
 Author’s copy.                                                         Published version: https://dx.doi.org/10.1088/2057-1976/aaeb65 

 

xxxx-xxxx/xx/xxxxxx 1 © xxxx IOP Publishing Ltd 

 

Synchrotron-based phase contrast imaging of 

cardiovascular tissue in mice – grating interferometry 

or phase propagation? 

Bram Trachet, PhD1,2, Goran Lovric, PhD3,4, Pablo Villanueva-Perez, PhD4, Lydia Aslanidou1, Mauro Ferraro, 

PhD1, Gerlinde Logghe2, Nikolaos Stergiopulos, PhD1 and Patrick Segers, PhD2  

1 Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland  

2 bioMMeda, Ghent University, Ghent, Belgium  

3 Centre d’Imagerie BioMédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 

4 Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland 

 
E-mail: bram.trachet@epfl.ch 
 

Abstract 

Synchrotron-based X-ray phase-contrast imaging allows for detailed 3D insight into the microstructure of soft tissue and is 
increasingly used to improve our understanding of mouse models of cardiovascular disease. Two techniques dominate the field: 
grating interferometry, with superior density contrast at mid to lower microscopic resolutions, and propagation-based phase 
contrast, facilitating high-resolution tissue imaging. The choice between these techniques depends on which features one is 
interested in visualizing and is thus highly sample-dependent. In this manuscript we systematically evaluate the advantages and 
disadvantages of grating interferometry and propagation-based phase contrast on samples obtained from 5 different mouse 
models of cardiovascular disease, ranging from carotid plaques over ascending and abdominal aortic aneurysms to hypertrophic 
hearts. Based on our findings we discuss in detail how synchrotron-based imaging can be used to increase our understanding 
of the anatomy and biomechanics of cardiovascular disease in mice. We also present a flowchart that can help future users to 
select the best synchrotron-based phase contrast technique for their pre-clinical cardiovascular samples.  

Keywords: synchrotron-based X-ray imaging, grating interferometry, phase propagation, mouse models of cardiovascular 
disease 

1. Introduction 

Cardiovascular disease is the major cause of death in the 
Western world [1]. Pre-clinical cardiovascular research, often 
driven by genetic or pharmacological mouse models [2, 3], 
allows researchers to gain mechanistic insight into the 
initiation, progression and ruptures of plaques, aneurysms or 
dissections without risking human lives. Due to their small 
size and fast heartbeat, cardiovascular imaging in these mice 
typically requires a much higher resolution than what is the 
state-of-the-art in a clinical setting. In recent years, 
synchrotron-based phase-contrast imaging has emerged as a 
promising high-resolution technique that can outperform the 
resolutions achieved by traditional pre-clinical imaging 
techniques [4]. As opposed to traditional micro-CT, where the 
images are created based on differing absorption of X-rays 

that travel through an inhomogeneous specimen, phase-
contrast imaging visualizes phase distortions in the X-ray 
wave fronts that travel through a specimen. Taking advantage 
of the elastic interactions of the X-rays rather than their 
inelastic interactions (as is the case for absorption), phase-
contrast imaging generally allows for better signal to noise 
ratios and/or improved spatial resolutions for biological tissue 
in the hard X-ray domain [5].   

Such drastic improvements in image quality can affect the 
state-of-the-art in many, often unsuspected ways. One 
potentially disruptive aspect is that of cardiovascular 
computational biomechanics. The current state of the art in 
that field is limited by the lack of accuracy in the 3D imaging 
methods that are needed to create the models [6, 7]. Despite 
the fact that more and more evidence emphasizes the 
importance of the micro-structure in disease initiation and 
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progression [8], computational models typically model both 
the aortic wall and the aortic thrombus as homogeneous 
structures without taking the micro-structure into account [9]. 
We have recently started to exploit the potential of 
synchrotron-based biomechanics in order to overcome the 
limitations imposed by traditional imaging methods [10], but 
the potential of synchrotron-based micro-structural 
computational models still remains to be explored. Phase 
contrast synchrotron imaging has also been used to relate 
locally disturbed hemodynamics to plaque location [11, 12] 
and to show that intercostal and other minor side branches play 
an important and previously undetected role in the initiation 
of dissecting aneurysm in mice [13, 14]. Even research on the 
largest cardiovascular structure, the heart, can benefit from a 
shift in perspective: synchrotron-based phase contrast imaging 
was recently used to obtain detailed volumetric measurements 
of the anatomical changes that occur during distinct 
developmental stages of the heart in mouse embryos [4]. In 
summary, synchrotron-based imaging has only just started to 
affect the field of pre-clinical cardiovascular research.  

