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ABSTRACT In this paper, the power angular profile (PAP) of the dense multipath components (DMCs)
was analyzed and characterized based on a channel sounding measurement campaign at 11 GHz in an
indoor environment. The specular multipath components (SMCs) were estimated with the SAGE algorithm,
and the RiMAX framework was applied for the estimation of the DMC in both the time-delay and the
angular domain. After careful inspection of the spectrum of the residual signal components in the angular
domain, we found that the DMC should be modeled by taking into account multiple angular clusters at
different angles, to better characterize the diffuse scattering between transmitter and receiver, originating
from multiple reflections in an environment. Therefore, we propose to extend the maximum likelihood
estimation of the angular DMC parameters in the RiMAX framework so that the PAP of the DMC can be
modeled with a multimodal von Mises distribution. We also validate our proposed method with the results
of the measured channel sounding data.

INDEX TERMS Channel modeling, channel sounding, DMC, indoor, multipath estimation, polarization,
RiMAX, SMC.

I. INTRODUCTION
Over the recent years, mobile networks are becoming heav-
ily congested due to the continuous increase in user traffic,
caused by the emergence of wireless systems, mobile appli-
cations and streaming services. On top of that, the Internet of
Things (IoT) is shifting from vision to reality. To accommo-
date for this additional demand in wireless signal spectrum,
next-generation mobile communication systems such as 5G
were developed, and are currently being investigated with
increased interest [1], [2]. In the frequency bands utilized by
5G, massive Multiple-Input Multiple-Output (MIMO) tech-
nologies are expected to be employed to further enhance
the data transmission capabilities of these systems, by rely-
ing on higher order beamforming and spatial multiplex-
ing. The primary spectrum that is considered for the lower
5G bands all range between 1 GHz and 6 GHz, of which
it is well known that their channel capacities are highly

influenced by the amount of diffuse scattering present in
the radio channel. Diffuse scattering arises from radio waves
scattering on electrically small and rough surfaces [3], which
are inherently more present at sub-20 GHz frequencies in
contrast to the higher 5G frequency bands (between 24 GHz
and 30 GHz), mainly due to their shorter wavelengths and
less attenuation. In indoor environments, where radio waves
typically scatter from various objects, diffuse scattering plays
an even more important role in the MIMO transmission
capacity [4], [5]. However, its contribution is not taken into
account in the standard channel models such as the 3GPP
Spatial Channel Model (SCM) [6], the ITU-R M.2135 chan-
nel model [7], or the WINNER II channel model [8]. The
aim of this paper is to gain more knowledge concerning an
accurate and realistic angular modeling of diffuse scattering,
and its effect on MIMO channel characteristics in lower fre-
quency bands. The novelty is that we consider the existence
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TABLE 1. Acronyms and symbols.

of multiple angular clusters in the spectrum of the Residual
Signal Components (RSC) of the radio channel, allowing
us to construct a model that characterizes multiple reflec-
tions of the electromagnetic waves at different angles in the
environment.

The structure of this paper is as follows. Section II sum-
marizes the related work on this topic, whilst Section III
describes the applied channel model with the angular model-
ing of the diffuse scattering. Section IV describes ourmethod-
ology to apply this model to radio channel sounding data, and
Section V presents the measurement campaign. Afterwards,
Section VI describes the results of our approach. Finally,
Section VII summarizes this paper with some conclusions
and ideas for future work. Table 1 provides a list of oft-used
acronyms and symbols required for a good understanding of
the paper.

II. RELATED WORK
Previous efforts to characterize the diffuse scattering mostly
focused on measuring the far-field diffuse scattering pattern
of typical building walls, and incorporating these results into
diffuse scattering models for ray tracing simulators [9], [10].
Later works such as [11]–[13] utilized these models to extract
information about the Power Delay Profile (PDP), the angu-
lar spread and the polarization characteristics of the diffuse
scattering through ray tracing simulations, but the correctness
of these analyses all relied on the accuracy with which the

environment was modeled in these simulators. In [14],
the importance of correctly characterizing the DMC is
emphasized to construct simple but realistic radio channel
models.

