III-V-on-silicon Photonic Integrated Circuits for Spectroscopic Sensing in the Mid-Infrared

Gunther Roelkens1,2, Ruijun Wang1,2, Anton Vasiliev1,2, Sanja Radosavljevic1,2, Fabio Pavanello1,2, Aditya Malik1,2, Muhammad Muneeb1,2, Roel Baets1,2, Stephan Sprengel3, Gerhard Boehm3, Markus-Christian Amann3, Ieva Šimonytė4, Augustinas Vizbaras4, Kristijonas Vizbaras4

1 Photronics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
2 Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent, Belgium
3 Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
4 Brolis Semiconductors UAB, Moletu pl. 73, LT-14259, Vilnius, Lithuania
Author e-mail address: Gunther.Roelkens@UGent.be

Abstract: We present an overview of our work on mid-infrared photonic integrated circuits comprising silicon photonic ICs for the passive functionality and heterogeneously integrated III-V semiconductor devices for light generation and detection.

OCIS codes: (130.7408) Wavelength filtering devices; (130.3120) Integrated optics devices; (130.3060) Infrared

1. Summary

III-V/silicon photonic integrated circuits (ICs) promise to enable low cost and miniature optical sensors for trace-gas detection, bio-sensing and environmental monitoring. A lot of these applications can benefit from the availability of photonic ICs beyond the telecommunication wavelength range. Silicon-on-insulator (SOI) waveguide circuits allow operation up to about 4 µm wavelength. Combined with suitable III-V semiconductors (InP type-II active regions or GaSb-based opto-electronic components) highly integrated systems-on-a-chip in the 2-4 µm wavelength range can be realized. Beyond 4 µm wavelength alternative CMOS-compatible waveguide platforms need to be considered, such as germanium-on-SOI. In this paper we will present 2 µm-wavelength-range III-V/silicon photonic ICs consisting of tunable laser sources, photodetectors and silicon waveguide circuits. Active opto-electronic components are integrated on the photonic IC by the heterogeneous integration of an InP-based type-II epitaxial layer stack on silicon. III-V-on-silicon 2.3 µm range distributed feedback (DFB) lasers operate up to 25 °C in continuous-wave regime and shows an output power of 3 mW. By varying the silicon grating pitch, a DFB laser array with broad wavelength coverage from 2.28 µm to 2.43 µm is achieved [1]. III-V-on-silicon photodetectors with the same epitaxial layer stack exhibit a responsivity of 1.6 A/W near 2.35 µm. Integrated spectrometers based on silicon arrayed waveguide gratings and integrated photodetector arrays [2] and single pixel detectors [3] are demonstrated. In addition, we also report a 2 µm range GaSb/silicon hybrid external cavity laser using a silicon photonic IC for wavelength selective feedback. A wavelength tuning over 58 nm and side mode suppression ratio better than 60 dB is demonstrated [4]. For the 3 µm wavelength we demonstrate the realization of high-performance arrayed waveguide gratings [5] and integrated spectrometers based on GaSb-based p-i-n photodetectors heterogeneously integrated on the silicon waveguide platform [6]. Beyond 4 µm wavelength we propose the use of germanium on silicon-on-insulator waveguide circuits. We demonstrate high efficiency grating couplers [7], thermooptic heaters [8] and widely tunable Vernier ring resonator filters [9] on this platform in the 5 µm wavelength range. Such circuits can then be integrated with III-V semiconductor quantum cascade or interband cascade gain chips to realize miniaturized widely tunable lasers.

2. References


