
Received 7 February 2018; Revised ; Accepted

DOI: xxx/xxxx

RESEARCH ARTICLE

Orchestrator Conversation: Distributed Management of Cloud
Applications

Merlijn Sebrechts | Gregory Van Seghbroeck | Tim Wauters | Bruno Volckaert | Filip De Turck

1 Ghent University - imec, IDLab,
Department of Information Technology,
Ghent, Belgium

Correspondence
Merlijn Sebrechts, Ghent University - imec,
IDLab, Department of Information
Technology, Technologiepark-Zwijnaarde
15, B-9052 Ghent, Belgium. Email:
merlijn.sebrechts@ugent.be

Summary

Managing cloud applications is complex, and the current state of the art is not
addressing this issue. The ever-growing software ecosystem continues to increase
the knowledge required to manage cloud applications at a time when there is already
an IT skills shortage. Solving this issue requires capturing IT operations knowledge
in software so that this knowledge can be reused by sysadmins who do not have it.
The presented research tackles this issue by introducing a new and fundamentally
different way to approach cloud application management: a hierarchical collection
of independent software agents, collectively managing the cloud application. Each
agent encapsulates knowledge of how to manage specific parts of the cloud applica-
tion, is driven by sending and receiving cloud models, and collaborates with other
agents by communicating using conversations. The entirety of communication and
collaboration in this collection is called the orchestrator conversation. A thorough
evaluation shows the orchestrator conversation makes it possible to encapsulate IT
operations knowledge that current solutions cannot, reduces the complexity of man-
aging a cloud application and happens inherently concurrent. The evaluation also
shows that the conversation figures out how to deploy a single big data cluster in less
than 100 milliseconds, which scales linearly to less than 10 seconds for 100 clus-
ters, resulting in a minimal overhead compared to the deployment time of at least 20
minutes with the state of the art.

KEYWORDS:
Cloudmodeling languages, Orchestration, Distributedmanagement, Configurationmanagement, TOSCA,
Big Data

1 INTRODUCTION

Managing cloud applications is complex. System Administrators (sysadmins) need to have an in-depth understanding of all the
components of the cloud application such as the operating system, webserver, X.509 certificates and more. Having such deep
knowledge about how to deploy, configure, monitor and manage these components is almost impossible in the field of big data
because of the size of the ecosystem, the complexity of the tools involved and the rapid pace of innovation. This would not be
such a big problem if it was not for the large skills shortage in the fields of IT operations1 and big data2. There is thus a need
for the ability to share and reuse the knowledge of sysadmins across teams and companies.

2 SEBRECHTS ET AL

Sharing IT knowledge is not a new concept. The field of software development, for example, has a big focus on sharing and
reusing knowledge in the form of code libraries. Over the years, a vast number of code libraries have been created that encapsulate
an enormous amount of knowledge. Developers use these libraries to quickly write software without having to know each and
every detail of how the software works. As an example, a programmer writing a piece of software that communicates over
HTTPS does not need to know the intricate details of the TCP/IP protocol, X.509 certificates and SSL encryption. By simply
using a library that implements all these functions, the programmer can focus on the actual novel parts of the application.
Two properties of programming languages are key enablers for this knowledge reuse: the ability to encapsulate code and to

create new abstractions. Encapsulation allows developers to group code with a common function into a reusable module. By
creating an abstraction, the developers expose the functionality of that module over an API that hides the inner complexity.
An important property of these two is that they are stackable: a module can have varying levels of abstraction where each
level encapsulates and hides the complexity of the level below it. As an example, a library for HTTPS communication might
encapsulate three libraries: one for TCP/IP communication, one for X.509 certificate management and one for SSL encryption.
Note that it is not sufficient for a programming language to be an abstraction of machine code, because it only allows developers
to reuse the knowledge of the creators of the programming language, not the knowledge of other developers. It is vital the
programming language itself allows for developers to create new abstractions with the language instead of in the language, so
that they can easily encapsulate their own knowledge in a reusable way.
Knowledge reuse is regrettably a lot less prevalent in IT operations since it has historically been a mostly manual job which

makes capturing knowledge hard. The rising popularity of configuration management automation provides new opportunities.
Automation tools such as Chef and Puppet allow sysadmins to develop code that manages a cloud application. Although this
code captures the sysadmin’s knowledge, it does not enable knowledge reuse because building on top of automation code requires
the same knowledge as creating the code in the first place. This issue stems from the foundational theory behind configuration
management tools: converging towards a predefined end-state, as popularized by Burgess et al.3 The idea of convergence is
that a sysadmin specifies the desired end-state of an application and the configuration management tool executes the necessary
actions to get the application into that state. The automation code is in that sense a description of the desired end state of the
application. The same code thus always results in the same end state. Having the code figure out what the end state needs to be, is
not possible in this convergent approach to configuration management. This has the advantage of consistency and reliability, but
this presents a big issue for creating reusable automation code modules. When an automation code module changes a property
of an application, there are two options. Either the module hides the value of that property in an abstraction, but then the value is
static so the module cannot be used in a scenario where that property needs a different value, or the module exposes the property
in its API, causing the module to leak its complexity. As a result, a module is either understandable, or flexible, but it cannot be
both, even though both are important for successful reuse according to a systematic mapping study by Bombonatti et al.4
Note that it is entirely possible, and common, for the desired end-state to be an abstract description of the actual end-state.

However, it becomes the responsibility of the configuration management tool to translate the abstract description into a concrete
description. The only abstractions possible in configuration management tools are those provided by the creators of the tools.
Sysadmins can thus only reuse the knowledge of the creators of the automation tools, not the knowledge of other sysadmins.
A recent addition to cloud application management is the concept of topology-based cloud modeling languages such as the

OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA). On top of automation, these languages
also provide ways to model the cloud application as a set of interdependent services, and they abstract the underlying cloud to
prevent cloud vendor lock-in5. These languages are typically paired with an orchestrator, a program that interprets the model
and performs the necessary management actions.
Reducing the complexity towards end-users, however, requires more than abstracting the cloud itself: it requires creating new

abstractions using the cloud modeling language, which is still not possible. As an example, modeling and managing a Hadoop
cluster as a single entity is not possible. System administrators need to model each individual component of a Hadoop cluster
and their dependencies: the Namenode and Datanode to get an HDFS cluster, and the ResourceManager and NodeManager to
get a YARN cluster, the Datanode and NodeManager must be co-located, etc. This also causes sysadmins to be responsible for
translating higher-level objectives such as “scale the Hadoop cluster" into actions on the individual components of the cluster
and requires them to have in-depth knowledge of the inner workings, i.e. on what it means to scale a Hadoop cluster.

SEBRECHTS ET AL 3

Simply making it possible to create abstractions in cloud modeling languages is not the whole solution, however, because
someone still needs to create these abstractions and encapsulate knowledge. The answer to the “who” question is complex
because there are multiple parties involved in the creation and management of a cloud application:

• the system administrator that manages the cloud application,

• the Independent Software Vendor (ISV) of the software that makes up the cloud application,

• and the vendor of the orchestrator that interprets the cloud model.

