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While apical growth in plants initiates upon seed germination, radial growth is only primed 

during early ontogenesis in procambium cells and activated later by the vascular cambium1. 

Although it is not known how radial growth is organized and regulated in plants, this system 

resembles the developmental competence observed in some animal systems, in which pre-existing 

patterns of developmental potential are established early on2,3. Here we show that the initiation 

of radial growth occurs around early protophloem sieve element (PSE) cell files of the root 

procambial tissue in Arabidopsis. In this domain cytokinin signalling promotes expression of a 

pair of novel mobile transcription factors, PHLOEM EARLY DOF (PEAR1, PEAR2) and their 

four homologs (DOF6, TMO6, OBP2 and HCA2), collectively called PEAR proteins. The PEAR 

proteins form a short-range concentration gradient peaking at PSE and activating gene 

expression that promotes radial growth. The expression and function of PEAR proteins are 

antagonized by well-established polarity transcription factors, HD-ZIP III4, whose expression is 

concentrated in the more internal domain of radially non-dividing procambial cells by the 

function of auxin and mobile miR165/166. The PEAR proteins locally promote transcription of 

their inhibitory HD-ZIP III genes, thereby establishing a negative feedback loop that forms a 

robust boundary demarking the zone of cell divisions. Taken together, we have established a 

network, in which the PEAR - HD-ZIP III module integrates spatial information of the hormonal 

domains and miRNA gradients during root procambial development, to provide adjacent zones 

of dividing and more quiescent cells as a foundation for further radial growth.  

 Cambial growth in plants is initiated within the procambial tissues of the apical meristems 

through periclinal (i.e. longitudinal) divisions associated with formation of the vascular tissues xylem 

and phloem1 (Extended Data Fig. 1a). It has been established that during procambial development in 

Arabidopsis roots there are distinct domains for high auxin and cytokinin signalling, which mark the 

regions for further development of xylem and phloem/procambium, respectively5-8. To accurately map 

the spatial distribution of the periclinal divisions, we established a new nomenclature for the root 

procambial cells, including PSE-lateral neighbours (PSE-LN) as cells directly contacting both PSE 

and the pericycle, the outer procambial cells (OPC) as procambial cells adjacent to the pericycle but 

not contacting PSE, and SE-internal neighbours (PSE-IN) as cells located internal to and directly 

contacting PSE (Fig. 1a). Both the PSE cell and PSE-LN showed higher activity of periclinal cell 

division than the OPC and PSE-IN (Fig. 1b, Extended Data Fig. 1b-d and Supplementary Information). 

We observed virtually no periclinal divisions in metaxylem (MX) and internal procambial cells (IPC) 

(Fig. 1b). Furthermore, blocking symplastic transport genetically9 between the PSE and the 

surrounding cells results in a dramatic reduction in the number of cell files, not only in PSE lineage 

but also in the PSE-LN lineage (Extended Data Fig. 2a-e). Thus, the proliferative activity in 

procambium is centred on and around PSE and may involve symplastic intercellular signals.  

 By searching in silico for transcription factors enriched in early PSE10 (Extended Data Fig. 

3a), we identified a pair of DOF transcription factors11, PHLOEM-EARLY-DOF 1 (PEAR1)/DOF2.4 

and PEAR2/DOF5.112 (Extended Data Fig. 3b). RNA in situ hybridization and transcriptional fusion 

constructs validated that both PEAR1 and PEAR2 are transcribed specifically in PSE cells (Fig. 1c and 

Extended Data Fig. 3d). However, fluorescent tagged versions of the PEAR proteins show localization 

not only in PSE but also in PSE neighbouring cells (PSE-LN and PSE-IN), indicating that these 

proteins move across short ranges via plasmodesmata (Fig. 1d, Extended Data Fig. 2f-g, 3d and 4a-d).  



We next investigated whether the loss-of-function of these genes would lead to a phenotype 

corresponding to the one observed when symplastic transport is compromised (Extended Data Fig 2c). 

However, we did not find such phenotype in single or double mutants corresponding to PEAR1 and 

PEAR2 (Extended Data Fig. 5a and b). We subsequently identified DOF1.1/OBP213, DOF3.2/DOF614, 

DOF5.6/HCA215, and DOF5.3/TMO616 as additional PSE specific/abundantly expressed DOF genes 

with a broader gene product localization (Extended data Fig 3d). Furthermore, overexpression of any 

of these six loci results in an increased number of cell files (Extended Data Fig. 3c). In addition, we 

observed that DOF6, HCA2 and TMO6 are upregulated in pear1 pear2 double mutant apparently as a 

compensation response (Extended Data Fig. 3e, see also Supplementary Information). Among the 

several higher order combinatorial mutants involving all six genes, we found the pear1 pear2 tmo6 

triple mutant to display reduced radial growth variably (Fig. 2a, c and f), while the corresponding three 

double mutants did not show this phenotype (Extended Data Fig. 5b). Furthermore, the pear1 pear2 

dof6 tmo6 quadruple mutant results in all plants with further, uniformly reduced radial growth 

corresponding to the line with compromised symplastic trafficking (Fig. 2d, f and Extended Data Fig. 

2c), indicating that these four mobile PEAR proteins play a major role in radial growth. In addition, 

the pear1 pear2 dof6 obp2 hca2 quintuple mutant resulted in a population of slowly elongating roots 

(around 30 per cent, n=300) with a reduction in radial growth (Fig. 2b and f), whereas the 

corresponding five quadruple mutants for the five genes did not display a strong phenotype (Extended 

Data Fig. 5b). The introduction of obp2 and hca2 mutations into the pear1 pear2 dof6 tmo6 quadruple 

background (resulting in the pear1 pear2 dof6 tmo6 obp2 hca2 hextuple mutant) did not result in 

further reduced radial growth (Fig. 2d-f), collectively suggesting a significant but minor contribution 

of OBP2 and HCA2. We were able to suppress the phenotype of the quintuple and/or hextuple mutants 

with all six genes (Extended Data Fig. 5c, d and see Supplementary Information). Collectively these 

data indicate that the mobile PEAR proteins redundantly control cell proliferation in and around PSE 

cells. Their effects are likely to be both cell autonomous and/or non-cell autonomous as several 

putatively direct target genes, including a central regulator of phloem formation SUPPRESSOR OF 

MAX2 1-LIKE3 (SMXL3)17, are expressed in both PSE and its surrounding cells (Fig. 2g-h and 

Extended Data Fig. 6, also see Supplementary Information). Moreover, ectopic expression of SMXL3 

is sufficient to enhance periclinal cell divisions (Extended Data Fig. 6j). 

 Earlier studies have highlighted cytokinins in regulating procambial cell proliferation6,8. 

During root development, cytokinin signalling reporter, pARR5::RFPer18 is initially activated and 

maintained in PSE and its surrounding procambial cells, later becoming concentrated in the procambial 

cells neighbouring to the xylem cells, while auxin response is maintained in xylem domain7,8 

(Extended Data Fig. 7a, and see Supplementary Information). Cytokinin signalling reporter partially 

overlaps with the PEAR1 transcriptional domain (Fig. 3a). Exogenous cytokinin application rapidly 

increased the level of some of the PEAR transcripts (Extended Data Fig. 7b), and sustained cytokinin 

treatment resulted in a radial expansion of PEAR expression domains (Extended Data Fig. 7c). 

Conversely, both PEAR1 and TMO6 transcription were highly reduced in the procambial tissue of 

cytokinin signalling loss-of-function mutant wooden-leg (wol)5,19 (Fig. 3b and Extended Data Fig. 7d) 

and in plants overexpressing ARR2220, an inhibitor of cytokinin signalling (Fig. 3d and e). However, 

expression of both genes was restored by the induction of cytokinin signalling in wol (Fig. 3c and 

Extended Data Fig. 7d). In addition, we validated the requirement of cytokinin signalling for PEAR1 



expression during embryogenesis (Extended Data Fig. 7e-r, and see Supplementary Information). 

Taken together, our results indicate that initiation of PEAR1 expression in early embryogenesis is 

independent of cytokinin signalling, but by the time the bisymmetric cytokinin pattern is formed at 

early heart stage, PEAR1 transcription is activated and maintained post-embryonically by cytokinins.  

 Almost no periclinal cell divisions were observed in the cells non-adjacent to the pericycle, 

including PSE-IN where both cytokinin response and PEAR protein are present (Fig. 1b-d and 3a), 

suggesting an inhibitory mechanism restricts PEAR function in the inner cells. We previously observed 

an increased cell number in the vascular tissue of quadruple loss-of-function mutant of the five Class 

III HOMEODOMAIN LEUCINE ZIPPER (HD-ZIP III) genes21,22 (Fig. 4a, d and g). These ectopic cell 

divisions occur in cells non-adjacent to the pericycle (Extended Data Fig. 8a-e). We observed high 

levels of three HD-ZIP III proteins, PHABULOSA (PHB), CORONA (CNA) and REVOLUTA (REV), 

in non-dividing procambial cells, IPC and PSE-IN, whereas their expression was absent in the actively 

dividing cells of the PSE and PSE-LN (Extended Data Fig. 8f-k). In this domain endodermal-derived 

mobile miR165/6 eliminates HD-ZIP III messenger RNA22,23, suggesting that HD-ZIP III inhibit 

periclinal cell divisions of PSE-IN by antagonizing the functions of co-localized PEAR proteins. This 

is further supported by our observation that overexpression of PEAR1 in the miRNA-resistant phb-1d 

mutant which has elevated levels of PHB22,23 is less effective than overexpressing PEAR1 in wild-type 

plants (Extended Data Fig. 8l-o). Hence, to sharpen the boundary between dividing and non-dividing 

cells, the expression pattern of both HD-ZIP III and PEAR proteins must be tightly controlled. 

 Auxin is known to promote the xylem associated HD-ZIP III transcription24,25. However, PHB, 

CNA and REV show broader expression of both transcriptional and translational reporters (Fig. 4h, 

Extended Data Fig. 8f-h and Extended Data Fig. 9), suggesting that other factors may enhance HD-

ZIP III transcription in the peripheral region. Interestingly, we observed a significant reduction of CNA 

transcription in PSE-neighbouring cells in the pear quintuple background (Fig. 4h-j). In addition, 

PEAR1 overexpression enhanced the transcription of HD-ZIP III genes, especially in the central 

domain of vascular tissue (Extended Data Fig. 9). These data suggest that PEAR1 locally enhances 

HD-ZIP III transcription at PSE-neighbouring cells. As previous work has reported that PEAR1 has 

the potential to bind HD-ZIP III promoters26,27, it is possible that these interactions are direct. As HD-

ZIP III and PEAR1 show complementary expression patterns, we explored whether HD-ZIP III could 

regulate PEAR1 transcription. PEAR1 expression was severely attenuated in mutants showing elevated 

levels of HD-ZIP III such as phb-1d and shr-222 (Extended Data Fig.8p-t). Together these data suggest 

a feedback loop between HD-ZIP III and PEAR1 transcription.  

