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ABSTRACT 

 

In this paper, a stochastically deteriorating production system 

is studied under condition-based maintenance. Periodic 

monitoring is carried out to observe the degradation level of 

the system. If the degradation level exceeds failure threshold, 

nonconforming items are produced and a high corrective 

maintenance cost is incurred. Preventive maintenance actions 

are performed to reduce the possibility of failures. By 

considering inspection interval, preventive maintenance level 

and lot-size as decision variables, an integrated model is 

developed to minimize long-run average cost rate consisting 

of inspection costs, maintenance cost, cost of producing 

nonconforming items, inventory holding cost and setup costs. 

An illustrative example is presented to analyze the model. 

 

INTRODUCTION 

 

Condition-based maintenance (CBM) is an approach which 

recommends maintenance actions according to the current 

status of the production system through condition monitoring 

(Jardine et al., 2006). Due to the development of the sensor 

technologies, the current degradation level of the 

manufacturing systems can be monitored.  The other 

maintenance approaches are classified as unplanned 

(breakdown) maintenance and time-based (planned) 

preventive maintenance (Martin, 1994). Unplanned 

maintenance takes place when a failure occurs. In this case,  

unexpected failures can interrupt the production plan and 

cause lost sales. Thus, it is an inefficient approach. Under 

time-based maintenance, periodic preventive maintenance 

actions are performed at certain points in time to reduce the 

possibility of failures. The current health status of the system 

is not taken into account. Therefore, unnecessary preventive 

maintenance actions could be done when there is remaining 

health of the system. CBM can eliminate these unnecessary 

maintenance actions by taking maintenance actions according 

to the state of the system through conditional monitoring. 
 

The degradation of the components can either be monitored 

via continuously, periodically or non-periodically. 

Continuous monitoring gives real-time data about the 

degradation level of the system. However, in some production 

systems like pipelines buried underground in oil and gas 

industries, performing continuous monitoring is not 

applicable (Alaswad and Xiang 2017). These systems can be  

 

monitored at certain points in time to assess the degradation 

level of the components. For the cases where the inspection 

costs are high, an economic inspection policy needs to be 

found to reduce the overall cost. 

 

Ben-Daya and Makhdoum (1998) consider an integrated 

production and quality model for different inspection policies. 

The deterioration process is modeled by a hazard rate 

function. Another integrated optimization of lot-sizing and 

preventive maintenance level, is developed by Ben-Daya 

(2002). The age-based maintenance policy is applied. In that 

model, optimal preventive maintenance level and inspection 

intervals are found to minimize the total cost of production 

and maintenance. Chen (2013) constructed a model to 

optimize EPQ and preventive maintenance level under 

Weibull shock model. Jafari and Makis (2015) studied 

optimal lot-sizing and preventive maintenance policy where 

the deterioration is modeled by the proportion hazards model. 

 

In the literature, joint optimization EPQ and CBM has been 

studied. Peng and Van Houtum (2016) proposes a model to 

jointly optimize the total cost rate associated with the 

production lot-sizing and condition-based maintenance.  In 

their model, they assume that the degradation process is 

continuously monitored and it is modeled as a continuous time 

and continuous state stochastic process. Khatab et al. (2017) 

develop a model to minimize long-run average cost rate of 

total production and maintenance costs by finding optimal 

values of preventive maintenance level and inspection 

intervals. Gamma process is used for modeling the 

degradation. However, the lot-size is not optimized. Cheng et. 

al (2017) develop a model for joint optimization of lot-sizing 

and CBM for multiple dependent items that are economically 

dependent. Inspections are carried out at the end of the 

production lots.  They use simulation and a genetic algorithm 

to find the optimal values of lot-size and preventive 

maintenance level. 

 

In the literature, periodic monitoring has not been considered 

for the optimization of lot-sizing and CBM. In this study, an 

integrated model is developed to optimize production and 

maintenance costs simultaneously under condition-based 

maintenance where the system is monitored periodically to 

observe the degradation level. The degradation of the 

component is modeled as a stationary Gamma Process which 



 

fits well for modeling temporal variability of deterioration 

(Van Noortwijk, 2009). A considerable cost is charged for 

each inspection so it is necessary to determine an optimal 

inspection interval in order to minimize the total cost rate. 

