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Abstract

In this paper we further study the 1d Schwarzian theory, the universal low-energy

limit of Sachdev-Ye-Kitaev models, using the link with 2d Liouville theory. We

provide a path-integral derivation of the structural link between both theories,

and study the relation between 3d gravity, 2d Jackiw-Teitelboim gravity, 2d

Liouville and the 1d Schwarzian. We then generalize the Schwarzian double-

scaling limit to rational models, relevant for SYK-type models with internal

symmetries. We identify the holographic gauge theory as a 2d BF theory and

compute correlators of the holographically dual 1d particle-on-a-group action,

decomposing these into diagrammatic building blocks, in a manner very similar

to the Schwarzian theory.
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1 Introduction and summary

Sachdev-Ye-Kitaev (SYK) models of N Majorana fermions with random all-to-all interac-

tions have received a host of attention in the past few years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],

mainly due to the appearance of maximally chaotic behavior [13, 14, 15, 16, 17], suggesting

a 2d holographic dual exists. It was realized immediately that the infrared behavior of these

models and their relatives is given by the so-called Schwarzian theory, a 1d effective theory

with action given by the Schwarzian derivative of a time reparametrization:

SSch = −C
∫
dt {f, t} , (1.1)

with {f, t} = f ′′′

f ′
− 3

2
f ′′2

f ′2
, the Schwarzian derivative of f . Miraculously, the same action and

interpretation appears when studying 2d Jackiw-Teitelboim (JT) dilaton gravity [18, 19, 20,

21, 22, 23, 24, 25, 26], with action:

SJT =
1

16πG2

∫
d2x
√
−gΦ2

(
R(2) − Λ

)
+ SGibbons-Hawking. (1.2)

This leads to the holographic duality between the Schwarzian theory and Jackiw-Teitelboim

gravity. UV decorations can be added to both theories if wanted, but this is the minimal

theory on both sides of the duality that contains the universal gravity regime. In [27] we

solved the Schwarzian theory by embedding it in 2d Liouville CFT, fitting nicely with the

well-known piece of lore that Liouville theory encodes the universal 3d gravitational features

of any 2d holographic CFT.

A direct generalization of the SYK model is to consider instead complex fermions. These

models have a U(1) internal symmetry, and the resulting infrared two-point correlator has

the symmetry [28]:

G(τ1, τ2) =
〈
ψ†(τ1)ψ(τ2)

〉
= (f ′(τ1)f ′(τ2))∆ g(τ2)

g(τ1)
G(f(τ1), f(τ2)), (1.3)

for a function f , corresponding to arbitrary conformal transformations, and g, corresponding

to arbitrary gauge transformations on the charged fermions. The former is known to be
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represented by a Schwarzian action, whereas the latter is represented by a free 1d particle

action.

At large N and low energies, the theory is dominated by quantum fluctuations of just these

two fields. In general, the low-energy theory is then

S = −C
∫
dt
(
{f, t}+ a(∂tg)2

)
+ Sint. (1.4)

The interaction term Sint will depend on the specific theory at hand. Stanford and Witten

[29] obtained this same action by considering the coadjoint orbit action for Virasoro-Kac-

Moody systems.

Generalizations to non-abelian global (flavor) symmetries of the fermions were studied in

e.g. [30, 31, 32].

Finally, when considering supersymmetric SYK models with N = 2 supersymmetry, the

above action (with a specific value of a) arises as the bosonic piece of the N = 2 super-

Schwarzian action [33].

Our goal here is to understand the structure behind these theories better, and their

correct bulk descriptions. As a summary, we will find the following diagram of theories

(Figure 1), linking four theories through dimensional reduction and holography. The same

quadrangle of theories exists for the compact group models as well.

2d Liouville

1d Schwarzian

3d Gravity

2d JT Gravity

Holography

Dim. Red.

2d WZW

1d particle on group

3d Chern-Simons

2d BF Theory

Holography

Figure 1: Scheme of theories and their interrelation.

Correlation functions of the Schwarzian theory were obtained first in [34, 35] and gener-

alized and put in a Liouville context in [27]. We analogously compute correlation functions

for the compact group models and find a diagram decomposition in perfect analogy with

that of the Schwarzian theory in [27]. For a compact group G, an arbitrary diagram is

decomposed into propagators and vertices:

τ1τ2

λm

= e− Cλ (τ2−τ1) ,

λ2m2

λ1m1

ΛM = γλ1m1,λ2m2,ΛM . (1.5)
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where Cλ is the Casimir of the irreducible representation λ and m ∈ Ωλ is a weight in the

representation λ. The vertex function is given essentially by the 3j-symbol of the compact

group G:

γλ1m1,λ2m2,ΛM =

(
λ1 λ2 Λ
m1 m2 M

)
. (1.6)

The representation labels of each exterior line are summed over. In the Schwarzian the-

ory, operator insertions are associated to discrete representations of SL(2,R) and external

lines to continuous representations, originating from the perfect dichotomy of (normaliz-

able) states and (local) vertex operators in Liouville theory. In the rational case here, all

representation labels are discrete, related to the state-operator correspondence in rational

2d CFT.

Our main objective is to demonstrate that the embedding of the Schwarzian theory

within Liouville theory is not just convenient: it is the most natural way to think about the

Schwarzian theory. This will be illustrated by both a field redefinition of Liouville theory

and by immediate generalizations to compact group constructions. To expand our set of

models, we also discuss N = 1 and N = 2 supersymmetric Liouville and Schwarzian theo-

ries wherever appropriate.

The paper is organized as follows. Section 2 contains a path-integral derivation of the

link between Liouville theory and the Schwarzian theory. This was hinted at in [27], but

is proven more explicitly here. We use this description of Liouville theory to exhibit more

explicitly the structural links between these theories in a holographic context in section 3.

In section 4 we look at the bulk story for the compact internal symmetries of SYK-type

models. Section 5 discusses the 1d particle-on-a-group actions and the diagrammatic rules

for computing correlation functions. We end with some concluding remarks in section 6.

The appendices contain some additional technical material.

Recently, the papers [36, 37] appeared that also investigate extensions of the Schwarzian

theory with additional symmetries.

2 Path integral derivation of Schwarzian correlators

In [27] we provided a prescription for computing Schwarzian correlators through 2d Liou-

ville theory on a cylindrical surface between two ZZ-branes. This was based on results in

[38, 39] on (the moduli space of) classical solutions of boundary Liouville theory. Here

we will provide a direct Liouville path integral derivation that substantiates our previous

prescription.
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2.1 Classical limit of thermodynamics

The Schwarzian limit we will take corresponds to the classical (~→ 0) limit of a thermody-

namical system.2 Let us therefore briefly review how this works. For a general theory with

fields φ and momenta πφ, the phase space path integral of the thermal partition function is

given as:

Z(β) =

∫
φ(0)=φ(~β)

[Dφ] [Dπφ] e
1
~
∫ β~
0 dτ

∫
dx(iπφφ̇−H(φ,πφ)). (2.1)

Rescaling β~t = τ and taking the classical limit, the pq̇-term localizes to configurations with

δ(πφφ̇) = 0, i.e. static configurations for which φ̇ = 0, π̇φ = 0. Hence one finds

Z(β)→
∫

[Dφ] [Dπφ] e−β
∫
dxH(φ,πφ) (2.2)

which is just the classical partition function for a field configuration.

We will take precisely this classical limit in the Liouville phase space path integral in the

next subsection.

2.2 Gervais-Neveu field transformation

Liouville theory with a boundary is defined by the Hamiltonian density:

H(φ, πφ) =
1

8πb2

(
π2
φ

2
+
φ2
σ

2
+ eφ − 2φσσ

)
. (2.3)

with parameters c = 1+6Q2 and Q = b+ b−1. The last term integrates to a boundary term.

Operator insertions in Liouville are the exponentials V = e`φ. Within the older canonical

approach to Liouville theory, Gervais and Neveu [41, 42, 43, 44] considered a (non-canonical)

field redefinition as (φ, πφ)→ (A(σ, τ), B(σ, τ)) with

eφ = −8
AσBσ

(A−B)2
, (2.4)

πφ =
Aσσ
Aσ
− Bσσ

Bσ

− 2
Aσ +Bσ

(A−B)
, (2.5)

where Aσ = ∂σA etc. We want to apply this transformation directly in the path integral.

The new functions A and B need to be monotonic (as can be seen from (2.4)): Aσ ≥ 0 and

Bσ ≤ 0. This transformation is invertible, up to simultaneous SL(2,R) transformations on

A and B as:

A→ αA+ β

γA+ δ
, B → αB + β

γB + δ
, (2.6)

2To be distinguished from the semi-classical limit where β~ is kept fixed in the limit, see e.g. [40].
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where the quantities α, β, γ and δ can have arbitrary τ -dependence. So we mod out by this

transformation. Note that an SL(2,R) transformation preserves the monotonicity proper-

ties of A and B. This field redefinition (2.4),(2.5) does not preserve the symplectic measure.

We are interested in the large c-regime (small b), where using this field redefinition, the

Hamiltonian density (2.3) can be written as

H = − c

24π
{A(σ, τ), σ} − c

24π
{B(σ, τ), σ} . (2.7)

The Liouville phase-space path integral, with possible insertions of the type e`φ, is then

transformed into〈
e`φ . . .

〉
=

∫
mod SL(2,R)

[Dφ] [Dπφ] e`φ . . . e
c

48π

∫
dσdτ(iπφφ̇−H)

=

∫
mod SL(2,R)

[DA] [DB] Pf(ω)

(
AσBσ

(A−B)2

)`
. . . e

c
48π

∫
dσdτ(iπφ(A,B)φ̇(A,B)+2{A,σ}+2{B,σ}).

(2.8)

The Jacobian factor in the measure is the Pfaffian of the symplectic 2-form ω. Performing

the Gervais-Neveu transformation (2.4),(2.5) on the standard symplectic measure, one finds

ω =

∫ π

0

dσ δπφ ∧ δφ =

∫ π

0

dσ

(
δA′′(σ) ∧ δA′(σ)

A′(σ)2
− δB′′(σ) ∧ δB′(σ)

B′(σ)2

)
+ bdy. (2.9)

Next we define this theory on a cylindrical surface between two ZZ-branes [45] at σ = 0

and σ = π (Figure 2).

ZZ ZZ
s

t
s = p

T

s = 0

Figure 2: Cylindrical surface with ZZ-branes at σ = 0, π. The τ -coordinate is chosen

periodic with period T .

The classical solution of this configuration is well-known [38, 39]:

eφ = −2
f ′(u)f ′(v)

sin
(
f(u)−f(v)

2

)2 . (2.10)
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in terms of a single function f that satisfies f(x+2π) = f(x)+2π. To implement the bound-

ary conditions at the quantum level, it is convenient to perform a thermal reparametrization

of the A and B fields into new fields a and b as

A(σ, τ) = tan
a(σ, τ)

2
, B(σ, τ) = tan

b(σ, τ)

2
, (2.11)

in terms of which (2.4) is rewritten as

eφ = −2
aσbσ

sin
(
a−b

2

)2 . (2.12)

The redefinition (2.11) preserves the monotonicity properties aσ ≥ 0 and bσ ≤ 0. The ZZ-

boundary state is characterized by φ→∞ at the location of the branes, by (2.12) requiring

a = b |σ=0 and, by the monotonicity requirements, a = b+ 2π |σ=π. More general boundary

conditions and branes are discusses in appendix A. See Figure 3 left.

s = 0 s = p

a(s)

b(s)

s

s = 0 
s = p

a(s)

b(-s)

s
s = -p

2p 2p

Figure 3: Left: σ-dependence of a and b and their behavior at the branes at σ = 0 and

σ = π. Right: The doubling trick allows a description in terms of a single function f(σ).