More recent works such as [15]–[17] estimated the contri-
butions of diffuse scattering directly fromMIMO radio chan-
nel measurements by applying the RiMAXmultipath estima-
tion framework to estimate both the SMC and DMC from
the measurement data. From a physical perspective, a radio
channel is a collection of multipath components. Because
channel sounders do not possess infinitely large apertures
in the spatial and frequency domains, it is only possible to
estimate the multipath components that stand out because
of their Signal-to-Noise Ratio (SNR). These comprise the
SMC: they give rise to constant phase relationships in the
space, frequency, and time-delay domains which means that
they can be coherently detected. On the other hand, the DMC
are low-SNR multipath components that cannot be detected
coherently due to the limitations of radio channel sounders:
limited apertures prevent us from estimating dense multipath
components individually, but we can describe their average
power by means of continuous distributions. From a physical
point of view, the SMC comprise the eventual line-of-sight
component and the mirror-like interactions with objects in
the environment (reflections, diffractions, and transmissions).
The DMC originate mainly from diffuse scattering on elec-
trically small and rough surfaces, but also contain low-SNR
specular-like multipath components that cannot be resolved
by the multipath estimator. The contributions of DMC are
characterized by autocorrelations of the signal component,
but the RiMAX framework only discusses the frequency
domain correlation modeling of the DMC [15]–[18]. The
integration of the DMC modeling in the angular domain into
the RiMAX framework is often lacking in the literature.

In [19], a measurement campaign was performed in a
large industrial hall in the 3 GHz band, of which the fre-
quency domain DMC parameters were estimated for Line-of-
Sight (LoS), Obstructed-LoS (OLoS) and Non-LoS (NLoS)
scenarios. It was found that the fractional DMC power (i.e.,
relative to the total power) varies between 23%-38% in LoS,
27%-70% inOLoS, and 57%-64% inNLoS scenarios. Hence,
it becomes evident that these DMC will contribute signifi-
cantly to the total power in the channel at lower frequencies.
In [20], this work was extended bymeasuring the polarization
properties of the DMC in the same environment. Together
with [21], which concerns an analysis of the DMC in the
4.5 GHz band, it was shown that the DMC parameters have a
certain polarization dependency.

Investigations into the behavior of the angular DMC
parameters found that correlations exist between the locations
of the SMC and the dominating powers in the RSC spectrum.
Therefore, [22] and [23] propose to model the DMC’s angular
profile as clusters around the SMC. In [24] and [25], a ML
method is utilized based on a unimodal von Mises distri-
bution to model the angular profile of the DMC. In [26],
this distribution was also found to be a good fit to model
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the angular domain autocorrelation function of the DMC
in the 11 GHz band, by convolution of the angular DMC
profile with the antenna array response. This work builds on
the previous research on this topic [26], [27] by extending
the conventional RiMAX framework from a unimodal- to a
multimodal joint estimation of DMC propagation parameters
in the frequency-, angular- and polarization domains. Since
our proposedmethodology outlined in Section IVwas already
validated by means of synthetic radio channel data based on
Monte Carlo simulations [28], this paper presents the results
based on channel sounding data of an indoor environment.

In this work, we will extend the MLmethod in the RiMAX
algorithm from a unimodal- to a multimodal assumption,
in order to account for multiple angular clusters in the DMC
spectrum. We are able to model several angular clusters in
the radio channel, originating from multiple reflections of
the plane waves in an environment. Whereas the past literate
focuses on sub-6 GHz frequency bands, this work sheds more
light on the DMC characteristics in the X band through an
11 GHz MIMO measurement campaign [29] in an indoor
environment. This paper extends our previous work on this
topic [27], [30] by extending the conventional RiMAX frame-
work for the joint estimation of multimodal DMC propaga-
tion parameters in the frequency, angular and polarization
domains. We evaluated the benefits of adopting a multimodal
angular distribution over a unimodal one, and have analyzed
to which extent this will contribute to a better reconstruction
of the eigenvalue structure of the MIMO channel. As was
shown in [31] and [26], the DMC increases the level of the
reconstructed eigenvalues, resulting in a better approxima-
tion of their measured values. This proves that an accurate
modeling of the DMC parameters is necessary to prevent the
underestimation of the MIMO transmission performance [5],
and indicates the potential to increase the spectral efficiency
of the radio communication link.