 Furthermore, to examine a possible effect of the HD-ZIP III on the mobile PEAR1 proteins, 

we measured the diffusion coefficient and movement pattern of PEAR1-GFP in wild type and in the 

hd-zip III quadruple mutant where PSE is formed in a triarch arrangement but PEAR1 transcription is 

restricted to PSE as observed in wild type (Extended Data Fig. 8u and w). We observed that the 

diffusion coefficient of PEAR1-GFP is significantly higher and the protein moves further in the mutant 

compared to wild type (Fig. 4k-m and Extended Data Fig. 4). To understand the significance of this 

enhanced PEAR1 movement, we analysed the cell proliferation pattern of combinatorial pear1 pear2 

dof6 obp2 hca2 phb phv cna athb8 nonuple and pear1 pear2 dof6 tmo6 obp2 hca2 phb phv cna athb8 

decuple loss-of-function mutants. We found that these mutants showed a reduced number of periclinal 

cell divisions in the vascular cells both adjacent to and non-adjacent to the pericycle compared to the 



hd-zip III quadruple mutant (Fig. 4a-g and Extended Data Fig. 8d-e). This indicates that HD-ZIP III 

inhibit periclinal cell division partially through inhibiting PEAR1 movement to position the cell 

division zone around phloem.  

 In order to further conceptualize the observed interactions between PEAR and HD ZIP III and 

test the capacity of this network to generate sharp boundaries, we incorporated the PEAR factors into 

a spatially one dimensional network model with HD-ZIP III, miR165/6, auxin and cytokinin as defined 

in previous theoretical studies 8,28,29 (Supplementary Modelling Information). The model is defined on 

a line in one spatial dimension representing 3, 4 or 5 cells from the centre of the xylem axis to the outer 

edge of the PSE cell (Extended Data Fig. 10a-d and Supplementary Modelling Information). One 

particularly interesting aspect of the system is that the network involves dual negative feedback loops, 

in which HD-ZIP III transcription is activated by PEAR1 (Interaction (1) in Extended Data Fig.10c), 

while in turn both PEAR1 transcription and protein movement are inhibited by HD-ZIP III (Interaction 

(2) and (3), respectively in Extended Data Fig.10c). We ran simulations exploring the steady state 

patterns created in networks with the above interactions and in scenarios when one of the interactions 

was missing (Extended Data Fig. 10d-h). Based solely on two inputs imposed at the margins, auxin 

(xylem) and miR165/6 (outer margin), the model predicts the spatial distribution of cytokinin, as well 

as PEAR and HD-ZIP III proteins (Extended Data Fig. 10d-h). The version of the model incorporating 

all three interactions (i.e repressing both the transcription and movement of PEAR) results in the 

sharpest gradients of PEAR and HD-ZIP III proteins (Extended Data Fig. 10f) with both PEAR1 

protein and HD-ZIP III localized within the PSE-IN, consistent with experimental observations 

(Extended Data Fig. 10e). To our knowledge this is the first report of a role for the dual regulation of 

both transcription and movement of a developmental regulator in sharpening boundaries. 

Collectively our research has uncovered a regulatory network involving the dual regulation 

of gene transcription and protein movement, in which the spatial distribution of phytohormones and 

small RNA is decoded into the activity of two functionally antagonistic sets of transcription factors, 

PEAR and HD-ZIP III, during root procambial development (Extended Data Fig. 10i). The mobile 

PEAR factors promote cell proliferation around the two early protophloem sieve element cell files, 

which constitute two new organizers just proximal to the quiescent centre. These organizers surround 

a more quiescent central zone defined by the HD-ZIP III factors. In this way, the PEAR - HD-ZIP III 

module specifies a lateral meristem within an apical meristem and as such, forms a foundation for 

further cambial development30. Therefore, in the future it will be interesting to determine how 

extensively this procambial pathway also contributes to ontogenetically late processes such as wood 

and storage organ formation in the crop species.  
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Methods 

 

No statistical methods were used to predetermine sample size. The experiments were not randomized, 

and investigators were not blinded to allocation during experiments and outcome assessment. 

Experiments were repeated at least twice. All experiments were repeated successfully. 

 

Plant materials and growth condition 

Arabidopsis thaliana lines used in this study were either in Columbia or Landsberg erecta background. 

The following alleles were obtained from the publicly available collections: pear1 (CSHL_GT8483) 

in Ler, pear2 (SALK_088165) in Col-0, obp2 (SK24984) in Col-4, dof6 (Wiscseq_Ds_Llox351c08) 

in Col-0, hca2 (GK-466B10) in Col-0. Knock-out alleles of TMO6 were generated using CRISPR-

Cas9 technology as previously described31. The following protospacer target sequence was selected as 

it had no predicted off-site targets and allowed screening via NheI restriction using the CRISPR-P web 

tool32. The Protospacer adjacent motif is underlined: GGACACCTGAGAGCTAGCTCCGG. 

Successful mutagenesis was confirmed via Sanger sequencing in plants of the T2 and T3 generation 

that no longer carried the Cas9 transgene. Four TMO6 mutant alleles were identified: tmo6-1 (+A), 

tmo6-2 (+T), tmo6-3 (deletion of 5 bp and at the same time insertion of 26 bp) and tmo6-4 (-5 bp) 

(Extended Data Fig. 5a). The alleles tmo6-1, -2, and -3 were found in the pear hextuple mutant and 

caused the pear hextuple phenotype, while tmo6-4 was found in the tmo6 single mutant, respectively. 

The genotyping primers for these mutants are listed in Supplementary Table 1. hd-zip III quadruple 



(phb phv cna athb8) was described previously21. Plant growth conditions were described previously5.  

  

Histological analysis 

Primary roots of vertically grown 4 to 5-day-old seedlings were used for histological analyses. For 

confocal imaging, root samples were stained with propidium iodide (PI), aniline blue (AB) or SCRI 

Renaissance 2200 (SR2200) (Renaissance Chemicals, UK). The method of PI and AB staining were 

described previously9,33. For SR2200 stain, root samples were fixed in SR2200 solution (4% 

paraformaldehyde, 0.1% (v/v) SR2200 in PBS buffer (pH7.4)). Then samples were washed with PBS 

buffer and transferred into the ClearSee solution34. Confocal imaging was performed on Leica TCS 

SP5, Leica TCS SP8, Leica TCS SP5 II HCS-A or Nikon C2 CLSM using a solid state blue laser 

(480nm) for GFP, a green laser (514nm) for VENUS, a lime laser (DPSS 561nm) for RFP and PI, and 

a UV laser (diode 405nm) for SR2200. Transverse plastic sections of root were performed as described 

previously5. For histological analyses of embryo, dissected embryos were mounted in SR2200 solution 

and visualized by the confocal microscopy. 

 

Mapping of the position of periclinal cell divisions 

A series of 2D confocal images of Arabidopsis root vascular tissue were recorded at 0.5 µm intervals 

using Nikon C2 CLSM or Leica TCS SP8. Cross section images in each developmental stage were 

created by ImageJ software from a series of 2D confocal images, and the cell segmentation was done 

using CellSeT35. For more information, see Supplementary Information.  

 

Box plots 

Box plots were created with standard box blot setting (the first and third quartiles, split by the median; 

whiskers extend to a maximum of 1.5× interquartile range (IQR) beyond the box.) Outliers are 

indicated as black dots.  

 

DNA constructs and transgenic plants 

Most of transgenic constructs were produced by using Gateway or multisite Gateway system 

(Invitrogen) as described previously18. To generate the transcriptional fusion constructs with GFP-GUS 

each promoter sequence was cloned into pDONR221 and fused to GFP-GUS coding sequence in the 

destination vector pBGWFS7 by normal LR reaction. For other transcriptional fusion constructs, 

including pPEAR1::VENUSer, pPEAR2::VENUSer, pAHA3::RFPer, pOBP2::VENUSer, 

pHCA2::RFPer, pTMO6::RFPer and pREV::RFPer and the transcriptional fusion constructs of 

PEAR1/PEAR2 downstream genes, each promoter was cloned into pDONRP4_P1R, and assembled 

with the coding sequence of fluorescent reporter (VENUSer or RFPer) and terminator into the 

destination vectors, pHm43GW (Hygromycin resistant), pBm43GW (Basta resistant) or by multisite 

Gateway system. To produce the transcriptional fusion constructs of HD-ZIP III, including PHB and 

CNA, each promoter was inserted upstream of the GAL4:VP16 (GV) coding region of pBIB-UAS-

GFPer-NtADH5’-GV vector36. For most of the translational fusion constructs of PEAR genes, except 

for pPEAR1::PEAR1-GFP, each promoter was cloned into the first-box vector pDONRP4_P1R, and 

each coding sequence was cloned into vector pDONR221, thereafter each promoter and coding 

sequence were assembled with pDONR P2R_P3-terminator/reporter into pHm43GW, pBm43GW or 



pFR7mGW by multisite Gateway system18. To generate other translational fusion constructs, including 

pPEAR1::PEAR1-GFP, pCNA::CNA-GFP, pATHB8::ATHB-GFP and pREV::REV-GFP, each 

genomic fragment which contains promoter, coding and its 3’ region, was cloned into pAN19 vector. 

Then GFP coding sequence was fused to C-terminus of each coding sequence. Finally, each 

translational fusion sequence was inserted into the modified pBIN19 vector with Basta resistance23. 

For the overexpression construct, including PEAR genes and CRE1, the coding sequence of each genes 

was assembled with stele-specific estradiol-inducible promoter (pCRE1[XVE]) into pHm43GW or 

pBm43GW by the Multisite Gateway system described previously18. To construct 

pPEAR1[XVE]::icals3m, 1.5kb PEAR1 promoter was cloned into p1R4-ML:XVE vector18, and 

assembled with icals3m sequence into pBm43GW9. The primers for DNA construction and the list of 

plasmids are shown in Supplementary Table 1. 

 

In situ hybridization 

Amplified fragments of PEAR1, PEAR2 and OBP2 were cloned into pGEM-T Easy (Promega) vector 

and fragments of DOF6, HCA2, TMO6 into pCR-Bunt II-TOPO vector (Invitrogen) following 

manufacturer’s instructions. In order to obtain antisense probes, plasmids were first linearized by 

restriction enzyme treatment: MluI for PEAR1 and OBP2, ScaI for PEAR2, HindIII for TMO6 and 

DOF1, and XbaI for HCA2 were used. Linearized plasmids were digoxigenin (DIG) labelled using 

DIG RNA Labelling Kit (Roche) following manufacturer’s instructions. For PEAR1, OBP2, TMO6 

and DOF1, T7 RNA polymerase and for PEAR2 and HCA2, SP6 RNA polymerase were used. mRNA 

detection on a whole-mount seedlings was performed as described37. Images were taken with Zeiss 

Axioimager microscope with either 20x or 40x objective.  