For researchers who want to exploit the possibilities offered 
by phase-contrast synchrotron imaging in order to investigate 
their cardiovascular samples, it is very important to select the 
imaging technique that best fits their application. In this 
manuscript we focus on three specific synchrotron-based 
phase contrast imaging techniques: grating-based 
interferometry [15], propagation-based phase contrast 
without phase retrieval and propagation-based phase contrast 
in combination with a single-distance phase-retrieval 
algorithm [16]. In grating interferometry, the X-ray phase 
signal is extracted from the change in the phase stepping 
curve with and without sample [5]. In propagation-based 
phase-contrast without phase retrieval the recorded images 
are equivalent to the ones obtained in traditional absorption 
micro-CT, albeit with the additional enhancement of the 
edges at different matter interfaces. In propagation-based 
phase-contrast with phase retrieval, edge-enhanced fringes 
are exploited in algorithms to retrieve the X-rays phase shift 
induced by the object which is proportional to the electron 
density [17]. A quantitative comparison was carried out by 
Lang et al. [18] and Zanette et al [19], who both used tissue 
from an adult rat, and by Holme et al [20], who used tissue of 
human coronary arteries. These authors concluded that (i) 
grating interferometry and phase propagation are 
complementary techniques, (ii) grating interferometry is more 
complex than phase propagation but yields better density 
resolution at the cost of a more coarse resolution, and (iii) the 
optimal choice of imaging technique strongly depends on the 
sample that is being investigated. 

Such sample-specific requirements are, however, not always 
easy to identify. Since the characteristic lengths and tissue 
densities can vary significantly in between different species, 
results obtained in cardiovascular tissue from humans or rats 
are not necessarily representative for mice. Even within the 
same species, the requirements are very different for a 
narrowed carotid artery than for a dilated abdominal aorta. 

Nevertheless, and despite the fact that mouse models are our 
first and foremost source of insight into the initiation and 
propagation of cardiovascular disease, there are currently no 
comparative studies that focus on the trade-off between 
contrast-to-noise ratio and resolution for synchrotron-based 
phase contrast imaging of cardiovascular tissue in mice. This 
manuscript aims to close that gap in literature through an 
experimental comparison of grating-based and phase 
propagation-based contrast imaging that focuses solely on 
murine cardiovascular tissues. A wide range of healthy and 
diseased murine samples was investigated, with critical voxel 
sizes ranging from the carotid artery (diameter: 0.5 mm) over 
the aneurysmal aorta (diameter: 2-3 mm) to the hypertrophic 
heart (diameter: 12 mm). We systematically assessed the 
contrast-to-noise ratio (CNR) and the spatial resolution from 
a user point of view, thus providing a generalized image 
quality evaluation with two figures of merit. For some samples 
(e.g. mouse hypertrophic heart) the images presented in this 
paper are the first synchrotron images that have been made in 
these tissues.  

2. Materials and Methods 

2.1 Animal models 

Table 1. Cardiovascular mouse models and sample characteristics. 

In accordance with the 3R principle (replacement, reduction, 
refinement) all animal tissues were reused from ongoing 
studies. A summary of the cardiovascular samples that were 
used is presented in Table 1, along with their relevant features. 
Representative 3D images of the samples (segmented in 
Mimics (Materialise, Leuven, Belgium) based on images from 
grating interferometry) are shown in Figure 1. N=1 carotid 
plaque was induced in the carotid artery of an atherosclerotic 
ApoE-/- mouse via flow manipulation by a perivascular collar 
[21] and compared to a healthy carotid artery from an C57Bl/6 
mouse. N=2 hypertrophic hearts were obtained from mice 
with a mutation in the ADAMTS-like 6 protein (THSD4) that 
promotes the fibrillin-1 microfibril assembly. N=2 abdominal 
aortic aneurysms (AAAs) were induced into a C57Bl/6J 
mouse by a combination of peri-adventitial elastase with 
TGFβ neutralization. N=2 dissecting aortic aneurysms and 
n=2 ascending aortic aneurysms were induced in 4 different 

Modif.
gene 

Cardiovasc 
disease 

Method Field 
of view 

Feature of 
interest 

Priorit
y 

ApoE-

/- 
Carotid 
plaque 

Vasc. 
cast 

0.5x0.5 
mm Thrombus CNR 

THSD
4 

Hypertr. 
heart 

/ 
12x12 
mm 

Micro-
structure 

Resol. 