III. CHANNEL MODEL
A. SPECULAR- AND DENSE MULTIPATH COMPONENTS
Multidimensional frequency domain channel sounding is a
prerequisite in order to describe the geometric properties
of the electromagnetic waves of the MIMO radio channel
in terms of their characteristics in both the angular- and
time-delay domain. This can be done with (virtual) MIMO
antenna array systems, consisting of NT and NR antennas at
transmitter (Tx) and receiver (Rx), sampled at NF frequency
points [32]. An observation of the MIMO radio channel h can
then be modeled as the superposition of SMC and DMC, and
can be written as follows:

h = s(θ s)+ d(θd), (1)

in which h can be seen as a random variable distributed
according to a complex multivariate Gaussian distribution:

h ∼ Nc(s(θ s),R(θd)). (2)

The SMC propagation parameter vector of the i-th path θ s,i in
the azimuthal plane consists of the angle-of-departure (AoD)

ϕT,i, the azimuthal angle-of-arrival (AoA) ϕR,i, the propaga-
tion time-delay τs,i, and the complex amplitude vector γ i =

[γs,vv,i, γs,vh,i, γs,hv,i, γs,hh,i]. In the adopted signal model,
the SMC of the i-th path s(θ s,i) ∈ CNTNRNF×1 is defined as
follows:

θ s,i = [ϕT,i, ϕR,i, τs,i, γ i], (3)

s(θ s,i) = αT(ϕT,i)⊗ αR(ϕR,i)⊗ αF(τs,i) γ i. (4)

In (4), αT and αR are the antenna array responses of the Tx
and Rx, respectively, and αF(τs,i) is the frequency transfer
function of the impulse response δ(τ − τs,i). The ⊗ symbol
represents the Kronecker product.

The DMC is modeled stochastically by means of the
covariance matrix of the RSC part of the radio channel R(θd),
based on the DMC propagation parameters θd,F in the fre-
quency domain, and θd,A in the angular-polarization domain,
defined as follows:

θd,F = [α0, α1, βd, τd], (5)

θd,A = [µT, µR, κR, κR, γd,vv, γd,vh, γd,hv, γd,hh, γα]. (6)

In [15] and [16], the PDP of the DMC in the time-delay
domain is modeled based on the observation that its power
fF(τ ) has a base delay τd related to the distance between
Tx and Rx, with an exponential decay over time-delay (see
Eq. (7)), corrupted by complex additive white Gaussian noise
with power α0:

fF(τ ) =

{
α1 e−Bd(τ−τd) + α0, if τ > τd

α0, otherwise.
(7)

The DMC and noise power spectrum density κ(θd,F) in the
frequency domain denotes a sampled version of fF(τ ) in
Eq. (7) under the finite bandwidth condition, and is defined
as follows:

κ(θd,F) =
α1

NF

[
1
βd
,
e−j2πτd

βd +
j2π
NF

· · ·
e−j2π (NF−1)τd

βd +
j2π (NF−1)

NF

]
+ α0e0.

(8)

In Eq. (8), e0 = [1, 0, · · · 0] is a unit vector, and βd =
Bd/Bm is the coherent bandwidth, which is normalized by
the measurement bandwidth Bm. Then, the frequency domain
correlation matrix RF(θd,F) ∈ CNF×NF of the diffuse scatter-
ing can be calculated by applying the Toeplitz-operator [15]
as follows:

RF(θd,F) = toep
(
κ(θd,F), κH (θd,F)

)
. (9)

B. MULTIMODAL ASSUMPTION OF DMC IN
ANGULAR DOMAIN
In [24], [33], and [34], the Power Angular Profile (PAP) of
the DMC at Tx or Rx in the azimuth plane is modeled using
a unimodal von Mises distribution, which is defined (e.g.,
at Tx) as follows:

fT(ϕ) =
1

2π I0(κT)
exp (κT cos(ϕ − µT)) , (10)
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with I0(κT) being the modified Bessel function of the first
kind and zeroth order, the parameterµT controlling the center
location of the distribution at Tx, and κT controlling its angu-
lar spread. As the value for κT increases, the angular spread of
the distribution decreases, and the distribution gets narrower.
For larger values of κ , the von Mises distribution approaches
the normal distribution. For a κ value of 0, the von Mises
distribution approaches the uniform distribution, meaning
that the diffuse power is equal throughout the angular RSC
spectrum, regardless of at which angle we observe this diffuse
power. This model for the PAP of the DMC can be regarded as
themost likely fit of themeasured RSC in the angular domain.

