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This paper describes improvements in a Farrow structured variable fractional delay (FD)
Lagrange filter for all-pass FD interpolation. The main idea is to integrate the truncated

sinc into the Farrow structure of a Lagrange filter, in order that a superior FD approx-

imation in the least-square sense can be achieved. Its primary advantages are the lower
level of mean-square-error (MSE) over the whole FD range and the reduced implemen-

tation cost. Extra design parameters are introduced for making the trade-off between
MSE and maximal flatness under different design requirements. Design examples are in-

cluded, illustrating an MSE reduction of 50% compared to a classical Farrow structured

Lagrange interpolator while the implementation cost is reduced. This improved variable
FD interpolation system is suitable for many applications, such as sample rate con-

version, digital beamforming, and timing synchronization in wideband software-defined

radio (SDR) communications.

Keywords: Canonical signed digit (CSD); Farrow structure (FS); FPGA; fractional delay

(FD); Lagrange; least-square (LS); mean-square-error (MSE).

1. Introduction

Fractional delay filtering is utilized in many applications of signal processing,

such as timing mismatch calibration of time-interleaved analog-to-digital converters

(ADCs),1–3 sample rate conversion,4 image processing,5 digital beamforming,6 and

timing synchronization in digital receivers.7 Specifically, in digital communication

systems, the propagation delay from the transmitter to the receiver is generally

unknown at the receiver. Hence, symbol timing must be derived from the received

signal. When designing a digital baseband receiver on field programmable gate ar-

rays (FPGAs), the received signal is typically uniformly sampled at a fixed ADC

clock. Thus, the timing error is a fraction of the ADC sample period and can vary

with time. This timing error can significantly degrade the communication, thus,
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timing adjustment must be done before decoding the received signal.

Variable fractional delay (FD) interpolation filters have been widely investigated

for timing synchronization in all-digital receivers since it is desired to realize the

fractional interpolation in an efficient way from the perspective of hardware imple-

mentation.7,8 The well-known Farrow structure (FS) can easily accommodate ad-

justable fractional delays without the need of changing the filter coefficients,9–14 and

hence its constant filter coefficients can be efficiently realized in sum-of-power-of-two

(SPT) representation15 or even in canonical signed digit (CSD) representation16 on

FPGA. Generally, digital filters are usually divided into two classes: finite-impulse-

response (FIR) filters and infinite impulse response (IIR) filters. The Thiran all-pass

filter is one of the most popular IIR FD filters, however, pipelining is not allowed

owing to the inherent feedback loop, limiting the maximal clock frequency of the

FD interpolation systems. In contrast to an IIR filter, there is no feedback in an

FIR filter, making it inherently stable. The FIR filters implemented on FPGA usu-

ally use a series of delays, multipliers, and adders to generate the filter outputs.

Therefore, an FIR filter can be easily pipelined to increase the maximal clock fre-

quency, and the effective throughput and the clock frequency are decoupled thanks

to parallelization. The maximally allowable clock frequency of an FIR filter is then

limited to the speed of the FPGA building blocks. In this sense, the FIR-based vari-

able FD interpolation with FS pipelined structure is preferred when implementing

a wideband all-digital receiver system on FPGA. In Ref. 17, a multi-rate technique

has been applied to the design of wideband variable fractional delay FIR filters by

making the input signal narrowband with respect to the filter sampling rate. How-

ever, increasing the sampling rate before the Farrow structure would increase the

resources for a given maximal clock frequency in FPGA parallelization. Moreover, in

all-digital receiver systems, the Shannon sampling scheme is usually implemented

by using one ADC. In this case, the wideband FD interpolation filter using the

derivative sampling method,18 is only applicable with a discrete-time differentiator

on FPGA, leading to extra implementation cost.