ApoE-

/- 
Ascending 
aneurysm 

Ang II + 
BAPN  

2x2 
mm 

Micro-
structure 

Resol. 

ApoE-

/- 
Dissecting 
aneurysm 

Ang II + 
BAPN  

3x3 
mm 

Micro-
structure + 
thrombus 

Resol. 
+ 

CNR 

/ 
Abdomin. 
aneurysm 

Elastase 
+ anti-
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animals by a combination of angiotensin II (Ang II) infusion 
and β-aminopropionitrile monofumarate (BAPN)[22]. 

Fig. 1. Representative 3D images of the 5 cardiovascular samples. 

The upper row shows a 3D image of the full sample. The clipping 

plane that is shown in the lower row is indicated with a dashed line. 

For reasons of uniformity all 3D images were segmented based on 

images obtained with grating interferometry. Note that the scale bar 

in upper panels is uniform for all samples (1mm), while the lower 

panels have been scaled to allow for a better visualization of the 

feature of interest. 

All procedures were approved by the Ethical Committee of the 
respective institutions (carotid plaque: Erasmus MC, 
Rotterdam, Holland; hypertrophic hearts: Shriners hospital, 
Portland, United States; abdominal aneurysm: Cambridge 
University, Cambridge, United Kingdom; dissecting 
aneurysm: Kurume University, Fukuoka, Japan) and 
performed according to the guidelines from Directive 
2010/63/EU of the European Parliament on the protection of 
animals used for scientific purposes. After sacrifice, all tissues 
were carefully excised and samples were fixed by immersion 
in freshly prepared 4% paraformaldehyde (PFA) at 4°C 
temperature for 24 hours.  

2.2 Imaging setup 

The experiments were carried out at the X02DA TOMCAT 
beamline of the Swiss Light Source (SLS) at the Paul Scherrer 
Institute (Villigen, Switzerland). The X-ray beam, produced 
by a 2.9 T bending magnet on a 2.4 GeV storage ring (with 
ring current I = 400 mA, top-up mode), was monochromated 
with a double-multilayer monochromator. Imaging was 
performed at two different endstations (Fig. 2). In endstation 
I, propagation-based phase-contrast microtomography was 
performed at 25m source-to-sample distance, 25 cm sample-
to-detector distance and at 21 keV. A scientific CMOS 
detector (pco.Edge 5.5) was used in combination with a 4x 
magnifying (UPLAPO4x) visible-light optics and a 20 µm 
thick scintillator. The effective pixel size was 1.625 x 1.625 
µm2. In endstation II, grating-based phase-contrast 
microtomograhy was performed at 30 m source-to-sample and 
at 25 keV.  

 

Fig. 2. The experimental setup with two different endstations. 

Phase retrieval was based on single defocused images using a 
transport-of-intensity approximation as originally proposed by 
Paganin et al. [16, 23]. A grating interferometer was mounted 
right after the sample and consisted of a phase grating (G1) 
with a pitch of 4 µm and an absorption grating (G2) with a 2 
µm pitch positioned at a distance corresponding to the third 
Talbot order [33]. The detector used in the grating 
interferometry setup was a scientific CMOS detector 
(pco.Edge 4.2) in combination with 1:1 magnifying visible 
light optics and a 300 µm thick scintillator, yielding an 
effective pixel size of 6.5 x 6.5 µm2. Each tissue was imaged 
sequentially with propagation-based phase-contrast imaging 
on endstation I and with grating-based phase-contrast imaging 
on endstation II. 