The sysadmin is the expert on how the software is used in the cloud application, but it is the ISV who has the actual knowledge
on how to manage the individual software artifacts, so the ISV is the prime candidate to encapsulate the knowledge. Note that
the transfer of knowledge from ISV to sysadmins currently happens almost exclusively using documentation and tutorials. The
ISV writes documentation and tutorials, and the sysadmin uses that documentation to manage the software. This means that the
most important role of the cloud modeling language and orchestrator is to provide a platform to enable sysadmins to use the
expertise of the ISVs. The orchestrator vendor cannot decide what the requirements are, since that is the role of the sysadmin,
and the orchestrator vendor should not decide how individual components are best managed, since that is the role of the ISV.
This is regrettably not the case with current cloud modeling languages. As an example, if a sysadmin uses the current declarative
capabilities of the TOSCA cloud modeling language6, then it is up to the orchestrator to interpret that model and manage the
cloud application accordingly. This is the exact opposite of the ideal scenario, where the role of the orchestrator is as minimal
as possible.
In summary, the issue with the current generation of cloud application management tools is that these tools do not enable

sysadmins to reuse the knowledge of ISVs. The orchestrator conversation proposed in this article tackles this issue by introducing
a new and fundamentally different way to approach cloud application management: the orchestrator conversation, a hierarchical
collection of independent software agents that collectively manage the cloud application. Each agent is an orchestrator that
manages a specific part of the cloud application, collaborates with other agents over peer-to-peer conversations and deploys new
agents to delegate tasks to.
Three features of the orchestrator conversation are key to addressing the aforementioned issue.

a) The ability to encapsulate automation code thatmanages a single service and to provide that functionality over an abstract
API makes it possible to reuse the knowledge of how to manage a single service.

b) Encapsulation of automation code that orchestrates a number of services and providing that functionality over an abstract
API, which enables reusing the knowledge of how to orchestrate multiple interconnected services.

c) The orchestrator conversation enables multiple independent ISVs to encapsulate their knowledge in an interoperable
way so that sysadmins can build a cloud application using multiple components from multiple ISVs.

The remainder of this article is structured as follows. Section 2 gives an overview of the state of the art concerning this field and
identifies how the related work has influenced this article. Section 3 explains the concepts behind the orchestrator conversation,
and how they address the identified issues. Section 4 evaluates the solution using simulations and Section 5 concludes this article.

2 RELATEDWORK

There is a lot of different terminology being used regarding the management of cloud applications. Since these terms are not
always used in a consistent manner, this section starts with a description of how these terms are used in the context of the
presented research. This generally follows the cloud resource orchestration taxonomy proposed by Weerasiri et al.7
A cloud application consists of a number of services connected by relationships. A relationship generally denotes a depen-

dency and/or an interaction between two services. An application topology is a description wherein the cloud application is
described as a graph of nodes (the services), and edges (the relationships). Cloud resource orchestration is the process of
selecting, describing, deploying, configuring, monitoring and controlling the infrastructure and services that make up the
cloud application. Cloud resource orchestration is abbreviated as orchestration and is interchangeable with cloud application
management in the context of this research. An orchestrator is a piece of software that performs orchestration tasks. 1

1Note that “orchestration” does not imply a central controlling entity. There is thus no distinction between orchestration and choreography in this context.

4 SEBRECHTS ET AL

A number of efforts from different fields try to tackle the issues regardingmanagement of cloud applications. The remainder of
this section explores how each field addresses different issues, how this relates to knowledge reuse, abstraction and collaboration,
what our research takes away from these efforts, and how it goes beyond the state of the art.

2.1 Resource scheduling
The lines between cloud applicationmanagement and resource scheduling are starting to blur, resulting in a number of innovative
solutions regarding cloud application management to come out of the resource scheduling field. The reason for this evolution is
that there is a lot more to the management of a cluster than simple job scheduling. Jobs are part of larger applications that have
complex topologies and dependencies. Jobs have a complex lifecycle, they need to communicate with each other and they need
to be configured8.
One of the big lessons learned from this field is that monolithic schedulers evolve into complex hard-to-maintain systems

because of the increasing heterogeneity of resources and jobs and the widening range of requirements and policies. This problem
is addressed by pulling the monolithic cluster manager apart into a number of specialized schedulers that work together on
shared resources and job queues9. Apart from solving the complexity issue, this approach also makes it possible to have multiple
schedulers from different vendors manage shared resources10.
The big shortcomings of the state of the art in cluster management are the lack of native support for grouping workloads into

application topologies8, automatic dependencymanagement and dynamic reconfiguration of workloads11. The need for dynamic
reconfiguration is inherent to configuration itself since configuration solely exists to make hard-coded parameters changeable.
If a parameter needs the same value for every deployment of an application, then this parameter will simply be hard-coded in
the application’s source code. The advent of microservices has only increased the complexity of application topologies and their
configurations and dependencies, making it impossible to manage these manually12.

2.2 Cloud modeling languages
Cloudmodeling languages provide a standardized format to describe cloud applications and theirmetadata. The sysadmin creates
a model that describes the desired state of the cloud application and the orchestrator deploys and configures the cloud application
according to that description. These languages thus have enormous potential to encapsulate cloud application management
knowledge in a reusable manner. The latest generation of cloudmodeling languages is centered around describing the application
as a topology of components and their relationships to each other. The TOSCA language is an effort to reduce vendor lock-in
by separating the cloud modeling language from the cloud provider and cloud infrastructure platform. This effort resulted in a
push towards abstraction in cloud modeling languages. Abstraction of individual components is possible using TOSCA “node
templates”. The orchestrator substitutes a node template by concrete node types before deployment6. Brogi et al. identified four
different matching strategies for transforming these abstract node templates into concrete node types13. These strategies can be
used to combat vendor lock-in by using standardized vendor-neutral node-templates14. The downside is that this substitution is a
one-way process which results in critical information loss. The resulting topology does not contain any information about what
node templates were present nor what node types correspond to what node templates. As a result, a sysadmin can only use node
templates during the deployment phase. After the deployment is done, the abstractions are lost and the sysadmin is exposed to
the full complexity of the cloud application making the monitoring and controlling phases very complex.
A useful feature of the TOSCA approach is that it is possible to create a topology that contains both node types and node

templates, thus having multiple levels of abstraction in a single model. This allows sysadmins to choose the appropriate level
of abstraction for each part of the topology. As an example, a sysadmin can use the “SQL Database” node template for parts of
the cloud application that are database agnostic and use the “MariaDB Database” node type, in the same model, for parts of the
cloud application that are tied to that specific database.
A big advantage of topology-based cloud modeling languages is that each individual component is isolated. Interaction

between components is only possible using relationships. This makes it very easy to create reusable components, resulting in
community-driven capturing and reuse of configuration management code15 16 17, which is very important in the field of cloud
resource orchestration7. However, the actual reuse of knowledge is limited because of the issues explained in the introduction.
The following research efforts have made progress towards formalizing the concepts behind topology-based cloud modeling

languages. Andrikopoulos et al. propose a set of formal definitions to reason on topology-based cloud applications with the goal

SEBRECHTS ET AL 5

of selecting the optimal distribution18. The Aeolus component model makes it possible to formally describe several character-
istics of a cloud topology such as dependencies, conflicts, non-functional requirements and internal component state19. Brogi
et al. propose a petri net-based approach to formally model the relationships of TOSCA cloud models20.
A big shortcoming of cloud modeling languages is the limited support for creating abstractions using cloud models. This

has caused TOSCA orchestrators such as Cloudify to build their own methods to enable this. Cloudify’s solution to this is
Cloudify Plugins21. A Cloudify plugin basically allows adding additional orchestration logic into the Cloudify Orchestrator.
These plugins allow to define new base node types and control how the orchestrator handles them. Although this method provides
a way for Cloudify users to create new abstractions, it is still lacking. For instance, this method does not make it possible
to stack abstractions: you cannot create new abstractions by combining and encapsulating a number of existing abstractions.
Furthermore, this method nullifies an important property of TOSCA models: their portability. A TOSCA model that uses a
plugin-specific node type cannot be interpreted by an orchestrator that does not support the specific plugin. Since plugins are
developed using a Cloudify-specific API, this essentially re-introduces vendor lock-in into the TOSCA ecosystem. This is a big
issue, given that TOSCA’s main selling point is that it eliminates vendor lock-in. Note that this method of extending orchestrators
to enable abstraction is neither limited to Cloudify nor to TOSCA. The alien4cloud project22 provides an abstraction layer on
top of TOSCA models, and the conjure-up project23 provides an abstraction layer on top of the Juju24 cloud modeling language
discussed in Section 2.4.