 

Transcriptome analysis 

Targets of PEAR1 and PEAR2 were identified by analysing transcriptional changes after 

dexamethasone (DEX) treatment of pRPS5A::PEAR1-GR and pRPS5A::PEAR2-GR. To identify 

putative direct targets, DEX treatment was also performed with cycloheximide (CHX), which inhibits 

protein synthesis and therefore activation of indirect targets. 3-day-old seedlings were grown on 

control medium and transferred to medium containing 10 μM DEX or 10 μM DEX and 10 μM CHX 

for 2h, after which root tips were collected and RNA extraction was performed. Total RNA (100 ng) 

was labelled using GeneChip WT PLUS Reagent Kit (Thermo Fisher Scientific) and hybridized to 

GeneChip Arabidopsis Gene 1.1 ST array plates (Affymetrix). Sample labelling, hybridization to chips, 

and image scanning were performed according to the manufacturer’s instructions. Microarray analysis 

was performed as previously described to yield significantly up-regulated genes (>1.0-fold; P < 0.05)8. 

Venn diagram of significantly up-regulated genes was made using Venny 2.1 on-line program 

(http://bioinfogp.cnb.csic.es/tools/venny_old/venny.php). Previously published root spatiotemporal 

expression data was used to make a heatmap to visualize predicted expression patterns of all PEAR1 

and PEAR2 targets10. To have relative expression values for every gene in different root cell types and 

developmental stages, values for every gene were normalized based on its highest expression in one 

of the cell types. Heatmap was generated using R with gplots R-package38. The transcriptomics data 

files are submitted to GEO (accession number GSE115183). 

 



Reporter analysis of PEAR1/2 downstream genes 

When selecting genes for reporter analysis, putative direct targets were preferred. Significantly more 

direct targets were identified for PEAR2, and therefore those are overrepresented. Other considerations 

were how strongly they were upregulated, as well as their predicted expression pattern. Expression in 

early procambium or early phloem and procambium was preferred. AT1G49230, AT1G15080, 

AT3G16330, AT4G00950 and SMXL3 are putative direct targets of PEAR2 and with predicted 

expression in early phloem/procambium. AT3G54780 was chosen because it is a putative direct target 

of both PEAR1 and PEAR2, although no predicted expression data was available. AT1G09460, a direct 

target of PEAR2 and a target of PEAR1, was chosen because it was induced very strongly by both 

genes, although predicted to be expressed only very weakly in phloem/procambium.  

 

Quantitative RT-PCR analysis 

qRT-PCR analyses were performed as described previously39. Cytokinin treatment was done with 

10μM 6-Benzylaminopurine (BA), and experiments were performed in three biological repeats and 

each of these with 3 technical repeats. RNA was extracted with the RNeasy kit (QIAGEN). Poly(dT) 

cDNA was prepared from 1 μg of total RNA with an iScript cDNA Synthesis Kit (Biorad) and analysed 

on a CFX384 Real-Time PCR detection system (BioRad) with iQ SYBR Green Supermix (BioRad) 

according to the manufacturer’s instructions. Expression levels were normalized to those of EEF1α 

and CDKA1;1. The primers are listed in Supplementary Table 1. 

 

Phloem transport assay 

The phloem translocation was judged by the transport and unloading of 5(6) Carboxyfluorascein 

diacetate (CFDA) as describe40. After application of the dye, plants were kept in agar plates and only 

placed on regular cover slips for imaging. 

 

Raster image correlation spectroscopy (RICS) 

To determine the rate of movement of GFP-labeled PEAR1 protein in wild type and hd-zip III 

quadruple (phb phv cna athb8) mutant background, Raster image correlation spectroscopy (RICS) was 

performed according to previous work41-43. Images were collected using a Zeiss 880 confocal 

microscope. Frames of 256x256 pixels were acquired using a raster scan with a dwell time of 8.19 

μsec pixel -1 at a pixel size of either 100nm for 100 frames resulting in a line scan of 5.035ms. Diffusion 

coefficients were derived using the SimFCS software (https://www.lfd.uci.edu/globals/)44 from GFP-

labeled PEAR1 vascular cells within the first 70 μm from the QC. Specifically, 18 observations from 

WT and 30 for the hd-zip III quadruple (phb phv cna athb8) mutant background were used for the 

RICS analysis using the SimFCS software The RICS algorithm by comparing the intensity fluctuations 

of one pixel to the fluctuations of the pixels next to it and the fluctuations of one pixel to itself over 

time, produces a spatio-temporal Auto Correlation Function (ACF) that captures the fluorescence 

dynamics of the particles in the volume44,45. The ACF is decomposed into two correlation functions 

that depend on ξ (the spatial lag in x) and ψ (the spatial lag in y). The first correlation function, S(ξ,ψ), 

calculates the spatio-temporal correlation due to the scanning of the microscope. The second 

correlation function, G(ξ,ψ), calculates the spatio-temporal correlation due to particles diffusing in the 

medium. The ACF, GS(ξ,ψ), takes both of these correlations into account by multiplying them: 



GS(ξ,ψ)= S(ξ,ψ)* G(ξ,ψ). The functions are constructed assuming that the distribution of fluorescence 

intensities follows a 3D Gaussian distribution. The decomposition of the ACF into two parts allows 

RICS to distinguish random, Brownian motion from diffusing particles in the medium45. The software 

fits the RICS-ACF using the pixel dwell time, pixel size, line scan and the Point Spread Function (PSF) 

bean waist of 0.241nm as previously obtained41 and returns the diffusion coefficient of the protein. The 

diffusion coefficient returned results in the ACF curve that best fits the data. Goodness of fit is 

determined by comparing the residuals to the amplitude of the ACF41-45. 

 

Mathematical model 

The mathematical model is formulated as a set of ordinary differential equations describing the set of 

interactions shown in Figure 4o, defined on a one-dimensional array of discrete spatial 

compartments representing a cross-section of root tissue. The spatial subdivisions may represent either 

cell or cell wall compartments, with multiple compartments per cell so that intracellular resolution is 

present within the model. Three, four or five cells are simulated, from the centre of the stele at the 

xylem axis to the edge of the stele where phloem is formed. The model is implemented as a single 

stand-alone text file using Python 2.7 plus the open source libraries Scipy, from which the 'odeint' 

function was used to solve the differential equations, and Matplotlib, which was used to plot the 

figures. See Supplementary Modelling Information for more details. 

 

 

Code availability 

The code for mathematical model is available on request. 

 

 

Data availability  

All lines and data supporting the findings of this study are available from the corresponding author 

upon request. The microarray data files are available at Gene Expression Omnibus (GEO) (accession 

no. GSE115183). 
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Figure 1| Periclinal cell divisions are centred around PSE, a domain 
highlighted by mobile PEAR transcription factors. 
a, Schematic representation of procambial cells based on the position 
relative to PSE (red) and outer pericycle (gray). PSE neighbouring cells 
are classified as PSE lateral neighbour (PSE-LN, orange), a cell adjacent 
to both PSE and pericycle, or PSE internal neighbour (PSE-IN, dark-
green), a cell adjacent to PSE but not pericycle. Intervening procambial 
cells are classified as outer PC (OPC, yellow), a procambial cell adjacent 
to pericycle, or internal PC (IPC), a procambial cell non-adjacent to 
pericycle. PX and MX represent protoxylem and metaxylem, 
respectively. b, Number of periclinal cell divisions in each cell during 
procambial development (273 division events in total from 13 
independent roots, also see Supplementary Information). PSE and PSE-
LN exhibited higher proliferative activity. Bar graphs represent mean. 
Error bars are s.d. Dots, individual data points. c, Expression of 
pPEAR1::GFP-GUS (n=17) exhibits a highly PSE-specific expression 
pattern in the vascular tissue, though a residual level of GFP signal is 
observed in PSE-IN, most likely due to the retention of fluorescent 
protein after the division of PSE. d, Expression of the translational 
fusion of PEAR1 to GFP (n=15). Fluorescent signal is observed not only 
in PSE but also in its neighbouring cells, including PSE-LN and PSE-IN. In 
c and d, n represents independent biological samples. White, dark-
green, orange arrowheads and asterisks indicate PSE, PSE-IN, PSE-LN 
and protoxylem, respectively. Scale bars, 25 μm. 



Figure 2| PEAR genes activate periclinal cell division by controlling 
downstream genes in non-cell autonomous manner.
a-e, Cross-section of wild type (a), pear quintuple (pear1 pear2 dof6 obp2 
hca2) (b), pear triple (pear1 pear2 tmo6) (c), pear quadruple (pear1 pear2 dof6 
tmo6) (d) and pear hextuple (pear1 pear2 dof6 obp2 hca2 tmo6) (e), 
respectively. Each image is representative of independent biological samples 
analysed in f. f, Number of procambial and phloem cell files in wild type and 
pear combinatorial mutants. Values were calculated from root cross sections 
at the differentiation zone. Boxplot centres show median. For more 
information on boxplots, see Methods. Statistically significant differences 
between groups were tested using Tukey’s HSD test p<0.05. For individual P
values, see Supplementary Table 3. n, independent biological samples. g-h, 
Expression of selected PEAR1/2 downstream genes in wild type, PEAR2 
overexpression plant and pear hextuple mutant. SMXL3 is expressed in 
phloem and procambial tissue, whose expression is induced by PEAR2 
overexpression, but not altered in pear hextuple. AT4G00950 gene is 
expressed in PSE and its neighbouring cells, whose expression is induced by 
PEAR2 overexpression and reduced in pear hextuple mutant. Number in each 
panel indicates samples with similar results of the total independent biological 
samples analysed. White arrowheads, PSE. Asterisks, protoxylem. Scale bars, 
25 μm. 



Figure 3| Cytokinin signalling triggers PEAR1 expression.
a, Expression of ARR5 and PEAR1 overlaps at the initial stage (a’) and early 
proliferative phase (a’’), n=15. b-c, Transcription of PEAR1 in wol root, which is 
conditionally rescued by CRE1 induction (Est, estradiol treated). PEAR1
transcription is severely reduced in the condition with attenuated cytokinin
response (b, n=6), and is restored after three days induction of CRE1 (c, 
arrowheads, n=6). d-e, PEAR1 transcription is down-regulated after 48 hours 
of ARR22 induction. n=5 and 7, respectively. In a-e, n represents independent 
biological samples. White arrowheads, PSE. Scale bars, 25 μm.