Variable FD interpolation filters are required to have a constant magnitude re-

sponse for any given FD delays. The weighted-least-square (WLS) or least-square

(LS),19–23 minimax,24 and maximally flat25,26 criteria can be used for the approx-

imation of these FD filters, as discussed in Ref. 27. The WLS (or LS) method is a

closed-form design. Since the filter coefficients are obtained by minimizing the en-

ergy of the weighted error between the actual transfer characteristic and the desired

transfer characteristic, this design method can provide us with an optimal solution

in the sense of least-square error. The maximally flat approximation leads to the

closed-form solution of FD FIR filters with a maximally flat magnitude response of

unity and a constant group delay response at the zero frequency. The maximally

flat FIR FD interpolation systems, also known as the Lagrange-type FD interpo-

lation filters, are easy to use because its coefficients can be explicitly expressed

as polynomials of the variable FD parameter. Different formulas for the Lagrange

interpolators are derived in Ref. 25. It has been also shown that truncating the
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coefficients can also obtain a variable FD filter with wider bandwidth as compared

with the original one (without truncation).? However, the approximation of La-

grange FD interpolation filters is heavily degraded at high frequencies, especially

when the FD approaches half the sample period.

In this paper, we will combine both the maximally flat and the LS (or WLS)

criteria to optimize the FD interpolation filters. Our observations show that if

the sub-filters of an FS-based Lagrange interpolation are slightly modified by in-

troducing extra correction terms derived from the LS design method, a superior

approximation of an ideal FD interpolation can be obtained without additional

implementation cost. The polynomial degree, the filter order and the length and

location of the correction terms can be further jointly optimized. The contribution

of this paper is three-fold. First, the variable FD interpolation filter approaches the

optimal solution in the least-square error sense. Second, extra design parameters

are provided to make the trade-off between the least-square error and the maximal

flatness for different design requirements. Third, the proposed filter features the

advantages of the Farrow structure in terms of variable FD.

The remainder of this paper is organized as follows. In Sec. 2, the LS design

method, the Farrow structure based variable FD FIR filter and the Lagrange inter-

polation are reviewed. In this section, performance metrics are defined as well. In

Sec. 3, the cascaded filter structure and its dual form are described. In Sec. 4, the

LS-based interpolation filter is integrated into the Farrow structure of the Lagrange

variable FD interpolation filter. The performance and the implementation cost of

the proposed filter are evaluated. Finally, conclusions are drawn in Sec. 5.

2. Fractional Delay Interpolation

This section recapitulates the theory of the fractional delay interpolation and re-

views the properties of a truncated sinc, the Farrow structure, and Lagrange inter-

polation filters.

2.1. LS Sinc Interpolation

The ideal frequency response of a variable fractional delay filter is given by

Hideal(e
jωTs) = e−jωDTs

= e−jω(Dint+d)Ts (1)

where Ts is the sample period and D is a positive real number that indicates the

total delay in number of samples of the digital FIR filter impulse response with

D = Dint + d. Dint generally represents the integer delay throughout this paper

(Dint will vary for different filter lengths) and d is the fractional part of the delay

in the desired range [0,1]. ω ∈ [0, ωp] is the normalized angular frequency and ωp
is a parameter defining the passband edge frequency, ωp ≤ π. The ideal frequency

response of an all-pass fractional delay interpolation filter specified by ωp = π
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corresponds to the sinc impulse response expressed as:

hideal(n) = sinc(n−D), n = 0, 1, 2, ... (2)

This is an IIR digital filter with no recursive form and hence non-realizable. The fre-

quency response of the FIR filter used to approximate the ideal frequency response

is given by

Ĥ(ejωTs) =

N∑
n=0

ĥ(n)e−jωnTs (3)

The frequency response error E(ω) is defined as the difference between ideal fre-

quency response and the approximated frequency response.

E(ω) = Hideal(e
jωTs)− Ĥ(ejωTs) (4)

The filter coefficient ĥ(n) is determined by minimizing the following error function

J(ĥ) =
Ts
2π

∫ π/Ts

−π/Ts

W (ω)|E(ω)|2dω

=
Ts
2π

∫ π/Ts

−π/Ts

W (ω)|Hideal(e
jωTs)− Ĥ(ejωTs)|

2
dω (5)

where W (ω) is a non-negative weighting function. We assume a uniform weight-

ing function over the entire frequency band (all-pass case) throughout this paper.