2.3 Image analysis 

For each cardiovascular application one severe and one 
moderate phenotype was selected. This resulted in one carotid 
artery with plaque and one without, one dissecting aneurysm 
with intramural hematoma and one without, one end-stage 
ascending aneurysm with a large medial tear and one with only 
micro-ruptures, one abdominal aneurysm with large 
intraluminal thrombus and one without thrombus, and two 
hypertrophic hearts of different sizes (Table 1, Fig. 1). Each 
of these 10 samples was studied with the three aforementioned 
different imaging methods, and for each of these 30 scans we 
selected 4 representative images from the stack that 
represented healthy, intermediate and diseased regions of the 
vessel/heart. This resulted in a set of 120 images for which we 
analyzed the contrast-to-noise ratio (CNR), the spatial 
resolution and the trade-off between spatial resolution and 
image contrast. The resolution was determined by taking a line 
profile in the middle of the image and calculating its power 
spectral density (PSD). The converged value of the PSD at the 
noise baseline was subsequently doubled and matched to the 
respective spatial frequency [24]. The resolution x res was 
calculated by:  

res

n
sizeres k

x
px =             (1) 
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where psize is the pixel size of the detector, xn the number of 
pixels for the taken line profile and kres the pixel frequency 
obtained from the resolution criterion. For the calculation of 
CNR the following formula was used [25]: 















+

−
=

bgobj

bgobj SS
CNR

σσ
2          (2) 

where Si and σi represent the mean pixel values and 
corresponding standard deviations of a manually defined 
region of interest (ROI) representing an object (obj) and a 
background (bg) region (Fig 3b). Typically, the CNR is 
defined as the ratio of the contrast to the overall noise level in 
the image. The formula used here accounts for more general 
situations where the object and background noises are 
dissimilar. This is the case when comparing features at 
different spatial resolutions that have heterogeneous densities. 
The size of the ROI was fixed at 39x39 µm2 for all images 
(corresponding to 6x6 pixels in grating interferometry and 
24x24 pixels in phase propagation). Two different object ROIs 
were chosen for each image and the mean value was reported 
to mitigate the effect of local variations. The size of the ROI 
was relatively small with respect to the size of the total image, 
in order to avoid the presence of structures (signal rather than 
noise) within the object ROI. 

Fig. 3. Phase propagation versus grating interferometry. (a). Flow 

chart summarizing the differences between phase propagation 

techniques and grating interferometry. (b). Representative images 

of the location of ROIs for background (bg) and object (obj) that were 

used for CNR calculations. (c). Binary images visualize the difference 

in segmentation properties between the different images shown in 

panel b.  

2.4 Statistics 

All data were tested for normality by the Shapiro-Wilk 
parametric hypothesis test and visually checked for adherence 
to the x=y reference line on a normal probability plot. Equal 
variance was tested with Bartlett’s test. The conditions for 
parametric testing were met in all cases and the differences 
between imaging techniques were therefore analyzed with a 
one-way Anova analysis. Post-hoc pairwise comparisons were 
performed using a Bonferroni correction. A p-value < 0.05 
was considered significant (*), and a p-value < 0.001 was 
considered highly significant (**). All values are reported as 
mean ± standard deviation. 

3. Results 

3.1 Quantitative assessment of resolution and CNR 

Table 2. Imaging settings and resulting image quality parameters 

for cardiovascular samples obtained from mice. 

 

 

Fig 4. Differences in resolution and CNR between the 3 different 

imaging techniques. 

 Unit 
Phase prop. 
(no phase 
retrieval)  

Phase prop. 
with phase 
retrieval 

Grating 
Interferom. 

Energy keV 21 21 25 

Acquis. 
time  

s 270 270 1350 

Field of 
View 

mm 
x 

mm 
4.2 x 4.2 4.2 x 4.2 12.7 x 12.7 

Pixel 
size 

µm 1.625 1.625 6.5 

Resol.  µm 4.1 ± 0.1 5.0 ± 1.3 13.7 ± 1.3 

CNR / 0.17 ± 0.14 2.9 ± 3.1 12.3 ± 10.1 



Author’s copy.                                                         Published version: https://dx.doi.org/10.1088/2057-1976/aaeb65 

 

 5  

 

The resolution of grating interferometry was consistently and 
significantly coarser than the resolution of propagation-based 
techniques (Table 2, Fig. 4). The difference in resolution 
between phase propagation with and without phase retrieval 
was also statistically significant (Fig. 4a). The CNR was found 
to be consistently and significantly higher for grating 
interferometry than for both propagation-based approaches 
(Fig. 4b), while the difference in CNR between phase 
propagation with and without phase reconstruction was 
borderline significant (p=0.057).  

