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Abstract—Bone age is an essential measure of skeletal
maturity in children with growth disorders. It is typically
assessed by a trained physician using radiographs of the hand
and a reference model. However, it has been described that
the reference models leave room for interpretation leading to
a large inter-observer and intra-observer variation. In this
work, we explore a novel method for automated bone age
assessment to assist physicians with their estimation. It consists
of a powerful combination of deep learning and Gaussian
process regression. Using this combination, sensitivity of the
deep learning model to rotations and flips of the input images
can be exploited to increase overall predictive performance
compared to only using the deep learning network. We validate
our approach retrospectively on a set of 12611 radiographs of
patients between 0 and 19 years of age.

I. INTRODUCTION

Bone age assessment is used in medicine to measure
skeletal and biological maturity of children [1]. It can be
used, among others, to estimate the final adult height [2],
to measure therapeutic effect in patients with endocrine
disorders [3] or to estimate the age of asylum seekers [4].

In the traditional method, a trained physician compares
hand and wrist bones with normal age level images by
radiography of the left hand and wrist in combination with
reference standards. An example of such a reference standard
is the hand atlas of Greulich and Pyle (G&P) [2]. However,
the use of such a reference is a lengthy process and leaves
room for interpretation, leading to large inter-observer and
intra-observer differences. Average spread of inter-observer
differences has been reported up to 11.5 months for the G&P
method [5]. This causes issues when comparing estimations
across patients or of the same patient over time. Furthermore,
using different methods leads to variations in the estimated
bone age [1].

To reduce these variations, the potential of automated
methods to assist the physician has been identified and ex-
plored by the community [6], [7], [8]. These methods rely on
the segmentation and extraction of typical bone age features
from the images. However, including a segmentation step
in the processing pipeline can be a significant disadvantage
as it is challenging to make these methods robust to large
variations in image quality.
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In other medical domains, deep learning [9] has been
proven to be a successful method for image analysis. An
example is the automated detection of mitosis in breast
cancer histology images [10]. In bone age assessment, recent
examples with deep learning include [11] where an auto-
mated tool is demonstrated to enhance efficiency of reviewers
and [12] where a fully automated setup is discussed for
which estimates are accurate within 1 year 92.23% of the
time and an average spread of 10.52 months is achieved
for patients between 5 and 18 years of age. In this work,
we explore a novel machine learning approach for bone age
estimation to improve upon the standard state-of-the-art deep
learning performance. Our method is based on a powerful
combination of deep learning with Gaussian Process Regres-
sion (GPR) [13] to exploit sensitivity of the deep learning
predictions to rotations and flips of the radiographs.

In Section II, the dataset is described. In Section III, the
methodology is explained and in Section IV the results of
our tests are provided and discussed. Finally, future work is
detailed and conclusions are made in Section V.

II. DATASET

The dataset used in this work consists of 12611 radio-
graphs of the hand and wrist collected by the Radiological
Society of North America in the context of the Pediatric
Bone Age Prediction Challenge [14]. The institutional review
boards of the organizing committee approved the study. The
dataset contains 6833 radiographs of male patients and 5778
radiographs of female patients. The annotated estimated bone
ages, assessed by trained physicians using the G&P hand
atlas, range between O and 228 months. The age distribution
of the dataset is not uniform as shown in Fig. 1.

Fig. 2 shows several examples of radiographs in the
dataset. The size, orientation, brightness and contrast differ
across the samples. In some cases, additional artifacts are
visible on the radiographs such as watches, plaster casts,
surgical screws and assisting nurses. Sometimes parts of the
hand, such as fingers, are missing. These artifacts heavily
complicate the traditional segmentation methods discussed
in Section L.

Given the size of the dataset, we chose to split the data
into a train/validation/test set, as opposed to performing a
k-fold cross-validation, to reduce computational demands.
First, the data is split by gender. Next, an age-stratified split
is generated for each gender based on the bone age estimated
by trained physicians. Table I provides an overview of the
distribution of the patients in the various sub-datasets.
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Fig. 1: Distribution of estimated bone age assessed by trained
physicians. The bone ages are not uniformly distributed.

TABLE I: Distribution of male and female patients in train,
validation and test set.