In the polarimetric scenario, the PAP is modeled by multi-
plying the von Mises distribution with an angle-independent
polarization vector γ d = [γd,vv, γd,vh, γd,hv, γd,hh, γα] [25].
The angular and polarization domain covariance matrix
RA(θd,A) ∈ CNTNR×NTNR can then be written as follows:

RA(θd,A) = Rvv + Rvh + Rhv + Rhh + γαI. (11)

In Eq. (11), γα denotes the noise power in the angular
domain.

In the multimodal assumption of the angular DMC power
spectrum, multiple clusters exists in the PAP of Tx and Rx,
eachwith their own vonMises distribution defined by a center
location µ and an angular spread κ . We can write the angular
domain covariance matrix Rxy for a certain polarization set-
ting xy (e.g., Tx-V and Rx-H; denoted as VH) as being the
summation over several separate covariance matrices, which
can be written as follows:

Rxy =
CT∑
ct=1

CR∑
cr=1

γ
ct,cr
d,xy Cct,cr

xy , (12)

with CT and CR the number of clusters in the PAP of Tx
and Rx, respectively. In Eq. (12), Cct,cr

xy is the combined Tx
and Rx angular power spectrum, and can be written as the
Kronecker-product between both Cct

x and Ccr
y (their separate

angular power spectrum) as follows:

Cct,cr
xy = Cct

x ⊗ Ccr
y (13)

Cct
x =

∫ π

−π

αT,x(ϕ) f
ct
T (ϕ) αHT,x(ϕ) dϕ (14)

Ccr
y =

∫ π

−π

αR,y(ϕ) f
cr
R (ϕ) αHR,y(ϕ) dϕ, (15)

in which f ctT (ϕ) and f crR (ϕ) are both unimodal von Mises dis-
tributions of the ct-th cluster at Tx, and the cr-th cluster at Rx,
respectively. In (14) and (15), αT,x and αR,y are the antenna
array responses of the transmitter for the polarization setting
x, and the receiver for the polarization setting y, respectively.
The combined PAP at Tx and Rx will consist of a multitude
of angular clusters, so that the DMC angular parameters of
multiple reflections at different angles in the environment can
be better characterized. As we will show in Section VI, this
results in a better reconstruction of the eigenvalue structure
of the MIMO channel.

FIGURE 1. RiMAX multipath estimator.

Finally, the full DMC correlation matrix R is calculated as
follows:

R = RF(θd,F)⊗ RA(θd,A). (16)

However, since the aim of this work is to model the spatial
(angular) properties of the DMC, we will omit the frequency
domain from the covariance matrix, as was done before
in [25]. We will model RF(θd,F) as a unitary matrix.

IV. METHODOLOGY
Figure 1 presents a flowchart of our version of the RiMAX
multipath estimator. This framework is used to obtain esti-
mates of the SMC and DMC parameters defined in the chan-
nel model of Section III.

Regarding the SMC, the SMC parameter vector θ s,i is
estimated from the measurement data h using the SAGE
algorithm [35]. Subsequently, the estimated SMC are sub-
tracted from the measured channel so that only the DMC
remains in the residual data. Next, the time-delay and angular-
polarization domain propagation parameters of the DMC
are initialized and sequentially optimized with either the
Levenberg-Marquardt or the Newton-Raphson method. The
log-likelihood function of the DMC can be calculated by
using the correlation matrix R̃ of the RSC spectrum r after
removal of all the SMC from the measured data, which are
both defined as follows:

r = h−
I∑
i=1

s(θ s,i) (17)

R̃ = r rH , (18)
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so that we can write the log-likelihood function as follows:

L(h|θd,F, θd,A) = − ln(det(R))− tr(R−1R̃)+ C, (19)

in which C is a constant.
The DMC propagation parameters θd,F in the time-delay

domain, and θd,A in the angular-polarization domain are esti-
mated separately in order to reduce the computational com-
plexity of performing a multidimensional search for the joint
maximization of this log-likelihood function. We will try to
maximize this objective function by alternating between the
optimization procedures with respect to the parameter subsets
θd,F and θd,A. For the estimation of θd,F in the time-delay
domain, the angular-polarization domain of the RSC spec-
trum is first shrunken by the estimation result of RA(θ