3.2 Qualitative assessment of relevant cardiovascular 

features 

While both phase propagation methods resolve the lamellae 
that make up the aortic wall in the carotid, ascending and 
abdominal aorta, the aortic wall appears as a homogeneous 
entity when the same tissues are scanned with grating 

interferometry (Fig 5a-5e). In the ascending aneurysm, phase 
propagation allows for the visualization of micro-ruptures in 
the lamellae that are not visible with grating interferometry 
(Fig 5b, arrows). Indeed, aortic lamellae are 4-10 micrometer 
thick and are thus sub-resolution for grating interferometry 
(13.7 µm) but not for phase propagation with (5.0 µm) or 
without phase retrieval (4.1 µm). 

3.3 Sample-specific comparison 

Another immediate observation is the difference in image 
contrast. The transition from carotid plaque to carotid lumen 
is clearly visible on both phase propagation images, but not on 
grating interferometry (Fig 5a, arrows). The contrast between 
different layers within the aneurysm thrombus, on the other 
hand, is clearly visible in grating interferometry and phase 
propagation with phase retrieval, but not in phase propagation 
without phase retrieval (Fig 5e, arrows). This is consistent 
with the binary images of a dissecting aneurysm (Fig 3c): 

Fig 5. Representative 2D images of the three imaging techniques and the 5 cardiovascular samples. For each imaging technique the 

upper row shows a 2D image of the full sample, while the ROI that was used for the zoomed image in the lower row is indicated with a 

red rectangle. Arrows indicate carotid plaque (a), lamellar rupture (b) and layered architecture of the thrombus (e ). Note that the scale 

bar in panels e and f s is smaller, since these samples were larger. 
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grating interferometry results in a sharp and homogeneous 
contrast between the thrombus (in black, upper right quadrant) 
and the lumen (in white, lower left quadrant) while phase 
propagation without phase retrieval results in a scattered, 
almost random distribution of pixels in both zones. When 
phase retrieval is applied, phase propagation results in better 
segmentability, but without achieving the level of contrast 
obtained by grating interferometry (Fig 3c).  

A sample-specific comparison of the resolution and CNR for 
each of the three imaging techniques revealed significant 
differences between samples (Fig. 6). For images obtained 
without phase retrieval the smallest resolution was observed 
in the carotid artery (Fig. 6a), while the ascending and AAA 
samples had the coarsest resolution when phase propagation 
with phase retrieval was used (Fig. 6b). The resolution of the 
hearts was significantly coarser than the resolution of the other 
samples when using grating interferometry (Fig 6c). For the 
images obtained with phase propagation no sample-specific 
differences in CNR could be observed (Fig 6d, 6e). The CNR 
of the AAA and the heart was slightly higher than the CNR of 
the other samples when using grating interferometry (Fig 6f), 
but the difference did not reach significance. 

 

Fig 6. Sample-specific comparison of resolution and CNR. 

4. Discussion 

4.1 Sample-specific guidelines  

In order to translate our results into practical guidelines for 
future users who want to perform synchrotron-based phase 
contrast imaging of cardiovascular tissue, we have condensed 
our findings in a flowchart (Fig. 7). Depending on the sample-
specific requirements, three different outcomes are possible. 

4.1.1 Focus on discrete micro-structural elements 

within the cardiovascular tissue (e.g. aortic lamellae) 

If the application requires the user to quantify discrete, non-
homogeneous micro-structures  (in our case voxel sizes 
between 4x4x4 and 14x14x14 µm3), one should optimize for 
resolution rather than CNR [26]. In this case the best choice is 
to use phase propagation without phase retrieval. The dense 
spatial resolution of these phase propagation images allows 
for the visualization of micro-structures that cannot be 
resolved with grating interferometry. This is for example the 
case for aortic lamellae in the tunica media of the aortic wall 
(Fig. 5b). These lamellae are also visible when phase 
propagation with phase retrieval is used, albeit at a slightly 
worse resolution. This is likely due to the fact that the phase 
reconstruction algorithm acts as a low pass filter, which 
enhances the contrast but slightly reduces the achievable 
resolution [16].  