Train  Validation  Test Total
Male 5532 691 610 6833
Female 4681 571 526 5778
Total 10213 1262 1136 | 12611

III. METHODOLOGY

In this section, we explore a novel method for automated
bone age prediction using a radiograph of the hand and wrist.
Our approach consists of three steps. First the images pass
through a preprocessing stage to prepare for the next steps
and to augment the dataset. Next, the first modeling stage
uses a deep learning approach for estimating the bone age.
Finally, in a third step, Gaussian process regression is used
to refine the estimated bone age by exploiting variations in
the predictions of the deep learning stage when predicting
rotations and flips of the same input radiograph.

A. Preprocessing and Augmentation

First, the radiographs are rescaled to a size of 224 x 224
pixels, as required by the deep learning VVG16 [15] network
that was used. During scaling, the aspect ratio of the images
is not altered as they are padded with black pixels.

Subsequently, edge enhancement is applied to highlight
the bones in the radiographs. The enhancement consists of a
convolution of the pixel data with the enhancement matrix F
in Equation (1) where e represents the enhancement strength.
The parameter e has to be tuned, which is discussed in the
next subsection. A larger value results in sharper edges but
also enhances noise present in the images

Finally, the enhanced image passes through a data aug-
mentation stage which is essential as training deep learning
networks requires large amounts of data [12]. Here, a single
radiograph is rotated 18 times in a range of [—90,90]
degrees. A mirror image along the y-axis of the resulting

19 radiographs is also generated, resulting in a total of 38
images from 1 radiograph. These two steps simulate the cases
in the dataset where the hand was not lined up correctly with
the y-axis or where a mirror image of the radiograph has been
digitized.
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B. Modeling with Deep Learning

Deep learning has proven to drastically outperform tra-
ditional image recognition and detection methods based on
manual feature engineering. In this paper, deep learning is
applied for the initial estimation of the bone age using a
single radiograph.

We use VGG16, a popular deep learning architecture often
used for image processing and recognition. VGG16 is a
convolutional neural network consisting of 16 layers. For
a full discussion we refer to [15]. As the number of images
in the dataset is too limited to completely train such a deep
architecture from scratch, we apply transfer learning [16]
by first training the VGG16 network with the Imagenet [17]
dataset. As the VGG16 architecture is designed for classifica-
tion, we need to modify the architecture towards regression.
For this, we append two dense layers of size n; and ng.
Finally a dense layer with 1 output is appended for the final
regression output of the model. To prevent overfitting, we
append a dropout layer with dropout probability of p; and
po after the first two appended dense layers respectively.
The first two appended dense layers have rectified linear
unit (ReLU) activation functions as commonly used in deep
learning networks and the output layer has a linear activation
function, as typically used in regression settings.

The parameters n1, no, p; and py represent hyperparam-
eters of the network. To reduce overfitting and fully harness
the power of the deep learning model, these parameters have
to be optimized. For this, we use Bayesian optimization, an
efficient optimization method for tuning the hyperparameters
of machine learning models [18]. For a detailed description
of Bayesian optimization, we refer to [18], [19]. The ranges
of the hyperparameters and final optimal hyperparameters
are shown in Table II. Other hyperparamters such as the
number of extra appended layers were not tuned to reduce
the computational demand.

TABLE II: Range of hyperparameters and optimal hyper-
parameters for the image preprocessing and deep learning
modeling stages, tuned using Bayesian optimization.

parameter | type min max | optimal
k integer 9 10 9

nl integer 64 1024 512
n2 integer 64 512 512
pl float 0.1 0.5 0.12
p2 float 0.1 0.5 0.14

The complete network, including the pre-trained VGG16
part, is trained using the Adam optimization algorithm [20].



Fig. 2: Example of radiographs in the dataset showing variations in size, contrast, orientation and brightness. Sometimes
additional artifacts are visible.

The used loss function is the Mean Absolute Difference
(MAD), also known as Mean Absolute Error, defined as:
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where n represents the number of samples, y; represents
the physician-estimated bone age of sample ¢ in months
and y; represents the model-estimated bone age for sample
i. A lower MAD score represents a closer match with the
annotation of a trained physician.

All training data is augmented and randomly permuted
after which training is performed in minibatches of 64
radiographs.

C. Modeling with Gaussian Process Regression

The preprocessing step, data augmentation step and deep
learning step provide a powerful method for bone age
prediction of a single image. However, the predictions of
the method are still sensitive to random rotations or flips
of the input image. Fortunately, the sensitivity to this type
of variations can be exploited to improve overall predictions.
Each radiograph is preprocessed and augmented as discussed
in Section III-A. Then, for each augmented version of a
single radiograph, a prediction is made with the previously
described deep learning model. Hence, the data augmentation
is not only used during training but also during prediction.
This results in a set of 38 predictions for a single radiograph.