(itr)
d,A ) of

the previous iteration, calculated as follows:

dF = mat {d,NF,NTNR}LA (20)

R̃F =
1

NTNR
dFdHF , (21)

in which mat {A,m, n} is a matrix operator that reshapes a
vector A into an m × n matrix, and LA is the matrix satis-
fying LALHA = RA(θ

(itr)
d,A )−1. The time-delay and angular-

polarization domain log-likelihood functions can be written
as follows:

LF(h|θd,F) = − ln(det(RF(θd,F)))

− tr(RF(θd,F)−1 R̃F)+ C ′ (22)

LA(h|θd,A) = − ln(det(RA(θd,A)))

− tr(RA(θd,A)−1 R̃A)+ C ′′, (23)

in which C ′ and C ′′ are constants.

A. INITIALIZATION OF DMC PROPAGATION PARAMETERS
To find a suitable final solution for both the time-delay and
the angular-polarization domain DMC parameters described
above, we must first start the iterative search from an initial
solution. Since we have adopted the same method of [15] for
finding an initial solution for the time-delay domain DMC
parameters, we refer to this work for a detailed description.

For the initialization of the angular-polarization DMC
parameters, we need to know how many clusters (i.e., dis-
tributions) to consider at Tx and Rx, what their center values
are, their angular spreads, and the polarimetric power they
represent in the RSC spectrum. The initialization of each
of these four characteristics will be discussed in the section
below.

In a first step towards the initialization of the angular-
polarization domain DMC parameters, the estimated SMC
values of the AoD and AoA per propagation path are fed
as input parameters to a k-means clustering algorithm [36].
It should be noted that we perform this clustering separately
at the transmitter and receiver, so that we can obtain a dif-
ferent number of clusters at the transmitter and receiver. The
k-means algorithm (e.g., at transmitter) aims to partition
the I different AoD values of the SMC into a certain pre-
defined number of clusters k in which each angle belongs

to the cluster with the nearest mean. K-means clustering
aims to partition these I AoD values into k sets (k ≤ I ),
so as to minimize the within-cluster sum of squares (WCSS)
(i.e., the variance). This is the equivalent of minimizing the
pairwise squared deviations between the AoDs in the same
cluster. Because the total variance is constant, this is also
equivalent to maximizing the squared deviations between the
AoDs in different clusters (between-cluster sum of squares,
BCSS). The k-means algorithm was run 200 times for each
measured radio channel matrix and each value of k , each time
with different random initial values for the cluster centroids.
Of those 200 executions, only the clustering result with the
smallest WCSS summed over the k clusters was retained.
The result of this algorithm is in agreement with the defi-

nition of a cluster in the COST 273 and COST 2100 chan-
nel models, namely that a cluster is a set of propagation
paths with similar characteristics [37], [38]. By running the
k-means algorithm for a varying number of clusters which
are to be formed (e.g., 2 to 5), the optimal number of clusters
can be estimated by using the Kim-Parks (KP) clustering
index [39]. This KP index employs two partition functions
showing opposite properties around the optimal number of
clusters. The Kim-Parks index is preferred over other more
common validity indices that make use of intra-cluster and
inter-cluster separation measures, as these indices tend to
decrease or increase monotonically with the number of clus-
ters. The Kim-Parks index circumvents this behavior by nor-
malizing the index by the index values at the minimum and
maximum number of clusters. Note that modeling a single
cluster could be better in some scenarios (e.g., for an open
outdoor environment without much reflection). To detect
such a situation, we will check during the optimization pro-
cedure if the angular spread of a certain cluster is still sig-
nificantly large (i.e., κ ≤ 0.05). If not, this cluster will
act as a uniform distribution in angular space, and it has no
added value to model the diffuse powers in the angular RSC
spectrum. We will drop this cluster from further analysis in
the algorithm.