Figure 4| Antagonistic function of PEAR1 and HD-ZIP III sharpens the 
boundary between dividing and non-dividing cells.
a-f, An optical cross-section image of vascular tissue in wild type (a), pear
quintuple (b), pear hextuple (c), hd-zip III quadruple (d), pear hd-zip III nonuple
(e) and pear hd-zip III decuple mutant (f). Asterisks indicate pericycle cells. 
Each image is representative of independent biological samples analysed in g. 
g Quantification of vascular cell number. In the analysis of pear quintuple and 
pear hd-zip III nonuple, a population of slowly elongating roots is selected as 
described in Fig. 2f. h-i, Expression of CNA transcriptional reporter in the 
control (h, the heterozygous pear quintuple, n=4) and pear quintuple 
background (i, n=3). j, Fluorescent level in PSE-IN is significantly reduced in 
pear quintuple. n represents individual measurements across 4 or 3 
independent biological samples, respectively. k-l, PEAR1-GFP localization in 
wild type (k, n=19) and hd-zip III quadruple mutant (l, n=17). PEAR1-GFP is 
broadly localized even in IPC in hd-zip III quadruple (l, light-green arrowheads). 
m, Average diffusion coefficient of PEAR1-GFP in wild-type and hd-zip III
quadruple roots obtained by performing Raster Image Correlation 
Spectroscopy (RICS). In g-i and k-m, n represents independent biological 
samples. In g, boxplot centres show median. Statistically significant differences 
were tested using Tukey’s HSD test p<0.05. For individual P values, see 
Supplementary Table 3. In j and m, bar graphs represent mean. Error bars are 
s.d. (j) or s.e.m. (m). P values were calculated by two-sided Student’s t-test (j) 
or Mann–Whitney U test (m). Dots, individual data points. White, dark-green, 
orange, light-green arrowheads indicate PSE, PSE-IN, PSE-LN and IPC, 
respectively. Scale bars, 25 μm.





Extended Data Fig. 1| Quantification of periclinal cell division during procambial development. 

a, Schematic representation of root vascular tissue of Arabidopsis. Procambial cells originate from 

their initial cells, and periclinal cell division increases the cell files during the proliferative phase, 

eventually resulting in a bisymmetric vascular pattern composed of a pair of phloem poles, which are 

separated from central xylem axis by intervening procambium. b, An example of mapping the position 

of periclinal cell divisions from the initial cells. From each position within the root vascular tissue 

(arrows), an optical cross-section image is constructed, and cells were segmented using CellSet. c, The 

number of periclinal cell divisions in each cell position (273 division events from 13 independent 

roots). d, The mean cell number in each category during procambial development. The number of 

events per cell in each group was calculated by diving the number of events by the mean cell number 

of each group during development (See Supplementary Information).  

 

  





Extended Data Fig. 2| Inhibition of symplastic connection in early PSE results in the reduction 

of vascular cell number and in PSE-specific PEAR1-GFP localization. 

a, Aniline blue stained primary root of pPEAR1[XVE]::icals3m after 24 hours of induction. Callose 

deposition occurs superficially in PSE cells (arrowheads, n=10). b-c, The vascular tissue of 

pPEAR1[XVE]::icals3m root, in non-induced (b, n=13) and after three days induction (c, n=9). In non-

induced condition, PSE cells (white arrowheads) and their neighbouring cells, composed of MSE 

(dark-green arrows) and two lateral companion cells (orange arrowheads), are spatially separated from 

the xylem axis by intervening procambium. By contrast, after three days induction of callose deposition 

in PSE cells, only a single SE cell file is formed in each phloem pole (c, white arrowheads), and its 

neighbouring cells often touch the xylem axis (c, yellow hashtags). Number of procambial and phloem 

cell files is significantly reduced after three days induction. Boxplot centres show median. For more 

information on boxplots, see Methods. P value was calculated by two-sided Student’s t-test. d-e, 

Expression of Sister of APL (SAPL, AT3G12730) and ATPase 3 (AHA3, AT5G57350) in 

pPEAR1[XVE]::icals3m before (d, n=10 and 4, respectively) and after 24 hours of induction (e, n=10 

and 4, respectively). SAPL is expressed in CC and MSE in meristematic zone, and AHA3 is expressed 

in differentiated CC (d). After induction, expression of these genes is restricted to a single cell file, 

indicating that symplastic cell communication between PSE and PSE-LN is required for the 

specification of PSE-neighbouring cell identity. f-g, PEAR1-GFP localization in 

pCRE1[XVE]::icals3m before (f, n=8) and after 24 hours of induction (g, n=7). PEAR1-GFP becomes 

specific to the PSE cell after the induction of callose deposition in whole vascular tissue, suggesting 

that PEAR1-GFP move in a short rage via plasmodesmata. White, orange and dark-green arrowheads 

indicate PSE, PSE-LN and PSE-IN, respectively. Asterisks indicate protoxylem (PX) cells. In a-g, n 

represents independent biological samples. Scale bars, 25 μm. 

 

  





Extended Data Fig. 3| Identification of PEAR genes. 

a, In silico analysis of the early phloem abundant transcription factors. Nine transcription factors are 

shown to be expressed abundantly in the early phloem cell (S32 fraction), containing four types of 

transcription factors, including DOF-type, MADS-box, NAC-type and GATA-type transcription 

factors. b, A phylogenetic tree of 36 Arabidopsis DOF transcription factors is drawn using Clustal 

Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/). c, Overexpression of PEAR genes, including 

PEAR1, PEAR2, OBP2, DOF6, HCA2 and TMO6, under the CRE1 inducible promoter enhances 

periclinal cell division in the vascular tissue. n represents independent biological samples. Bar graphs 

represent mean. Error bars are s.d. Dots, individual data points. P values were calculated by two-sided 

Student’s t-test. d, Expression of six PEAR genes, including PEAR1, PEAR2, DOF6, TMO6, OBP2 

and HCA2, show similar expression patterns to PEAR1, in which both mRNA and transcriptional 

fusion reporter exhibit PSE-specific pattern with a broad protein localization. HCA2 translational 

fusion in wild-type background exhibits weak but detectable signal in PSE-neighbouring cells 

(arrows), and its expression level is enhanced in the pear quintuple mutant background. Though TMO6 

mRNA is highly specific to PSE cells, its transcriptional fusion reporter shows a broad but PSE 

abundant expression pattern with a broad TMO6 protein localization. Mobility of TMO6 protein is 

more evident when TMO6-VENUS is expressed under PSE-specific PEAR1 promoter 

(pPEAR1::TMO6-VENUS) in pear hextuple. Number in each panel indicates samples with similar 

results of the total independent biological samples analysed. Boxplot centres show median. P value 

calculated by two-sided Student’s t-test. Dots, individual data points. e, A quantitative analysis of 

PEAR transcripts in pear1 pear2 double mutant background. Note that the level of transcripts of three 

PEAR genes, including TMO6, DOF6 and HCA2, is elevated in pear1 pear2 background, suggesting 

that a compensation mechanism would mask the effect of pear1 pear2 loss of function (also see 

Supplemental Information). Bar graphs represent mean. Error bars are s.d. Dots, individual data points. 

P values were calculated by two-sided Student’s t-test. Scale bars, 25 μm. 

 

  





Extended Data Fig. 4| PEAR1-GFP localization during procambial development. 

a-d, PEAR1-GFP localization in wild-type background (n=19, independent biological samples). The 

position of each optical section is indicated in the left panel showing the longitudinal section. At the 

position of the vascular initial cells, weak PEAR1-GFP signal is observed in PSE and neighbouring 

procambial cells but not in the xylem cells (a). During an early stage of the proliferative phase, the 

highest PEAR1-GFP signal is detected in the PSE, and substantial level of PEAR1-GFP signal is 

observed in PSE neighbouring cells, PSE-LN and PSE-IN (b, c) and its expression is maintained by 

the end of proliferation stage (d), indicating that the expression pattern of PEAR1-GFP is correlated 

with the domain having high proliferative activity, except for PSE-IN where almost no periclinal cell 

division is detected (see Fig. 1b). e-h, PEAR1-GFP localization in hd-zip III quadruple (phb phv cna 

athb8) mutant background (n=17, independent biological samples). The position of each optical 

section is indicated in left panel showing the longitudinal section. Broad localization of PEAR1-GFP 

is detected at the level of vascular initials. Central domain is highlighted with a dotted square (e). At 

the early stage of proliferative stage, fluorescent signal is detected in IPC cells (light-green 

arrowheads), as well as PSE and its neighbouring cells (f, g), and gradually becomes specific to PSE 

and its neighbours (h). i, Quantification of PEAR1-GFP signal in each cell type. Fluorescent intensity 

of PEAR1-GFP in IPC and PSE-IN cells during proliferative phase (b-c in wild-type, f-g in hd-zip III 

quadruple, respectively) was measured and normalized to the fluorescent intensity in PSE cells, 

confirming a broad distribution of PEAR1-GFP in hd-zip III quadruple. n represents individual 

measurements across 5 (wild type) or 4 (hd-zip III quadruple) independent biological samples, 

respectively. Bar graphs represent mean. Error bars are s.d. Dots, individual data points. P values were 

calculated by two-sided Student’s t-test. White, orange and dark-green and light-green arrowheads 

indicate PSE, PSE-LN, PSE-IN and IPC respectively. Scale bars represent 25 μm. 

 

  





Extended Data Fig. 5| Loss of function of PEAR genes. 

a, Organization of PEAR genes and CRISPR/Cas9-induced mutation in TMO6 locus. Deletions are 

denoted by dashes; insertions and a replacement are indicated by red letters. b, Quantification of 

phloem and procambium cell files in lower (left) and higher (right) order pear combinatorial mutants. 

Tukey’s HSD test is provided for all samples in Supplementary Table 3. c, pear quintuple mutant 

phenotype is suppressed by introduction of fluorescent-tagged PEAR proteins expressed under their 

native promoters. d, pear hextuple mutant phenotype is significantly suppressed by the introduction 

of PEAR1, DOF6 and TMO6 construct, but not PEAR2. In the pear hextuple background, PEAR2 

expression is highly reduced in the vascular tissue. e, Phloem unloading assay in wild type, pear 

quintuple (with shortest roots) and pear hextuple (n=15, 8 and 15, respectively). Fluorescent CFDA 

dye is loaded on the cotyledon and imaged two hours after application (see Methods). Phloem transport 

and unloading is not changed in the shortest roots of the pear quintuple mutant strongly affected in the 

radial growth. pear hextuple shows defects in phloem transport. f, Phenotype of pear hextuple mutant 

at the early developmental stage (1.5 days after germination). The cell number in vascular tissue of 

pear hextuple is significantly reduced before the onset of phloem PSE differentiation and activation of 

the phloem transport (see Supplementary Information). P value was calculated by two-sided Student’s 

t-test. In b-f, n represents independent biological samples. In b-d, statistically significant differences 

between groups were tested using Tukey’s HSD test p<0.05. For individual P values, see 

Supplementary Table 3. Boxplot centres show median. For more information on boxplots, see 

Methods. Scale bars represent 25 μm. 