2.3 Models at runtime
Cloud modeling languages can also be used to monitor and control runtime state25. The models at runtime (M@RT) approach
is to have a model that is causally connected to the running application: the runtime model is constantly updated to mirror the
runtime state26 27. Another approach called self-modeling28 is to dynamically generate a model from the current state using
generic building blocks, which has been shown to be useful for self-diagnosis and root-cause analysis29. These approaches,
however, are limited in that they only support a one to one mapping between the runtime model and the runtime state. This is
an issue because complex abstractions can violate this constraint: a single abstraction can represent different runtime states in
different topologies and different abstractions can represent the same runtime state in different topologies, as is the case with
the “Spark on Hadoop" example used for evaluation in Section 4. Solving this issue requires more complex translations between
the running application and the model than the M@RT approach currently provides.

2.4 Agent-based management of cloud applications
The approach of converging towards a predefined end-state as popularized by Burgess et al.3 is inherently inflexible as explained
in the introduction.We believe that agent-based cloud management addresses this inflexibility. An agent-based cloud application
manager consists of a number of independent agents that each manage a specific part of the cloud application i.e. a service. Each
agent independently decides what the desired end-state is for that service and executes the necessary actions to get into that
state. Dependencies between services are resolved by communication between the agents. As an example, a cloud application
consisting of two services, a website and a database, is managed by two agents. One agent is responsible for the website and the
other one for the database. If the website needs a connection to a running database, the agent responsible for the website will
wait until it receives a message from the agent responsible for the database saying that the database is running. In this approach
to config management, the global end-state of the cloud application emerges from the collective behavior of the agents.
One of the big advantages of an agent-based approach is the reliability and resiliency against failures as shown by Xavier et

al.30 and Kirschnick et al.31. Lavinal et al. have shown that the local autonomy of each agent combined with their organizing
behavior enables global management autonomy in a distributed environment32. The flexibility of the agent-based approach
allows it to manage not only analytical platforms but also the workloads running on top of those platforms as shown by the
authors’ previous work33. The state of the art in this area however does not address the need for abstraction, collaboration and
reuse.
Juju24 is a cloud modeling language and orchestrator that can be seen as a hybrid between agent-based management and

cloud modeling languages. The sysadmin creates a Juju model describing the entire topology of the cloud application, the Juju
orchestrator interprets that model, but the actual management of the individual services is done by agents co-located with the
services. Juju makes it possible to encapsulate automation code that manages a single service in a charm, an entity similar to a
TOSCA node type, but charms are not stackable and can only manage a single service.

6 SEBRECHTS ET AL

2.5 General limitations and lessons learned
A recent survey on cloud orchestration by Weerasiri et al.7 identifies a number of general limitations across the field of cloud
applicationmanagement. Although concerns such as conformance to QoS and SLA requirements are reasonably addressed by the
state of the art, the importance of knowledge reuse is underestimated and there is too much fragmentation resulting in sysadmins
having to use different tools to manage different aspects of the application lifecycle7. The survey furthermore proposed the idea
of orchestration knowledge graphs, where “common low-level orchestration logic can be abstracted, incrementally curated and
thereby reused by DevOps”7.
For this reason, the presented research’s focus is not in finding new orchestration and scheduling techniques, but in developing

a specification that makes it possible for the existing cloud schedulers, modeling languages and orchestrators to work together,
enabling encapsulation of cloud application management knowledge in orchestration knowledge graphs.
There are a number of concepts in the state of the art that are very useful in achieving this. The presented research uses the

following concepts as a foundation for the orchestrator conversation as explained in the next section.

a) The concept of a meta-scheduler as a way for different schedulers to work together solves real problems and should be
applied to orchestration as well.

b) Topology-based cloud modeling languages make it easy to represent and reason over a cloud application and enable
communities to collaborate around encapsulated knowledge.

c) Runtime models are a great way to represent the current state of a cloud application.

d) The agent-based approach to deployment of cloud applications provides a lot of benefits to the resiliency of the
management system.

3 ORCHESTRATOR CONVERSATION

We propose the orchestrator conversation as a fundamental new way to approach cloud modeling languages and orchestrators.
This section gradually introduces the key concepts behind the orchestrator conversation. As a running example, the management
of a Hadoop cluster is used. The section concludes with a summary of the entire conversation.
The need for knowledge reuse has heavily influenced the design decisions in this section. Specifically, the systematic mapping

study of software reuse by Bombonatti et al. is used as a guideline for the non-functional requirements of the orchestrator
conversation: understandability, modularity with loose coupling, flexibility and abstractness.

3.1 Request and runtime models
Two pieces of information are key to the management of cloud applications: what state should the application be in, and what
state is the application currently in. In the orchestrator conversation, that information is embedded in two types of cloud models.

Definition 1. The request model is a structured description of the desired state of part of the cloud application.

Definition 2. The runtime model is a structured description of the actual state of part of the cloud application at a specific
point in time.

These models follow a predefined schema that is both human- and machine-readable so both system administrators and the
management platform itself can understand them. Cloud modeling languages are perfectly fit as the schema for these models,
since they provide a way to describe cloud applications satisfying both constraints. The request and response models are always
linked in the sense that the runtime model describes the state in the context of the request model. It must be clear from the
runtime model what the status is of the requests in the request model. As the example in Figure 1 shows, the runtime model uses
the same names for the service and its properties so that the sysadmin understands the runtime model.
These two models are the primary way for a system administrator to communicate with the management platform. The

sysadmin creates a request model to tell the management platform what the desired state of the cloud application is and uses the
runtime model to keep track of the runtime state of the cloud application.
Capturing the complete and current state of a highly distributed cloud application requires strict consistency, which degrades

performance immensely because of global locks. Furthermore, locking the state of a running cloud application without any

SEBRECHTS ET AL 7

FIGURE 1 The Hadoop Worker service agent runs on the same machine as the Hadoop Worker service. The sysadmin defines
the desired state of the service in the request model and the service agent notifies the sysadmin of the current state using the
runtime model.

downtime is arguably impossible since state changes such as a running process crashing unexpectedly cannot be prevented. This
is the reason why the runtime model does not represent the state of the cloud application in the present, but at some time in the
past. The orchestrator conversation follows the eventual consistency model34: if the state does not change, the runtime model
will eventually reflect the current state. This is achieved by ensuring the following three properties.

• The runtime model represents the state at some point in the past.

• If the state has changed since that point, the runtime model will be updated at some point in the future.

• Write conflicts are handled using the “last writer wins” approach.

3.2 Service Agent
The actual management of the individual services is the responsibility of the service agent (SA).

Definition 3. A service agent is an event-based program that manages a single service to get it into the state described in the
request model and creates the runtime model that reflects the runtime state of the service.

A service agent is fully event-based, thus it only reacts to changes, which can be internal such as a service crash, or external
such as an update to the request model. Each change generates an event that the service agent needs to process. Each service
agent has a specialized role. For example, Figure 1 shows a service agent that is specialized in managing a Hadoop Worker
service. The service agent is running on the same machine as the service itself. This is an easy way to give the service agent
access to the service, although this is not required as shown in the authors’ previous work35.
In the scenario shown in Figure 1, the process is the following.