According to Parseval ’s theorem, the error function can be rewritten as follows:

J(ĥ) =

∞∑
n=0

|hideal(n)− ĥ(n)|2 (6)

The optimal ĥ(n) in least-square sense for a given fractional delay d and filter order

N is expressed in Eq. (7). Note that for variable fractional delays, a new set of filter

coefficients should be computed for each delay. However, for a given d this optimal

solution will outperform the solution found by minimizing the error function over

both the entire frequency range and the entire FD range.

ĥ(n) =

{
sinc(n−D), 0 ≤ n ≤ N
0, otherwise

(7)

2.2. Farrow Structure

Farrow suggested that every filter coefficient of an FIR FD filter could be expressed

as an Mth-order polynomial in the variable delay parameter d.10,28 The Farrow

structure consists of a set of constant coefficient filters called sub-filters, and the

outputs of the sub-filters are multiplied by different powers of the variable fractional

delay parameter and then added together to form the ultimate output of the variable

FD interpolation. The general Farrow structure is presented in Fig. 1, where Cm(z)

denotes the Z-transform frequency response of the mth Farrow structure sub-filter.
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The ideal filter response in Eq. (1) can be approximated using the Farrow structure

with following frequency response:

Hd(z) =

M∑
m=0

Cm(z)dm (8)

The fixed FIR sub-filters Cm(z) approximate kth-order differentiators with fre-

quency responses given as follows:

Cm(z) ≈ (−jωTs)m

m!
e−jωDintTs , 0 ≤ m ≤M (9)

which is obtained by truncating the Taylor series expansion of Eq. (1). In the Farrow

structure, each sub-filter is an Nth-order FIR filter as depicted in Fig. 2 and its

Z-transform frequency response is defined as:

Cm(z) =

N∑
n=0

Cm(n)z−n, 0 ≤ m ≤M (10)

where Cm(n) denotes the n-th coefficient of the m-th sub-filter. The coefficient

matrix is given in Eq. (11).

C =


CM (N) · · · C1(N) C0(N)

CM (N − 1) · · · C1(N − 1) C0(N − 1)
...

. . .
...

...

CM (0) · · · C1(0) C0(0)

 (11)

In particular, the first sub-filter has an all-pass filtering characteristic with a unit

pulse given by

C0(z) = e−jωDintTs

C0(n) = δ(n) (12)

The differentiators are realized by making Cm(n) symmetrical or anti-symmetrical

for even or odd n, which is also beneficial in terms of implementation complexity.

The impulse response of the Farrow structure is expressed as:

hd(n) =

M∑
m=0

Cm(n)dm, 0 ≤ n ≤ N (13)

The main advantage of the Farrow structure is that all sub-filter coefficients

are fixed, the only changeable parameter is the fractional delay d, which leads to a

less computation intensive implementation. The whole filter structure is pipelined

in Fig. 2 to lower the computation intensity during a single clock cycle, therefore

allowing the increase of the maximal clock frequency.
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d d d d
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Fig. 1: The general Farrow structure with adjustable fractional delay d and C0(z)
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Fig. 2: The pipelined Farrow structure for a polynomial-based Lagrange interpola-

tion filter, this structure works for both even and odd order.