 

  





Extended Data Fig. 6| Identification of genes acting downstream of PEAR. 

a, Venn diagram showing the genes upregulated by overexpression of PEAR1 or PEAR2 with and 

without cycloheximide (chx). The analysis revealed 212 and 435 upregulated genes, in the respective 

experiments. Heatmap showing the predicted spatiotemporal expression patterns of all genes induced 

by PEAR1 or PEAR2. b-i, Expression patterns of eight selected genes responding to PEAR2 

overexpression. In control conditions, all genes exhibit a broad expression pattern, in which five of 

them are transcribed both in phloem and procambial cells (b-d and i), and the rest of them are in PSE 

and its surrounding cells where PEAR proteins are accumulated abundantly (e-h). Whereas expression 

of SMXL3, AT1G09460 and AT1G15080 are maintained even in pear hextuple (b, c, f), the expression 

level of five genes are attenuated (d, e, g-i). Number in each panel indicates samples with similar 

results of the total independent biological samples analysed. j, Number of vascular cells after 3-days 

induction of overexpression of each PEAR downstream gene. In each case, several lines were analysed 

in parallel for a phenotypic change. Only SMXL3 overexpression can increase the vascular cell number 

(confirmed in three independent lines). Boxplot centres show median. For more information on 

boxplots, see Methods. n represents independent biological samples. Dots, individual data points. P 

value was calculated by two-sided Student’s t-test. Scale bars represent 25 μm.  

 

  





Extended Data Fig. 7| Cytokinin controls PEAR expression. 

a, Expression of auxin (pIAA2::GFP-GUS) and cytokinin (pARR5::RFPer) response genes (n=15). 

Auxin response is restricted to the xylem cells at initial stage (a’) and maintained during development 

(a’’, a’’’). High cytokinin response is activated initially and maintained in PSE and its neighbouring 

cell (a’, aa’), and later becomes concentrated into the intervening procambial cells flanking xylem 

cells (a’’’). b, Exogenous cytokinin application rapidly promotes the transcript level of PEAR genes, 

including PEAR2, DOF6, and TMO6. Asterisks indicate significant (p<0.05) upregulation as 

determined by a two-sided t-test on three biological replicates. Bar graphs represent mean. Error bars 

are s.e.m. For individual P values, see Supplementary Table 3. c, Sustained cytokinin application leads 

to ectopic transcription of PEAR genes. The optical cross section images are obtained after 4 days (for 

PEAR1, PEAR2 and HCA2) or 1-day (DOF6 and OBP2) treatment of 1μM of BA. d, Conditional 

induction of CRE1 expression restores TMO6 transcription in wol root. In the absence of cytokinin 

response, TMO6 transcription is increased in pericycle and attenuated in the vascular tissue (Control, 

hashtags), and is restored in the vascular tissue after CRE1 induction (Est). e-l, Expression pattern of 

auxin (pIAA2::GFP-GUS) and cytokinin (pARR5::RFPer) response reporters during embryogenesis 

in wild type (e-h, n=29, 13, 13, 11, respectively) and wol (i-l, n=12, 8, 6, respectively). At globular 

stage, auxin response is activated among provascular cells both in wild type (e) and in wol (i). At early 

heart stage, cytokinin response is activated in cells positioned below shoot apical meristem (f, ult, 

arrowheads), and the stripe of cytokinin response domain is formed by mid heart stage (g, ult, 

arrowheads), simultaneously auxin response becomes concentrated in the cells proximal to the 

cotyledon (g, ult, asterisks), resulting in the bisymmetric hormonal response pattern. During the 

torpedo stage, cytokinin response domain reaches to llt (h, llt, arrowheads). In wol embryos, activation 

of cytokinin response in vascular tissue does not occur and a radial auxin response pattern is maintained 

(i-l). m-r, Expression of ARR5 and PEAR1 during embryogenesis. In the wild-type embryo (m-o, n=17, 

25, 10, respectively), PEAR1 is broadly transcribed among provascular cells both in ult and llt with 

radial symmetric pattern at the globular stage (m). At the heart stage, PEAR1 transcription is enhanced 

in ult cells underneath the shoot apical meristem, which correlated with the activation of cytokinin 

response in this domain (n, arrowheads), and expression of both ARR5 and PEAR1 extends rootward 

and reaches to llt, becoming more concentrated within the cell files where phloem is specified post-

embryonically (o, arrowheads). In wol embryos (p-r, n=19, 13, 13, respectively), PEAR1 transcription 

is initiated among provascular cells at the globular embryo stage (p) similar to wild type (m), but 

neither cytokinin response nor PEAR1 transcription occurs in ult at the heart stage (q), and PEAR1 

expression is gradually attenuated by the torpedo stage (r). ult and llt represent upper- and lower tier, 

respectively. In a, e-r, n represents independent biological samples. In c and d, number in each panel 

indicates samples with similar results of the total independent biological samples analysed. Scale bars 

represent 25 μm. 

 

  





Extended Data Fig. 8| HD-ZIP III restrict periclinal cell divisions during procambial 

development. 

a-c, Periclinal cell divisions in the cells non-adjacent to pericycle, including PSE-IN (a), IPC (b) and 

xylem cell (c), occurs in hd-zip III quadruple (phb phv cna athb8). n=8. d-e, The number of periclinal 

cell divisions in cells adjacent (d) or non-adjacent to pericycle (e) in wild type, pear and hd-zip III 

combinatorial mutants. In the analysis of pear quintuple and pear hd-zip III nonuple, a population of 

slowly elongating roots is selected as described in Fig. 2f. Boxplot centres show median. Statistically 

significant differences between groups were tested using Tukey’s HSD test p<0.05. For individual P 

values, see Supplementary Table 3. f-i, Localization of PHB-GFP (f, n=12), CNA-GFP (g, n=10), REV-

GFP (h, n=7) and ATHB8-GFP (i, n=5). j-k, Protein localization of PHB-GFP (j, n=7) and CNA-GFP 

(k, n=4) during procambial development. In the initial cells (j’, k’), both proteins are localized in 

metaxylem cells but not in PSE (white arrowheads). During the proliferation stage, PSE-IN (green 

arrowheads), which is produced by periclinal cell division in PSE, acquires the expression of both 

PHB-GFP (j’’, j’’’) and CNA (k’’, k’’’). l-o, Overexpression of PEAR1-VENUS under the CRE1 

inducible promoter in wild type (l, n, n=5, 3, respectively) and heterozygous phb-1d background (phb-

1d/+, m, o, n=5, 5, respectively). After 18 hours of induction, PEAR1-VENUS signal is detected in 

both backgrounds (l, m), however, enhanced periclinal divisions are only observed in wild type (l), 

and not in phb-1d (m). Longer induction of PEAR1 overexpression induces divisions even in phb-1d 

(n, o). p-r, pPEAR1-PEAR1-GFP expression is reduced in heterozygous phb-1d/+ background. Most 

of phb-1d heterozygotes exhibit a single PEAR1-GFP expressing pole (q, 72% n=11), and the 

expression of PEAR1-GFP is almost completely abolished in some roots of phb-1d (r, 18% n=11). s-

t, The expression of pPEAR1::GFPer in wild type (s, n=10) and shr-2 (t, n=9). The fluorescent signal 

is below the limit of detection in shr-2. u-w, Expression of pPEAR1::GFP-GUS in WT (u, n=19) and 

hd-zip III quadruple mutant (w, n=11) . In a-w, n represents independent biological samples. White, 

orange and dark-green arrowheads indicate PSE, PSE-LN, PSE-IN respectively. Scale bars represent 

25 μm.  

 

  





Extended Data Fig. 9| Overexpression of PEAR1 enhances the transcription of HD-ZIP III. 

The transcription patterns of four HD-ZIP III, including PHB (a, b), CNA (c, d), REV (e, f) and ATHB8 

(g, h) are visualized using their transcriptional fusion constructs. A longitudinal section is shown in the 

left panel, and the optical cross sections associated with this are shown in the right panels (the position 

of each section is indicated in the left panel). a-b, Transcription pattern of PHB 

(pPHB::GV>UAS::GFPer) in pCRE1[XVE]::PEAR1 plant before (a) and after 24 hours of induction 

of PEAR1 overexpression (b). PHB transcription is observed in whole vascular tissue at the initial and 

proliferative phase with peaks in xylem cells (a’), and its expression becomes concentrated into 

protoxylem cells (a’’ and a’’’, asterisks indicate protoxylem cell). After the induction of PEAR1 

overexpression, PHB expression in the central domain of the vascular tissue is maintained at the later 

stage, resulting in the radially symmetric PHB transcription pattern (b’ and b’’). c-d, Transcription of 

CNA (pCNA::GV>UAS::GFPer) in pCRE1[XVE]::PEAR1-RFP plant before (c) and after 24 hours of 

induction (d). CNA transcription is observed mainly in xylem lineage at initial cells (c’), and becomes 

broader in whole vascular tissue, with peaks in procambial tissue, including PSE neighbouring cells 

(c’’), and eventually its expression is gradually reduced in PSE and metaxylem, but is maintained in 

procambium, PSE neighbouring cells, as well as protoxylem cells (c’’’). In a similar manner to PHB, 

CNA transcription in the central domain of the vascular tissue is maintained at the later stage when 

PEAR1-RFP is overexpressed (d’’’). e-f, Transcription of REV (pREV::RFPer) in 

pCRE1[XVE]::PEAR1-VENUS plant before (e) and after 24 hours of induction (f). REV exhibits a 

distinct transcriptional pattern where its expression is initially uniform in vascular tissue (e’), and 

highest expression is localized in PSE, while decreasing towards xylem axis (e’’ and e’’’). When 

PEAR1-VENUS is overexpressed (f), the transcription pattern of REV is also activated in the central 

domain of vascular tissue, resulting in the radial symmetric REV transcription pattern. g-h, The 

expression pattern of pATHB8::HTA6-YFP is highly specific to xylem cells (g), and its expression is 

enhanced after 24 hours of induction of PEAR1 overexpression with a broad expression domain (h). 

Number in each panel indicates samples with similar results of the total independent biological samples 

analysed. 