1. The system administrator selects which service agent to use.

2. The sysadmin deploys the service agent onto a server.

3. The sysadmin sends the request model to the service agent and subscribes to its runtime model.

4. The service agent deploys and configures the service to get it into the state described in the request model.

5. The service agent updates the runtime model to reflect the current state and sends it to the sysadmin.

A key difference between the service agent approach and conventional configuration management tools is that the system
administrator not only chooses the end state, but also the entity that will interpret that end state, i.e. the service agent. This

8 SEBRECHTS ET AL

solves the issue explained in the introduction that the languages used to describe the end state do not support creating flexible
abstractions. Service agents provide that functionality and can contain arbitrary processing logic to translate an abstract request
model into a practical set of operation actions that need to happen. As a result, sysadmins can encapsulate knowledge in a service
agent so it can be reused. Figure 1 shows an example where the request and response models only specify a few configuration
options. The service agent decides what the optimal values are for the unspecified configuration options. As a result, flexibility
and understandability are not mutually-exclusive in this approach. Aside from enabling knowledge reuse, the service agent also
has a number of other advantages:

• The need for a one-size-fits-all cloud modeling language is removed because different languages can be used for manage-
ment of different services. As an example, modeling a Virtual Network Function (VNF) is quite different from modeling
a big data service so it is useful to model each in a modeling language specific to its domain.

• Service agents allow for fine-tuned translations from declarative request models into imperative steps instead of having
to rely on generic translation rules provided by the management software.

• System administrators can reuse existing “legacy” models such as a TOSCA topology in the orchestrator conversation.
This allows them to capitalize on their existing investments in model-driven management of cloud applications and it
provides an easy migration path from conventional management tools.

• The approach enables a heterogeneous ecosystem where cloud modeling languages can compete with each other and
evolve quickly.

3.3 Collaborator relationship
The previous subsection focused on managing a single service. However, cloud applications generally consist of multiple
interconnected services. A standard Hadoop setup for example requires three services working together: the Namenode, the
ResourceManager and the Hadoop Worker. Connecting these services requires communication between the respective service
agents in order to exchange information such as IP addresses and port numbers. The collaborator relationship enables this
communication between service agents.

Definition 4. A collaborator relationship is an isolated, two-way communication channel that connects two service agents and
allows a conversation between them. Each service agent has a role in this conversation, which denotes how the service agent
acts. Two types of conversations are possible: unary and binary. In a unary conversation, both service agents have the same
role. In a binary conversation, each service agent has a different role. A collaborator relationship between two service agents
is possible if either both implement the same role of a peer-to-peer conversation or if they both implement opposite roles of a
directional conversation.

The term conversation is chosen to differentiate from the simple static exchange of properties possible in languages such
as TOSCA. Similar to its meaning in Business Process Model and Notation (BPMN), a conversation can consist of multiple
interactions and messages resulting in negotiation and resolution of complex dependencies. The Hadoop cluster shown in Figure
2 shows three directional conversations. In each conversation, both connected service agents have a distinct role. For example,
the Hadoop Namenode and the Hadoop ResourceManager have two distinct roles in their conversation simply because they
provide information about two distinct services. The collaborator relationships in this example are used to check Hadoop version
compatibility, exchange IP addresses and port numbers, setup shared credentials, and coordinate service starts and restarts. A
sysadmin creates a relationship by specifying a request for the relationship in the request models of both service agents. Each
relationship request contains the address of the other service agent, the roles of both service agents and the conversation protocol.
Note that a relationship only denotes that two agents can communicate. Whether or not that communication will be fruitful

is not specified. As an example, during the conversation between the Hadoop Namenode and the Hadoop ResourceManager,
it might become clear that the ResourceManager’s Hadoop version is incompatible with the Namenode’s Hadoop version. If
the Hadoop version is specified in the request model, then the service agents are not allowed to change the Hadoop version
themselves. It is then the responsibility of both service agents to explain this issue in their runtime models so that the sysadmin
can intervene, e.g. by changing the ResourceManager’s Hadoop version.
The collaborator relationship is a key piece to enabling collaboration because it allows multiple parties to develop service

agents independently, while still allowing these service agents to collaborate and communicate. A developer can implement

SEBRECHTS ET AL 9

FIGURE 2 Illustrative example: the collaborator relationships between SA’s of a Hadoop cluster.

the collaborator conversation without knowing the implementation details of the service agent on the other side because the
conversation acts as a generic protocol that hides the implementation. As a result, ISVs can create service agents that manage
their own software and connect to software from other vendors. Orchestrator vendors facilitate this collaboration by creating a
set of standardized collaborator conversation protocols that ISVs can program against. This will result in a rich ecosystem of
interoperable service agents at the fingertips of system administrators who use them as building blocks for their cloud application.

3.4 Controller
Deploying multiple service agents introduces a new issue: the system administrator needs to create a request model for each
service agent, which would be very cumbersome to do manually. This is where the topology-based cloud modeling languages
come in. Such languages provide a way to describe a cloud application as a set of interconnected services. They are thus ideal
for creating the combined request model including the relationship request between the different service agents. Dividing the
topology model into a number of request models is quite straightforward: each vertex is a separate request model. Each edge is
described in both request models of the nodes it connects. Doing this division is the job of the controller. The controller receives
the entire request topology model, divides the request model and sends each part to the service agent responsible for that service.

3.5 Operator relationship
The service agent as described in the previous sections enables abstraction of one single service, but it does not allow abstracting
an entire topology into a single component. As an example, when setting up the Hadoop cluster, the sysadmin still needs to
know that a Hadoop cluster consists of a Namenode, Datanode and a Worker, and how they need to be connected. As explained
in the introduction, there is a need for an abstraction layer that can represent a cluster of services as one service, so the system
administrator can request a deployment of “a Hadoop cluster” and have the management platform figure out what services are
required for a Hadoop cluster. As shown in the state of the art section, it is important that this abstraction is two-way: both the
request and response model the sysadmin interacts with need to represent the individual Hadoop services as one Hadoop cluster.
Figure 3 shows the orchestrator conversation’s solution to this: a service agent that takes over the job of the system admin-

istrator. This service agent receives the abstract request for the Hadoop cluster and fulfills that request by creating new service
agents, sending them request models, listening for runtime models, translating those runtime models into one overall state of the
Hadoop cluster, and sending a runtime model reflecting that state to the sysadmin. The key to enabling this is to characterize the
interaction between the sysadmin and a service agent and create the operator relationship that allows such interaction between
service agents themselves.

Definition 5. An operator relationship is an isolated, two-way communication channel between two service agents that allows
one service agent to send request models to and receive response models from the other service agent. The conversation going
over the operator relationship has two roles: the operator sends request models to drive the behavior of the executor, which
sends runtime models back to the operator to inform the operator about the runtime state. A service agent can be the executor
in only one operator relationship, but it can be the operator in multiple relationships.

10 SEBRECHTS ET AL

FIGURE 3 The Hadoop cluster orchestration agent manages multiple service agents by sending them individual request models.

This article refers to a service agent that manages a number of other service agents using an operator relationship as an
“orchestration agent (OA)”. The interaction between a system administrator and an OA can be seen as the system administrator
having an operator relationship to the service agent. In fact, there is no practical difference between a system administrator
managing a service agent or another service agent managing that service agent. As a result, it is possible to create multiple layers
of abstraction by chaining service agents using operator relationships.
This does have implications on the visibility of the cluster of service agents to the system administrator. Only the service agents

that are directly connected to the sysadmin are fully visible, which is wanted behavior since it enables abstraction: the visibility
of the service agents in lower abstraction layers is curated by the service agents in the upper abstraction layers. Subsequently,
each service agent has complete control over its executors.
The operator relationship is the second key piece for enabling a rich ecosystem of orchestration knowledge. Just as the col-

laborator relationship, the operator relationship serves as a generic protocol that service agent developers can program against.
ISVs can now create service agents that manage entire clusters of their software and orchestrator vendors can create service
agents that translate higher-level requests to lower-level setups.