Nonconforming items are produced in case the system 

degradation level exceeds the failure threshold. Additional 

cost is incurred due to the production of nonconforming items. 

The setup cost, inventory holding cost, preventive and 

corrective maintenance cost, inspection cost and cost of 

producing nonconforming items are considered for the 

minimization of the total long-run average cost rate. 

 

MODEL DESCRIPTION 

 

A single component and single item production system is 

considered in this paper. The deterioration level of the 

component can only be observed upon completion of the 

production lot and it is modeled as a stationary Gamma 

process ����, which is a monotonically increasing function. 

The system is out of control when the degradation level 

exceeds failure threshold ��. In this case, nonconforming 

items are produced and additional cost is incurred for the 

production of each nonconforming item. We assume that the 

manufacturing system produces at a constant production rate 

� and a constant demand rate �. 

 

In the model, the time length of production for a lot �	 �� =
�� − ���	�, the preventive maintenance threshold �� and the 

inspection interval � are the decision variables that should be 

determined to minimize the long-run average cost rate 

C��, �	, ���. The frequency of inspection �, is an integer 

multiple of the time length of production �	. Inspections are 

carried out at times �, 2�, …, when the production of a lot ends. 

Deterioration occurs during the production time so its level 

remains same during the idle time of the lots which starts after 

the inventory level ���� reaches �� − ���	. Initial inventory 

level is assumed to be zero. Preventive and corrective 

maintenance actions take a fixed amount of time � and carried 

out during the idle times in order not to interrupt the 

production. It is assumed that after preventive and corrective 

maintenance, the system is “as good as new”. 

 

 
 

Figure 1. Sample degradation path crossing preventive 

maintenance level 

 
 

Figure 2. Inventory level in one cycle in case of preventive 

maintenance  

 

A sample degradation path with respect to production time, is 

presented in Figure 1. �� is the preventive maintenance 

threshold; if the degradation level is observed to be higher, 

then preventive maintenance is performed. In Figure 1, since 

���� is between �� and ��  at time ��, preventive maintenance 

is performed right after the ��� inspection to avoid failure and 

costly corrective maintenance. In this graph, only production 

time is considered because the degradation level remains 

unaltered during the idle times. The corresponding inventory 

level with respect to the total time ��, is shown in Figure 2. 

The setup cost ��, is incurred for each production lot. Time �� 
consists of production and idle times. 

 

 
 

Figure 3. Sample degradation path crossing failure threshold 

level 

 
 

Figure 4. Inventory level in one cycle in case of corrective 

maintenance 



 

The path in Figure 3 illustrates the case where corrective 

maintenance actions are to be performed at the end of the ��ℎ 

inspection. The deterioration does not reach the level �� 

before the �� − 1��� inspection. In the production of the lot 

corresponding to the ��� inspection, it exceeds the failure 

threshold. Thus, nonconforming items are produced which 

incur additional costs. Figure 4 shows the corresponding 

graph of inventory level over total time. 

 

Notations 

 

� index of inspection intervals  
� inspection interval 

� constant production rate  
� constant demand rate 
�	 production time for a lot 

� lot-size 

� constant duration of predictive and 

corrective maintenance (� ≤ ��!
" − �	) 

���� degradation level of the production system 

at time � 

#�$, � − %� cumulative distribution function of 

���� –  ��%� 

'�$, � − %� probability density function of ���� –  ��%�
  

�� predetermined threshold level for 

preventive maintenance 

��  failure threshold level 

�� inventory holding cost per unit of time  

�( cost for one inspection 

�� setup cost per lot 

�)* cost of producing one nonconforming unit 

�� cost of the predictive maintenance action 

�* cost of the corrective maintenance action 

+� first passage time to the failure threshold 

, percentage of producing nonconforming 

items when the degradation level is above 

�� 

-./*0 expected setup cost per cycle 

-.1*0 expected inventory holding cost per cycle 

-.2*0 expected maintenance cost per cycle 

-.3�*0 expected cost of producing nonconforming 

items per cycle  

-.+0 expected cycle length 

-.�0 expected total cost in one cycle 

C��, �	, ��� long-run average total cost per unit of time 

 

FORMULATION OF THE OPTIMIZATION MODEL 

 