4.1.2 Focus on continuous macro-structural elements 

within the cardiovascular tissue (e.g. thrombus) 

If the application requires the user to differentiate between 
adjacent, continuous regions that are expected to have a 
different pixel density [27] , one should optimize for CNR 
rather than resolution. This is the case for users that want to 
get a detailed visualization of e.g. a thrombus that formed 
within an aneurysm or a plaque. If the ROI is sufficiently large 
(see below), grating interferometry is the method of choice in 
this case. Indeed, the high value of CNR that is achieved by 
grating interferometry is an indication for good pixel 
homogeneity within the ROI that was used to define the object 
region (Fig 4b, 3c).  

4.1.3 Focus on both micro-and macrostructural 

elements at the same time (e.g. aortic plaque) 

If the application requires the user to get the best possible 
images of both discrete micro-structural elements and 
continuous macro-structural elements [13], one should try to 
find the best possible compromise between CNR and 
resolution. As soon as the size of the smallest homogeneous 
ROI is smaller than 40 µm3, which is e.g. the case for carotid 
plaque, phase propagation with phase retrieval should be the 
method of choice. The cut-off value of 40x40x40µm3 

corresponds to the size of the ROI that was used to determine 
the CNR, i.e. 6x6 pixels in grating interferometry and 24x24 
pixels in phase propagation. For smaller ROIs, grating 
interferometry at TOMCAT is hampered by its limited 
resolution. For larger ROIs, the user will have to balance 
resolution and CNR according to his/her personal needs. If the 
image should above all be easily segmentable, grating 
interferometry will be the method of choice. The same is true 
for large samples that don`t fit in the smaller field of view of 
phase propagation imaging. If, on the other hand, as many sub-
structures as possible should be resolved, phase propagation 
with phase retrieval will yield better results. The reason for the 
latter is that the high CNR of grating interferometry can in 
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some cases mask the heterogeneity of the underlying 
cardiovascular tissue (i.e. the signal, not the noise). If the 
underlying tissue is not actually homogeneous but cannot be 
resolved due to the limited resolution of the technique (which 
is e.g. the case for the aortic wall), grating interferometry will  
result in an artificially homogeneous yet easily segmentable 
image (Fig. 3c).   

4.2 Phase-contrast imaging and pre-clinical 

cardiovascular research 

From carotid plaques to hypertrophic hearts, synchrotron-
based phase contrast imaging has the potential to bring new 
insights into the field of cardiovascular imaging. An important 
prerequisite is that the proper technique be used for each 
applications.  The overview presented in Figure 7 can serve as 
a guideline to help future synchrotron users decide which 
technique best fits their cardiovascular sample. It can, 
however, also be used to re-interpret some of the already 
published results in literature.  

Several researchers have used grating interferometry to study 
mouse coronary or carotid plaques [28, 29]. While this 
technique can indeed be used to contrast the plaque region 
from the lumen surrounding it, the flowchart presented in 
Figure 7 clearly shows that propagation-based techniques 
would have allowed for sufficient CNR at a higher resolution. 
Assemat et al. used propagation-based synchrotron images 
with phase retrieval as the basis of their biomechanical models 
of carotid plaque in the mouse aortic arch [11].  Indeed, when 
phase propagation with phase retrieval is used the 
inhomogeneities within the plaque thrombus, as well as the 

plaque thickness, can be visualized in much more detail than 
what is possible with grating interferometry (Figure 5a). This, 
in turn, allows for a more accurate assessment of plaque 
vulnerability and allows to assess the risk of myocardial 
infarction (in the coronary arteries) or stroke (in the carotid 
arteries).  