3.6 Summary
The orchestrator conversation consists of a hierarchical collection of service agents that collaborate to deploy a cloud application.
Each service agent is an orchestrator specialized in managing a specific part of the cloud application. A sysadmin deploys service
agents and sends them request models to specify what the desired end-state is. These service agents then communicate using
collaborator relationships to connect different parts of the cloud application and delegate work by deploying new service agents
and managing them using the operator relationship. The service agents report back to the sysadmin using eventually-consistent
runtime models that show the state of the cloud application in the context of the request model.
Service agents encapsulate orchestration logic and expose their functionality over abstract APIs, thus enabling knowledge

reuse. Relationships between service agents use agreed-upon conversation protocols, enabling a vibrant ecosystem of multiple
vendors creating interoperable service agents. Orchestration vendors can ease this collaboration by standardizing conversation
protocols and providing generic orchestration agents that perform tasks such as auto-scaling. The end-result is amodular system
with loosely coupled components.
The orchestrator conversation can be seen as a swarm in the sense that it consists of a number of locally interacting SA’s that

collectively achieve the goal of managing the cloud application without a centralized control structure. An SA’s interactions are
strictly local because communication can only happen over relationships, the local neighborhood of a SA is determined by its
relations and the management of the cloud application is an emergent behavior since no single SA has the knowledge to manage
the entire cloud application.

SEBRECHTS ET AL 11

FIGURE 4 The evaluation setup. The orchestrator conversation is simulated on the host. The resulting topology is serialized
into a Juju model which is deployed on AWS EC2.

3.7 Aside: declarative and imperative modeling
The topic of declarative versus imperative modeling is subject of an ongoing debate in the field of cloud modeling and orches-
tration36 37 38. This also introduces the issue of uncertainty since different orchestrators can interpret a model in different ways,
causing the orchestration to fail in unexpected ways. For this reason, ISVs have a strong preference for imperative models.
ISVs see cloud modeling languages as a way to enhance the experience of their customers by accompanying their software

with a model that encapsulates the knowledge of how to deploy and manage the individual software components. Imperative
models allow them to fine-tune the models and have more control over the quality of experience of their customer, regardless of
what orchestrator the customer uses.
The abstraction capabilities introduced by the orchestrator conversation are a great way to have the best of both worlds. The

ISVs create the orchestration agents in an imperative way so they have full control over what the orchestration actions are
and the customer interacts with the orchestration agent using declarative request models. The ISVs have full control over the
orchestration actions and in turn over the quality of experience of their customers, while the complexity is still hidden to the user.

4 EVALUATION

4.1 Evaluation Setup
To evaluate the proposed orchestrator conversation, a number of proof-of-concept orchestration agents and simulated service
agents are created using Python and the “Pykka” actor model framework. The full source code is available on Github39. The
service agents are simulated in the sense that they do not actually deploy and manage services, they only track what state these
services need to be in. When the orchestrator conversation finishes, the agents recursively serialize into a Juju bundle that
describes the desired cloud application state. This bundle is then used to actually deploy the cloud application as shown in Figure
4.
All benchmarks of the orchestrator conversation were run on an Ubuntu 17.10 host with a 4-core Intel i5-7440HQCPU and 16

GB of RAM. Deployment benchmarks were run using Juju 2.2.5 on AWS EC2 virtual machines of type “ m3.medium” running
Ubuntu 16.04 with 1 vcpu and 3.840 GB of RAM. The numbers of runs of the experiments and simulations are chosen so that
there is sufficient convergence in the results and the standard deviation is small enough to show the significance of relevant
trends.

12 SEBRECHTS ET AL

4.2 Complexity towards the sysadmin
The first evaluation checks whether the orchestrator conversation makes it possible to hide the complexity of managing a cloud
application to the sysadmin. The primary way of interfacing with a model-based cloud management platform is the model itself.
Thus, the complexity of the model that the sysadmin interfaces with, is a good approximation of the complexity of using that
management platform.
We compare the request model for a Hadoop cluster in the orchestrator conversation simulation with three models from the

following state of the art projects: DICE, INDIGO DataCloud and Apache Bigtop. The exact models used are available on
Github39.

• DICE is a European Horizon 2020 project aimed at defining a framework for quality-driven development of Big Data
applications40, which leverages TOSCA models to deploy and manage big data applications. This evaluation uses their
example Hadoop models41.

• The INDIGO - DataCloud project develops an open source data and computing platform targeted at scientific communi-
ties42. TOSCA is used as the method to interface between the INDIGO platform and end users. This evaluation uses the
example model to request a Hadoop cluster from the INDIGO platform43.

• Apache Bigtop is an Apache Foundation project that is the de-facto standard for packaging, deployment and testing tools
for open-source big data frameworks44. It is the upstream of many commercial big data offerings such as Cloudera’s
CDH Hadoop distribution. This evaluation uses the Bigtop reference bundle for deploying Apache Hadoop using Ubuntu
Juju45 46.

This evaluation uses four indicators of the complexity of a model. Each object is a variable that needs to be specified by the
user, thus increasing the complexity of the model. Moreover, each individual object acts as a multiplier to the overall complexity
because the values of different objects need to be correct in combination. The number of objects can thus be seen as the degrees
of freedom of the model. The indicators are as follows.

1. The number of nodes in the topology model. This is the number of declared node types for a TOSCA model and the
number of declared applications and machines for a Juju model. Node types referenced but not defined are not counted
since defining these node types is the role of the platform and thus provides no additional complexity for the sysadmin.

2. The number of relationships in the topology model. Each relationship is only counted once, even if it is declared at both
endpoints such as in certain TOSCAmodels.Machine placement directives in Jujumodels are also counted as relationships
since these signify a relationship between the application and the machine.

3. The number of outputs. In TOSCA models, the request model defines what runtime properties the sysadmin is interested
in, and how these runtime properties should be formatted. Juju request models do not contain outputs because it is up to
the Charm to decide what information should be shown to the sysadmin and how it should be formatted.

4. Number of properties present in the model. This maps to the number of properties in the TOSCAmodels, and the number
of configuration values, constraints, and scale declarations in the Juju models.

Figure 5 compares the complexity of the four evaluated models and Figure 6 shows the topologies of these models as a graph.
The indicators diverge a lot between the different state-of-the-art models because each model makes a different trade-off between
flexibility and complexity: more information exposed in the model means greater flexibility but also more complexity. This
trade-off is inherent to the state-of-the-art, since it is not possible to have both, as explained in the introduction. The trade-offs
of the presented models are further investigated below.

• The DICE model as a large number of nodes and relationships because the IP, firewall, and virtual machine are also
modeled as separate nodes with relationships. Although this is TOSCA-compliant and improves the reusability of the
nodes, it greatly increases the complexity of the model.

• In the INDIGO model, the Hadoop services are only represented by two services: "hadoop_master" and "hadoop_slave"
instead of the four separate services "Namenode", "Datanode", "NodeManager" and "ResourceManager". This causes the
INDIGO model to be less complex, but it hampers the flexibility and reusability of the components in the model.

SEBRECHTS ET AL 13

nodes # relationships # outputs # properties
0

2

4

6

8

10

12

14

16

18

1
0 0

1

4

6

4

11

7
8

0

21

14

12

2 2

Complexity of request model
Orchestrator Conversation
INDIGO
Bigtop
DICE

FIGURE 5 The request model for the orchestrator conversa-
tion only contains one node, the Hadoop cluster node, and one
property, the scale of the Hadoop cluster.

DICE

INDIGO

Bigtop

Orchestrator Conversation

FIGURE 6 The request models of a Hadoop cluster in the
different formats. The unfilled circles in the INDIGO model
represent node types that are referenced in relations but not
defined in the model itself.

• The Bigtop and INDIGO models contains a large number of properties because the requirements of the host machines
such as CPU, RAM and root disk space are part of the model. These properties are not set in the other models, which will
result in the orchestrator deciding these values, causing the user to have no control over this..