2.3. Lagrange Interpolation

The Lagrange interpolator is also known as a maximally flat FIR fractional-sample

delay system, meaning that all the derivative terms in the Taylor series expansion of

the frequency response error are zeroed around dc (z = 1). Therefore, the Lagrange

interpolation is very accurate at low frequencies and is a widely used method in

signal processing algorithms. The coefficients of an Nth-order Lagrange interpolator

for fractional delay can be expressed in the following way:

hL(n) =

N∏
k=0
k 6=n

D − k
n− k

, 0 ≤ n ≤ N (14)

From the Lagrange interpolation formula, the output of the Lagrange interpolation

is the delayed input sample for an integer delay D i.e. no approximation error
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is made in this case. The coefficient Cm(n) of the Farrow structured Lagrange

interpolator, can be obtained from the inverse of the N ×N Vandermonde matrix

V −1, where each row represents the sub-filter Cm(z).

We can compute the value of the magnitude response of the Lagrange inter-

polator at ω = π. This value is not equal to unity except for some very special

cases (when the fractional delay is zero). The overall magnitude response deviates

from the ideal magnitude of unity as the normalized angular frequency ω moves

away from the zero frequency and approaches π. This deviation becomes even worse

when the fractional delay approaches 0.5, the worst-case. The truncated Lagrange

interpolator can be introduced to mitigate the magnitude response deviation at

high frequencies by sacrificing passband flatness.?

2.4. Performance Metrics

To compare the FD approximation of different interpolation filters, the frequency

response error and the mean-square-error (MSE) are evaluated as performance met-

rics. The frequency response error is defined in Eq. (4) and the MSE is defined as:

MSE =
1

N1

N1∑
i=1

(Ŷi − Yi)2 (15)

where N1 is the number of samples, Ŷi and Yi are the interpolated sample and

the ideal sample with normalized power, respectively. The MSE of the truncated

Lagrange interpolator increases when d approaches 0.5, as presented in Fig. 3. L

represents the prototype filter order described in Ref. ?.

3. Combined Filter Structure

As described in Ref. 29, to compensate the degradation of the Lagrange interpola-

tion at d = 0.5 and obtain a low level of MSE over the whole range of d, a cascaded

sinc-Farrow filter structure is first introduced. The block diagram of this cascaded

filter structure is depicted in Fig. 4. Once the variable delay d approaches 0.5, the

branch H1(z) becomes active and the new FD (d− 0.5) is fed to the Farrow struc-

ture. The H0(z) and H1(z) represent the frequency response of the truncated sinc

at d = 0 and d = 0.5, respectively.

As shown in Fig. 5, at d = 0.5 the MSE of the cascaded sinc-Farrow filter

exhibits a minimal value that is mainly determined by the order of the sinc in-

terpolation filter (H0(z) and H1(z) have the same filter order N as the Farrow

structure), because, as presented in Fig. 3, there is no MSE caused by the Lagrange

interpolation at d = 0. By properly switching the outputs between these two filter

branches, the overall MSE can be reduced. The active ranges of H1(z) are indicated

in Fig. 5, which are determined by the MSE values of the cascaded interpolation

filters H0(z)Hd(z) and H1(z)Hd(z).

Note that the first sub-filter C0(z) is equal to 1 for all delay values in FS, as

presented in Fig. 1 and Eq. (12). Thus, the dual form of the cascaded filter structure,
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Fig. 3: Mean-square-error (MSE) curves of truncated Lagrange interpolation filters

of order N and different prototype filter orders L using the Farrow structure.
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Farrow

Truncated sinc
d

H0(z)X(z)

H1(z)X(z)

1

2

Y(z) = H0(z)Hd(z)X(z)

    or = H1(z)Hd(z)X(z)

Fig. 4: The cascaded sinc-Farrow filter structure.

i.e. Farrow-sinc, can be used and the first sub-filter C0(z) can be substituted by

H1(z) without having to change the parameter d.29

The orders of the Farrow structure and H1(z) are first kept equal for simplicity.