The Schwarzian limit is defined by taking the small radius limit (T → 0), thereby

reducing the theory to just the zero-mode along the τ -direction. To obtain a theory with

non-zero action, we need to take c → +∞ simultaneously such that cT
24π

= C, a fixed

constant.3 This double scaling limit is identical to the classical limit of thermodynamics

3Note that possible quantum renormalization effects (such as the Liouville determinant) are killed off in

this limit.
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discussed earlier in section 2.1. We obtain for the Liouville correlator in this limit:4

〈
e`φ . . .

〉
ZZ-ZZ

=

∫
a(0, τ) = b(0, τ)

a(π, τ) = b(π, τ) + 2π

[DA] [DB] Pf(ω)

(
AσBσ

(A−B)2

)`
. . . e

c
48π

∫ π
0 dσ

∫ T
0 dτ(iπφφ̇+2{A,σ}+2{B,σ})

→
∫

a(0) = b(0)

a(π) = b(π) + 2π

[DA] [DB] Pf(ω)

(
AσBσ

(A−B)2

)`
. . . eC

∫ π
0 dσ[{A(σ),σ}+{B(σ),σ}].

(2.13)

This can be simplified by defining a doubled field f to implement the boundary conditions

on the ZZ-branes, as

f(σ) =

{
a(σ), 0 < σ < π,

b(−σ), −π < σ < 0,
(2.14)

for f continuous, fσ ≥ 0 everywhere, and f a 1 : 1 mapping from (−π, π) to (−π, π), so

f ∈ diffS1/SL(2,R) (Figure 3 right). The symplectic form (2.9) in these new variables,

using that fσ = aσ and fσ = −bσ and that both terms add up, is written as5

ω =

∫ π

0

dσ

(
δa′′(σ) ∧ δa′(σ)

a′(σ)2
−
(

2π

β

)2

δa′(σ) ∧ δa(σ)

)
− (a↔ b) + bdy,

=

∫ π

−π
dσ

(
δf ′′(σ) ∧ δf ′(σ)

f ′(σ)2
−
(

2π

β

)2

δf ′(σ) ∧ δf(σ)

)
+ bdy, (2.15)

which is identified with the Alekseev-Shatashvili symplectic measure on the coadjoint Vi-

rasoro orbit [47, 48]. The boundary term drops out by our choice of boundary conditions,

and the expression is SL(2,R) invariant by construction.

The link between Liouville theory between branes and the geometric Alekseev-Shatashvili

action is made in appendix A.

Stanford and Witten showed that for a suitable choice of gauge, this becomes the stan-

dard SL(2,R)
∏

t 1/ḟ(t) measure [29]. Regardless, the final expression for the path integral

4To avoid cluttering the equations, the ”mod SL(2,R)” is left implicit here. In the Schwarzian limit, the

arbitrary τ -dependence of the SL(2,R) transformation matrix disappears, and it becomes a global gauge

redundancy.
5β should be set to 2π here. To reintroduce β in all expressions, one places the branes at a distance β/2

and sets A = tan π
βa etc. Alternatively, one can redefine C → C 2π

β and then rescale t→ t 2πβ and f → f 2π
β .

This gives the field f its physical dimension and demonstrates that the coupling constant C ∼ cT has the

dimensions of length.
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becomes∫
diffS1/SL(2,R)

[Df ] Pf(ω)

(
ḟ(t1)ḟ(−t1)

4 sin
(

1
2
(f(t1)− f(−t1))

)2

)`

. . . eC
∫ π
−π dt{F,t}. (2.16)

The theory is reduced to a Schwarzian system on the circle, with F = tan 1
2
f . The La-

grangian {F, t} is the analogue of (1.1) for finite temperature. In the process, Liouville op-

erator insertions become bilocal insertions in the Schwarzian theory. Liouville stress tensor

insertions are written in (2.7) as a sum of two Schwarzian derivatives, resp. the holomorphic

and antiholomorphic stress tensor. This exhausts the non-trivial Liouville operators. We

end up with a Euclidean theory on the circle.

As stressed in [27], one can then extend this expression to arbitrary times for the bilocal

operators to obtain the most generic Euclidean time configuration. Expressions for corre-

lators are then obtained by taking the double scaling limit directly in the known equations

in Liouville theory. Afterwards, one can directly Wick-rotate these to Lorentzian signature.

Both of these steps are non-trivial, and the correctness of this procedure is verified by several

explicit checks in [27].

To summarize, the 1d Lagrangian is the dimensional reduction of the 2d Hamiltonian,

and the 2d local vertex operators become bilocal operators in the 1d theory. This is the

rule we used in [27], and we will use this short mnemonic later on in section 5 when we

generalize this construction beyond SL(2,R) to arbitrary (compact) Lie groups.

2.3 Bäcklund Transformation

Instead of using the Gervais-Neveu parametrization (2.4),(2.5), we can make one more field

redefinition to get a free field theory (Bäcklund transformation) by defining

φF ≡ ln (−AσBσ) , (2.17)

πF ≡
Aσσ
Aσ
− Bσσ

Bσ

, (2.18)

transforming the symplectic measure again into the canonical one:

δA′′(σ) ∧ δA′(σ)

A′(σ)2
− δB′′(σ) ∧ δB′(σ)

B′(σ)2
= δπF (σ) ∧ δφF (σ), (2.19)

proving that the transformation (φ, πφ)→ (φF , πF ) is canonical in field space (see e.g. [49]

and references therein). The Hamiltonian gets transformed into the free-field one:

H =
c

48π

∫ π

0

dσ

(
π2
F

2
+

(∂σφF )2

2

)
. (2.20)
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Boundary conditions still need to be specified however, and, when written this way, the

system is not suited for the doubling trick.

There is a slight variant of this transformation that is better equiped for this purpose,

by defining (ψ, χ) as:

Aσ ≡ eψ, Bσ ≡ −eχ, (2.21)

or, in terms of the Bäcklund variables: φF = ψ + χ, πF = ψσ − χσ. It will turn out that

these field variables correspond to the Alekseev-Shatashvili fields [47, 48]. Upon taking the

Schwarzian limit, they correspond also with the field variables utilized in [34, 35].

In these variables, H = − c
24π

∫ π
0
dσ ({A, σ}+ {B, σ}) = c

48π

∫ π
0
dσ ((∂σψ)2 + (∂σχ)2). The

field transformation (φ, πφ)→ (ψ, χ) has a harmless symplectic form:

δA′′(σ) ∧ δA′(σ)

A′(σ)2
− δB′′(σ) ∧ δB′(σ)

B′(σ)2
= δψ′(σ) ∧ δψ(σ)− δχ′(σ) ∧ δχ(σ). (2.22)

The measure is now innocuous as it’s field-independent, and can be readily evaluated in

terms of an auxiliary fermion η as

Pf(ω) =

∫
[Dη] e−

∫
dτη′η = (det ∂τ )

1/2 . (2.23)

To implement the ZZ-boundary conditions for ψ and χ, we need to return to the A and

B fields using (2.11). The boundary conditions in terms of these is illustrated in Figure 4.

Doubling is done in terms of a single field F

s = 0 s = p

A(s)

B(s)
s

s = 0 s = p

A(s)

B(-s)

s
s = -p

Figure 4: Left: σ-dependence of A and B and their behavior at the branes at σ = 0 and

σ = π. Right: The doubling trick allows a description in terms of a single function F (σ).

F (σ) =

{
A(σ), 0 < σ < π,

B(−σ), −π < σ < 0,
(2.24)
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defined for the doubled interval (−π, π), with F (π) = F (−π) +∞, in the sense of the above

figure. Defining a doubled ψ-field for the interval (−π, π), the winding constraint is written

as:

F (π) = F (−π) +∞ →
∫ π

−π
dσ eψ =∞, (2.25)

which can be regularized and implemented in the theory using a Lagrange multiplier [34, 35].

The path integral becomes:6

∫
mod SL(2,R)∫ π
−π dσ e

ψ =∞

[Dψ]

 eψ(σ1,τ)eψ(−σ1,τ)(∫ σ1
−σ1 dσ e

ψ(σ,τ)
)2


`

. . . e
c

48π

∫ π
−π dσ

∫
dτ(iψσψτ−(∂σψ)2). (2.27)

Again taking the double scaling limit reduces this system to the expression:

∫
mod SL(2,R)∫ π
−π dt e

ψ =∞

[Dψ]

 eψ(t1)eψ(−t1)(∫ t1
−t1 dt e

ψ
)2


`

. . . e−C
∫ π
−π dt

(∂tψ)2

2 , (2.28)

which can be computed explicitly as shown in [34, 35].

We remark that this theory exhibits chaotic behavior, even though it looks like a free theory.

Within this language, this is explicitly found in [34, 35], and ultimately arises due to the

above constraint (introducing a 1d Liouville potential) and the non-local nature of the

operator insertions.

These field redefinitions and their 1d Schwarzian result are summarized in Figure (5).

2.4 N = 1 super-Liouville

The preceding discussion can be generalized to N = 1 super-Liouville theory and the N = 1

super-Schwarzian. We will be more sketchy in this paragraph, some details are left to the

6The gauge symmetry implementation is more subtle now. The original invariance

F → αF + β

γF + δ
, (2.26)

is reduced to γ = 0 (to fix the divergences to σ = ±π by choice) and β = 0 (the transformation (2.21)

undoes this redundancy). Only rescalings F → α2F are left, which indeed correspond to shifts in ψ which

leave the action (2.27) and operator insertions invariant. This leftover gauge symmetry is explicitly distilled

in correlators in [34, 35].

Also, quantum renormalization effects should be taken into account when considering the 2d system as

discussed in [47, 48].
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Liouville (f, p) Gervais-Neveu (A,B) Bäcklund (y,c)

Schwarzian (f) Free-field (y)

2d

1d ABK

ZZ-ZZ

thermal

Figure 5: Liouville theory in 2d in its different incarnations, and the resulting 1d theory one

finds upon taking the double scaling (classical) limit. The redefinition ḟ = eψ utilized by

Altland, Bagrets and Kamenev (ABK) [34, 35], is the dimensional reduction of the transition

from Gerveu-Neveu variables to Bäcklund variables.

reader. The analogous treatment of Gervais and Neveu for N = 1 Liouville theory appeared

in [50, 51, 52] and we heavily use their results.

N = 1 super-Liouville theory is defined by the Hamiltonian density

H =
1

πb2

(
π2
φ

2
+
φ2
σ

2
+

1

2
e2φ − φσσ − iψ1ψ2e

φ +
i

2
(ψ1ψ1σ − ψ2ψ2σ)

)
, (2.29)

for a scalar φ and two Majorana-Weyl fermions ψ1 and ψ2. The auxiliary field F has

been eliminated by its equations of motion. In superspace (σ, τ, θ1, θ2), the general classical

super-Liouville solution for the superfield Φ(σ, τ, θ1, θ2) is written as

eΦ =
(D1α)(D2β)

A−B − αβ
, (2.30)

in terms of superholomorphic bosonic functions A(x+, θ1), B(x−, θ2), and their fermionic

partners α(x+, θ1), β(x−, θ2), with Di = ∂θi + θi∂σ the superderivative.

As before, this can be generalized to an off-shell field redefinition in the phase space path

integral:

(φ, πφ, ψ1, ψ2) → (A(σ, τ, θ1), α(σ, τ, θ1), B(σ, τ, θ2), β(σ, τ, θ2), (2.31)

utilizing the off-shell generalization of (2.30) and the conjugate momentum as the definition

of the non-canonical field redefinition (see [50] for details). These fields are not completely

independent, but satisfy

D1A = αD1α, D2B = βD2β, (2.32)

making the transformation a super-reparametrization, and reducing the number of real com-

ponents from eight to four, matching the l.h.s. of (2.31). In these variables, super-Liouville

theory is naturally interpreted as the theory of all super-reparametrizations, generalizing

12



this statement from previous sections.