The request model for the orchestrator conversation scores the best on every indicator which proves that this approach indeed
makes it possible to hide the complexity of managing a Hadoop cluster. On the other hand, the sysadmin can still choose to
manually model the Hadoop cluster out of individual components, or use a mix of components with different abstraction levels,
should that need arise. Thus, the trade-offs between complexity and flexibility are not needed in the model of the orchestrator
conversation.
Note that, as explained in Section 2, it is technically possible to make the TOSCA models easier using Cloudify plugins

or node templates, but these methods have great limitations: node templates do not exist after deployment of the model and
Cloudify plugins are neither standards-based nor stackable. In contrast, in the orchestrator conversation, the sysadmin can still
manage the cloud application at runtime using the “Hadoop Cluster” abstraction, and the abstraction is completely stackable,
the underlying individual service agents and their request models are still present.

4.3 Overhead of the orchestrator conversation
Some studies report that the reusability of software has a negative impact on its performance due to the overhead of abstraction
and the absence of context-specific optimizations4. In order to see whether this is true for the orchestrator conversation, this
series of evaluations investigates the overhead of turning an abstract request model into a full topology that satisfies it.
Since the main interest is in the overhead of the abstraction itself, the orchestrator conversation is only used to figure out

what needs to be deployed in order to satisfy the initial request model. The orchestration agents create, configure and connect
the required service agents but these don’t actually deploy or manage any services, they simply figure out the desired state of
the service and immediately report in their runtime model that the request model has been satisfied, which propagates through
the topology until the initial request model is completely satisfied. At this point, the simulation stops and the desired state of
all services is serialized into a Juju topology model. This model is then used to confirm if the required state as described by
the service agents is correct, and deployed using Juju to get the time required to deploy the cluster using a state-of-the-art
orchestrator.
The initial request model for this simulation is shown in Figure 7 as the “initial topology”: a Hadoop orchestration agent

connected to a Spark orchestration agent. The goal is to create the complete topology of orchestration and service agents which
satisfies the request model. The request model of each agent contains a requested number of workers, referred to as k for Hadoop
and n for Spark. During the simulation, the orchestration agents create new orchestration agents, service agents and relationships
in order to achieve the desired state of the request model. The simulation finishes when all orchestration agents notify the user that
the request model has been satisfied, thus when the complete topology is created. During the simulation, the two orchestration

14 SEBRECHTS ET AL

FIGURE 7 The simulation starts with a Hadoop OA and a Spark OA connected to each other. The goal is to create a Spark
cluster running on a Hadoop cluster that consists of a Namenode, a ResourceManager and a Worker.

agents use the relationship to figure out what other agents need to be created and what the desired state is to fulfill the request.
What follows is a summary of the actions and decisions that have to be made by the orchestration agents in this simulation.

1. The Hadoop OA creates service agents that deploy and manage a Hadoop cluster.

2. The Hadoop OA also creates the Hadoop plugin service agent. This plugin SA provides its peers with the correct infor-
mation to connect an application to Hadoop. The Hadoop OA then sends the address of the plugin SA to the Spark OA
so that the Spark OA can create a relationship between the plugin SA and the Spark SA.

3. The Spark OA creates a single Spark Client service agent and connects it to the plugin SA. Since Spark has to run on
Hadoop, there is no need to create a full Spark cluster.

4. The Spark OA requests the Hadoop OA to create n workers since each Hadoop worker functions as a Spark worker when
Spark runs on Hadoop.

5. The Hadoop OA compares n to k, the amount of workers from its request model, and updates the request model of the
worker SA to create max(n,k) workers.

This interaction clearly shows the strength and flexibility of the orchestrator conversation. The abstraction of the Spark OA
cannot be provided by a TOSCA node template because there is no one-to-one translation from the abstract “Spark cluster”node
to what will actually be deployed: if the Spark OA is connected to a Hadoop OA, it will only deploy a single Spark client,
otherwise it will deploy a full Spark standalone cluster. Similarly, the conventional M@RT approach will not work here because
there is no one-to-one mapping between what the Spark OA reports as “number of Spark workers” and what is deployed: when
it is connected to the Hadoop OA, the Spark OA will report the number of Hadoop workers, otherwise it will report the scale of
the Spark standalone cluster. After the simulation finishes, all service agents serialize the desired state of the service into a Juju
bundle, which is deployed to get the deployment time of the cloud application.
Figure 8a shows the time required by the orchestrator conversation to create the complete topology, starting from the request

model. Each dot represents the aggregated result of 10 simulations of the orchestrator conversation. Figure 8b shows the deploy-
ment time: the time required by Juju to deploy the topology model created by the orchestrator conversation simulation. Each dot
represents the aggregated results of two deployments. While the simulation time stays under 100ms, the deployment time ranges
from around 20 minutes to over one hour. This demonstrates that the overhead of using orchestration agents as an abstraction is
negligible compared to the deployment time of the actual cloud application.

SEBRECHTS ET AL 15

0 5 10 15 20 25 30 35 40 45 50 55 60
number of Hadoop workers

0

1

2

3

4

5

6

7

8

sim
ul

at
io

n
tim

e
(m

s)
Creating a Spark-on-Hadoop topology

(a)

0 5 10 15 20 25 30 35 40 45 50 55
number of Hadoop workers

0

20

40

60

80

de
pl

oy
m

en
t t

im
e

(m
in

ut
es

)

Deploying a Spark-on-Hadoop topology

(b)

FIGURE 8 The overhead of the orchestrator conversation in (a) is less than 0.10 seconds which is insignificant compared to a
minimum deployment time of around 20 minutes shown in (b). The simulation time remains constant because the amount of
workers is represented in the Hadoop Worker service agent as an integer value.

4.4 Scalability of the orchestrator conversation
This series of evaluations focuses on how the orchestrator conversation scales when creating the topologies for multiple different
cloud applications at the same time. It is a common scenario that cloud infrastructure is shared over multiple teams, projects,
and environments such as development, staging and production.
These evaluations simulate such a scenario by deployingmultiple Spark-on-Hadoop clusters simultaneously. It does not matter

what the actual orchestrated clusters are since these evaluations focus on the scalability of the orchestrator conversation and not
the scalability of the orchestration actions themselves.
Unlike scaling a single cluster, creating multiple clusters actually creates multiple orchestration agents. Figure 9 shows that

the simulation time scales linearly in function of the number of clusters. This linearity is expected since the clusters don’t have
any dependencies on each other. Consequently, if all the clusters are equal, the time to create the topology for cluster n+1 is
equal to that for cluster n, thus each cluster adds a constant overhead to the overall simulation time.

4.5 Concurrency in the orchestrator conversation
Concurrency is a strong point of a distributed service orchestrator because the orchestrator conversation allows all orchestration
agents to run at the same time. This is inherent to the orchestrator conversation and does not require code changes in the
orchestration agents. This stands in stark contrast with the monolithic nature of current state of the art orchestrators. A single-
process orchestrator cannot orchestrate a topology concurrently, and enabling parallelization in a monolithic orchestrator creates
a complex system that is hard to adapt and fine-tune9. This series of evaluations has the goal to find out if the orchestrator
conversation actually uses the concurrency potential of the topology.
These evaluations use a simple orchestration agent that creates a number of children and waits until these children are ready.