The degradation of the component is modeled as a stationary 

Gamma process with shape and scale parameters , and 4 

respectively. It suits well with condition-based maintenance 

models where inspections are carried out in discrete time 

points (Van Noortwijk, 2009). The density function of the 

deterioration of ���5� − ���6� between times �5 and �6 is as 

follows: 

 

'�$, �5 − �6� = $���78�9�:85�exp �− $
>�

?���5 − �6� ��>��78�9�:� 
 

�1� 
 

and the cumulative density function is computed by the 

equation, 

 

#�$, �5 − �6� = ?���5 − �6��,   $
>�

?���5 − �6���  
 

�2� 
 

where ?���5 − �6� �� is the gamma function and ?���5 −
�6� �, @

A� is the lower incomplete gamma function. The 

cumulative density function of the first passage time to failure 

threshold +� , is 

 

B��� = CD+� ≤ �E = C{���� >  ��} = #��� , �� �3� 

 

The density function of the first passage time to the failure 

threshold is J��� = "
"� #��� , ��. Khatab et al. (2017) express 

this density function as 

 

J��� = �
?���� L.ln�O� − P����0O:�85

Q

R�>

 

 

× exp�−O� �O  

 

 

 

 

 

�4� 

 

where P�O� = ��U�?�O�� �O⁄  is the digamma function. 

 

After either preventive or corrective maintenance, the 

degradation level becomes zero. Figure 2 shows an example 

of a renewal cycle. After the maintenance action is completed 

and the inventory level becomes zero, the renewal cycle 

restarts. The renewal reward theorem is used to compute the 

long-run average cost rate by dividing the average total 

accumulated cost in a renewal cycle by the average cycle 

length. 

 

The expected cycle length is calculated by finding probability 

of the event that degradation level is lower than �� before 

�� − 1��� inspection and it exceeds �� between  �� − 1���  and 

��� inspections (Figure 1). It is given by 

 

-.+0 = W ���
�

Q

XY5
L '�$, �� − 1���
RZ

	
 

 

#[��� − $, ���$ 

 

 

 

 

 �5� 

 

where (��� �⁄  is the total time length between two 

consecutive inspections. 

 

The expected inventory holding cost per cycle is computed by 

 

-.1*0 = ��-.+0 �� − ���	
2  �6� 

 

The expected sum of inspection and maintenance cost per 

cycle is, 

 



 

-.2*0 = �(
-.+0
^��

� _ + 

W L '�$, �� − 1������#[��� − $, ��
RZ

	

Q

XY5
 

+��* − ���#[��� − $, ���$ 

 

 

 

 

 

 

 

�7� 

 
where the probability of performing  maintenance right after 

the ��� inspection is b '�$, �� − 1���#[���
RZ

	 − $, ���$. The 

probability of performing corrective maintenance in a cycle  is 

as follows:  

 

C{-X*} = CD������� ≥ ��� & ���� − 1��� < ���E 
 

= L '�$, �� − 1���#[��� − $, ���$
RZ

	
 

 
 
 

�8� 
 

The expected setup cost per cycle is given by 

 

-./*0 = ��
-.+0

���	/�� �9� 

 

where ���	/�� is the time length of one production lot. 

 

If the degradation level ����� is observed to be $ at any 

inspection, then  probability density function of the remaining 

time to failure +�  given that ����� = $, is as follows: 

 

J�$, �� = �
�� CD+� ≤ �i��0� = $E 

 

              = �
�� #��� − $, �� 

 

 

 

�10� 

 

The conditional density function of +�  given that -X* can be 

expressed as  

 

'kl��� − 1�� + �|-X*� 

= b '�$, �� − 1���J�$, ���$RZ
	

C{-X*}  

 

 

�11� 

 

By using the above probability, the expected cost of producing 

nonconforming items given the event -X* can be calculated as 

 

-.3�*|-X*0 

= �)*�� L�� − ��
�

	

b '�$, �� − 1���J�$, ���$RZ
	

C{-X*} �� 

 

�12� 

 

where � is the percentage of the produced nonconforming 

items and �)* is the cost of producing a nonconforming item. 