To rewrite the theory in terms of these variables, consider first the differential equation

D3
i x = Vix, (2.33)

for a fermionic function Vi(σ, τ, θi). For e.g. i = 1, one checks that this equation is solved for

x = (Dα)−1, A(Dα)−1, α(Dα)−1 with Vi equal to (minus) the super-Schwarzian derivative,

and A and α linked by (2.32). Indeed, evaluating the above for e.g. x = (Dα)−1 gives

explicitly

V1 = D3((Dα)−1)Dα = −D
4α

Dα
+

2D3αD2α

(Dα)2
= −Sch(α,A;σ, θ1). (2.34)

Analogous formulas hold for V2 in terms of β and B.

It was then demonstrated in [50] that the Hamiltonian density can be written as

H =
c

12π
(U1 + U2), (2.35)

where Ui is the bosonic (∼ θi) component of Vi:

V1(σ, τ, θ1) = Λ1(σ, τ) + U1(σ, τ)θ1, V2(σ, τ, θ2) = Λ2(σ, τ) + U2(σ, τ)θ2. (2.36)

The bosonic pieces of Vi thus become the Hamiltonian density in real space (after integrating

over θ). The fermionic parts (the Λ’s) in (2.36) are interpreted as the supercharge densities.

ZZ-brane boundary conditions at σ = 0, π require that Φ→∞ at those locations, which

means by (2.30), next to the bosonic conditions on A and B, that α = ±β|σ=0,π. This again

allows us to recombine A and B into a single reparametrization F , and α and β into η, the

superpartner of F . For the latter, one needs to choose ÑS (opposite) boundary conditions

on the branes such that α = β on one end and α = −β on the other. This leads to an

antiperiodic fermionic field η on the doubled circle, which indeed corresponds to a thermal

system. It is possible to choose other fermionic boundary conditions at the ZZ-branes, but

this only leads to the N = 0 Schwarzian as discussed in [27].

Super-Liouville vertex operators eαΦ become bilocal super-Schwarzian operators of the form

(2.30), given by arbitrary super-reparametrizations of the classical Liouville solution.

3 Classical dynamics of Liouville and 3d gravity

Here we analyze some aspects of the classical dynamics of 2d Liouville and 3d AdS gravity

with the dimensional reduction to the 1d Schwarzian and 2d Jackiw-Teitelboim gravity in
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mind. The larger goal is to demonstrate the structural links between 2d Liouville theory,

3d gravity, the Schwarzian theory, and JT gravity. The next section generalizes this further

to other theories.

3.1 Liouville with energy injections

In [24], we analyzed the Schwarzian theory at the classical level in 2d Jackiw-Teitelboim

(JT) gravity by allowing energy injections from the boundary. We demonstrated there that

the matter energy determines a preferred coordinate frame close to the boundary. Here we

show how that analysis directly generalizes to the higher dimensional Liouville theory. For

this purpose, the Gervais-Neveu variables (A, B) are most useful.

Liouville theory at large c is expected to describe the universal gravitational features of

holographic CFTs, and it is this regime we discuss here. As in (2.4), the Liouville exponential

is related to the (A, B) fields as

eφ ∼ AσBσ

(A−B)2
. (3.1)

On-shell, A and B are holomorphic resp. antiholomorphic functions and the Liouville metric

ds2 = eφdx+dx− is transformed from the Poincaré patch into an arbitrary frame.7

The lightcone stress tensor components are given by equation (2.7):

T++(σ, τ) = − c

24π
{A(σ, τ), σ} , T−−(σ, τ) = − c

24π
{B(σ, τ), σ} , T+− = 0, (3.2)

leading to

T00(σ, τ) = Tσσ(σ, τ) = T++ + T−−. (3.3)

Energy conservation would ordinarily result in holomorphicity for T++ and T−−. However

this is violated if the system is not closed, as happens when one would inject additional

energy into the system. We allow for this possibility here. The Schwarzian theory has

its time coordinate identified with the Liouville spatial coordinate σ, thus we relabel the

Liouville coordinates to reflect this: we set τ → x and σ → t. This corresponds to swapping

the roles of time and space in Liouville theory. The total energy on a constant-t slice equals

E(t) =

∫
dxTσσ(t, x) =

∫
dx (T++(t, x) + T−−(t, x)) . (3.4)

Within a holographic theory with bulk coordinates (t, r, x), the total change in boundary

energy equals the net bulk inwards flux from the boundary:

dE(t)

dt
= − c

24π

d

dt

∫
dx ({A(t, x), t}+ {B(t, x), t}) = −

∫
dx T0r(t, x, r → +∞). (3.5)

7We take here a more general situation than in the previous section 2 as we do not include ZZ-branes

but consider instead an infinite plane.
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This equation is not that powerful in general. However, when reducing to the spatial

(= x) zero-mode, it becomes the classical Schwarzian equation of motion [22, 23, 24]; the

Schwarzian equation is just energy conservation.

When evaluating (3.2) on a region where energy is conserved, all functions become holo-

morphic and this just reduces to the uniformizing coordinate identification:

T++(x+) = − c

24π

{
A(x+), x+

}
, T−−(x−) = − c

24π

{
B(x−), x−

}
, (3.6)

where x± = τ ± σ.

3.1.1 Bulk interpretation

The above can be interpreted as a diffeomorphism from vacuum Poincaré AdS3 (A,B) into

a new preferred frame (x+, x−). It is clearest to demonstrate this in a region where no

additional matter falls in (or is extracted) (Figure 6 left). It has been shown in [53] that

T++
T-- t

x+x-

x

u

t

x+x-

x

u

t=0

E=0

E>0

t=t1

t=t2

Figure 6: Left: classical injection of bulk energy between t1 < t < t2. We consider the

region after the injection takes place t > t2 where a non-zero boundary T±± was generated.

Right: classical injection of a translationally symmetric pulse into the bulk.

the general bulk diffeomorphism that brings the Poincaré AdS3 solution (X+, X−, u)

ds2 =
−2dX+dX− + du2

u2
, (3.7)

to the Banados metric (x+, x−, z)

ds2 = L+(x+)dx2
+ + L−(x−)dx2

− +

(
− 2

z2
+
z2

2
L+(x+)L−(x−)

)
dx+dx− +

dz2

z2
, (3.8)
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is found by extending the transformation

X± = X±(x±) +O(z2), u = z
√
∂X+(x+)∂X−(x−) +O(z3) (3.9)

into the bulk, with the chiral functions X±(x±) and L±(x±) determined by solving8

− 1

2

{
X±, x±

}
≡ L±(x±) =

12π

c
T±±(x±), (3.11)

given T±±. Then X+(x+) = A(x+) and X−(x−) = B(x−). Hence the functions A and B

indeed correspond to the boundary reparametrization that, upon extending into the bulk us-

ing (3.10), is precisely the required frame. Setting z = ε in (3.9) leads to a radial trajectory

u(X+, X−) representing a fluctuating holographic boundary caused by matter injections.

Note that solving (3.11) directly leaves a SL(2,R) × SL(2,R) ambiguity, which is fixed by

boundary (gluing) conditions, just as in the 2d case [24].

As an explicit example, consider a translationally invariant injection of matter through

a pulse (Figure 6 right). This requires T++ = T−− to set Ttx = 0 for t > 0, equal to (half)

the energy injected. One can then immediately solve (3.11) for A and B after the pulse:

A(x+) =

{
x+, t < 0√

c
12πE

tanh
(√

12πE
c
x+
)
, t > 0,

(3.12)

B(x−) =

{
x−, t < 0√

c
12πE

tanh
(√

12πE
c
x−
)
, t > 0.

(3.13)

The resulting Banados metric at t > 0 is of course the BTZ black hole frame.9

3.2 Jackiw-Teitelboim from 3d

It has been known for a long time that a spherical dimensional reduction of 3d gravity yields

2d Jackiw-Teitelboim gravity [54]. This is done by considering the 3d ansatz

ds2 = g(2)
µν dx

µdxν + λ−2Φ4dϕ2, (3.14)

8 The full bulk diffeomorphism is given by

X± = X±(x±) +
2z2∂±X

±2
∂2∓X

∓

8∂+X+∂−X− − z2∂2+X+∂2−X
− , u = z

(4∂+X
+∂−X

−)
3/2

8∂+X+∂−X− − z2∂2+X+∂2−X
− . (3.10)

9Note that these functions are not strictly holomorphic, due to the jump at t = 0. This was indeed

allowed in regions where energy is not conserved.
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with λ a mass scale. This yields directly10

1

16πG3

∫
d3x
√
−G

(
R(3) − Λ

)
=

2π

16πλG3

∫
d2x
√
−gΦ2

(
R(2) − Λ

)
, (3.15)

which is indeed JT gravity.

The Schwarzian coupling constant C ∼ 1/G2, but G3

L
→ 0 to match 3d gravity with 2d

Liouville theory at large central charge, with Brown-Henneaux central charge c = 3L
2G3

. So

we choose λL→ +∞ to obtain a finite limit with G2 ∼ λG3. This is the Schwarzian double

scaling limit from the bulk perspective.

This 3d perspective on the bulk is very useful, and we here mention some aspects that

become easier to understand when embedding the theory in 3d.

3.2.1 Black hole solutions from 3d

At the level of classical solutions, the general vacuum solution of 3d Λ < 0 gravity is the

Banados metric:

ds2 = L+dx
2
+ + L−dx

2
− +

(
− 2

z2
+
z2

2
L+L−

)
dx+dx− +

dz2

z2
, (3.16)

for arbitrary chiral functions L±(x±).

Performing a spherical dimension reduction requires L+ = L− = L, a constant, as it should

be independent of ϕ. The resulting 3d space is a non-rotating BTZ black hole, dimensionally

reducing to a 2d JT black hole.

By (3.11), only constant Schwarzian solutions survive the reduction, as this is the generic

3d metric outside matter. And any 2d vacuum metric in JT theory is a black hole of a given

mass. Indeed, directly solving the vacuum JT equations (as in [21, 22, 23, 24, 25]) leads

to black hole spacetimes as the only solutions, perfectly analogous to the 2d CGHS models

[55].

3.2.2 Fefferman-Graham from 3d

In [21, 22, 23, 24], JT gravity is defined by enforcing an asymptotic value Φ2 ∼ a/ε of the

dilaton Φ2 at z = ε, combined with an asymptotically Poincaré metric. Here we demonstrate

that, upon embedding in 3d, both of these conditions follow from just imposing asymptot-

ically Poincaré boundary conditions directly in 3d. The 3d BTZ metric can be written

as

ds2 = −4(ρ2 − µa)
dt2

a2
+

dρ2

ρ2 − µa
+ ρ2dϕ2. (3.17)

10Λ = − 2
L2 .
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Performing the purely radial transformation ρ =
√
µacoth

(√
µ
a
(x+ − x−)

)
[21, 24], and

setting t = x++x−

2
, the metric becomes

ds2 = −4
µdx+dx−

a sinh
(√

µ
a
(x+ − x−)

)2 + µacoth

(√
µ

a
(x+ − x−)

)2

dϕ2, (3.18)

which is of the form of a spherical dimensional reduction:

ds2 = gµνdx
µdxν = hijdx

idxj + Φ4(x)dϕ2, (3.19)

giving the 2d JT black hole metric hij and associated dilaton field Φ2. Asymptotically, the

above 3d metric behaves as

ds2 ≈ −dx
+dx−

z2
+
a2dϕ2

z2
, (3.20)

which, upon absorbing a in ϕ, is just the standard Fefferman-Graham asymptotic expansion.