This process continues recursively until the requested amount of orchestration agents is created. This creates a tree of orches-
tration agents connected by the operator relationship. The leaves of the tree immediately go into the ready state as soon as they
are created. This causes the ready states to propagate through the tree from the leaves to the root. When the root orchestration
agent is in the ready state, the simulation stops and the duration of the simulation is used for evaluation. The duration of two
topologies with the same number of nodes but different concurrency potential is compared.
Changing the number of children of an orchestration agent has a big impact on the concurrency potential of the topology. This

simulation uses a unary tree of the aforementioned orchestration agents as a topology without concurrency potential. Both the
creation of the unary tree and the propagation of the ready state has to happen sequentially, one node after the other. A binary
tree is used as an example of a topology that has a lot of potential for concurrency.
The big performance increase when concurrency is possible, as depicted in Figure 10, shows that the distributed service

orchestrator does indeed use the concurrency potential of the topology. This has a big impact on the real-world performance
of a distributed service orchestrator because the main use of the operator relationship is to abstract; to connect one operator to
multiple executors, allowing the executors to run concurrently. Note that in a real-world topology, the number of children can

16 SEBRECHTS ET AL

20 40 60 80 100
number of clusters

0

1

2

3

4

5

6

sim
ul

at
io

n
tim

e
(s

)

Creating multiple Spark-on-Hadoop topologies

FIGURE 9 The simulation time scales linearly as a function
of the number of unconnected clusters of orchestration agents.
This graph shows the result of 10 runs for each x value.

50 100 150 200 250
number of agents

0

2

4

6

8

10

12

14

16

sim
ul

at
io

n
tim

e
(s

)

Utilization of concurrency potential
concurrency potential
no concurrency potential

FIGURE 10 The orchestrator conversation happens as con-
currently as the topology allows, without any code change
required, which significantly improves the scalability. Each dot
represents the aggregated results of 5 simulation runs.

differ between orchestration agents and can exceed two, as is the case with the Hadoop OA in the Spark-on-Hadoop cluster,
which has 4 children. A topology where each node has 3 or more children contains even more concurrency potential, but our
simulations have shown no significant performance improvements between a binary and tertiary tree because at that point, the
number of cpu cores is the bottleneck, not the number of concurrent threads.
The optimal usage of concurrency potential also explains the scalability of orchestrating multiple unconnected clusters as

discussed in Subsection 4.4: the clusters are not dependent on each other, thus the orchestration of all clusters runs concurrently.

5 CONCLUSION AND FUTUREWORK

This article proposes the orchestrator conversation as a way to introduce abstraction of the cloud application to topology-based
cloud modeling languages. The focus on the conversation instead of the orchestrator itself makes it possible for software vendors
to create components that translate abstract, declarative models into management actions on their software. The evaluation shows
that the orchestrator conversation can be used to create much smarter abstractions than possible with the state of the art, the
overhead of the conversation is minimal compared to the actual time to deploy the cloud application, and that the request model
is indeed less complex while the underlying full topology is still present. The evaluation also shows that the decentralized nature
of the conversation enables the management of the cloud application to happen inherently concurrent. This greatly enhances the
scalability of the solution and alleviates the need for the complex and error-prone process of manually programming concurrency
into an orchestrator.
Hierarchical abstraction layers are possible by creating a tree of “operator" relationships. System administrators specify their

request in the sameway as orchestration agents: using the operator relationship, whichmeans that orchestration agents themselves
can fully utilize the abstractions of other orchestration agents in order to reason about and manage the cloud application on a
higher level. This also makes it possible for system administrators to gradually automate more and more management tasks by
creating orchestration agents that use the operator relationship to drive the behavior of other agents. It is important to note that
this approach of a conversation instead of an orchestrator does not take orchestrator vendors out of the picture. Markets can still
emerge around creating and selling orchestration agents where orchestrator vendors can use their expertise to create auto-scalers
or specialized orchestration agents that can take SLA and QoS requirements into account.
This article treats OAs and SAs as a black box, however it is valuable for future work to see how QoS and SLA requirements

can be reasoned about in such a distributed manner. The state machine approach currently used by cloud modeling languages
to model the lifecycle of a single component is not flexible enough for agents with multiple independent sub-states. Future
work will investigate more flexible ways to model SAs and OAs and investigate the advantages of the orchestrator conversation
when used as an alternative rather than a supplement to existing cloud resource orchestration frameworks. An interesting topic
to further investigate is whether this decentralized nature has a positive impact on the solution’s ability to cope with network

SEBRECHTS ET AL 17

segmentation and its resiliency. Another important question is whether the hierarchical nature of the operator relationship has
an adverse effect on the solution’s ability to self-heal.

ACKNOWLEDGMENTS

This research was performed partially within the FWO project “Service-oriented management of a visualized future internet".

References

1. Dave Russel , Mike Chuba . Top Challenges Facing I&O Leaders in 2017 and What to Do About Them. Tech. Rep.
G00324370Gartner 2017.

2. Rinnen P, McArthur J, Zaffos S, et al. 2017 Strategic Roadmap for Storage. Research Note G00324339 2017. Published by
ClearSky Data, Inc.

3. Burgess M, College O. Cfengine: a site configuration engine. In: in USENIX Computing systems, Vol 1995.

4. Bombonatti D, Goulão M, Moreira A. Synergies and tradeoffs in software reuse – a systematic mapping study. Software:
Practice and Experience 2016;47(7):943–957. doi:10.1002/spe.2416

5. Committee TT. OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) Technical Committee
| Charter. 2013.

6. Palma D, Rutkowski M, Spatzier T. TOSCA Simple Profile in YAML Version 1.0. 2015. OASIS Committee Specification
Draft 04 / Public Review Draft 01.

7. Weerasiri D, Barukh MC, Benatallah B, Sheng QZ, Ranjan R. A Taxonomy and Survey of Cloud Resource Orchestration
Techniques. ACM Comput. Surv. 2017;50(2):26:1–26:41. doi:10.1145/3054177

8. Verma A, Pedrosa L, Korupolu M, Oppenheimer D, Tune E, Wilkes J. Large-scale Cluster Management at Google with
Borg. In: Proceedings of the Tenth European Conference on Computer SystemsEuroSys ’15(New York, NY, USA):18:1–
18:17ACM 2015

9. Schwarzkopf M, Konwinski A, Abd-El-Malek M, Wilkes J. Omega: Flexible, Scalable Schedulers for Large Compute
Clusters. In: Proceedings of the 8th ACM European Conference on Computer SystemsEuroSys ’13(New York, NY,
USA):351–364ACM 2013

10. Hindman B, Konwinski A, Zaharia M, et al. Mesos: A Platform for Fine-grained Resource Sharing in the Data Center.
In: Proceedings of the 8th USENIX Conference on Networked Systems Design and ImplementationNSDI’11(Berkeley, CA,
USA):295–308USENIX Association 2011.

11. Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes J. Borg, Omega, and Kubernetes. ACM Queue 2016;14(1):70–93.
doi:10.1145/2898442.2898444

12. Fazio M, Celesti A, Ranjan R, Liu C, Chen L, Villari M. Open Issues in Scheduling Microservices in the Cloud. IEEE
Cloud Computing 2016;3(5):81–88. doi:10.1109/MCC.2016.112

13. Brogi A, Soldani J. Finding available services in TOSCA-compliant clouds. Science of Computer Programming
2016;115:177–198. doi:10.1016/j.scico.2015.09.004

14. Brogi A, Cifariello P, Soldani J. DrACO: Discovering available cloud offerings. Computer Science - Research and
Development 2017;32(3-4):269–279. doi:10.1007/s00450-016-0332-5

15. Tsakalozos K, Johns C, Monroe K, VanderGiessen P, Mcleod A, Rosales A. Open big data infrastructures to everyone. In:
2016 IEEE International Conference on Big Data (Big Data):2127–2129 2016

http://dx.doi.org/10.1002/spe.2416
http://dx.doi.org/10.1145/3054177
http://dx.doi.org/10.1145/2898442.2898444
http://dx.doi.org/10.1109/MCC.2016.112
http://dx.doi.org/10.1016/j.scico.2015.09.004
http://dx.doi.org/10.1007/s00450-016-0332-5

18 SEBRECHTS ET AL

16. Endres C, Breitenbücher U, Leymann F,Wettinger J. Anything to Topology – AMethod and SystemArchitecture to Topolo-
gize Technology-Specific Application Deployment Artifacts. In: {Proceedings of the 7th International Conference on Cloud
Computing and Services Science (CLOSER 2017), Porto, Portugal(Porto, Portugal)SCITEPRESS 2017.