A similar observation can be made for synchrotron-based 
research on mid-sized cardiovascular diseases such as aortic 
aneurysm and dissection. In the past we have used grating 
interferometry to visualize the 3D structure of aortic 
aneurysms in the ascending aorta of mice [26]. We quantified 
the size of localized ruptures within the ascending aortic wall 
and correlated their size to the size of the aneurysms in vivo 
(as measured by contrast-enhanced micro-CT). We also 
published two different studies in which we used grating 
interferometry to study the initiation and propagation of 
dissecting aortic aneurysms in mice [13, 14]. Grating 
interferometry did not, however, allow us to resolve the 
lamellar layers separately in any of these studies. With the 
benefit of hindsight, phase propagation without phase retrieval 
would have been a better choice for each of these studies. In 
the ascending aorta, the superior resolution of phase-
propagation imaging would have allowed for 3D insight into 
the failures of the micro-structure that led to the dilatation of 
the aorta (Figure 5b). In the abdominal aorta, the  improved  
resolution would have allowed us to visualize the effect of a 
failing micro-structure (lamellae ruptures near side branches, 
Figure 5c), while its reasonable performance in terms of CNR 
would have allowed us to relate these micro-ruptures to the 
subsequent aberrations in macro-structure (intramural 
thrombus forming between media and adventitia, Figure 5e). 
This is why in our most recent publications we used phase 

Fig 7. Flowchart to help future synchrotron users deciding which phase contrast technique is most appropriate to scan pre-clinical 

cardiovascular samples. 
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propagation with phase retrieval to visualize the micro-
structure within the aortic media (i.e. aortic lamellae) of 
ascending aortic aneurysms [30] and abdominal aortic 
aneurysms [31]. These studies were among the first to quantify 
the damage to the micro-structure of the aortic wall in these 
diseases, reaching in-plane resolutions similar to what can be 
achieved with 2D histology along the entire length of the 
vessel. However, the results presented in the current 
manuscript clearly show that phase propagation without phase 
retrieval has a slightly better performance that phase 
propagation with phase retrieval in terms of resolution (Table 
2, Figure 4a). Phase propagation without phase retrieval 
would thus have been the better choice for both of the 
aforementioned studies, since they focused on the 
discontinuous micro-structure and not so much on the 
difference in density between adjacent regions. Future 
researchers who want to study aneurysms or dissections in 
mice should therefore weigh the importance of lamellar 
discontinuities (better studied without phase retrieval) versus 
the need to contrast the aortic thrombus from the aortic lumen 
(better studied with phase retrieval or grating interferometry).  

4.3 Limitations and future work 

The most important limitation of this work is that our samples 
were only scanned at a single beamline (TOMCAT, at the 
Swiss Light Source synchrotron of the Paul Scherrer Institute 
in Villigen, Switzerland), using a single and optimized set of 
imaging parameters. Consequently, the comparison presented 
in this manuscript does not claim to cover the entire state-of-
the-art of phase propagation imaging, or even of the 
TOMCAT beamline. All grating interferometry images in this 
study were taken with a distance corresponding to the third 
Talbot order. For samples that require higher sensitivity but 
not necessarily a better spatial resolution, imaging could be 
performed at higher order Talbot distances. This may further 
improve the grating interferometry images of e.g. heart tissue, 
but would not significantly affect the conclusions of our work. 
Similarly, all phase propagation images were taken at a 4x 
magnification, which corresponds to a pixel size of 1.625 µm. 
Choosing a 10x magnification, a pixel size of 0.65 µm could 
be achieved. Following this approach a spatial resolution of 
1.5-2 µm3 should be possible when keeping all other imaging 
parameters constant. It is, however, important to keep in mind 
that in this case the field of view would reduce accordingly, 
and one will no longer be able to visualize the entire sample 
within a single scan. A 4x magnification is therefore the best 
compromise between resolution and field of view for pre-
clinical cardiovascular applications – at least when the goal is 
to scan the entire sample. For similar reasons we did not vary 
exposure times or sample-to-detector distances [32], nor did 
we explore alternative approaches to scan larger samples, such 
as free space propagation [33]. Additional experiments, 
performed at TOMCAT or other beamlines around the world, 
would have allowed us to propose a more complete set of 
guidelines including (i) a broader scope of sample sizes and 
(ii) more specific parameter settings. But it is important to 
keep in mind that the aim of this manuscript was not be as 