After the degradation level reaches ��, nonconforming items 

are produced up to the time of ��� inspection. An example path 

is shown in Figure 3. By multiplying the above equation by 

C{-X*} for each inspection � and summing over all 

probabilities, the expected cost of producing nonconforming 

items is computed. It is expressed as 

-.3�*0 = W �)*�� L L �� − ��
RZ

	

�

	

Q

XY5
 

 

× '�$, �� − 1���J�$, ���$�� 

 

 

 

 

�13� 

For each value of the inspection interval �� = U�	), the 

optimization problem is to minimize the long-run expected 

cost rate C(�, �	, ��) by finding the optimal values of �	, �� 

subject to the constraint that idle time period �� − ���	 �⁄ , is 

longer than the time length of the predictive and corrective 

maintenance actions. Otherwise, shortages occur. The model 

is as follows: 

 

n�U�n�op      ���, �	, ��� 

%Oqrps� �t 
 

�� − ���	
�  ≥ �  �14� 

�� ≥ 0   �15� 

�� − �� ≥ 0 �16� 

 

where the long-run average cost rate is, 

 

C��, �	, ���  = -.�0
-.+0 

 

                       = -.1*0 + -.2*0 + -./*0 + -.3�*0
-.+0  

 

 

 

�17� 

 

and the optimal objective function value of the above 

optimization problem is C��, �	∗, ��∗�. 
 

The optimal long-run average cost rate of C��, �	, ���, is 

found by solving the optimization problem for each value of 

� = �	, 2�	, … , 2�	 where 2 is a sufficiently big integer. 

Thus, the optimal value is, 

 

C��,∗ �	∗, ��∗� = minxY�!,6�!,…,y�!
C��, �	∗, ��∗� �18� 

 

The objective function of the optimization problem is 

differentiable. Examples of different data sets show that the 

objective function is not convex so the local minimums might 

not be the global minimum. The Frank-Wolfe algorithm is 

used to solve this problem (Hillier and Lieberman 2001). The 

algorithm uses the linear approximation of the nonlinear 

objective function  that are obtained by the first-order Taylor 



 

series expansion. Different initial points are chosen to find the 

local minimum with the smallest objective function value. 

 

AN ILLUSTRATIVE EXAMPLE 

 

A computational result of the model is presented in this 

section. The deterioration of the system ���� is modeled as a 

stationary Gamma process. The shape and scale parameters 

are � = 1.2 and > = 0.8  respectively. Inspection interval �, 

is set as the integer multiple of �	. Thus, inspections are 

carried out right after the completion of the production. The 

inspection, preventive maintenance and corrective 

maintenance costs are �X = 10, �� = 202  and ��  =  550.  
The cost of producing nonconforming items is �)* = 100.  
Failure threshold level of the component is set as  �� = 5.15. 
The constant production and demand rates are � = 2  and � =
1  respectively. Inventory holding cost per item per unit time  

�� = 5. The setup cost per lot is �� = 50. Time length of the 

preventive maintenance and corrective maintenance actions is 

� = 1.39. 

 

A solution, ��∗ = 2.49, �	∗ = 2.7263, �∗ = �	∗, is obtained by 

the Frank-Wolfe algorithm. The model is solved for each 

inspection interval which are � = �	, 2�	, … 2�	. Optimal 

values of �� and �	 are found for each inspection interval (� =
U�	� and the one that minimizes the long-run average cost rate 

is chosen as an optimal solution. The long-run average cost 

rate with respect to  �� and �	 is shown in Figure 5. 

 

 
 

Figure 5.  ��� = �	 , �	, ��) with �� = 5.15, z = 1.2, 
  q = 0.8 

 

CONCLUSION 

 

In this study, a model is constructed for the joint optimization 

of lot-sizing and condition-based maintenance. Degradation 

process of the production system is modeled as a stationary 

Gamma process. Inspections are done periodically to observe 

the degradation level. Inspection cost is considerable so 

appropriate length of inspection period needs to be selected to 

minimize the overall cost rate. Maintenance actions are 

conducted in idle time periods in order not to interrupt the 

production plan. Renewal Reward Theory is used to compute 

the average long-run total cost rate. For a given �, optimal 

values of �� and �	 are found by solving optimization 

problems with a nonlinear objective function and linear 

constraints. The Frank-Wolfe algorithm is used to solve this 

problem. Enumeration is done on � to find the minimum value 

of the cost rate. 
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