 

  





Extended Data Fig. 10| The boundary between HD-ZIP III and PEAR proteins forms within the 

PSE-IN. 

a, Summarizing results on pattern of auxin-cytokinin (data shown in Extended Data Fig. 7a), HD-ZIP 

III (CNA, data shown in Extended Data Fig. 8g and k) and PEAR (PEAR1, data shown in Fig. 1d and 

Extended Data Fig. 4a-d) in procambium. In the simulation, we simulate the concentration of HD-ZIP 

III and PEAR1 along the axis between metaxylem (MX, brown arrowheads) and PSE (white 

arrowheads). b, Summarizing result of procambial development. Number of cells between metaxylem 

and PSE increases during procambial development (data shown in Extended Data Fig. 1). Therefore, 

the model is defined as a line in one spatial dimension representing 3, 4 or 5 cells from the centre of 

the xylem axis to the outer edge of the PSE cell. c, The regulatory network embedded within each cell. 

Regulatory interactions shown using a black line have been published previously, whilst those using a 

green line are described for the first time here. d, Predicted concentration gradient of all elements in 

3, 4 or 5 cells (from left to right). Within different root geometries corresponding to different growth 

stages in Arabidopsis, both PEAR1 and HD-ZIP III are co-localized in PSE-IN, forming a sharp 

concentration boundary within this cell. In f-h, only PEAR and HD-ZIP concentrations are shown, 

whilst all model components are shown here in all cases. e, Quantification of expression level of CNA-GFP 

and PEAR1-GFP at 4-cell region in wild-type background. n represents individual measurements across 3 

(CNA-GFP) or 4 (PEAR1-GFP) independent biological samples, respectively. Bar graphs represent 

mean. Error bars are s.d. Dots, individual data points. f, Including all three interactions labelled in 

panel c in the model, results in the formation of sharp concentration gradients of PEAR1 (black line) 

and HD-ZIP III (blue line) with the boundary forming in the PSE-IN. g, In simulations where HD-ZIP 

III does not regulate PEAR1 diffusion (Interaction (3) in panel c), PEAR1 protein is predicted to spread 

into the procambium and metaxylem as shown in Fig. 4k-m and Extended Data Fig. 4. h, In simulations 

where PEAR1 does not activate HD-ZIP III transcription (Interaction (1) in panel c), the concentration 

of HD-ZIP III is reduced in the PSE-IN cell as shown in Fig. 4h-j. i, A regulatory mechanism forming 

the boundary between a dividing and a non-dividing cell during procambial development. White, 

orange, dark-green and light-green arrowheads indicate PSE, PSE-LN, PSE-IN and IPC. Scale bars, 

25 μm. 

 

  



Supplementary Table legends 

 

Supplementary Table 1|  

This file contains a list of primers and plasmids used in this study. 

 

Supplementary Table 2|  

This file contains a list of putative PEAR1/PEAR2 direct targets and their description.  

 

Supplementary Table 3|  

This file contains individual P-values for Tukey’s HSD test (for Fig. 2f and Extended Data Fig. 5b-d) 

and for two-sided Student’s t-test (for Extended Data Fig. 7b). For Tukey’s HSD test, data contains: 

difference in mean values (diff), the lower end point of the interval (lwr), the upper end point of the 

interval (upr) and p-value after adjustment for the multiple comparisons (p adj).  

 

 



SUPPLEMENTARY INFORMATION 
 

 

1 Supplementary Notes 

 

1.1 Mapping of the position of periclinal cell divisions 

As previously reported, the cell identity in phloem/procambium is not fully correlated 
with the cell lineage. For example, the cell at the protophloem sieve element (PSE) 
position undergoes two types of periclinal cell divisions, in which PSE initially generates 
procambium cell files inward, and the later produces metaphloem sieve element (MSE) 
(Extended Data Fig. 1a). In addition, companion cells (CC) are produced by the divisions 
in procambial cells laterally adjacent to PSE (Extended Data Fig. 1a). In order to 
categorize each periclinal cell division based on the position of cells, we therefore 
classified the phloem/procambium cells into five groups based on their position relative 
to PSE and pericycle (Fig. 1a). The cells surrounding the PSE were classified into two 
group, PSE-lateral neighbour (PSE-LN), a cell touching both PSE and pericycle, and 
PSE- internal neighbour (PSE-IN), a cell touching PSE but not pericycle (Fig. 1a). The 
intervening procambial cells non-adjacent to PSE were classified into two categories, 
outer procambial cell (OPC), a cell adjacent to pericycle, and internal procambial cell 
(IPC), a cell touching neither PSE nor pericycle. By comparing the cell pattern in 
segmented images (Extended Data Fig. 1b), 273 periclinal cell divisions from 13 
independent wild-type roots were mapped, resulting in 60 events in PSE, 142 events in 
PSE-LN, 39 events in OPC, 6 in PSE-IN and 26 events in PX position, respectively 
(Extended Data Fig. 1c). The number of cells in each position is different, for example, 
two in PSE and four in PSE-LN. Also the number of OPC or IPC increases after the 
periclinal division in PSE or PSE-LN during development, and therefore we counted the 
number of cells in each cell category in each cross-section and calculated the mean 
number of cells in a given cell type (Extended Data Fig. 1d). The number of events per 
cell in each group was calculated by diving the number of events by the mean cell number 
of each group during development (Fig. 1b and Extended Data Fig.1). 
 
1.2 Redundancy of PEAR genes  
In Arabidopsis, the family of DOF-domain transcription factors comprises 36 members 
(Extended Data Fig. 3b). Analysis of pear1, its closest homolog pear2 or the double 
pear1pear2 mutants did not reveal phenotypes similar to the pPEAR1[XVE]::icals3m line 



affected in symplastic movement between phloem and procambium cells (Extended Data 
Fig 2a-e), suggesting broader functional redundancy within the family of DOF TFs. In 
order to understand the range of this effect we generated multiple combinatorial mutants 
covering multiple phloem specific/abundant members of the DOF family.  
 As a first approach we generated combinatorial mutants with the close homologs 
of PEAR1 (Extended Data Fig. 3b). Knocking-out up to five genes from the PEAR1 clade 
(pear1 pear2 obp2 obp3 dof2.2 (At2g28810)), did not result in a phenotype resembling 
the icals3m line (Extended Data Fig. 5b). At the same time, screening of the 
transcriptional reporters of DOF family members identified DOF5.6/HCA2, 

DOF3.2/DOF6 and DOF5.3/TMO6 as genes expressed specifically/abundantly in the 
early phloem position (Extended Data Fig. 3d). We measured expression levels of these 
genes in the pear1 pear2 mutant background and found that transcript levels of HCA2, 
DOF6 and TMO6 were elevated (Extended Data Fig. 3e), suggesting a compensation 
mechanism among more distantly related PEAR genes. In this scenario, the phenotype of 
the double mutant might be obscured by the increased expression level of other PEAR 
genes and only absence of all of them would result in strong phenotypes.  
 To test this hypothesis we generated multiple combinatorial pear mutants using 
available KO lines for PEAR1, PEAR2, DOF6, OBP2 and HCA2. The intermediate triple 
and all quadruple mutant combinations did not show a narrow root phenotype (Extended 
Data Fig. 5b), however, when combining five mutations together we found that around 
30 per cent of the quintuple pear1 pear2 obp2 dof6 hca2 mutants displayed reduced root 
growth. These roots showed a reduction in the number of the procambial cell files, and 
about 30 per cent of them resembled the phenotype of roots impaired in the symplastic 
communication around PSE (pPEAR1[XVE]::icals3m, Extended Data Fig.2c). In those 
roots some of the procambial cell files did not undergo any periclinal divisions. 
Specifically comparison of all the intermediate quadruple mutants with a quintuple 
mutant indicates the importance of each individual gene in the regulation of phloem and 
procambium proliferation. Expression of PEAR1, PEAR2, OBP2 and HCA2 genes under 
their native promoters significantly increased the number of vascular cell files 
suppressing the strong phenotype of the quintuple mutant. The analysed lines expressing 
DOF6 showed a relatively weak phenotype suppression effect in the quintuple mutant 
background.  
 Since the penetrance of the strong phenotype in the quintuple pear1 pear2 obp2 

dof6 hca2 mutants was not very high, we introduced a mutation in TMO6 gene, a closest 
homolog of DOF6 expressed abundantly in phloem and upregulated in the pear1 pear2 
double mutant background (Extended Data Fig. 3e). After introducing CRISPR-Cas9 



generated loss-of-function allele of TMO6 in pear quintuple (resulting in the pear1 pear2 

dof6 tmo6 obp2 hca2 hextuple mutant), even less cell divisions occurred in the root 
vasculature, reducing the variability between roots. The number of procambial cell files 
in the differentiated zone of the pear hextuple mutant (~10) closely corresponds to the 
number of procambial initials (~7) suggesting that almost all periclinal cell divisions are 
abolished in this mutant background. Importantly, we did not observe any cell division 
phenotype in the single tmo6 mutant (Extended Data Fig. 5b), suggesting that TMO6 
functions redundantly with the other PEAR genes. To further support the importance of 
PEAR genes in the process of periclinal division of the procambial cells, we expressed 
them individually under their native promoters in the hextuple mutant background. 
PEAR1, DOF6 and TMO6 suppressed the strong phenotype of pear hextuple mutant 
confirming the role of PEAR genes in regulation of this process (Extended Data Fig.5d). 
Expression analysis of the pPEAR2::PEAR2-VENUS in the pear hextuple mutant 
revealed lack of PEAR2 promoter activity in the early phloem. Since most of the periclinal 
divisions are concentrated around the early phloem cells, pPEAR2::PEAR2-VENUS did 
not suppress this phenotype in the pear hextuple mutant. By contrast, suppression was 
very clear in pear quintuple where PEAR2 promoter is active in the early phloem cells 
(Extended Data Fig. 5d).  
 Because of the strong effect of tmo6 mutation in the hextuple mutant background, 
we investigated its influence on the pear1, pear2 and dof6 mutants. Double mutants pear1 

tmo6, pear2 tmo6 and dof6 tmo6 did not show the strong phenotype observed in the 
quintuple or hextuple mutants. The triple mutant pear1 pear2 tmo6 showed a strong 
phenotype but not to the extent of the hextuple mutant (Fig 2f). This phenotype was also 
strongly variable suggesting that although TMO6 plays an important role, the contribution 
from other pear mutants is required for a strong hextuple mutant phenotype. Furthermore, 
we have established the phenotypes for pear1 pear2 dof6 tmo6 quadruple and pear1 pear2 

dof6 tmo6 hca2 quintuple mutant (Fig. 2f and Extended Data Fig. 5b). These mutants 
largely resemble the pear1 pear2 dof6 tmo6 hca2 obp2 hextuple mutant, indicating that 
the mobile PEAR1, PEAR2, DOF6 and TMO6 proteins play a major role in regulating 
radial growth, while HCA2 and OBP2 play a more minor role. 
 