The delay line represented by H0(z) is inherently included in the pipelined structure

(referred to Fig. 2). When the FD d approaches 0.5, the deviation ∆h(n) of the

Lagrange interpolation from the sinc-interpolation (both filters at d = 0.5), is added

to the column C0(n) of the FS (N + 1)× (M + 1) coefficient matrix. This yields a

new column C
′

0(n). Thus, when d approaches 0.5, the coefficients should be switched

from C0(n) to C
′

0(n) and the update of the fractional delay to (d−0.5) is no longer

required. The calculation for C
′

0(n) is expressed as follows:

∆h(n) = sinc(n−Dint − d)|d=0.5 − hd=0.5(n) (16)

C
′

0(n) = C0(n) + ∆h(n), 0 ≤ n ≤ N (17)
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where hd=0.5(n) is the Farrow-structured Lagrange FD interpolation filter at d = 0.5

(referred to Eq. (13)) and C0(n) is the time-domain impulse response of the sub-

filter C0(z) (referred to Eq. (12)).

It is easily noted that this Farrow-sinc filter bank structure (denoted as “C0(z)

FS” in Fig. 5) has the same MSE value as the cascaded sinc-Farrow filter structure

at d = 0.5. However, the remarkable aspect of this Farrow-sinc structure is that,

the MSE value starts decreasing when d deviates from 0.5 as illustrated in Fig. 5,

because the remaining sub-filters of Farrow structure compensate the FD approx-

imation error. Therefore, the useful delay range between the two intercept points

is widened compared to the cascaded sinc-Farrow structure at the same implemen-

tation complexity. It should be pointed out that the Lagrange filter has good FD
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Fig. 5: Mean-square-error (MSE) curves of combined Farrow filter structure of order

N = 11 and K = 0.

approximation when d is far from 0.5, even for low filter orders. This allows us to

jointly optimize the order of the Farrow structured Lagrange filter and H1(z) in

order to achieve a superior performance. The design procedure is slightly modified

for the joint optimization. Assuming that the order of H1(z) is now N + 2K. The

Farrow structure of order N is first truncated from the prototype Farrow structure

of order L. Second, the Farrow (N + 1) × (M + 1) coefficient matrix is extended

to a (N + 1 + 2K) × (M + 1) matrix by adding K zeros above and below the

original Farrow coefficient matrix, which is nothing else than pipelining the signal.

Hence, Eq. (16) and Eq. (17) are again applicable. The obtained coefficient matrix

is expressed in Eq. (18).
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C ′ =



0 · · · 0 ∆h(N + 2K)
...

. . .
...

...

0 · · · 0 ∆h(N +K + 1)

CM (N) · · · C1(N) C0(N) + ∆h(N +K)

CM (N − 1) · · · C1(N − 1) C0(N − 1) + ∆h(N +K − 1)
...

. . .
...

...

CM (0) · · · C1(0) C0(0) + ∆h(K)

0 · · · 0 ∆h(K − 1)
...

. . .
...

...

0 · · · 0 ∆h(0)



(18)

The optimization map for different orders of Farrow structured Lagrange filters

and H1(z) filters with L = N + 30 is shown in Fig. 6 where the optimal filter

orders can be chosen for a given MSE performance requirement. In addition, this

optimization map reveals that Lagrange interpolation performance only increases

slightly with increasing filter order, while the order of H1(z) has significant influ-

ence. An example of optimal filter orders is indicated on the optimization map.

The main advantage of using the combined filter structure lies in the fact that,

when jointly optimizing the two filtering blocks, the computational complexity to

generate practically the same filtering performance can be drastically decreased.

4. Proposed Interpolation Filter

In this section, we propose a design technique in which the overall filter Hd(z) of FS

is modified to improve the FD interpolation at d = 0.5. This technique is based on

the Farrow structured Lagrange interpolation (maximally flat) and the truncated

sinc (optimal in least-square error for a given d, filter order N , and ωp = π).

4.1. Desired Interpolation Properties

Both the truncated sinc and the Lagrange interpolation are very accurate when

the FD delay d equals 0 or 1. Because the output of the Lagrange interpolation

at integer delays, is the delayed discrete input sample itself, no FD approximation

error is made in this case. This high accuracy at integer delays should be preserved

in the interpolation filter design.

