid point (‘tot’). Fig. 3 plots pgg for
a varying o. The ‘in’ and ‘out’ subscript indicate that the
Poo calculation is limited to the area confined between (‘in’)
(Fig. 2b) and outside (‘out’) the LEDs. Evidently, inside the
area confined between the LEDs, py is lowest. The {Ipp;}
there maximally exceed the noise floor. At low o (o0 < 5 nA)
and thus high signal-to-noise-ratio (SNR), the pgg is stable.
Afterwards, an increasing o effectuates a dramatic increase in
Poo- For o < 20 nA, pgq satisfies the decimetre order accuracy
constraint frequently used in literature. For ¢ = 10 nA, a
representative number for a limited bandwidth junction gate
field-effect transistor (JFET)-based transimpedance amplifier,
Poo equals 5 cm. Fig. 3 also shows the resulting o-pgg rela-
tion when reflections are not accounted for in the modelled
RSS wvalues (subscript tot/LOS). It can be concluded that
modelling reflections is important, as not modelling them
introduces a significant pgg offset (i.e. to well above 10 cm).

B. Identification of the Appropriate Sparse Model

This section applies both the LOLA-Voronoi and the mc-
intersite-proj-th algorithm to form sparse representations of
the optical propagation model (i.e. in terms of photocurrent
contributions). Each iteration, both Monte Carlo-sample gen-
eration methods output new samples, continuously distributed
in the positioning area depicted in Fig. 2. The samples are
barred from non-physical locations (no samples are generated
where the storage rack is found). Per sample, the associated
photocurrent magnitudes {Ipp ;} are computed. The collec-
tion of samples and photocurrents yields the sparse model.

Mec-intersite-proj-th selects samples based on maximizing
the projected distance. It is a purely space-filling approach.
LOLA-Voronoi on the other hand reckons with the non-
linearity of the function used to optimise the sampling process
i.e. the model function. In LOLA-Voronoi, candidate samples
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Fig. 5. The influence of sparseness on the (reconstructed) channel model
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found in the non-linear regions receive a more pronounced
consideration in the candidate sample selection process.

The model function or sequential design is per iteration
updated by incorporating the newly generated samples and
their appertaining outputs (albeit/albethey only effectively fed
back and used for LOLA-Voronoi). The nature of the outputs
is dictated by an output configuration, and associated output
function. The model function will closer and closer resemble
the output function as more samples are added. This paper
considers 5 output configurations: ‘IND LOS’, ‘IND NLOS’,
‘IND TOT’, “TOTAL LOS’, “TOTAL TOT’. Each configura-
tion is denoted by two parts. The first part indicates whether
the individual (‘IND’) photocurrent contributions of each LED,
or whether the sum of the photocurrent contributions (i.e.
the total photocurrent ‘TOTAL’), is used to perform sample
selection with. The second part denotes if the LOS, NLOS
or the sum of both (‘TOT’) is employed as an optimization
(output) function. The former 3 configurations thus entail an
optimization procedure in K (the number of LEDs) dimen-
sions during the sample selection process, the latter 2 in 1.

Besides selecting the to be optimised output function, this
section also indicates the level of sparseness that can be intro-
duced before the positioning performance is heavily compro-
mised. Hereto, both the rMSE on the modelled photocurrents
and on the positioning are plotted for a varying number of
generated samples (to build the channel model with).

Evaluating which of the sequential design algorithms is
best used for this particular VLP use case, is a twofold
procedure. First, the sparse model is interpolated to cover the
uniform grid (this paper limits itself to bilinear interpolation).
The 90" percentile normalised rMSE value ‘rMSEjap’
(unitless) is computed to quantify the resemblance between
the interpolated sparse model and the uniform grid model.
In other words, the rMSE between modelled and measured
photocurrent contributions /pp ; and I, ; is normalised with
respect to Ipp ;. Second, for an input-referred current rms
noise magnitude o = 10 nA, the 90" percentile of the rMSE
on the positioning ‘rMSEppg’ (in [m]) is also computed.
Both rMSFEyap and rMSEpos are computed for each
point on the uniform grid (i.e. every 2.5 cm).
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Figures 4 and 5 show 1 — rMSEpap and TMSEpos
for the mc-intersite-proj-th and the LOLA-Voronoi algorithm
respectively. Both rMSEy4p and rMSEpos show expo-
nentially decreasing trends in function of the number of gen-
erated samples, and this for both sequential design algorithms.
When the number of samples contained in both sparse model
exceeds 5 per mille (1/10 of a percent) of the uniform grid, the
performance gain becomes more gradual with an increasing
amount of model samples. Figures 4 and 5 also demonstrate
that at the plotted sparseness levels s, the output configuration
only slightly influences the sparse model’s performance. This
can be attributed to the excellent space-filling properties of
both sampling algorithms.