1.3 Uncoupling the cell division and cell differentiation effects of the pear mutants  
In addition to the reduction of vascular cell number, we made observations of cells that 
had not cleared the cytoplasm (characteristic to sieve element differentiation) in some of 
the pear combinatorial mutants. To assess the status of phloem, we were assaying phloem 
transport and unloading using the CFDA dye (Oparka et al., 1994). We found strong 



transport defects in the pear hextuple mutant, indicating problems in the functionality of 
phloem. In contrast, we observed functional CFDA transport and unloading in the narrow 
roots of pear1 pear2 dof6 obp2 hca2 quintuple mutant (Extended Data Fig. 5e). Thus, the 
problems in the PEAR mediated periclinal cell divisions can be dissected from the 
apparent defects in phloem differentiation. Furthermore, to exclude possibility that 
defects observed in phloem function and differentiation in the pear hextuple mutant 
influence the rate of periclinal divisions, we counted the number of vascular cell files at 
an early stage of plant development, before phloem transport becomes active. Previous 
work has showed that the activation of phloem transport occurs only around two days 
after germination, when phloem becomes fully functional as a consequence of PSE 
enucleation (Bauby et al. 2007) and the procambium/phloem tissue proliferation stage 
precedes developmentally the final differentiation of PSE (Furuta et al., 2014). We 
observed reduced number of vascular cell files in the postembryonic root of 1.5 days old 
hextuple mutant seedlings (Extended Data Fig. 5f), thus dissecting the cell proliferation 
and differentiation aspects of the pear hextuple mutant phenotype.  
 
1.4 Bisymmetric auxin-cytokinin response pattern in root  

Previous work indicated that auxin-induced cytokinin production in the xylem axis 
triggers the periclinal cell divisions in a non-cell autonomous manner in the flanking 
phloem/procambial domain (De Rybel et al., 2014). As described in Fig. 1, the periclinal 
cell divisions are concentrated around the PSE, whereas no periclinal cell division was 
observed in those internal procambial cells (IPC, Fig. 1a and b). Here we further dissected 
the dynamics of the hormonal response domain during procambial development. Auxin 
signalling maximum was formed in xylem cells already at initial stage (Extended Data 
Fig. 7a’) and maintained during procambial development (Extended Data Fig. 7a’’ and 
a’’’). By contrast, we found that the domain of high cytokinin response is more dynamic. 
At initial stage, high cytokinin response was activated at PSE and its neighbouring cells 
(Extended Data Fig. 7a’), and this high cyokinin response domain was maintained during 
proliferative phase (Extended Data Fig. 7a’-a’’). Only at a later stage of development, we 
observed that cytokinin response domain becomes concentrated in procambial cells 
neighbouring the xylem axis (Extended Data Fig. 7a’’’).  
 

1.5 Interaction of PEAR1 and cytokinin signalling during embryogenesis 

As described in main text, we revealed the interaction of PEAR1 and cytokinin sigalling 
in post-embryonic root vascular tissue (Fig. 3a-e). We further studied this interaction and 
its dynamics during embryogenesis where the root vascular cells are initiated. During 



embryogenesis, high cytokinin response is initiated in vascular cells of upper lower tier 
(ult) at the early heart stage (Extended Data Fig. 7e and f), and only at the late heart stage 
is the characteristic bisymmetric pattern of cytokinin output established (Extended Data 
Fig. 7g and h). In wol embryos, activation of cytokinin response in vascular tissue does 
not occur and a radial auxin response pattern is maintained (Extended Data Fig. 7j-l). 
PEAR1 transcription pattern was highly correlated with cytokinin signalling during 
embryogenesis, except for its broad expression in the early globular stage (Extended Data 
Fig. 7m-o). By contrast, in wol embryos, where no cytokinin response was detected within 
vascular cells, PEAR1 transcription was initially observed in the globular wol embryo 
(Extended Data Fig. 7p) but was gradually attenuated after heart stage (Extended Data 
Fig.7q-r).  
 
1.6 Analysis of PEAR1/2 downstream targets 

Studying the expression patterns of PEAR1/2 downstream targets by in silico analysis 
and reporter constructs revealed that most of PEAR1/2 targets are expressed in PSE and 
its surrounding cells, indicating that PEAR genes control their targets in a non-cell 
autonomous manner. This result highlights that the mobility of the PEAR1/2 proteins is 
important for their function (Fig. 2g-h and Extended Data Fig.6a-i). In order to dissect 
the function of PEAR1/2 targets, we performed a statistical overrepresentation test for 
Gene Ontology (GO) terms of the PEAR1/2 direct targets using the PANTHER (protein 
annotation through evolutionary relationship) classification system 
(http://www.pantherdb.org/). However, no statistically significant results were found. In 
addition, we could not find genes previously shown to regulate cell proliferation 
(Supplementary Table 2), suggesting that PEAR1/PEAR2 control radial growth through 
still uncharacterized genes. By overexpressing some of the targets we found SMXL3 to 
be able to induce periclinal cell division (Extended Data Fig.6j). 
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Supplementary Modelling Information

1 Model aims and philosophy

To date there have been several mechanisms shown to be capable of generating either gradients or
sharp domains of differential gene expression. Although some aspects of the interaction between
PEAR proteins and HD-ZIP III’s are similar to other patterning mechanisms based on transcriptional
regulation, the observation that HD-ZIP III has a dual effect on both PEAR transcription and PEAR
mobility appeared to be a new type of interaction that had not been explored before. Therefore,
through this modelling approach, we explore the effect that these processes have on regulating the
spatial domains of both PEAR and HD-ZIP III within the procambium during phloem specification.

In order to model a single boundary between domains of PEAR and HD-ZIP III, we consider only
a single generic PEAR gene and a single generic HD-ZIP III gene rather than modelling individual
family members. As this patterning process occurs in a single dimension (i.e. from the centre of the
root to the margin) we chose to model this as a multi-compartment model in one dimension, with
compartments representing either cell wall or sub-cellular space. In addition to PEAR and HD-ZIP
III, the model also considers auxin, cytokinin and miRNA165/6 as these are all components that have
been shown to regulate either PEAR or HD-ZIP III (Donner et al. 2009; Carlsbecker et al. 2010;
Miyashima et al. 2011). In this model auxin and miRNA165/6 can be considered as inputs to the
model, with cytokinin distribution leading from the auxin distribution, while predictions for PEAR
and HD-ZIP III spatial distribution can be considered as the key outputs originating from this study.
As there have been a suite of models predicting the localisation of auxin, cytokinin and miRNA165/6
during root vascular patterning (Muraro et al. 2014; De Rybel et al. 2014; el Showk et al. 2015; Mellor
et al. 2016), we do not seek to reproduce these findings and instead impose the spatial patterning
of these three components as has been described in previous models. As formulated, the model only
requires spatial positioning of an auxin source at one end of the template (in the metaxylem) and a
miRNA source at the other end of the template (at the outer edge of the stele) in order to produce
the spatial distribution of cytokinin, HD-ZIP III and PEAR.

1.1 Inputs: Auxin and miRNA

In this model we impose an auxin maximum in the xylem axis, in a similar way to that shown in
mathematical models of root vascular patterning and supported by experimental data of response
markers. Rather than incorporating auxin transporters into our model, we limit auxin production
to the metaxylem and set a low diffusion parameter relative to auxin degradation so that the vast
majority of auxin remains in the metaxylem, but that a low level exists in adjacent cells. The final
auxin distribution is similar to previous models (Muraro et al. 2014; De Rybel et al. 2014; el Showk
et al. 2015).

The effect of miRNA on the spatial distribution of the HD-ZIP III transcription factor PHB is
modulated by the interaction and mutual degradation with a miRNA and has been explored mathe-
matically in Muraro et al. (2014). In this model, the miRNA was produced in response to SHR in the
endodermis and could then diffuse into the stele.

Here, we simplify this by assuming a constant source of miRNA at the outer edge of the stele. The
miRNA can then diffuse within the stele and degrade (and be degraded by) HD-ZIP III.



1.2 Outputs: Cytokinin, PEAR and HD-ZIP

Although we do not explicitly set out to predict cytokinin distribution, it emerges from our model.
Cytokinin biosynthesis is promoted by auxin response in the xylem axis via MP-dependent activation
of LOG genes (De Rybel et al. 2014) whilst its activity is repressed in these cells via AHP6 (Mahonen
et al. 2006). For this reason we include separate model components representing both the hormone
itself (assumed to be produced directly in response to auxin) and a generic cytokinin response gene
(assumed to be repressed by auxin directly). It is this cytokinin response that then promotes PEAR
production. In this way, while PEAR production may occur wherever the cytokinin response gene is
present, it is effectively excluded from the metaxylem due to the auxin source there. As has been done
for previous models, we make the assumption that while the cytokinin hormone is free to move via
diffusion, the cytokinin response is not.

As we show here that PEAR transcription is promoted by cytokinin, we use the cytokinin response
(described above) to promote PEAR production in the model. Conversely, we show that HD-ZIP III
represses PEAR transcription, so the PEAR production rate in the model is negatively affected by the
level of HD-ZIP III. Based on the observed movement of translational PEAR reporters, we assume that
PEAR can move via diffusion, but that this rate of movement is negatively affected by the presence
of HD-ZIP III as supported by experimental determination of the diffusion coefficients.

Though we use a single generic HD-ZIP III protein we assume three independent modules contribute
to its production. Firstly we assume a basal constant production rate in all cells, production is then
increased in response to auxin and decreased in response to PEAR. Although there are differences in
the regulation of individual HD-ZIP III’s, e.g. ATHB8 shows a clear auxin induction, we feel that,
collectively, these rules reflect the activity of the group. In addition to a miRNA independent rate
of degradation (as is included for all model components), we also incorporate a mechanism through
which HD-ZIP III and miRNA mutually degrade one another as described above.

Based on these regulatory interactions, we can predict the steady state patterns of cytokinin, HD-
ZIP III and PEAR based on two inputs namely auxin and miRNA165/6. This allows us to dissect the
network and examine the effects that each regulatory component has on the final pattern.

2 Model Description

2.1 Spatial Domain

The model is solved on a one-dimensional spatial array of discrete compartments representing a cross-
section of root tissue from the centre of the stele at the xylem axis to the edge of the stele where phloem
is formed. The spatial subdivisions may represent either cell or cell wall compartments, with multiple
compartments per cell so that intracellular resolution is present within the model. Either 3, 4 or 5 cells
are simulated, subdivided by 2, 3 or 4 walls respectively. All compartments have equal unit widths,
with 23 compartments per cell and 2 compartments per cell wall. Each compartment is numbered
sequentially from 1 (xylem) to N (outer stele) where N is the total number of compartments. The
subset of cellular compartments is denoted K and the subset of wall components denoted W .

2.2 Model Components

The model simulates the evolution over time in a given spatial compartment i of a miRNA (denoted
Mi), a generic HD-ZIP III (denoted Hi), PEAR (denoted Pi), auxin (denoted Ai), cytokinin (denoted
Ci) and the cytokinin response (denoted Ri). Differentiating cytokinin from the cytokinin response in
this way is necessary to capture the dual role of auxin in promoting cytokinin biosynthesis while also
repressing the cytokinin response (De Rybel et al. 2014).