Hence imposing Fefferman-Graham gauge in 2d and Φ2 ∼ a/ε is equivalent to imposing

Fefferman-Graham gauge in 3d.

3.3 3d embedding

Armed with the above embedding of the Schwarzian theory within Liouville and JT gravity

within 3d gravity, we can now relate four different theories through dimensional reduction

and the Schwarzian limit.

One starts with 3d gravity in the bulk, with periodically identified Euclidean time τ . Its

boundary contains 2d Liouville theory. Instead reducing to the angular ϕ-zero-mode, one

obtains 2d JT gravity in the bulk. These two 2d theories are living in distinct regions

and are only linked through this higher-dimensional story. Finally dimensionally reducing

Liouville theory leads to the Schwarzian theory as the angular zero-mode of the boundary

theory (Figure 7).

We can omit the ZZ-branes if we realize that their entire goal in life is to combine left-

and right moving sectors into one periodic field, thereby transforming the cylindrical surface

into a (chiral) torus. This equivalence is also demonstrated in Figure 8. The propagation

of just the identity module along the smaller circle is a consequence of taking the large c

limit.

As we will demonstrate starting from the next section, an analogous story holds for

group theory: Chern-Simons (CS) in 3d reduces to 2d WZW on the boundary. Instead

restricting to the angular zero-mode leads to 2d BF theory in a different region. Further

dimensionally reducing the boundary theory leads to the 1d particle on a group manifold.

The resulting scheme of models was already shown in Figure 1 and is repeated in Figure 9

for convenience.
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Liouville / WZW

3d Gravity / CS

Schwarzian / particle on group

JT gravity / BF theory

tf

r

Figure 7: Link between four theories through dimensional reduction, both for the gravity

sector, as for the group theory sector. The interior of the torus is the 3d bulk. The torus

itself is the holographic boundary. Reducing to the angular zero-mode gives a 2d bulk and

a 1d boundary line.

ZZ ZZ

ZZ ZZ

= =

Figure 8: Left: cylindrical surface bounded by ZZ-branes. Middle: The exponential map

transforms this into an annular region in the upper half plane. The ZZ-branes are on the

real axis and the semicircles are identified as shown. Right: Performing the doubling trick

(method of images) leads to a torus with only one chirality.

2d Liouville

1d Schwarzian

3d Gravity

2d JT Gravity

Holography

Dim. Red.

2d WZW

1d particle on group

3d Chern-Simons

2d BF Theory

Holography

Figure 9: Scheme of theories and their interrelation.

4 2d BF theory

4.1 Bulk derivation

It was suggested in [22, 23, 24] that the Schwarzian theory is holographically dual to Jackiw-

Teitelboim gravity. Within JT gravity, the Schwarzian appears as follows. The dilaton field
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blows up near the AdS boundary, with a coefficient depending on the matter sector. Keep-

ing fixed its asymptotics, requires performing a coordinate transformation at each instant,

depending on the injected / extracted energy from the system. This results in a fluctuating

boundary curve (Figure 10 left). One can directly deduce the Schwarzian action from the

z=0
z=e

T++

T--

z=0

J-

J+

z=e

A0 = d0s

t
t

Figure 10: Left: injecting energy in JT gravity leads to a preferred coordinate frame at each

time, resulting in a fluctuating boundary line. Right: injecting charge leads to a preferred

gauge transformation at each time.

bulk 2d JT dilaton gravity theory from the Gibbons-Hawking boundary term [23]. This

argument has been generalized to N = 1 and N = 2 JT supergravity in [56] and [57]

respectively. In appendix B we extend the argument (in the bosonic case) to include an

arbitrary matter sector.

The gauge theory variant of this story is readily formulated: we need a preferred gauge

transformation on the boundary curve at each instant, determined by the injected charge

into the system (see Figure 10 right). The correct bulk theory that describes this situation

is 2d BF theory.

The argument we present is a dimensional reduction of the 3d Chern-Simons story and the

direct analog of the Schwarzian argument of [23]. Consider the 2d BF theory obtained as a

dimensional reduction from 3d CS theory:

SCS ∼
∫
M3

d3xεijkAi∂jAk, (4.1)

with Aφ ∼ χ and ∂φ = 0. One obtains:11

S =

∫
M

d2xχF +
1

2

∮
∂M

dtχA0. (4.2)

11Reintroducing the correct prefactor k
4π in the Chern-Simons action, by analogy with section 3.2, one

needs to set Aφ ∼ χ
k to find a finite limit. The resulting 2d action is proportional to some C again, which

is not quantized even though the original k is.
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This action is not gauge-invariant, but changes as

δgS =
1

2

∮
∂M

dtχδgA0, (4.3)

just like 3d CS theory. Restricting the gauge transformations to satisfy δgA0 = 0|∂M , solves

this problem, but creates dynamical degrees of freedom at the boundary.

Sending in charge through a matter field requires the additional term

Smatter =

∫
M

d2xAµJ
µ, (4.4)

which is the charge analogue of the energy-momentum matter source for the gravitational

field given in appendix B. Varying w.r.t. Aµ and χ gives the equations of motion:

F = 0, ∇µχ = εµνJ
ν , (4.5)

and the boundary terms at r = +∞:

1

2

∮
∂M

(A0δχ− χδA0) . (4.6)

These can be cancelled by constraining:

v χ = A0|∂M , (4.7)

for a parameter v that defines the specific theory. We choose v = 1.

Path integrating (4.2) over χ sets F = 0 in the bulk. So we parametrize the solution as

Aµ = ∂µσ. (4.8)

Using the boundary condition (4.7), the full action (4.2) now becomes:

S =
1

2

∮
∂M

dt σ̇2. (4.9)

The total boundary charge is defined as

Q =
δSon-shell

δA0

= σ̇, (4.10)

and the total boundary energy is

Ttt =
σ̇2

2
. (4.11)
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For the matter action Smatter, after integrating by parts, one finds the boundary term:

Smatter = −
∮
∂M

dt σ Jr = −
∮
∂M

dt σ (J+ − J−), (4.12)

representing the net inward flux of charge.

As charge is sent in, one requires A0 to change as well asymptotically to keep fixed the

boundary condition (4.7). Either by using χ = σ̇ and (4.5), or by directly varying the

boundary action in terms of σ, one obtains

σ̈ = Jr, (4.13)

which determines how the gauge transformation σ evolves due to matter charge; σ was pure

gauge in the bulk but becomes physical on the boundary.

Some Comments:

• This procedure is independent of the gravity (Schwarzian) part. N = 2 JT supergrav-

ity would fix the relative coefficient (see section 4.2 below).

• Non-abelian generalization is straightforward. The non-abelian BF theory is

S =

∫
M

d2xTrχF +
1

2

∮
∂M

dtTrχA0, (4.14)

which is gauge-invariant (χ transforms in the adjoint representation), up to the bound-

ary term again. The equations of motion require Aµ = g−1∂µg, with F = 0. The

boundary condition is again chosen as χ = A0|∂M . So the full theory reduces to the

boundary action:

S =
1

2

∮
∂M

dtTr(g−1∂tg)2, (4.15)

which is the action of a particle on a group manifold, to be studied more extensively

in section 5 below.

• One can write Jackiw-Teitelboim itself as an SL(2,R) BF theory [20], see also [58] for

recent developments. In fact, dimensionally reducing SL(2,R) CS theory just gives us

the SL(2,R) BF theory, which is the first-order formalism equivalent of dimensionally

reducing the Ricci scalar directly. And indeed, the SL(2,R) particle-on-a-group action

is equivalent to the Schwarzian action [27]. Operator insertions on the other hand are

not so simple.

• 3d bulk gravity coupled to 3d CS theory leads to decoupled equations of motion

because TCSµν ≡ 0. The only influence of the CS theory on the gravity part is in the

definition of the total Hamiltonian: H = Hgrav +HCS with contribution (4.11), which

provides just a shift in the energy. This will indeed be observed below in section 5.2.
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4.2 Supersymmetric JT gravity theories

The identification of the non-interacting gauge sector as a 2d BF theory can also be under-

stood from supersymmetry as will be illustrated here. Pure 3d gravity can be written as

a sl(2) ⊕ sl(2) Chern-Simons theory. Similarly, Achucarro, Townsend and Witten demon-

strated a long time ago that (p, q) 3d supergravity can be written as a osp(p|2)⊕ osp(q|2)

Chern-Simons theory [59][60]. Dimensionally reducing these (super)gravity theories for the

case p = q leads to a osp(p|2) 2d BF theory.

And indeed, as known since a long time [20], JT gravity itself can be written as an sl(2) BF

theory:

SJT =

∫
Tr(ηF ), (4.16)

with A = eaP
a+ωJ , field strength F = dA+A∧A and η = ηaP

a+η3J in terms of zweibein

ea (a = 1, 2) and spin connection ω.

Supersymmetric generalization is now straightforward, as one just generalizes the gauge

group from sl(2) to either osp(1|2) (N = 1) or osp(2|2) (N = 2). In particular the N = 2

JT supergravity action may be written as [61][62]:

SN=2
JT =

∫
STr(EF ), (4.17)

in terms of the field strength F = dA+A∧A, with the dilaton superfield E and supercon-

nection A, expanded into the osp(2|2) generators as:

E = ηaP
a + η3J + φαQα + φ̃αQ̃α + χB, a = 1, 2, α = 1, 2, (4.18)

A = eaP
a + ωJ + ψαQα + ψ̃αQ̃α + ξB, (4.19)

for three sl(2) generators Pa, J , four fermionic generators Q±, Q̃± and one additional u(1)

generator B. These eight generators satisfy an osp(2|2) algebra whose explicit form can be

found in the literature.12

For simplicity, we set the cosmological constant zero here, as this does not influence the

structure of the theory. In components, the action is

SN=2
JT =

∫ [
ηaDe

a + η3R + ηψ ∧ ψ̃ + χ(F + ψ ∧ ψ̃) + φ̃Dψ + φDψ̃
]
. (4.20)

The piece coming from just the bosons is then

SN=2
JT 3

∫
ηaDe

a + η3R + χF, (4.21)

12The osp(1|2) BF theory would have just the 3 sl(2) bosonic generators and 2 fermionic generators.

Generally, the osp(p|2) 2d BF theory has the bosonic algebra so(p)⊕ sl(2).
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which is indeed bosonic JT gravity (4.16) supplemented with a u(1) BF theory
∫
χF .

Studying the N = 2 theory on its own would be interesting as this couples the gravitational

and gauge sectors in the bulk. This is left for future work.

5 Correlation functions in group models

We focus now on the boundary theories of the 3d Chern-Simons and 2d BF models. We

will provide a prescription for computing correlation functions of the 1d particle-on-a-group

theory, following the logic used in the Schwarzian theory in [27] and in section 2. We start by

providing a general formalism starting from 2d Wess-Zumino-Witten (WZW) rational CFT

and performing a double-scaling limit. Our main interest is again in computing the cylinder

amplitude between vacuum branes. After that, we consider U(1) and SU(2) as two examples

that will allow us to write down the generic correlation function using diagrammatic rules.

5.1 General formalism

5.1.1 From 2d WZW to 1d particle-on-a-group

Consider the 2d WZW system with path integral

〈F (g(z, z̄))〉 =
1

Z

∫
[Dg]F (g(z, z̄))e−

k
16π

∫
d2zTr(g−1∂gg−1∂̄g)+kΓ, (5.1)

for g ∈ G, integer level k, and with Γ the Wess-Zumino term which will not be needed. An

operator F (g) is inserted, with F a scalar-valued function on the group. As well-known,

this theory enjoys invariance under a local group transformation g → g1(z)gg2(z̄).

Just as in Liouville theory, we focus on the moduli space of classical solutions of this

theory to deduce the link between the 2d and 1d operators. This system has the classical

solution g(z, z̄) = f(z)f̄(z̄), with f and f̄ local group elements as well.

