
A framework for functional testing of VNFs
Askhat Nuriddinov, Wouter Tavernier, Didier Colle, Mario Pickavet

Ghent University – IMEC
{askhat.nuriddinov, wouter.tavernier, didier.colle, mario.pickavet}@ugent.be

Abstract—Network Function Virtualization (NFV) is a promis-
ing technology which can significantly boost innovations in the
area of telecommunication networks. However, to realize the
anticipated benefits of NFV, network operators need to solve
several challenges which include performance and functional
testing of Virtualized Network Functions (VNF). Furthermore,
the development process of VNFs is very complex and error-
prone, therefore the developers also need to do functional testing
of their VNFs.

To this end, we introduce a new open-source framework for
functional testing of VNFs. It allows to write tests in Python
and use its simplicity to write tests with minimal effort. The
framework has integration with virtual infrastructure to make
the test process seamless and less time consuming.

I. INTRODUCTION

Network Function Virtualization aims to reduce time-to-
market and accelerate the development and deployment of Vir-
tualized Network Functions (VNF). This architecture makes
it possible to introduce DevOps in the development process.
DevOps is a software engineering approach that aims at
unifying software development (Dev) and software operation
(Ops). It makes the development seamless and less error-
prone and increases deployment frequency. The key aspect
of DevOps is automated testing.

Currently the industry standard for testing network functions
is TTCN-3 [5] developed by ETSI. It is a strongly typed
testing language used in conformance testing of commu-
nicating systems. A downside of TTCN-3 is that it is a
domain-specific language which means it has little popularity,
less documentation and limited expressiveness compared to
general-purpose languages.

In this document we introduce a new functional testing
framework for VNFs. The framework allows to write func-
tional tests in Python in just a few lines of Python code. It
supports all stages of testing process including infrastructure
setup, VNFs instantiation, configuration of network, execution
of arbitrary commands on running instances and retrieving
results. The test execution process is shown on figure 1. In the
following paragraphs we will describe each section in detail.
The framework is developed in the context of the 5GTango
project [1] and is part of the 5GTango SDK [2].

II. FRAMEWORK

The testing framework is written in Python language and
is based on a popular Python testing framework pytest.
This allows the developers to write tests in Python and use
its simplicity and expressiveness to write tests very clear and
elegant.

The framework has an integration layer which provides an
abstract unified infrastructure interface to set up the testing
environment. The integration is written as a separate module
for each platform and can be easily extended to support any
different platforms. The implementation inherits the abstract
interface which makes tests written with the help of the
framework almost platform-independent. The only difference
will be in the target platform.

III. USE CASES

Since the framework was developed as a part of the
5GTango project ([1]) it has support of its infrastructure
managers OpenStack-based Service Platform [3] and Docker-
based Emulator [4].

The 5GTango Emulator is a light-weight emulation plat-
form, which is a part of the 5GTango SDK, and is supposed
to be run on the developer’s machine. It can be used for the
development of VNFs without any specific target platform.

A. Test-driven development

Test-driven development is an approach that requires de-
velopers to write tests of software before actually writing
the software itself. The developer can use some light-weight
virtual infrastructure like the 5GTango Emulator and the test-
ing framework to set up sufficient environment for test-driven
development. The framework can generate rich feedback and
significantly accelerate the development process.

B. Continuous integration

Continuous integration is a development practice that re-
quires developers to integrate code into a shared repository
several times a day. By integrating regularly, developers can
detect errors quickly and avoid “integration hell”. The frame-
work can be used to check the integrity between different
components of a complex VNF.

C. Continuous delivery

Continuous delivery is an engineering technique in which
developers produce software in short cycles, ensuring that the
software can be reliably released at any time. With the help
of the framework developers can set continuous delivery of a
VNF and make it available for deployment at any time.

D. Continuous deployment

Continuous deployment is an extension of continuous de-
livery when every change that is made in software is auto-
matically deployed to production. The framework can prove
reliability of a VNF and reduce time-to-market.



Fig. 1. Test execution process.

IV. WORKFLOW

The framework aims to let developers write tests with
minimal effort and define each stage of test in just a few lines
of code. In the following paragraphs we describe the workflow
of using the testing framework and give some details of each
stage.

A. Setup

In order to execute tests the developer needs to run a
virtual infrastructure. With the help of the framework this
can be done by just initializing a class of appropriate in-
frastructure, e.g for the 5GTango Emulator it will look like
vim = Emulator(). Then a VNF and extra instances can
be launched and network links can be set up by appropriate
methods of the infrastructure adapter class. There are several
possible sources of instances: VM or Docker image and source
files as well. With the last option an appropriate image will
be automatically created. There is also a base image with the
basic set of testing utilities which can be used as an extra
instance to send traffic through the VNF and for creating new
instances as well.

B. Stimulation

The test stimuli must be specified as arguments of a method
of an instance which will send traffic or do some other required
actions. If there is a need in some specific utilities to send
traffic any arbitrary software can be installed in extra instances
as it is described in the previous section.

C. Verification

When the stimulation starts the test execution become
locked. After receiving the notification that the running process
is finished the test is unlocked and the results can be checked.
The results can be retrieved from stdout and stderr of
the stimulation process, files and journalctl logs. There
is also an option to retrieve only updates of file, i.e. rows
written after the stimulation was started. In case of a failure
of the test the developer will get feedback and see where the
output differs from the expected.

V. DEMONSTRATION

The objective of the planned demonstration is to illustrate
the usage of the framework. We will show the entire workflow
of writing and executing functional tests of VNFs with the

framework. For the demonstration we will use a chain of three
instances:

1) Base image as an extra image to send traffic through
VNFs with curl

2) Snort1 — network intrusion detection system
3) Apache2 HTTP server
The 5GTango Emulator will be used as a virtual infrastruc-

ture for this demonstration. We will show how the framework
runs the environment, instantiate VNFs and the base image
and sets network links. We will use Snort to pass some traffic
and alert another. The test will check if Snort is properly
configured and HTTP-server responds with correct headers.

We will also show how the Emulator and the framework
can be used to set continuous integration. The entire process
can be executed on a regular laptop.

VI. CONCLUSION

Our demonstrated testing framework greatly simplifies the
process of testing VNFs and makes it less time-consuming.
Hence, it significantly accelerates the development process and
makes it less error-prone.

REFERENCES

[1] 5GTANGO consortium, “5G Development and Validation Platform for
global Industry-specific Network Services and Apps,” 2018. [Online].
Available: https://5gtango.eu/

[2] S. V. Rossem, M. Peuster, L. Conceio, H. R. Kouchaksaraei, W.
Tavernier, D. Colle, M. Pickavet, and P. Demeester, “A network service
development kit supporting the end-to-end lifecycle of NFV-based
telecom services,” IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), 2017, pp. 12.

[3] S. Draxler, H. Karl, M. Peuster, H. R. Kouchaksaraei, M. Bredel,
J. Lessmann, T. Soenen, W. Tavernier, S. Mendel-Brin, G. Xilouris,
“SONATA: Service programming and orchestration for virtualized soft-
ware networks,” 2017 IEEE International Conference on Communica-
tions Workshops (ICC Workshops), May 2017, pp. 973978.

[4] M. Peuster, H. Karl, and Steven Van Rossem, “MeDICINE: Rapid
Prototyping of Production-ready Network Services in multi-PoP Envi-
ronments,” IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN, 2016, pp. 148–153

[5] ETSI ES 201 873-1 V3.1.1 “Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-
3 Core Language”, ETSI, 2005

1Snort: https://www.snort.org
2Apache HTTP: http://httpd.apache.org