17. Wettinger J, Breitenbücher U, Falkenthal M, Leymann F. Collaborative gathering and continuous delivery of DevOps
solutions through repositories.Computer Science - Research andDevelopment 2017;32(3-4):281–290. doi:10.1007/s00450-
016-0338-z

18. Andrikopoulos V, Sáez SG, Leymann F, Wettinger J. Optimal Distribution of Applications in the Cloud. In: Advanced
Information Systems Engineering:75–90Springer, Cham 2014

19. Di Cosmo R, Mauro J, Zacchiroli S, Zavattaro G. Aeolus: A component model for the cloud. Information and Computation
2014;239:100–121. doi:10.1016/j.ic.2014.11.002

20. Brogi A, Canciani A, Soldani J, Wang P. A Petri Net-Based Approach to Model and Analyze the Management of
Cloud Applications. In: Transactions on Petri Nets and Other Models of Concurrency XILecture Notes in Computer
ScienceSpringer, Berlin, Heidelberg 2016:28–48. DOI: 10.1007/978-3-662-53401-4_2.

21. Cloudify Plugins documentation. https://docs.cloudify.co/4.2.0/plugins/overview/. Accessed: Februari 8, 2018.

22. ALIEN 4 Cloud https://alien4cloud.github.io/. Accessed October 1, 2017.

23. conjure-up: Get started with big software, fast https://conjure-up.io/. Accessed October 1, 2017.

24. Ubuntu Juju: Operate big software at scale on any cloud https://jujucharms.com/. Accessed October 3, 2017.

25. Blair G, Bencomo N, France RB. Models@ run.time. Computer 2009;42(10):22–27. doi:10.1109/MC.2009.326

26. Shao J, Wei H, Wang Q, Mei H. A Runtime Model Based Monitoring Approach for Cloud. :313–320IEEE 2010

27. Seybold D, Domaschka J, Rossini A, Hauser CB, Griesinger F, Tsitsipas A. Experiences of Models@Run-time with EMF
and CDO. In: Proceedings of the 2016 ACM SIGPLAN International Conference on Software Language EngineeringSLE
2016(New York, NY, USA):46–56ACM 2016

28. Hounkonnou C, Fabre E. Empowering self-diagnosis with self-modeling. In: 2012 8th international conference on network
and service management (cnsm) and 2012 workshop on systems virtualiztion management (svm):364–370 2012.

29. Sánchez Vílchez JM, BenYahia IG, Lac C, Crespi N. Self-modeling based diagnosis of network services over programmable
networks. International Journal of Network Management 2017;27(2):n/a–n/a. doi:10.1002/nem.1964

30. Etchevers X, Salaün G, Boyer F, Coupaye T, De Palma N. Reliable self-deployment of distributed cloud applications.
Software: Practice and Experience 2017;47(1):3–20. doi:10.1002/spe.2400

31. Kirschnick J, Alcaraz Calero JM, Goldsack P, et al. Towards an Architecture for Deploying Elastic Services in the Cloud.
Softw. Pract. Exper. 2012;42(4):395–408. doi:10.1002/spe.1090

32. Lavinal E, Desprats T, Raynaud Y. Amulti-agent self-adaptative management framework. International Journal of Network
Management 2009;19(3):217–235. doi:10.1002/nem.699

33. Sebrechts M, Borny S, Vanhove T, et al. Model-driven deployment and management of workflows on analytics frameworks.
In: 2016 IEEE International Conference on Big Data (Big Data):2819–2826 2016

34. Vogels W. Eventually Consistent. Commun. ACM 2009;52(1):40–44. doi:10.1145/1435417.1435432

35. Sebrechts M, Vanhove T, Van Seghbroeck G, Wauters T, Volckaert B, De Turck F. Distributed Service Orchestration:
Eventually Consistent Cloud Operation and Integration. In: 2016 IEEE International Conference on Mobile Services
(MS):156–159 2016

http://dx.doi.org/10.1007/s00450-016-0338-z
http://dx.doi.org/10.1007/s00450-016-0338-z
http://dx.doi.org/10.1016/j.ic.2014.11.002
http://dx.doi.org/10.1109/MC.2009.326
http://dx.doi.org/10.1002/nem.1964
http://dx.doi.org/10.1002/spe.2400
http://dx.doi.org/10.1002/spe.1090
http://dx.doi.org/10.1002/nem.699
http://dx.doi.org/10.1145/1435417.1435432

SEBRECHTS ET AL 19

36. Breitenbucher U, Binz T, Képes K, Kopp O, Leymann F, Wettinger J. Combining Declarative and Imperative Cloud Appli-
cation Provisioning based on TOSCA. In: Cloud Engineering (IC2E), 2014 IEEE International Conference on:87–96IEEE
2014.

37. Lauwers C. Declarative vs. Imperative Orchestrator Architectures. 2017. http://blog.ubicity.com/2017/06/declarative-vs-
imperative-orchestrator.html. Accessed August 18, 2017.

38. Endres C, Breitenbücher U, Falkenthal M, Kopp O, Leymann F, Wettinger J. Declarative vs. Imperative: Two Modeling
Patterns for the Automated Deployment of Applications. In: Proceedings of the 9’th International Conference on Pervasive
Patterns and ApplicationsXpert Publishing Services (XPS) 2017.

39. Orchestration Agents Code on Github. 2017. https://github.com/IBCNServices/oa. Accessed: Februari 8, 2018.

40. Casale G, Ardagna D, Artac M, et al. DICE: Quality-driven Development of Data-intensive Cloud Applications. In:
Proceedings of the Seventh International Workshop on Modeling in Software EngineeringMiSE ’15(Piscataway, NJ,
USA):78–83IEEE Press 2015.

41. DICE-Deployment-Examples: Example blueprints used with the DICEDeployment Service. 2016. https://github.com/dice-
project/DICE-Deployment-Examples. Accessed October 2017.

42. Salomoni D, Campos I, Gaido L, et al. INDIGO-Datacloud: foundations and architectural description of a Platform as a
Service oriented to scientific computing. arXiv:1603.09536 [cs] 2016. arXiv: 1603.09536.

43. tosca-types: YAML description of new types added to extend TOSCA Simple Profile in YAML Version 1.0. 2017.
https://github.com/indigo-dc/tosca-types. Accessed October 1, 2017.

44. Anthony B, Boudnik K, Adams C, Shao B, Lee C, Sasaki K. Ecosystem at Large: Hadoop with Apache Bigtop. In:
Professional Hadoop R©John Wiley & Sons, Inc 2016:141–160. DOI: 10.1002/9781119281320.ch7.

45. Apache Bigtop and Juju: A Charming Approach to Big Data http://bigdata.juju.solutions//2016-06-07-apache-bigtop-and-
juju/. Accessed October 1, 2017.

46. Apache Bigtop Github project. 2017. https://github.com/apache/bigtop. Accessed October 1, 2017.

	Orchestrator Conversation: Distributed Management of Cloud Applications
	Abstract
	Introduction
	Related work
	Resource scheduling
	Cloud modeling languages
	Models at runtime
	Agent-based management of cloud applications
	General limitations and lessons learned

	Orchestrator conversation
	Request and runtime models
	Service Agent
	Collaborator relationship
	Controller
	Operator relationship
	Summary
	Aside: declarative and imperative modeling

	Evaluation
	Evaluation Setup
	Complexity towards the sysadmin
	Overhead of the orchestrator conversation
	Scalability of the orchestrator conversation
	Concurrency in the orchestrator conversation

	Conclusion and Future Work
	Acknowledgments
	References