Inserting a brane at z = z̄ (or u = v in Lorentzian signature) imposes reflecting boundary

conditions:

J(z) = J̄(z̄) ⇒ −∂gg−1 = g−1∂̄g, (5.2)

which, when translated into a condition on f , requires f̄ = f−1. This boundary condition

projects the symmetry onto its diagonal subgroup; the condition (5.2) is preserved under

the group transformation provided g1 = g−1
2 . In terms of f , the symmetry transformation

is now f → g1f .

At the second boundary brane at σ = π, where u = τ + π, v = τ − π, one has g = f(τ +

π)f−1(τ − π) which satisfies the boundary condition if f is 2π-periodic: f(x+ 2π) = f(x).
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Hence, after implementing the boundary conditions, the system is characterized by a single

2π-periodic function f .

Just as with the Schwarzian theory, we imagine performing a change of field variables from

g to f . The transformation g(z, z̄) = f(z)f−1(z̄) has, in analogy with (2.4), a redundancy

in description: f ∼ fγ for γ ∈ G any global group element. One can then identify a local

WZW operator F (g(z, z̄)) with a bilocal 1d operator as z → t1 and z̄ → t2.

Dimensionally reducing as in the Liouville/Schwarzian case, the WZW action itself imme-

diately reduces to the particle-on-a-group action, the Wess-Zumino term Γ vanishes upon

dimensional reduction.

Hence the rational generalization of the Schwarzian story requires us to compute the 1d

path integral over the group:

1

Z

∫
Glocal/Gglobal

f(t + 2π) = f(t)

[Df ]F
(
f(t1)f−1(t2)

)
e−

kT
16π

∫ π
−π dtTr(f−1∂tf)2 . (5.3)

The periodicity of 2π can be changed into β by rescaling the time coordinate as t → 2π
β
t,

which can alternatively be achieved by placing the branes at β/2 apart. Both the action

and the operator insertions are left invariant under the global group f → fγ, but are not

invariant under local transformations. This immediately generalizes the Schwarzian coset

diffS1/SL(2,R) to the generic rational case as the right coset Glocal/Gglobal. Taking into

account the periodicity of f , this integration space is also written as the right coset of the

loop group: LG/G, which is known to be a symplectic manifold. The resulting partition

function could then be computed using the Duistermaat-Heckman (DH) theorem just as in

the Schwarzian case [63]. Note that the transformation f → g1f , g1 ∈ G, is a symmetry of

the action: it is the remnant of the WZW symmetry in 1d as remarked above. But it is not

necessarily a symmetry of operator insertions and it isn’t a gauge redundancy.

We did not work out the measure [Df ] explicitly as in section 2, but by general argu-

ments this has to be the standard
√
G measure of the group metric: ds2 = Gµνdx

µdxν =

Tr [g−1dg ⊗ g−1dg].

The double scaling limit we take is T → 0 and k →∞ with the product kT ∼ C held fixed

proportional to a coupling constant C. We will be more specific about this below in section

5.3.13 The coupling constant C allows us to explore the semi-classical regime of (5.3) at

C → +∞.

Structurally the particle-on-a-group action is very similar to the Schwarzian action. The

Lagrangian L and Hamiltonian H can be written as a particle moving on the group manifold

13As for the Schwarzian case, reintroducing β makes the constant C have dimensions of length. The

quantization of the level k is immaterial in the double scaling limit.

25



as

L =
C

2
Gµν ẋ

µẋν , H =
1

2C
Gµνpµpν , (5.4)

making it clear that this action has H = L. The classical equations of motion are ∂t(f
−1ḟ) =

0, identifying conserved currents J(t) = Ja(t)τ
a = f−1ḟ with Casimir equal to the Hamil-

tonian (up to an irrelevant prefactor):

Cas ≡ Tr(J(t)J(t)) = JaJbTr(τaτ b) = Tr(f−1∂tf)2 ∼ H = L. (5.5)

The quantization of a particle on a group manifold is in principle well-known (see e.g.

[64]). Consider for instance the partition function (without operator insertions), and ignore

first the modding f ∼ fγ we wrote in (5.3). Then this is manifestly the path integral

rewriting of the Lorentzian partition function Tre−βH . As mentioned above, the theory is

invariant under G×G as f(t)→ g1f(t)g2. Using operator methods, this can be used to prove

that each energy-eigenvalue, with irrep label j, has a degeneracy of (dim j)2. As an example,

the SU(2) group manifold is just the three-sphere S3, which has SO(4) ' SU(2) × SU(2)

isometry, meaning an organization of the energy spectrum in (2j + 1)2 degenerate states.

This can indeed also be seen explicitly for SU(2) in [65], and in the general case in [64, 63],

both with operator methods and path integral methods. Thus

Z =
∑
j

(dim j)2 e−βCj . (5.6)

Reintroducing the gauge-invariance f ∼ fγ in (5.3) merely requires gauge fixing the thermal

path integral, which yields an overall factor of the (finite) group volume (vol G)−1, which is

included in the zero-temperatore entropy S0 and dismissed. As mentioned above, this does

however allow one to prove one-loop exactness of the path integral through the DH formula.

The above expression is indeed what we will obtain in section 5.3 below for SU(2), and is

readily generalized beyond that. We provide some more explicit formulas in appendix C.

5.1.2 Cylinder amplitude

Just as to get to the Schwarzian from Liouville in section 2, we place two vacuum branes

and consider the WZW amplitude on a cylinder between these vacuum branes (as earlier in

Figure 2):

〈brane0| e−T̃Hcl |brane0〉 , (5.7)

with T̃ = 2π2/T , the length of the cylinder in the closed channel when the circumference is

fixed to 2π. As well-understood, a boundary state |a〉 can be expanded into Ishibashi states

as

|a〉 =
∑
i

Sia√
Si0
|̂i〉〉. (5.8)
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The sum ranges over all integrable representations of the Kac-Moody algebra ĝ, which in the

k → +∞ limit becomes just all irreducible representations of the Lie algebra g. In the limit

of interest where the length of the cylinder becomes much longer than its circumference, the

Ishibashi states are themselves dominated by their zero-mode (n = 0) states14

|̂i〉〉 =
∑
mi,n

|i,mi, n〉 ⊗ |i,mi, n〉 →
∑
mi

|i,mi, n = 0〉 ⊗ |i,mi, n = 0〉 . (5.9)

The Kac-Moody algebra reduces to the zero-mode Lie algebra. One can thus write for (5.7):∑
i,j

√
S∗0iS0j

∑
mi,mj

〈i,mi| δije−βCj |j,mj〉 , (5.10)

in terms of the modular S-matrix and the Casimirs Ci of the irreps. Including operator

insertions in the middle, requires splitting the evolution into separate pieces and inserting

complete sets of primaries around each such insertion. For instance, the two-point function

of this system can be written as:∑
i,j

√
S∗0iS0je

−Ciτe−Cj(β−τ)
∑

mi,mj

〈i,mi|F (g) |j,mj〉 . (5.11)

The matrix element can e.g. be computed in configuration space as

〈i,mi|F (g) |j,mj〉 =

∫
dg 〈i,mi| g〉F (g) 〈g| j,mj〉 , (5.12)

which is the method we utilized for the Schwarzian theory in [27].

In the next two subsections we will consider the two simplest examples. The gener-

alization to arbitrary compact groups will be obvious at the end. We will end up with a

diagrammatic decomposition of the general correlator, analogously as in the Schwarzian case

[27]. Just as in that case, we remark that the resulting expression is non-perturbative in

the coupling constant C: the diagrams just represent convenient packaging of the building

blocks of the general expressions.

5.2 Example: U(1)

As a first example, let’s take U(1). We start with a direct evaluation of its correlators follow-

ing the preceding discussion. Afterwards we will embed the theory into N = 2 Liouville and

find the same answer. The latter serves as a further consistency check on the Schwarzian

limit from supersymmetric versions of Liouville theory.

14All states obtained by acting with Ja−n on a primary state have non-trivial dependence on τ , and are

subdominant in the T → 0 limit.
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5.2.1 Direct evaluation

Consider a free boson field φ in 2d with action S =
∫
dudv∂uφ∂vφ. The classical solution is

given by

φ(u, v) = σ(u) + σ̄(v). (5.13)

Perfect reflection at u = v and u− v = 2π requires σ = −σ̄ and σ(u+ 2π) = σ(u).

Natural vertex operators are the exponentials:

VQ = eiQφ(u,v) = eiQσ(u)e−iQσ(v). (5.14)

The classical moduli space is parametrized by a real periodic function σ, so the Schwarzian

1d limit entails:∫
[Dφ]VQ . . . e

−S →
∫

[Dσ] eiQσ(t1)e−iQσ(t2) . . . e−
1
2

∫
dt(∂tσ)2 . (5.15)

In this particular case, the bilocal operator is just a product of two local operators.

Of course the resulting theory is free and immediately solvable. Consider e.g. a two-point

correlator: 〈
eiQσ(t1)e−iQσ(t2)

〉
. (5.16)

The classical equation of motion for σ, including the operator insertions, is solved analo-

gously as in the semi-classical regime of Liouville theory (and written here in Lorentzian

signature):

σ̈ = Qδ(t− t1)−Qδ(t− t2), (5.17)

hence σ̇ increases by Q at t1 and decreases again to its original value at t2. Thus the

operators inject and extract charge, and σ̇ represents the total charge in the system, as

found earlier from the bulk perspective in section 4. The Gaussian path integral is readily

computed as:

1

Z

∫
[Dσ] eiQ(σ1−σ2)e−

∫
dtσ̇2

=

√
β

4π

∫
dqe−

q2

4
τe−

(q−Q)2

4
(β−τ). (5.18)

If the integral on the r.h.s. is truly an integral ranging from −∞ to +∞, one obtains:

e−
Q2τ(β−τ)

4β , (5.19)

which at β → +∞ asymptotes to→ e−
Q2τ
4 . This, as we show below in (5.66), is the general

result for any non-abelian group as well, with Casimir Q2/4. This two-point function is of

the shape as in Figure 11.
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Figure 11: Two-point function of U(1) theory in units where β = 1.

5.2.2 Interpretation in terms of N = 2 super-Schwarzian

The U(1)-sector is relevant for e.g. the N = 2 super-Schwarzian. This is because it con-

tains, in addition to the fermionic superpartners, also an additional bosonic field σ that

is identified with the above U(1)-sector. Here we demonstrate this directly. In the next

paragraphs we will identify it from its N = 2 Liouville ancestor.

The bosonic piece of the super-Schwarzian action is the Schwarzian plus a free boson

field σ [33]:

S = C

∫
dt
(
−{f, t}+ 2σ̇2

)
. (5.20)

The relative coefficient was fixed byN = 2 supersymmetry. AnN = 2 super-reparametrization

of the invariant super-distance is given by the following expression:

1

τ1 − τ2 − θ1θ̄2 − θ2θ̄1

→
Dθ̄1 θ̄′1Dθ2θ′2

τ ′1 − τ ′2 − θ′1θ̄′2 − θ′2θ̄′1
. (5.21)

For a purely bosonic reparametrization,

τ ′ = f(τ), θ′ = ρ(τ)θ, θ̄′ = ρ̄(τ)θ̄, with ρρ̄ = ḟ , ρ/ρ̄ = e2iσ, (5.22)

the bosonic piece of (5.21) is given by

ei(−σ1+σ2)

√
ḟ1ḟ2

(f1 − f2)
. (5.23)

This can be viewed as a simultaneous reparametrization f(τ) and gauge transformation

g(τ) ≡ eiσ(τ) on the charged 1d operator O → eiσO, as given in (1.3).
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5.2.3 Charged Schwarzian from N = 2 Liouville

It is possible to obtain this theory directly from N = 2 Liouville theory. The N = 2

supersymmetric generalization of Liouville theory consists of the Liouville field φ, the su-

perpartners ψ± and ψ̄± and a compact boson Y , forming the full supersymmetric multiplet.