It can also be remarked that LOLA-Voronoi performs
(slightly) superior to mc-intersite-proj-th, both in terms of
1 — rMSEpyap and TMSEpos for a sparsity s > 0.05%
(Fig. 6 provides a zoomed view of ‘TOTAL TOT’). As a conse-
quence of its sample generating paradigm, in which the sample
density in nonlinear (e.g. with a significant NLOS contribu-
tion) regions is augmented, the LOLA-Voronoi algorithm is
able to more accurately represent the positioning map. For in-
stance, for s = 0.5%, the mean model resemblance (computed
over the 5 output configurations) amounts for mc-intersite-
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x [Om]
(a) (b)

Fig. 8. Spatial distribution of the sparse model samples for (a) mc-intersite-
proj-th and (b) LOLA-Voronoi, blue dots represent the LEDs

proj-th and LOLA-Voronoi to 1 — rMSEpAp, intersite
96.8% and 1 — rMSEpnap roLa = 97.35% respectively.
LOLA-Voronoi’s improved ability for model approximation in
1 — rMSFEp ap also translates in a lower positioning error.
The mean positioning rtMSE of the 5 output configurations
rMSEpogs, intersite €xceeds rM SEpog, rora: e.g. for s =
0.5%, TMSEPOS, intersite — 11.18 cm and TMSEPOS’ LOLA
= 10.99 cm. In general, ‘TOTAL TOT’ seems to be the pre-
eminent output configuration. Both LOS and NLOS contribu-
tions are taken into account, and the sample selection is only
optimised in one dimension which benefits the design time.

The variance of LOLA-Voronoi models are slightly larger
than their mc-intersite-proj-th counterparts, due to their depen-
dence on the outputs of the selected samples in the early stages
of the sequential experimental design. For both sequential
design approaches, the modelling variance decreases when
more samples are added to the sparse model. At s > 0.2%,
the variance is rather limited (upper bounded by about 5 mm).

For s < 1%, the uniform grid rMSE (see Fig. 3) pgy =
5 cm still significantly outscores both algorithm’s rM SEpps.
Part of the performance gap can be attributed to the bilinear in-
terpolation used. Specifically for LOLA-Voronoi, another per-
formance decreasing factor arises due to the LOLA paradigm.
For this particular AGV operating area (with Lambertian
LEDs), the impact of LOLA can be explained as follows. Per
LED, the maximal Ipp_ ; (i.e. the photocurrent contribution)
is found in the neighbourhood of the point directly under the
LED as a result of d; and Rg(¢;) being minimal and maximal
there respectively (and the NLOS component magnitude being
rather limited). For locations around this point of maximal
Ipp,s, the gradient of the Ipp ; surface is rather small and
the linearity rather large. This is a consequence of the limited
magnitude of the gradient of Rg(¢;) for small ¢;. As a result
of the LOLA paradigm, the regions of limited gradients are
undersampled. This may lead to an underestimation of the
maximal Ipp ; in the sparse model, which after interpolation
may have as an effect that Ipp ; (of the interpolated sparse
model) may be underestimated in more spatially-spread re-
gions. The influence that non-Lambertian LEDs have on the
sparse modelling is therefore worth investigating.

Figure 7 further highlights the difference between mc-
intersite-proj-th and LOLA-Voronoi-based positioning. It con-



siders the reference AGV trajectory that is depicted in black.
The green and light orange curves denote the localised trajec-
tories of LOLA-Voronoi and mc-intersite-proj-th-based RSS.
Here too, the former scores better. For LOLA-Voronoi, the
50", 90" and 95" percentile of the rtMSE on the positioning
estimates amount respectively to 3.7 mm, 7.3 cm and 9.5 cm.
The 50", 90" and 95 percentile tMSE, corresponding to
mc-intersite-proj-th equal 3.9 mm, 13.8 cm and 27.3 cm. In
comparison, the uniform grid’s pso and pgy are 0.6 mm and
1.7 cm. Figure 8 also plots both algorithms’ model samples.