The spatial movement of model components via diffusion is modelled using standard discretisations
of diffusion operators to simulate flux between adjacent compartments, with the exception of the
movement of PEAR. In the case of PEAR to simulate the blocking of PEAR movement by HD-ZIP



III the diffusion coefficient between two adjacent compartments is modified by a decreasing function
of the average value of HD-ZIP III in the two compartments:

J = Dp

 Pi−1 − Pi
1 +

(
Hi−1+Hi

2φ

)q
 , (1)

where J is the flux of PEAR between compartments i and i− 1, Dp is the diffusion coefficient in the
absence of HD-ZIP III and φ and m are additional parameters. For values and definition of these and
all other parameters please refer to Table 1.

For simplicity, when modelling the three genes HD-ZIP III, PEAR and the generic cytokinin
response we use a single variable to represent both the mRNA and protein. Gene expression is modelled
using combinations of Hill functions, depending on the required regulatory logic. We assume HD-ZIP
III is activated by three independent modules, one constitutive, one auxin dependent and one PEAR
dependent, and so model the transcription rate of HD-ZIP III Fh as the sum of a constant, and
increasing functions of auxin and PEAR:

Fh(A,P ) = λ

(
1 +

Anh

θnh

h +Anh
+

Pmh

ψmh

h + Pmh

)
, (2)

where θh and ψh are threshold parameters, nh and mh Hill coefficents, and λ a proportionality constant.
PEAR is activated by the cytokinin response and repressed by HD-ZIP III so we model its tran-

scription Fp as the product of positive and negative Hill functions:

Fp(H,R) =
θ
np
p

θ
np
p +Hnp

× Rmp

ψ
mp
p +Rmp

, (3)

where θp and ψp are threshold parameters and np and mp Hill coefficents.
Cytokinin production Fc is modelled as a simple increasing Hill function of auxin:

Fc(A) =
Anc

θnc
c +Anc

, (4)

where θc is the threshold parameter and nc the Hill coefficent.
Finally the cytokinin response is regulated positively by cytokinin, but negatively by auxin so its

transcription rate Fr is given by:

Fr(A,C) =
θnr
r

θnr
r +Anr

× Cmr

ψmr
r + Cmr

(5)

where θr and ψr are threshold parameters and nr and mr Hill coefficents.
For all of these production rate functions we make the approximation that the rate of production is

equal throughout a given cell. This is done by using the mean value of any given transcription factor
within the set of compartments making up that cell in the above functions. We denote these mean
cellular values for a given compartment using the ̂ notation so that for example the rate of cytokinin
production in a compartment i is a function of Âi, the mean value of auxin in all compartments in the
cell containing i.

The modelling of the mutual degradation of miRNA and HD-ZIP III is simulated via mass-action
and is similar to that of Muraro et al. (2014). Degradation terms for each model component are
included in all cellular compartments.



2.3 Cellular compartments

Combining the above for 1 < i < N and i ∈ K (cellular compartments away from the boundary) we
have the following set of ordinary differential equations:

dMi

dt
= Dm(Mi−1 +Mi+1 − 2Mi)− µmMi − ηmMiHi, (6a)

dHi

dt
= µh

(
Fh(Âi, P̂i)−Hi − ηhMiHi

)
, (6b)

dPi
dt

= µp

(
Fp(Ĥi, R̂i)− Pi

)
+Dp

 Pi−1 − Pi
1 +

(
Hi−1+Hi

2φ

)q +
Pi+1 − Pi

1 +
(
Hi+Hi+1

2φ

)q
 , (6c)

dAi
dt

= αi −Ai +Da(Ai−1 +Ai+1 − 2Ai), (6d)

dCi
dt

= µc

(
Fc(Âi)− Ci

)
+Dc(Ci−1 + Ci+1 − 2Ci), (6e)

dRi
dt

= µr

(
Fr(Âi, Ĉi)−Ri

)
, (6f)

where Dm, Da and Dc are the respective diffusion coefficients of miRNA, auxin and cytokinin, µm,
µh, µp, µc and µr are turnover rates of miRNA, HD-ZIP III, PEAR and cytokinin and the cytokinin
response and ηm and ηh are the mutual degradation rates of miRNA and HD-ZIP III. αi is the
production rate of auxin and is set to be zero except for the in compartments in the first cell representing
the xylem axis.

2.4 Wall compartments

For the wall compartments (i ∈ W ) we set production and degradation equal to zero and only model
movement and the mutual degradation of HD-ZIP III and miRNA so that:

dMi

dt
= Dm(Mi−1 +Mi+1 − 2Mi)− ηmMiHi, (7a)

dHi

dt
= 0, (7b)

dPi
dt

= Dp

 Pi−1 − Pi
1 +

(
Hi−1+Hi

2φ

)q +
Pi+1 − Pi

1 +
(
Hi+Hi+1

2φ

)q
 , (7c)

dAi
dt

= Da(Ai−1 +Ai+1 − 2Ai), (7d)

dCi
dt

= Dc(Ci−1 + Ci+1 − 2Ci), (7e)

dRi
dt

= 0. (7f)



2.5 Boundary compartments

At the boundary representing the centre of the stele (i = 1) we have zero flux boundary conditions so
that:

dM1

dt
= Dm(M2 −M1)− µmM1 − ηmM1H1, (8a)

dH1

dt
= µh

(
Fh(Â1, P̂1)−H1 − ηhM1H1

)
, (8b)

dP1

dt
= µp

(
Fp(Ĥ1, R̂1)− P1

)
+Dp

 P2 − P1

1 +
(
H1+H2

2φ

)q
 , (8c)

dA1

dt
= α1 −A1 +Da(A2 −A1), (8d)

dC1

dt
= µc

(
Fc(Â1)− C1

)
+Dc(C2 − C1), (8e)

dR1

dt
= µr

(
Fr(Â1, Ĉ1)−R1

)
, (8f)

and finally at the outer stele boundary (i = N) we also have zero flux boundary conditions, except for
miRNA which is held fixed at Mbnd so that:

dMN

dt
= Dm(MN−1 − 2MN +Mbnd)− µmMN − ηmMNHN , (9a)

dHN

dt
= µh

(
Fh(ÂN , P̂N )−HN − ηhMNHN

)
, (9b)

dPN
dt

= µp

(
Fp(ĤN , R̂N )− PN

)
+Dp

 PN−1 − PN
1 +

(
HN−1+HN

2φ

)q
 , (9c)

dAN
dt

= −AN +Da(AN−1 −AN ), (9d)

dCN
dt

= µc

(
Fc(ÂN )− CN

)
+Dc(CN−1 − CN ), (9e)

dRN
dt

= µr

(
Fr(ÂN , ĈN )−RN

)
. (9f)

2.6 Model Parameters

For model parameter values see Table 1. All parameter values are estimates within reasonable bounds
based on trial and error in order to demonstate the plausibilty of the model in reproducing experimental
observations. Since the model is dimensionless, in the absence of spatial effects, variables are mostly
constrained between 0 and 1, and the parameter values are also dimensionless. In particular the Hill
thresholds and coefficients represent the relative sensitivity of the different regulatory mechanisms
present, with most set to default values of 0.1 and 1 respectively. The relative values of the parameters
relating to the mutual degradation of miRNA and HD-ZIP III are similar to those used in Muraro et al.
(2014), while values for the turnover rates of model variables have little or no effect on model steady
state. Selecting appropriate values for the relative diffusion coefficents is essential in order to observe
gradients in the model components over the desired spatial scales, in the experimentally observed
positions. While using other parameter values is likely to alter both the position and magnitude of
these gradients, we find that small perturbations from the selected parameter set does not significantly
affect the overall patterns produced by the model.



Table 1: Nondimensional parameters, with default values.
Diffusion coefficients

Dm 400
Dp 300
Da 10
Dc 1000
φ 0.005
q 2

Transcription parameters

λ 0.5
θh 1
ψh 1
nh 1
mh 1
θp 0.2
ψp 0.1
np 4
mp 1
θc 0.1
nc 1
θr 0.1
ψr 0.1
nr 1
mr 1

Turnover rates

µh 1
µp 1
µc 1
µr 1

miRNA / HD-ZIP III interaction

ηm 500
ηh 1000
Mbnd 1
µm 1

Auxin production

αi (i in xylem cell) 1
αi (i not in xylem cell) 0



3 Alternate Cases

3.1 No block on PEAR movement by HD-ZIP III

For the case where the block on PEAR movement in the presence of HD-ZIP III is removed, we simply
replace the HD-ZIP III modified diffusion operator given by Equation (1) used in Equations (6c), (7c),
(8c) and (9c) with the standard discretised diffusion operator so that in general:

dPi
dt

= µp

(
Fp(Ĥi, R̂i)− Pi

)
+Dp (Pi−1 − 2Pi + Pi+1) , (10)

with zero flux boundary conditions defined as before.

3.2 No positive feedback on HD-ZIP III expression from PEAR

To omit the positive feedback from PEAR on HD-ZIP III we replace Equation (2) with:

Fh(A) = λ

(
1 +

Anh

θnh

h +Anh

)
, (11)

so that HD-ZIP III production is only dependent on auxin plus a constitutive component.

3.3 No negative feedback on PEAR expression from HD-ZIP III

To omit the negative feedback from HD-ZIP III on PEAR we replace Equation (3) with:

Fp(R) =
Rmp

ψ
mp
p +Rmp

, (12)

so that PEAR production is only dependent on the cytokinin response.

4 Model Implementation

The model is implemented using the Python 2.7 programming language with the ‘odeint’ function from
the Scipy package used to solve the differential equations (Jones et al. 2001–) and Matplotlib (Hunter
2007) used to plot the state of the model after 100, 000 timesteps, which we assume to be at steady
state.
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Oka A., Kakimoto T., and Helariutta Y. Cytokinin signaling and its inhibitor AHP6 regulate cell
fate during vascular development. Science, 311(5757):94–98, Jan 2006.

Nathan Mellor, Milad Adibi, Sedeer El-Showk, Bert De Rybel, John King, Ari Pekka Mähönen, Dolf
Weijers, and Anthony Bishopp. Theoretical approaches to understanding root vascular patterning:
a consensus between recent models. Journal of Experimental Botany, 68(1):5–16, Nov 2016.

Shunsuke Miyashima, Satoshi Koi, Takashi Hashimoto, and Keiji Nakajima. Non-cell-autonomous
microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the
Arabidopsis root. Development, 138(11):2303–2313, 2011.

Daniele Muraro, Nathan Mellor, Michael P. Pound, Hanna Help, Mikaël Lucas, Jérôme Chopard,
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