The central charge is c = 3 + 3Q2 = 3 + 3/b2. Details can be found in the literature, but

will not be needed here.15

Take this theory on the cylinder bounded by two ZZ-branes and consider imposing

antiperiodic boundary conditions in N = 2 Liouville along the small circle (NS-sector)

(Figure 12).

opposite

ZZ ZZ

antiperiodic
NS

opposite

ZZ ZZ

periodic

NS
~

Figure 12: Left: Cylinder with ÑS boundary conditions around the small circle, leading to

supersymmetric quantum mechanics in 1d. Right: Cylinder with NS boundary conditions

around the small circle, leading to a removal of all fermions upon dimensional reduction.

This leads to the removal of all fermionic degrees of freedom in the 1d theory, and retains

only the Liouville field itself (leading to the Schwarzian) and the compact boson Y (leading

to the U(1) theory). The analysis of section 2 can be repeated when adding the free boson

Y . This leads to the additional 1d action in the Schwarzian limit:

S =
C

2

∫
dt Ẏ 2, (5.24)

leading to the identification Y = 2σ to match with the super-Schwarzian field σ in (5.20).

The required building blocks of our story are readily available in the literature. N = 2

Liouville primary vertex operators in the NS sector are of the form:

V`,Q = e`φei
Q
2
Y , ∆ =

`

2
− b2

2

(
`2 −Q2

)
→ `

2
, (5.25)

whereas Liouville states |P,Q〉 with charge Q and Liouville momentum P have weight:

∆ =
1

8b2
+
P 2

2
+
b2Q2

2
. (5.26)

15Two convention schemes exist: we follow that of [66]. To go from the conventions of [67] to those of

[66], one needs to set b2 → 2b2 and 2P 2 → P 2.
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The NS character for a primary with Liouville momentum P = 2bk and U(1) charge Q is

given by:

chNSP,Q(τ, z) = q
P2

2
+ b2Q2

2 yQ
θ00(τ, z)

η3
→ e−β(k2+Q2/4)yQ, (5.27)

in the large τ2-limit. The ZZ-brane wavefunction is determined by the modular S-matrix

as:

|ΨZZ(P,Q)|2 = SP,Q0 =
b

2

sinh(π P
b
) sinh(2πbP )∣∣ coshπ (bP + ib2Q)

∣∣2 → 2b3πk sinh 2πk. (5.28)

The total vacuum character then has the small T -behavior:

χ0(τ = iT ) →
∫
dQdk k sinh 2πke−β(k2+Q2/4)yQ

=

∫
dQ

∫ +∞

Q/2

dE sinh 2π
√
E −Q2/4 e−βEyQ, (5.29)

hence the density of states is identified as

ρ(E,Q) = sinh 2π
√
E −Q2/4. (5.30)

The lack of a ∼ 1/
√
E divergence as E → 0 is an indication of the lack of supersymmetry

[68].

Inserting one vertex operator (5.25) in the ZZ-cylinder amplitude, we get:

〈O`,Q(τ1, τ2)〉 = 〈ZZ| e−Hτe`φei
Q
2
Y e−H(β−τ) |ZZ〉 =

∫ +∞

q21/4

dE1

∫ +∞

q22/4

dE2e
−E1τe−E2(β−τ)

× 〈ZZ| k1, q1〉
∫
dφdY 〈k1, q1| φ, Y 〉 e`φei

Q
2
Y 〈φ, Y | k2, q2〉 〈k2, q2| ZZ〉 . (5.31)

Let’s compute this explicitly. The ZZ-brane wavefunction is given by

ψZZ(E, q) = 〈E, q| ZZ〉 =
2πib

√
E − q2/4

Γ(1 + 2i
√
E − q2/4)

. (5.32)

The minisuperspace limit of bulk N = 2 Liouville theory leads to a removal of all fermions,

and the result is the Schrödinger equation:

(−∂2
φ − ∂2

Y + e2φ)ψ(φ, Y ) = Eψ(φ, Y ), (5.33)

with E the energy, solved by

ψE,q(φ, Y ) = 〈φ, Y | E, q〉 =
2

Γ(−i
√
E − q2/4)

K
i
√
E−q2/4(eφ)ei

q
2
Y . (5.34)
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The basic integral we need to compute is∫
dY

∫
dφe`φei

Q
2
Y ψ∗k1,q1(φ, Y )ψk2,q2(φ, Y ). (5.35)

The Y -integral just gives δ(Q−q1 +q2) and the φ-integral is the same as in bosonic Liouville

[27]. So we end up with∫
dq

∫ +∞

q2/4

dE1

∫ +∞

(q−Q)2/4

dE2e
−E1τe−E2(β−τ) sinh(2π

√
E1 − q2/4) sinh(2π

√
E2 − (q −Q)2/4)

×
Γ(`/2± i

√
E1 − q2/4± i

√
E2 − (q −Q)2/4)

Γ(`)
. (5.36)

Shifting the energy variables by the charge, then leads to:

〈O`,Q(τ1, τ2)〉 =

∫
dq

∫ +∞

0

dE1

∫ +∞

0

dE2e
−(E1+q2/4)τe−(E2+(q−Q)2/4)(β−τ)

× sinh(2π
√
E1) sinh(2π

√
E2)

Γ(`/2± iE1 ± iE2)

Γ(`)
, (5.37)

where now the energy variables E1 and E2 are only the energies of the Schwarzian subsystem,

not the total energy. Factorization is now manifest, and the q-integral agrees indeed with

(5.18).16

One can write a diagrammatic decomposition of a general correlator, as done in [27]. The

two-point correlator for instance is given diagrammatically as:

A2(ki, q, `, Q, τi) =

k1, q

τ2 τ1

k2, q −Q

`,Q , (5.38)

where each line contains also a conserved charge, next to the Schwarzian SL(2,R)-labels.

16The computation in this section is done for C = 1/2 [27], which in (5.20) indeed yields the correct

prefactor in the action to agree with (5.18).
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5.3 Example: SU(2)

5.3.1 Partition function

The vacuum character for SU(2)k on a cylinder of circumference T and length π, transforms

under an S-transformation as:

χ0

(
iT

2π

)
=

k/2∑
j=0

S0jχj

(
i
2π

T

)
, S0j =

√
2

k + 2
sin

(
π(2j + 1)

k + 2

)
, j = 0,

1

2
, 1 . . .

k

2
,

(5.39)

which can be evaluated in the T → 0 limit using

χj

(
i
2π

T

)
→ (2j + 1)e−

4π2

T
hj = (2j + 1)e−T̃ (2hj) = (2j + 1)e−

4π2

T (k+2)
j(j+1), (5.40)

where hj = j(j+1)
k+2

. The second equality expresses the character in terms of the closed channel

with length T̃ = 2π2/T . Keeping fixed T (k + 2) = 4π2/β, this becomes (2j + 1)e−βCj with

the Casimir Cj = j(j+ 1). The analogue of the Schwarzian double scaling limit is here that

the level k → +∞ as T → 0. The vacuum character (5.39) finally becomes:

Z(β) = lim
T→0

χ0

(
iT

2π

)
=
∑
j

√
2π

(k + 2)3/2
(2j + 1)2e−βCj =

∑
j

S00 (2j + 1)2e−βCj , (5.41)

which, up to normalization constants, is a discrete quantum system with Hamiltonian =

Casimir, and with the dimension of the irreps as density of states: ρ(j,m) = dim j = 2j+1.

Note that the sum ranges over both integers and half-integers.

As in the Schwarzian theory, the prefactor can be written in terms of a ground state entropy

as eS0 , and requires regularization by taking finite k. In this case, the prefactor is just S00

which goes to zero as k → ∞. This prefactor will cancel in correlation functions and is

hence irrelevant for our computations; we drop it from here on.

At low temperatures, only the vacuum contributes and Z → 1. At high temperatures, the

sum can be replaced by an integral and Z → 2
√
π

β3/2 . Alternatively, the expression (5.41) is

readily Poisson-resummed.

For a general Kac-Moody algebra ĝ, it is well-known that the S0j elements in the modular

S-matrix carry information about the quantum dimension dj of the integrable representation

ĵ, and this reduces to the dimension in the classical (k →∞) limit:

dj =
S0j

S00

→ dim j. (5.42)
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It is instructive to recompute Z(β) from the closed channel:

〈brane0| e−T̃H |brane0〉 =
∑
i,j

√
S∗0iS0j 〈〈̂i|e−T̃H |ĵ〉〉 → S00

∑
i,j

dim i dim j δije
−βCj , (5.43)

using the Ishibashi states in the k →∞ limit (5.9):

|ĵ〉〉 →
j∑

m=−j

|j,m〉 . (5.44)

5.3.2 Correlation Functions

Next we proceed by computing correlators of the SU(2) theory. Instead of evaluating

configuration space integrals, we will compute the matrix element (5.12) directly using group

theory as follows. General operator insertions F (g) are all built from the field g(z), so we can

organize them into tensor operators OJ,MM̄ transforming in an irreducible representation of

G, essentially by using the Peter-Weyl theorem. In the double scaling limit, one finds the

bi-local operators:

F (g) → F
(
f(t1)f−1(t2)

)
=
∑
J,M,M̄

cJ,M,M̄OJ,MM̄ . (5.45)

The resulting elementary bilocal operator OJ,MM̄ will turn out to be identifiable with the

matrix element:

OJ,MM̄ ≡
[
f(t1)f−1(t2)

]
MM̄

= [RJ(f(t1))]Mα

[
RJ(f−1(t2))

]α
M̄
, (5.46)

for the group element f in the spin-J representation RJ . For a general operator OJ,MM̄

transforming both in the holomorphic and antiholomorphic sector as a tensor operator, a

doubled Wigner-Eckart theorem holds:

〈j1m1m̄1| OJ,MM̄ |j2m2m̄2〉 = Cj1m1,j2m2;J−MCj1m̄1,j2m̄2;J−M̄Aj1j2J , (5.47)

in terms of two Clebsch-Gordan (CG) coefficients and a reduced matrix element Aj1j2J . Note

that a reordering of the arguments of the CG coefficients has been performed, resulting in

some j-dependent factors that are absorbed into the reduced matrix element, see appendix

D for details. The appearance of two Clebsch-Gordan coefficients will be crucial in what

follows.

To determine the reduced matrix element Aj1j2J , one can evaluate this expression for any

choice of the m’s.
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We will determine it below for SU(2), and conjecture that for a general group G for

irreducible representations λ1, λ2 and λ, it equals

Aλ1λ2λ =

√
dim λ1 dim λ2

dim λ
. (5.48)

The SU(2)k OPE coefficient was written down in [69], and is for the case m2 = m̄2 = j2

and m3 = m̄3 = J

〈j1m1m̄1| OJ,MM̄ |j2m2m̄2〉 =
〈
Φj1m1m̄1ΦJ,MM̄Φj2m2m̄2

〉
= Dj2

j1J
, (5.49)

for fusing j1 and j2 into J . In the large k limit, this is given explicitly as

Dj2
j1J
→
√

(2j1 + 1)(2j2 + 1)(2J + 1)
Γ(2j2 + 1)Γ(2J + 1)

Γ(j1 + j2 + J + 2)Γ(j2 + J − j1 + 1)
. (5.50)

On the other hand, the SU(2) Clebsch-Gordan coefficient for combining j1 and j2 into J

equals

Cj1m1;j2j2;J−J =

√
(2J + 1)Γ(2J + 1)Γ(2j2 + 1)

Γ(j1 + j2 + J + 2)Γ(J + j2 − j1 + 1)
(−)J−j1−j2δ∑

imi
. (5.51)

Some details of these computations are given in appendix D. We obtain the ratio

DJ
j1j2

C2
j1m1;j2j2;J−J

=

√
(2j1 + 1)(2j2 + 1)

2J + 1
, (5.52)

identifying the reduced matrix element in (5.47) as

Aj1j2J =

√
(2j1 + 1)(2j2 + 1)

2J + 1
, (5.53)

which indeed suggests the general form (5.48).