Depending on both the required positioning accuracy and
the available storage, an appropriate LOLA-Voronoi (or mc-
intersite-proj-th)-based sparse model can be selected. Impos-
ing a trade-off between s and the guideline pgy ~ 10 cm,
the sparse model with s = 0.5% (with ‘TOTAL TOT’) is
chosen to work with in the following sections. At s = 0.5%,
the interpolated sparse model strongly resembles the uniform
grid visually. It does show a worsening in positioning tMSE
of 6 cmm compared to the uniform grid’s. In the subsequent
sections, the practicality of this model as a way to compensate
for LED ageing will be studied. Technically, for pgp < 10 cm
to be satisfied, s should exceed 0.8%.

The outlined sparse modelling approaches can be applied
to arbitrary environments (e.g. equipped with different LEDs).
They can also be applied in conjunction with different ways
of computing the optical propagation (see e.g. the analytical
model of Chen et al. [19]). While the SED method remains
applicable, the performance of the sparse models will vary
though. Furthermore, as SED is an iterative approach, prior
(more sparse) or subsequent (less sparse) models can be
derived from a current working model.

C. Fast Model Recomputation for LED Ageing compensation

Nearing the end of a LED’s operating time, the nominal
transmitted flux P ; starts diminishing rapidly (see (1)). Fig-
ure 9 illustrates the extent of its impact on the positioning
performance, P90, ageings P90, ageing, sparse represent the pOSi'
tioning accuracy in the case of using the uniform grid model
and the sparse model (interpolated to the grid) respectively.
top is set to 50000 h for each of the LEDs.

From Figure 9, it can be derived that prolonged usage of the
same LEDs significantly impacts the positioning performance,
once the operating time ¢ exceeds 10000 h. During the first
1000 hs of operation, the AGV’s positioning performance re-
mains unaffected (both pgg, ageing and poo, ageing, sparse)- The
subsequent 2 500 working hours (P, ;(3500) = 97.5% P, ;(0))
already experience a pgg (Pgo, ageing) increase to about 10 cm.
Operating the same LEDs notably longer violates the pgg ~
10 cm constraint. Complying with this constraint, requires
changing the LEDs or better (certainly cheaper) recomputing
the channel model to account for the decreased P;(t). Inter-
estingly, the sparse model is more robust when ¢ > 10000 h
(as it underestimates the channel’s DC gain).

D90, sparse recomp. denotes the pgo — ¢ relation, when LED
ageing is constantly compensated (e.g. every week) by re-
triggering the sparse model. Continuous compensation entails

estimating the LED ageing, via a (perfect) ageing model or
via a closed-loop system (e.g. by placing a PD near each
LED to monitor its P; ; and broadcasting this information). Ev-
ery 5000 hs (infrastructure or receiver-side) recomputing the
sparse model, brings the pgo, compensate every 5000n — t Telation
with. Remarkably, during ¢ € [10%, 10*], poo, ageing, tot/LOS
(the channel model only accounts for LOS transmission)
dips for increasing operating time ¢. In this ¢ region, ageing
alleviates (i.e. by attenuating the total induced photocurrent)
the positioning error resulting from the by reflections added
NLOS photocurrent. The recomputation of the sparse model
also supports non-uniform ageing across LEDs.

V. CONCLUSION

This paper investigates the aptitude of response adaptive
or sequential experimental design in reducing the required
storage and computation of the positioning grid’s fingerprints
in model-fingerprinting-based localisation. It evaluates two it-
erative, sequential Monte Carlo-based space-filling algorithms:
mc-intersite-proj-th and LOLA-Voronoi. Utilising the sequen-
tial design methods allows the required storage to drop below 1
percent of the storage that was required for the traditional (one-
shot) uniform grid. This is when the sparse model is evaluated
on each point of the initial grid. The actual introduceable
model sparseness largely depends on the preset requirements
in terms of accuracy and storage.

Both sampling algorithms provide a good channel model
coverage. For LOLA-Voronoi, the associated propagation
model shows, at a 0.5% sparsity and at an input-referred rms
noise current o of 10 nA, a 90" percentile positioning rMSE
that worsened an acceptable 6 cmm compared to the uniform
grid case. The sparse model’s performance can be boosted by
tailoring the employed interpolation and positioning method
(e.g. a different fingerprinting cost function).

Future work will consist of comparing (i.a. in terms of
robustness) the sequential design approaches of this paper with
other sparse modelling techniques, such as gaussian process-
based sampling. Also, the performance of grid-based SED will
be compared to the non-grid based SED of this paper. The mc-
intersite-proj-th and LOLA-Voronoi algorithms will be required
to only output samples laying on the uniform positioning grid.

In addition, the introduction of sparsity in the channel
models of vast positioning halls will be evaluated. Lastly, the
experimental verification of the conclusions of this paper is
part of the future work.
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