As expressed in Eq. (12), the first sub-filter C0(z) possesses the all-pass transfer

characteristic (i.e. its cut-off frequency exactly equals π). Further, note that in

Eq. (8) the sub-filter Cm(z) is weighted with dm. Since d is limited in the FD range

[0, 1], the contribution of Cm(z) for 1 ≤ m ≤ M to the overall transfer function is

certainly less than that of C0(z). Moreover, the greater the sub-filter index m is,

the less the influence of Cm(z) is. Thus, it is preferred for wideband interpolation
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range when the corresponding Lagrange and H1(z) filter orders are used in the

combined filter structure “C0(z) FS”.

design that the correction term ∆h(n) is introduced in other sub-filters instead of

C0(z).

As discussed in Sec. 2.1, in the least-square error sense, the truncated sinc is

optimal over the entire band 0 ≤ ω≤π for a given FD d and FIR filter order N . It

is also desirable to achieve these optimal least-square errors for variable FD d with

a single Farrow structure.

4.2. Maximally Flat and LS Co-Design

Because the first two design considerations in Sec. 4.1 are the properties of the FS-

based Lagrange interpolation, we first improve the FD interpolation performance

at d = 0.5 in the least-square error sense. The correction term for the chosen index

m1 and corresponding sub-filter Cm1
(z) should be adapted as follows:

∆hd=0.5(n) = sinc(n−Dint − d)|d=0.5 − hd=0.5(n)

∆hm1(n) =
∆hd=0.5(n)

dm1

∣∣∣∣
d=0.5

C ′m1
(n) = Cm1(n) + ∆hm1(n), 0 ≤ n ≤ N

W∆h(m1, d) =

(
d

0.5

)m1

, 1 ≤ m1 < M (19)
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where ∆hd=0.5(n) is the deviation of the Lagrange interpolation from the truncated

sinc at d = 0.5. W∆h(m1, d) is the weight function of ∆hd=0.5(n) in the overall

impulse response. ∆hm1(n) is the correction term which should be adapted for

the new sub-filter impulse response C ′m1
(n). When d decreases from 0.5 to 0, the

weight of ∆hd=0.5(n) starts decreasing accordingly. In this way, the contribution

of ∆hd=0.5(n) to the overall impulse response becomes lower. This contribution

will even vanish rapidly when the sub-filter index m1 is large. Moreover, for d = 0

this correction term has no more influence, regardless of the chosen sub-filter index

m1, and the output of the interpolator is then the delayed input sample itself. As

discussed before, no approximation error is made at d = 0 thanks to the all-pass

characteristic of C0(z). Denote the new equivalent impulse response as h′d(n) that

is obtained by applying the new coefficient matrix denoted as C ′m(n) to Eq. (13).

However, when d increases from 0.5 to 1, the weight increases exponentially,

leading to a large approximation error. The same approach can be applied to im-

prove the interpolation at an intermediate FD delay of e.g. d = 0.8. Attention

should be paid when choosing the second sub-filter index m2. m2 should be greater

than m1, otherwise the improvement of the FD approximation at d = 0.5 will be

contaminated. The second correction term is calculated based on the previous mod-

ified impulse response h′d(n) and the truncated sinc at d = 0.8. Denote now the

new obtained impulse response and the new coefficient matrix as h′′d(n) and C ′′m(n),

respectively.

∆hd=0.8(n) = sinc(n−Dint − d)|d=0.8 − h
′
d=0.8(n)

= sinc(n−Dint − d)|d=0.8 − hd=0.8(n)

−∆hd=0.5(n)W∆h(m1, d = 0.8) (20)

∆hm2
(n) =

∆hd=0.8(n)

dm2

∣∣∣∣
d=0.8

C ′′m2
(n) = C ′m2

(n) + ∆hm2(n), 0 ≤ n ≤ N

W∆h(m2, d) =

(
d

0.8

)m2

, m1 < m2 < M (21)