The matrix element in the double scaling limit (and with the normalization (5.44)) is

then written by the Wigner-Eckart theorem as

〈〈j1 | OJ,MM̄ |j2〉〉 →
∑
m1,m2

C2
j1m1,j2m2;J−M Aj1j2J δMM̄ , (5.54)
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in terms of the Clebsch-Gordon coefficients and the reduced matrix element. Only operators

that are left-right symmetric can connect the two Ishibashi states, yielding the Kronecker-

delta. The sum over CG coefficients squared is just the fusion coefficient:∑
m1,m2

C2
j1m1,j2m2;J−M = NJ

j1j2
. (5.55)

It equals 1 by unitarity of the CG-matrix, and can connect only states satisfying the triangle

inequality. The formula (5.54) is a classical limit of a formula recently derived by Cardy

in [70] (derived there for diagonal minimal models) where the Ishibashi matrix element is

written as

〈〈j1 | e−τHOJ,MMe
−τH |j2〉〉 =

( π
2τ

)∆J

(S0
0)1/2

√
Sj10 S

j2
0

SJ0
NJ
j1j2

, (5.56)

for a (diagonal) primary operator OJ,MM . The Euclidean propagators e−τH and the first

factors on the r.h.s. can be viewed as regularization artifacts of the Ishibashi states to

render them normalizable. We conjecture this formula and its classical limit hold for any

rational CFT. In any case, we have illustrated it explicitly for SU(2)k which is the relevant

symmetry group for e.g. N = 4 super-Schwarzian systems (see e.g. [71]).

The normalization of the intermediate operator OJ,MM̄ has been fixed above by the 2d

CFT state-operator correspondence in (5.49). There is however a more convenient normal-

ization for the 1d theory, by taking the operator and the SL(2)-field ΦJ,MM̄ to be instead

related as

OJ,MM̄ =
1√

dim J
ΦJ,MM̄ , (5.57)

which we now adopt.

Higher-point functions can now be deduced analogously, and we arrive at a diagram-

matic decomposition of a general correlation function, where one sums over all intermediate

representation labels using ∑
ji,mi

dim ji A(ji,mi; τi), (5.58)

and where the momentum amplitude A(ji,mi; τi) is computed using the Feynman rules:

τ1τ2

jm

= e− Cj (τ2−τ1) ,

j2m2

j1m1

JM = γj1m1,j2m2,JM . (5.59)

36



The vertex is essentially the Clebsch-Gordan coefficient, but it can be written more sym-

metrically in terms of the 3j-symbol:(
j1 j2 j3
m1 m2 m3

)
=

(−)j1−j2−m3

√
2j3 + 1

Cj1m1,j2m2;j3−m3 , (5.60)

as

γ2
j1m1,j2m2,JM

=

(
j1 j2 J
m1 m2 M

)2

. (5.61)

The CG coefficients determine the fusion of the representations at each double vertex.

Hence, we obtain finally for the 1d two-point function (OJ,M := OJ,MM):

〈OJ,M〉 =
∑

j1,j2,m1,m2

dim j1 dim j2 A2(ji,mi, J,M, τi), (5.62)

with the amplitude A2 diagrammatically:

A2(ji,mi, J,M, τi) =

j1m1

τ2 τ1

j2m2

JM (5.63)

Combining everything we arrive at:

〈OJ,M〉 =
1

Z(β)

∑
j1,j2,m1,m2

dim j1 dim j2 e
−Cj1τe−Cj2 (β−τ)

(
j1 j2 J
m1 m2 M

)2

, (5.64)

which, for the particular case of the two-point function, can be written fully in terms of the

integer fusion coefficients NJ
j1j2

:

〈OJ,M〉 →
1

Z(β)

∑
j1,j2

dim j1 dim j2 e
−Cj1τe−Cj2 (β−τ)

NJ
j1j2

dim J
. (5.65)

This immediate simplification only occurs for the two-point function.

Just as for U(1), this correlator is finite as τ → 0. The qualitative shape of the correlator is

similar to the U(1)-case. Some examples are drawn in Figure 13. Our choice of normalization

(5.57) ensures that 〈OJ,M(τ = 0)〉 = 1. As a check, some simplifying limits can be taken.

At zero temperature, Cj2 = 0, so j2 = 0, and J = j1. So

〈OJ,M〉β→∞ → e−CJτ . (5.66)
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Figure 13: Two-point function of SU(2) theory (5.65) in units where β = 1 for several values

of J : J = 0 (red), J = 1 (orange), J = 3/2 (yellow), J = 2 (green), J = 5 (blue), J = 7

(black).

When J = 0 (insertion of the identity operator), j1 = j2 and one finds 〈O0,0〉 = 1, confirming

the overall normalization of (5.65).

The partition function Z(β) itself (5.41) is also directly computed using the Feynman

diagram decomposition:

Z(β) =
∑
j,m

dim j e−Cjβ =
∑
j

(dim j)2 e−Cjβ = (5.67)

The time-ordered four-point function is drawn as

A4

(
ji,mi, Ji,Mi, τi

)
= j3m3j3m3

J1M1

J2M2

j1m1

j2m2

τ3

τ2

τ4

τ1
(5.68)

and is given by the expression:

〈OJ1,M1OJ2,M2〉 =
∑
ji,mi

dim j1 dim j2 dim j3 A4(ji,mi, Ji,Mi, τi)

=
1

Z(β)

∑
ji,mi

e−Cj1 (τ2−τ1)e−Cj2 (τ4−τ3)e−Cj3 (β−τ2+τ3−τ4+τ1) (5.69)

× dim j1 dim j2 dim j3

(
j1 j3 J1

m1 m3 M1

)2(
j3 j2 J2

−m3 m2 M2

)2

.

Note that as β →∞, this four-point function factorizes in two zero-temperature two-point

function, coming from the clustering principle, and the dependence on only two independent
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time differences, just as happens in the Schwarzian case [27].

This construction is immediately generalized to arbitrary compact groups G, and leads

to the rules as given in section 1.

The braiding and fusion matrices, which are given by q-deformed 6j-symbols of the group

G [72], become the classical 6j-symbol of the group G. As emphasized for the Schwarzian

case in [27], this quantity is used to swap the operator ordering and reach specific out-of-time

ordered (OTO) correlators of interest, dual to shockwave interactions in the gravitational

case [73]. For the Schwarzian theory, we find the precise semi-classical (large C) shockwave

expressions of [14, 23] starting from the exact OTO correlators in [74]. We leave a more

detailed discussion to future work.

6 Concluding remarks

In this work, we presented more evidence and extensions to the link between 2d Liouville

theory and the 1d Schwarzian theory. We believe this is the most natural way to look at

the Schwarzian theory. The first half of this paper focussed on the Liouville path integral

directly, where we emphasized the relevance of the parametrization of Gervais and Neveu

in this context.

We further extended the AdS2 argument for preferred coordinate frames of [21, 23, 24] to

the case of gauge theories and preferred gauge transformations.

In the second half of this work, we demonstrated that the Schwarzian limit is only a special

(irrational) case of the simpler case of rational compact models. All of these geometric the-

ories have the property that the Hamiltonian, Lagrangian and Casimir coincide, and that

local operators in 2d CFT become bilocal operators in 1d QM in a double-scaling limit. We

produced correlation functions from the 2d WZW perspective, although our analysis was

not entirely rigorous as we used the generalization of the prescription of [27]. It would be

an improvement to complement this with a path-integral analysis as in section 2 for the

rational theories as well, including the measure in the path integral. This is left to future

work.

Nonetheless, we deduced expressions for time-ordered correlators and provided diagram-

matic rules. Out-of-time-ordered correlators can also be studied and require introducing 6j

symbols to swap internal lines in diagrams. It would be particularly interesting to link this

to results on OTO-correlators in rational 2d CFT, as in e.g. [75].

These theories also seem to be related to group field theories, utilized in the spinfoam for-

mulation of LQG, which in turn seem to be related to the tensor models of e.g. [76, 77].

A very interesting extension to study deeper would be to understand N = 2 Liouville theory

in the ÑS-sector, which allows one to connect to the 1d N = 2 super-Schwarzian theory.
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The latter contains non-trivial interactions between the Y -boson and the Liouville field

φ itself. However, technical obstructions appear to be present when analyzing the mini-

superspace regime and performing the φ-integrals directly in coordinate space. We hope to

come back to this problem in the future.

The structure present in the rational theories, suggests the Schwarzian three-point vertex

γ`(k1, k2) should also be interpretable as a 3j symbol of SL(2,R) with 1 discrete and 2

continuous representations. If this can be made more explicit, then the generalizations to

the supersymmetric Schwarzian correlators can be conjectured to hold in terms of 3j and

6j symbols of OSp(1|2) and OSp(2|2) for N = 1 and N = 2 super-Schwarzian theories

respectively, without resorting to the coordinate space evaluation of the Liouville integrals

as mentioned above.

We will make the link between SL(2,R) BF theory and the Schwarzian explicit in upcoming

work, using a complementary bulk holographic perspective on bilocal correlation functions

in terms of boundary-anchored Wilson lines in BF theory. This was already hinted at in

[78].

A further question is whether anything can be learned for 4d gauge theories, as 2d boundary

Liouville/Toda CFT was demonstrated in an AGT context in [79] to be linked to (a certain

subclass of) these. Taking the double scaling limit should have an analogue in 4d gauge

theories.

One of the holographic successes of the Schwarzian theory is a correct prediction of the

Bekenstein-Hawking entropy of the JT black holes [23, 24]. Within the Liouville frame-

work, it arises fully from the modular S-matrix as SBH = logSp0 . On the other hand, it

was found in [80] that the topological entanglement entropy in 2d irrational Virasoro CFT

matches the Bekenstein-Hawking entropy for 3d BTZ black holes: SBH = logSp+0 Sp−0 . It

would be interesting to utilize the 2d/1d perspective to shed more light on some of the

puzzles that appear in 3d gravity and its relation to 2d Liouville dynamics.
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A Virasoro coadjoint orbits and Liouville branes

It is instructive to generalize the construction in section 2 to more general branes, and

make the link with the Alekseev-Shatashvili geometric action and the coadjoint orbits of

the Virasoro group more explicit.

W.l.g. we keep the left brane fixed as a ZZ-brane. We first present the 2d case, and discuss
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the Schwarzian limit at the very end only. We can now list the possible generalizations in

Figure 14.

ZZ FZZTq

ZZ ZZ1,n

ZZ ZZ1,1

/ SLn(2, R)diff S1 

/ SL(2, R)diff S1 

/ U(1)diff S1 

Figure 14: Other brane configurations. Top: the ZZ-ZZ system. Middle: the ZZ-ZZ1,n

system. Bottom: the ZZ-FZZT system.

In section 2, if one replaces the brane at σ = π by a ZZ1,n brane [45], one can use the

same definition of a and b, but now take the boundary condition as a = b+ 2πn|σ=π for

n > 1. This gives singularities in the Liouville field φ also in between both branes. Setting

f → nf , the periodicity of f is restored, and one obtains again a diffS1/SL(2,R) theory.