complete or as detailed as possible. Instead, we chose to focus 
on the imaging techniques (and the settings within these 
techniques) that will be most useful for the specific subgroup 
of synchrotron users that are interested in scanning pre-clinical 
cardiovascular samples. The result is a set of robust and 
practical guidelines that can help future users to make an 
educated decision, and that is supported by theoretical and 
experimental predictions [34-36]. 
 CNR was calculated based on object and background ROIs of 
39x39 µm2. This small size was chosen on purpose in order to 
be able to place the object ROI within a homogeneous region 
of the tissue, such as the interlamellar region or the thrombus. 
Larger ROIs would have implied a risk of structures (i.e. 
signal rather than noise) disturbing the calculated standard 
deviation within the ROI. Nevertheless, it is possible that in 
some cases a small structure (e.g. density variations within the 
thrombus) may have entered part of the ROI and thus affected 
the measurement. Also, it is important to point out that the 
calculated CNR was not corrected for flux. Since the pixels in 
the phase propagation image were smaller, and the total 
exposure time was shorter, a pixel in a phase propagation 
image was exposed to a higher flux than a pixel in a grating 
interferometry image. The standard deviation within a certain 
ROI of 6x6 pixels in grating interferometry is therefore 
expected to be lower than the standard deviation within a ROI 
of 24x24 pixels in phase propagation. For a comparison at the 
same pixel size, one could chose to bin the phase propagation 
images 4x4, such that both ROIs would have 6x6 pixels. 
However, binned phase propagation images are not what 
future synchrotron users would work with, and would result in 
an artificially low resolution and an artificially high CNR. 
Another option could be to redo the grating interferometry 
experiments using (i) a detector with reduced pixel size and 
(ii) grating pitches of the order of the pixel size, in order to 
reach resolutions comparable to those achieved in phase 
propagation. However, such grating pitches are difficult to 
produce and are not what a typical user will encounter at the 
beamline. It is important to keep in mind that the purpose of 
our comparison was to quantitatively evaluate the image 
quality from a user perspective, in terms of segmentability at 
a given spatial resolution. We therefore chose to stick for each 
technique to the parameter settings that future users are most 
likely to encounter, and that were judged optimal for the 
samples that were being investigated. 

  

  
Vertical stacking has been used along the rotation axis in order 
to scan long tubular samples such as the aorta. The constraints 
that limit the field of view (Table 2) are confined to the 
horizontal, cross-sectional area of the sample. It is also 
important to remark that both phase propagation methods had 
a spatial resolution that was slightly worse than the Nyquist 
criterion of twice the pixel size. For phase propagation with 
phase retrieval (pixel size: 1.625 µm, resolution: 5.0 ± 1.3 µm) 
this was related to the low pass filtering that results from 
Paganins phase retrieval.  Grating interferometry, despite 
having a coarser resolution, sticks closer to the Nyquist 
criterion. Finally, grating interferometry does not necessarily 
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have to be performed at a synchrotron, since table-top 
solutions are available with a pixel size ranging from 6-20 µm 
[37]. For large samples this may be an additional argument to 
choose grating interferometry over phase propagation 
methods. 

5. Conclusions 

We studied pre-clinical samples of 5 different mouse models 
of cardiovascular disease with three different synchrotron-
based phase contrast imaging techniques. The consistently and 
significantly higher contrast-to-noise ratio of grating 
interferometry (resolution: 13.7 ± 1.3 µm, CNR: 12.3 ± 10.1) 
makes this technique the ideal choice for samples in which the 
priority is to differentiate large continuous regions of different 
density, such as aortic thrombus and aortic lumen. If the 
application requires the visualization of structural elements 
within the wall, such as aortic lamellae, the consistently and 
significantly better resolution of propagation-based phase 
contrast without phase retrieval (resolution: 4.1 ± 0.1 µm, 
CNR: 0.17 ± 0.14) yields the best results. Finally, phase 
propagation with phase retrieval (resolution: 5.0 ± 1.3 µm, 
CNR: 2.9 ± 3.1) is to be preferred when enhanced contrast is 
needed at the highest possible resolution. This is e.g. the case 
if one needs to visualize the micro-structure within carotid 
plaques or if one is interested to study different layers within 
an aneurysm thrombus. We conclude that, as long as the 
appropriate techniques are used for each sample, synchrotron-
based phase contrast imaging can be a powerful tool to 
improve our understanding of the initiation and propagation of 
cardiovascular disease. 
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