In our approach, we will limit the maximum number of
clusters to 3, so that we do not overfit the angular RSC
spectrum, and also reduce the computational complexity of
finding an optimal set of values for them. We will take the
center values of each k-means-classified cluster ct at Tx
(i.e., the clustered AoD values) as center values µctT for each
distribution f ctT . Similarly, the center values of each k-means-
classified cluster cr at Rx (i.e., the clustered AoA values) will
act as the center values µcrR for each distribution f crR .
After doing so, we will use these initialized center values

µ of the von Mises distributions, and apply a beamforming
based method with a coarse grid search for the initialization
of their respective κ values. First, we need to write the total
angle-independent polarimetric power vector ζ

ct,cr
d , repre-

senting the polarimetric power between the angular DMC
clusters ct at Tx, and cr at Rx, as follows:

ζ
ct,cr
d = vec

{[
ζ
ct,cr
d,vv , ζ

ct,cr
d,vh , ζ

ct,cr
d,hv , ζ

ct,cr
d,hh

]}
, (24)
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in which vec{·} is an operator that reshapes a matrix into a
row vector. We can then construct a model from Eq. (11),
relying on the linear dependences of the covariance matrix
RA as follows:

RA,v = vec{RA} (25)

RA,v =

CT∑
ct=1

CR∑
cr=1

ζ
ct,cr
d Cct,cr

d + ζαvec {I} (26)

Cct,cr
d =


vec{Cct,cr

vv }

vec{Cct,cr
vh }

vec{Cct,cr
hv }

vec{Cct,cr
hh }

 , (27)

which we can rewrite as follows:

RA,v = ζ v Cv (28)

ζ v = vec
{[

ζ
1,1
d , ζ

1,2
d , . . ., ζ 1,CR

d , . . .,

ζ
CT,1
d , ζ

CT,2
d , . . ., ζCT,CR

d , ζα

]}
(29)

Cv = vec
{[
C1,1
d ,C1,2

d , . . .,C1,CR
d , . . .,

CCT,1
d ,CCT,2

d , . . .,CCT,CR
d , I

]}T
. (30)

Exploiting this linear model, we can apply a MinimumMean
Square Error (MMSE) estimator that minimizes the mean
square error between the sample covariance matrix and the
model covariance matrix as follows [40], [41]:

ζ̂ v = min
ζ v

∣∣∣∣∣∣R̃A,v − ζ v Cv

∣∣∣∣∣∣2 , (31)

fromwhich we can calculate that the optimal value ζ̂ v accord-
ing to the MMSE estimator becomes the following:

ζ̂ v = R̃A,v

((
C∗vC

T
v

)−1
C∗v

)T
, (32)

from which we can calculate the covariance matrix in the
angular domain RA(θd,A), and insert it into the log-likelihood
function of the angular-polarization domain of the RiMAX
algorithm (see Eq. (23)). The optimal (coarsely searched) κ
values, resulting in the highest value of this log-likelihood
function among all initial values, will be used as initial start-
ing values in a next iteration of this beamforming search,
around which we will choose finer κ values. After doing so,
we can find a set of finely searched κ values which best rep-
resent the angular-polarization profile of the RSC spectrum.
The angle-independent polarization matrix ζ v, representing
the polarimetric power corresponding between the Tx and Rx
angular DMC clusters, can be calculated from Eq. (32).

B. OPTIMIZATION OF DMC PROPAGATION PARAMETERS
1) TIME-DELAY DOMAIN DMC OPTIMIZATION
To optimize the time-delay domain DMC parameters, we will
make use of the Levenberg-Marquardt algorithm in the fre-
quency domain for the optimization of the DMC propagation
parameter θd,F [15]. Firstly, the Jacobian DF(θ

(itr)
d,F ) of the

frequency domain log-likelihood function LF(h|θd,F) needs
to be calculated as follows:

DF(θ
(itr)
d,F ) = diag

{
0C

{
κ(θ (itr)d,F )

}}−1
×

[
0C

{
∂κ(θd,F)
∂θd,F,1

}
, · · · , 0C

{
∂κ(θd,F)
∂θd,F,4

}]
, (33)

in which 0C {·} is the smoothing operator as defined in [15].
The propagation parameter θ

(itr)
d,F is then updated by the incre-

mental step 1θ
(itr)
d,F to minimize the residual error ε(itr) as

follows:

ε(itr) = diag
{
0C

{
κ(θ (itr)d,F )