Typically, these results are then aggregated by averag-
ing [10]. However, to further improve results we explore
the novel method of using a Gaussian Process Regression
(GRP) [13] model for aggregation. A Gaussian process is a
powerful kernel-based method for modeling and interpola-
tion [21]. The form of the kernel can be chosen and tuned to
fit the application needs. In this work, we use the Matérng
kernel as it is commonly used in GPR. A detailed description
of GPR and the Matérn% kernel is given in [13].

The parameters for the GPR model are trained using
maximum likelihood estimation [13]. The Gaussian process
learns to estimate the physician-based bone age using a

vector of prediction scores for rotated and mirror images of a
single radiograph. This allows the GPR model to fully exploit
the original sensitivity of the deep learning model to random
rotations and flips of the input image. The final complete
model was evaluated using the previously introduced MAD
score in Equation (2).

IV. RESULTS AND DISCUSSION

An overview of the final results for the train, validation
and test set is shown in Table III where the difference with
the original method of only using deep learning is noted
between brackets. Note that the test set has not been used to
train any of the models or tune any of the hyperparameters. It
represents a set of new, unseen patients. The results show that
the performance of the test set is in line with the performance
of the train and validation sets.

The first row of the table indicates the results when only
the original radiograph is used for prediction with deep
learning as in the current state-of-the-art. These results are
comparable to the results of other deep learning solutions for
bone age prediction. The second row of the table indicates
the results when the radiograph is augmented during pre-
diction and the average of several predictions is used. Note
that this augmentation substantially improves the accuracy
of the model. Finally, the third row of the table indicates the
results when Gaussian process regression is used to exploit
variations in the prediction output of the deep learning model
to rotations and flips of the same radiograph. It is clear that
this leads to a further substantial improvement, increasing
the average accuracy with almost a full month on the unseen
test set. Our final model has an accuracy within one year of
94.45% and an average spread of 6.80 months.

To further analyze the model, a histogram of the errors
and a graph of the distribution of the MAD score versus age
is shown in Fig. 3. The histogram of the errors indicates that
for some samples, large errors are present. The radiographs
of these samples are too dark or overexposed, leading to few
distinguishable features. Further image preprocessing could
improve these results.



TABLE III: Resulting MAD in months. The difference with
the original method is noted between brackets. The proposed
methodology of using Gaussian process regression for aggre-
gating augmented deep learning results clearly improves the
standard state-of-the-art deep learning performance.

Train Validation Test
Original 7.60 8.42 7.74
Augmented + mean 6.94 (-0.66) 7.47 (-0.95) 6.96 (-0.79)
Augmented + GPR | 6.56 (-1.04) 7.26 (-1.16)  6.80 (-0.94)
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Fig. 3: Further analysis of the errors on the unseen test set for
the complete setup with deep learning and Gaussian process
regression for aggregation.

The distribution of the MAD in function of age shows two
peaks near the edge of the domain. This indicates a lack of
data for the model to make accurate predictions as reflected
by Fig. 1. Extending the dataset with samples near the edges
could improve these results. For the other ages, scores are
typically good and there is little deviation from the trend.

V. FUTURE WORK AND CONCLUSIONS

Bone age assessment is essential in many medical use
cases, and even in legal contexts as the rights of asylum
seekers depend on their age. However, the current bone
age estimation procedures are time consuming and allow
for interpretation leading to large inter- and intra-observer
variations. Deep learning has proven to be a powerful method
for estimating bone age predictions. In this work, we improve
upon the state-of-the-art by introducing a novel method
for bone age prediction using deep learning by adding a
Gaussian process regression stage in which predictions for
rotated and flipped versions of the same radiograph are
aggregated. Our preliminary results show good performance
with a MAD score of 6.80 on the unseen test set and show an
increase in accuracy over only using a deep learning network.
Future work will focus on using multiple assessments of
a single radiograph in the model to make our approach
more robust against inter- and intra-observer variations in the

training set. Our research contribution shows that variations
in the output of a deep learning model, due to rotations and
flips of an input image, can be exploited to improve accuracy.
This is not only useful for bone age estimation but for other
medical or general image analysis use-cases as well.
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