Due to the introduction of these extra correction terms, the output of the FD

interpolation at d = 1 is no longer the delayed input sample. This approximation

error can be further compensated by introducing the third correction term for the

FD interpolation at d = 1. We choose the third sub-filter index m3 = M so that

this correction term has the least influence on the previous correction terms while

maintaining zero approximation error at d = 1. As described in Sec. 3, the filter

orders and the length of the correction terms can be optimized. A similar coefficient

matrix as Eq. (18) can be obtained for this proposed filter structure.
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∆hd=1(n) = sinc(n−Dint)− h′′d=1(n)

∆hm3
(n) =

∆hd=1(n)

dm3

∣∣∣∣
d=1

C ′′′m3
(n) = C ′′m3

(n) + ∆hm3
(n), 0 ≤ n ≤ N

W∆h(m3, d) =

(
d

1

)m3

, m3 = M (22)

4.3. Performance Evaluation

As shown in Fig. 7, compared to the MSE values of the combined filters (cascaded

or “C0(z) FS”), the MSE of the proposed filter is lower when d is approaching the

integer delays. For L = 11, the MSE curve round d = 0.5 is slightly tilted from that

of a truncated sinc due to the introduction of the second and third correction terms.

For L = 41, this difference becomes negligible. This design technique removes the

requirement of switching between different filters required by combined filters, as

discussed in Sec. 3. The corresponding frequency response errors are depicted in

Fig. 8. Note that, the passband ripples of the truncated Lagrange, truncated sinc,

and proposed interpolation filters are less when d is closer to integer delays as shown

in Fig. 8. As shown in Fig. 8d, the requirement on high FD approximation accuracy

at d = 1 is fulfilled. When d = 0.5, the frequency response error is bounded to the

error of the truncated sinc as shown in Fig. 8b. Because the maximal flatness is

traded off for the extended bandwidth, the MSE approaches the optimum for a given

FD d and filter order N . The MSE performance with optimized filter orders are

presented in Fig. 9 and the corresponding frequency response errors are presented

in Fig. 10. Note that we do not claim that the resulted combination of filter orders

and the set {m1,m2,m3} is the optimum one (to this end one needs to do extra

research). The degree of polynomial M and the filter order N (M = N for FS-

based Lagrange) are decreased and the filter order of the correction term N + 2K

is increased, leading to improvements in FD approximation: less passband ripple,

more bandwidth and low MSE level over the entire FD range. In Fig. 10a, the

“C0(z) FS” interpolation filter has noticeable degradation at d = 0.2 compared to

the proposed filter. At d = 0.5, the difference among truncated sinc, “C0(z) FS”

and the proposed filters is negligible, since both “C0(z) FS” and the proposed

filters are corrected by introducing the truncated sinc of d = 0.5 as correction term

into their Farrow structures.

4.4. Relation to Lagrange Interpolation and Combined Filter

The impact of these correction terms to the overall impulse response of Lagrange

interpolation is given by

∆g(n, d) = ∆hm1
(n)dm1 + ∆hm2

(n)dm2 + ∆hm3
(n)dm3 , 0 ≤ n ≤ N (23)
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Fig. 7: Mean-square-error (MSE) curves of proposed filter structure of order N = 11

and K = 0.

The proposed interpolation filter is more accurate in the least-square error sense

than the Lagrange interpolation by introducing the truncated sinc as correction

terms into the Farrow structure. The proposed method also provides other opti-

mization parameters {m1,m2,m3}. By carefully choosing these parameters, the

maximal flatness can be traded off for lower mean square errors or more bandwidth

in the magnitude response and group delay as shown in Fig. 11. When ωp < π, a

new optimal FD interpolation filter can be obtained using the LS design criterion

and similar design techniques can be applied to trade off the maximal flatness in

Lagrange for lower mean square error. However, it should be pointed out that, for

ωp < π, the (truncated) Lagrange FD interpolation has better performance than in

the all-pass case, since the FD interpolation degradation at high frequencies can be

located in the “don’t care band” specified by [ωp, π]. Compared to the cascaded or

the combined filter, the burdensome switching between different filters is removed

in the proposed filter structure. Besides, a superior performance is achieved in the

least-square sense when d is close to 0 or 1. Moreover, the proposed filter approaches

the optimal MSE for all variable fractional delays, however, as mentioned in Sec. 2.1

the truncated sinc ĥ(n) is only optimal for a given d, and hence for variable d a

new FD interpolation filter has to be implemented each time.