Gervais and Neveu [41, 42, 43, 44] considered boundary conditions that in modern parlance

would be called FZZT branes [46]. One can directly implement an FZZT brane at σ = π by

requiring instead a = b+ 2πθ |σ=π, with r2 = cos2(πθ) and ∂σφ = −reφ
∣∣
σ=π

as the boundary

condition. This boundary condition breaks the SL(2,R) redundancy to U(1). The classical

solution corresponding to these situations is:

eφ = −2θ2 f ′(u)f ′(v)

sin
(
θ f(u)−f(v)

2

)2 , (A.1)

where one sets θ = n ∈ N to find the ZZ1,n brane again.17

Either of these alternative boundary conditions can be absorbed back into the action by

rescaling f → θf . The only effect is a change 2π
β
→ 2π

β
θ in (2.15) and in the Hamiltonian in

terms of f . After doing this, the field f is again a circle diffeomorphism as before.

17Strictly speaking, we should set θ → iθ to describe the genuine FZZT-branes, where the equation

r2 = cosh2(πθ) becomes the standard FZZT relation; FZZT-branes correspond to hyperbolic orbits, whereas

we described the elliptic orbits instead. Our choice of notation follows [38].
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In all of these cases, we can make the link between the Liouville action in (2.8) and the

geometric action of Alekseev and Shatashvili [47, 48] more explicit as follows. The πφφ̇-term

in (2.8) is precisely the canonical 1-form α integrated over time, with α =
∫ π

0
dσ πδφ, ω =

dα. Given the symplectic 2-form ω, and ignoring global issues, α is determined only up to

an exact form df , which integrates to zero as we take periodic boundary conditions in time.

Explicitly, and after doubling, the geometric action is given by:

Sgeom =

∫
dτα =

∫
dτ

∫ π

−π
dσ

[
c

48π

ḟ

f ′

(
f ′′′

f ′
− 2

(
f ′′

f ′

)2
)
− b0ḟf

′

]
, (A.2)

with

α =

∫ π

−π
dσ

[
c

48π

df

f ′

(
f ′′′

f ′
− 2

(
f ′′

f ′

)2
)
− b0df f

′

]
, (A.3)

and ω = dα given by equation (2.15) as can be explicitly checked, and the coadjoint orbit

parameter b0 = −
(

2π
β

c
24π
θ
)2

in terms of the FFZT brane parameter θ. For the diff(S1)/U(1)

orbit, one mods out by F (σ, τ) → F (σ, τ) + a(τ), whereas for the diff(S1)/SL(2,R) orbit,

one mods out by F (σ, τ)→ α(τ)F (σ,τ)+β(τ)
γ(τ)F (σ,τ)+δ(τ)

, which indeed is what we find from the results of

section 2 above. The function F is as before the uniformizing coordinate, related to f by

F = tan θf
2

.

This result demonstrates the equivalence of Liouville between branes and the coadjoint orbit

action (including the Hamiltonian term) for the different orbits depicted in Figure 14. At

the level of the partition function, this also follows directly since both of these evaluate

to the same Virasoro character. Indeed, computing characters of irreps of the algebra is

precisely the goal of the coadjoint orbit construction:

χh(T ) =

∫
[Df ] e−

∫ T
0 (i d−1ω+Hdτ) =

∫
[Df ] e−S, h ≡ h(b0), (A.4)

with

S =

∫
dτ

∫ π

−π
dσ

(
i

[
c

48π

ḟ

f ′

(
f ′′′

f ′
− 2

(
f ′′

f ′

)2
)
− b0ḟf

′

]
+

c

12π

{
tan

θf

2
, σ

})
. (A.5)

This complicated expression can be transformed into the Floreanini-Jackiw path integral

for a chiral boson, yielding indeed a single character [48]. On the other hand, it is known

since the introduction of ZZ-branes in [45] that the cylinder amplitude of Liouville between

these ZZ-branes is computing the Virasoro vacuum character. As mentioned above, chang-

ing branes changes the character computed.

It is in any case reassuring to see this equality directly within the path integral.
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The above procedure has the additional benefit that one now also has a dictionary

between operator insertions in Liouville and operators in the Alekseev-Shatashvili geometric

action theory (A.4),(A.5). Explicitly, one has the correspondence

e`φ(σ,τ) ↔

(
−2θ2 f ′(σ, τ)f ′(−σ, τ)

sin
(
θ
2
(f(σ, τ)− f(−σ, τ))

)2

)`

. (A.6)

This correspondence is fully at the level of the 2d theories, and can be viewed as an inter-

esting conclusion in its own right.

Finally taking the Schwarzian limit of interest, we need |b0| → ∞ such that

b0T
2 = −

(
2π

β
Cθ

)2

⇒ θ =
β

2π

√
−b0T

C
. (A.7)

As discussed in the main text, the above geometric action (A.2) (the pq̇-term in the La-

grangian) disappears in this limit, and only the Hamiltonian density (the Schwarzian deriva-

tive) remains.18 As the Hamiltonian is itself the generator of a U(1)-symmetry, Stanford and

Witten applied the Duistermaat-Heckman theorem to prove the one-loop exactness of the

resulting 1d partition function [29]. This one-loop exactness fails for correlation functions

however and one has to resort to other methods, by using the correspondence (A.6) in the

Schwarzian limit, where the τ -dependence drops out in (A.6) and one recovers (2.16) when

θ = 1 to find the ZZ-ZZ system again.

When changing the branes, the resulting 1d theories are all pathological as thermal systems,

except the ZZ-ZZ system that is studied here.

B Lagrangian description of matter sector

A general matter sector in the Poincaré upper half plane, is given by

Sm =

∫
dfdz Lm(q, ∂fq), (B.1)

18The geometric action is identified in [81] as a Berry phase associated to a closed path in the Virasoro

group. Their holographic interpretation in AdS3/CFT2 in terms of precession of inertial frames agrees with

their absence in the dimensionally reduced 2d JT gravity, dual to the Schwarzian.
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in terms of a canonical variable q. Consider now the coupling to the dynamical boundary

as:19

S = −
∫
dt {f, t}+

∫
dtdz f ′Lm(q, ∂fq). (B.2)

The two sectors only interact through the dynamical time variable f(t). As a sanity check,

the matter equations of motion are given by

f ′
∂Lm
∂q

= ∂t

(
f ′
∂Lm
∂∂fq

1

f ′

)
⇒ ∂Lm

∂q
= ∂f

(
∂Lm
∂∂fq

)
, (B.3)

and are not influenced by the coupling to the dynamical boundary, as this is only a time

reparametrization that indeed should not affect matter equations.

Varying (B.2) w.r.t. f yields:

δS =

∫
dt

[
{f, t}′

f ′
δf −

∫
dx

(
−Lm + ∂fq

∂Lm
∂∂fq

)
δf ′
]

=

∫
dt δf

[
{f, t}′

f ′
+H ′m

]
. (B.4)

The second term is found by writing ∂fq = q′

f ′
and using δ 1

f ′
= − 1

f ′2
δf ′. This leads to

{f, t}′ + f ′H ′m = 0, (B.5)

which matches the first derivative of eq. (3.16) of [24].20

C Partition function of a particle on a group manifold

Using the normalized eigenfunctions ψabj (g) =
√

dj
vol G

(Dj)
ab(g) withDj(g) the representation

matrices of the representation j, the Euclidean propagator from the point g0 to g1 with

eφ = g1(g0)−1 is given by the formula [64]:

K(g0, g1; t) =
∑
j,a,b

ψab∗j (g0)ψabj (g1)e−Cjt =
1

vol G

∑
j

dim j χj(φ)e−Cjt. (C.1)

19In path integral language, integrating the Jackiw-Teitelboim action (1.2) over Φ2 fixed the AdS2 metric;

the Gibbons-Hawking boundary term then reduces to the Schwarzian action.

We chose here to perform the time reparametrization throughout the 2d bulk; the z-dependence of the

fluctuating boundary is O(ε) and can be ignored here.
20Useful property: 

(
f ′′

f ′

)′
f ′


′

=
{f, t}′

f ′
. (B.6)
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with the character χj(φ) = Tr
[
Dj(g1)D†j(g0)

]
. Setting t = β and φ = 0, corresponding to

the sum over all based loops on G, one finds χj(0) = dim j and

K(g0, g0; β) =
1

vol G

∑
j

(dim j)2 e−Cjβ, (C.2)

which is indeed the path integral over LG/G with the (vol G)−1 factor coming from the

right coset. This factor is absorbed into a contribution to the zero-temperature entropy S0

and dismissed. The ordinary partition function of a particle on a group only contains the

path integration over LG and is indeed

Z =

∫
dg0K(g0, g0; β) =

∑
j

(dim j)2 e−Cjβ. (C.3)

D Some relevant formulas for SU(2)k

The three-point function of the SU(2)k WZW model can be found in e.g. [69] as

〈Φj1,m1,m̄1(0)Φj2,m2,m̄2(1)Φj3,m3,m̄3(∞)〉 = δ

(∑
i

mi

)
δ

(∑
i

m̄i

)
Dj3
j1j2

. (D.1)

In the special case that m2 = m̄2 = j2 and m3 = m̄3 = j3, one has explicitly:

Dj3
j1j2

=
Γ(j1 + j3 − j2 + 1)Γ(j1 + j2 − j3 + 1)

Γ(2j1 + 1)

√√√√ γ
(

1
k+2

)
γ
(

2j1+1
k+2

)
γ
(

2j2+1
k+2

)
γ
(

2j3+1
k+2

)
× P (j1 + j2 + j3 + 1)P (j1 + j2 − j3)P (j2 + j3 − j1)P (j1 + j3 − j2)

P (2j1)P (2j2)P (2j3)
(D.2)

with

γ(x) =
Γ(x)

Γ(1− x)
, P (j) =

j∏
m=1

γ

(
m

k + 2

)
. (D.3)

In the large k regime, we get

γ
(α
k

)
→ k

α
, P (j) →

j∏
m=1

k

m
=

k

Γ(j + 1)
, (D.4)

and hence

Dj2
j1J
→
√

(2j1 + 1)(2j2 + 1)(2J + 1)
Γ(2j2 + 1)Γ(2J + 1)

Γ(j1 + j2 + J + 2)Γ(j2 + J − j1 + 1)
. (D.5)
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On the other hand, we can write〈
Φj1,m1,m̄1(0)ΦJ,M,M̄(1)Φj2,m2,m̄2(∞)

〉
= 〈j1,−m1|ΦJ,M |j2,m2〉
= C2

JM,j2m2;j1−m1
Ãj1j2J

= C2
j1m1,j2m2;J−MAj1j2J (D.6)

The second line uses the standard form of the Wigner-Eckart theorem by combining j2

with J into j1. In the last equality we rearranged the Clebsch-Gordan coefficients using

the symmetry of the 3j-symbols; this reordering produces extra j-dependent factors that

are absorbed into a new reduced matrix element Aj1j2J . The Clebsch-Gordan coefficient for

combining j1 and j2 into J is:

Cj1m1,j2,j2;J−J =

√
(2J + 1)Γ(J + j1 − j2 + 1)Γ(J + j2 − j1 + 1)Γ(j1 + j2 − J + 1)

Γ(j1 + j2 + J + 2)

× (−)J−j1−j2
√

Γ(2J + 1)Γ(2j2 + 1)Γ(j1 + j2 − J + 1)Γ(j1 + J − j2 + 1)

×
∑
k

(−)k

k!(j1 + j2 − J − k)!(j1 + J − j2 − k)!(−k)!k!(J + j2 − j1 + k)!
,

(D.7)

with m1 = −m2 −m3 = −j2 + J . It simplifies to

Cj1m1,j2,j2;J−J =

√
(2J + 1)Γ(2J + 1)Γ(2j2 + 1)

Γ(j1 + j2 + J + 2)Γ(J + j2 − j1 + 1)
(−)J−j1−j2 . (D.8)
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