4.5. Implementation Cost

The computational cost of FS-based Lagrange with filter order N is N(N + 1) +N

multiplications and N2 +N additions per output sample. Note that C0(z) is equal

to 1 for all delay values in the original Farrow structure. Thus, the implementation
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Fig. 8: Frequency response error of different FD interpolation filters at (a) d = 0.2

(b) d = 0.5 (c) d = 0.8 and (d) d = 1 with filter orders (N,K) = (11, 0) and

parameters {m1,m2,m3} = {1, 4, 11}.
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Fig. 9: Mean-square-error (MSE) curves of proposed filter structure with filter order

(N,K) = (7, 5) and parameters {m1,m2,m3} = {1, 4, 7}.

Table 1: Computational complexity comparison for the combined filter and the

proposed structure, only counting the number of multipliers and adders.

C0(z) FS

Structure

(N,K)=(11,0)

Proposed

Structure

(N,K)=(11,0)

C0(z) FS

Structure

(N,K)=(7,5)

Proposed

Structure

(N,K)=(7,5)

Mul + Add Mul + Add Mul + Add Mul + Add
∆H(z) 12+11 0+0 18+17 30+27

Farrow 143+132 143+132 63+56 63+56

Total 155+143 143+132 81+73 93+100

cost of C0(z) is discarded. In Table 1, the computational complexity of different

implementations is compared in terms of the number of multiplications (Mul) and

additions (Add). These results correspond to Fig. 8 and 9, respectively. ∆H(z) rep-

resents the extra correction term introduced. When ∆H(z) has the same filter order

of the Farrow structure with (N,K) = (11, 0), a superior performance is achieved

by the proposed filter structure even at lower implementation cost. The implemen-

tation cost is quadratically reduced by lowering the order of the Farrow structure.

In addition, the constant coefficient multiplication in the Farrow structure can be

efficiently implemented on FPGA without dedicated multipliers (e.g. DSP48), in-

stead, only a limited number of shifters and adders are required by using the CSD

representation. The utilization of the CSD representation can dramatically reduce
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Fig. 10: Frequency response error of different FD interpolation filters with optimized

filter orders (N,K) = (7, 5) and parameters {m1,m2,m3} = {1, 4, 7} at (a) d = 0.2

and (b) d = 0.5.

the number of non-zero bits representing the constant coefficient, therefore reducing

the amount of calculation.

5. Conclusion

This paper has proposed a maximally flat and least-square co-design method of

a variable FD interpolation filter. This method introduces the truncated sinc as

correction terms into the Farrow structure of a Lagrange interpolation filter. It

has been shown that the proposed structure not only features the advantages of

the pipelined Farrow structure in terms of variable fractional delay interpolation

and high throughput, but also enhances the fractional delay approximation. It is

shown in the example designs that, an overall MSE of approximately 2% is achieved

at lower implementation cost with the proposed structure, compared to 4% MSE

with a traditional implementation. The considerably lower level of MSE over the

whole FD range implies that, this proposed structure outperforms both the trun-

cated Lagrange interpolation with a Farrow structure and the cascaded or combined

structure. These features are beneficial to real-time FPGA implementation for sam-

ple rate conversion, digital beamforming and symbol synchronization in wideband

software-defined-radio systems.
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Fig. 11: Frequency response error and group delay of different sets of {m1,m2,m3}.
The filter order {N,K,L} = {11, 0, 41} and d = 0.2 are used.
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