}}−1
0C {dF} − 1 (34)

1θ
(itr)
d,F =

(
DTFDF + λFI · DTFDF

)−1
DTF ε

(itr) (35)

θ
(itr+1)
d,F = θ

(itr)
d,F +1θ

(itr)
d,F , (36)

in which λF is the step length, initialized at 1. If the resulting
updated parameter θ

(itr+1)
d,F causes an increase in the log-

likelihood function Eq. (22), convergence is achieved, λF
is divided by 2, and we will start the optimization of the
angular-polarization DMC propagation parameter. If not, λF
is multiplied by 4, and the algorithm keeps searching for a
new updated parameter θ (itr+1)d,F until convergence is achieved.
It should be noted that the division by 2 and multiplication by
4 were arbitrary choices, and other values could result in a
faster convergence of the algorithm.

2) ANGULAR-POLARIZATION DOMAIN DMC OPTIMIZATION
After the optimization of the time-delay DMC propagation
parameter θd,F, the angular-polarization domain DMC prop-
agation parameter θd,A will be optimized by making use of
the Newton-Raphson algorithm [25]. Firstly, the score func-
tion qA(h|θd,A) and the Fisher information matrix JA(θd,A)
of the angular-polarization domain log-likelihood function
LA(h|θd,A) need to be calculated as follows:

qA(h|θd,A) = tr

(
RA(θ

(itr)
d,A )−1

[
∂RA(θ

(itr)
d,A )

∂θd,A

]

RA(θ
(itr)
d,A )−1R̃A − I

)
(37)

JA(θd,A)ij = tr

(
RA(θ

(itr)
d,A )−1

∂RA(θ
(itr)
d,A )

∂θd,A,j

RA(θ
(itr)
d,A )−1

∂RA(θ
(itr)
d,A )

∂θd,A,i

)
. (38)

The propagation parameter θ
(itr)
d,A is then updated by the incre-

mental step 1θ
(itr)
d,A as follows:

1θ
(itr)
d,A = −JA

(
θ
(itr)
d,A

)−1
qA
(
h|θ (itr)d,A

)
(39)

θ
(itr+1)
d,A = θ

(itr)
d,A + λA 1θ

(itr)
d,A , (40)
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FIGURE 2. Measurement environment [26]. (a) Floor plan. (b) Photograph.

in which λA is the step length, initialized at 1. If the resulting
updated parameter θ

(itr+1)
d,A causes an increase in the log-

likelihood function Eq. (23), convergence is achieved, and
we will start the next iteration with the optimization of the
time-delay DMC propagation parameter. If not, λA is divided
by 4, and the algorithm keeps searching for a new updated
parameter θ

(itr+1)
d,A until convergence is achieved.

V. MEASUREMENTS
A. MEASUREMENT ENVIRONMENT
Figure 2 shows the measurement environment of the indoor
hall, with a description of the floor plan in Figure 2a,
and a photograph of it from the viewpoint of the receiver
in Figure 2b.

Figure 2a shows that there was no furniture in this envi-
ronment, except for a few chairs and some tables. This size
of the hall was approximately 30 m × 10 m × 3 m. In this
environment, the receiver was set at a fixed position (bottom
left in Figure 2a), whilst the transmitter occupied various
positions along the measurement course (starting from center
right in Figure 2a, going to center left). In total, 280 dis-
tinct transmitter-receiver locations were measured along the
20 m course, resulting in a spacing between the measurement

TABLE 2. Channel sounder parameters.

points of about 7.17 cm. Snapshot 0 was located at the utmost
right of ‘measurement course’ in Figure 2a, whilst snapshot
279 was located at the utmost left in this course. The array
directions of transmitter are also shown, and the AoD and
AoAwere defined from the front directions of the instruments
in a counter-clockwise direction (see Figure 2a).

In the data analysis, the SMC parameters were first esti-
mated with the SAGE algorithm [35]. The path discard-
ing threshold ξ was 20 dB, such that paths with a lower
power than the highest path power by ξ were discarded.
In total, we allowed for the estimation of a maximum number
of 90 propagation paths. Afterwards, the angular-polarization
characteristics of the DMC propagation parameters were esti-
mated with the RiMAX-based estimator that was explained
in Section IV. In our analysis, we will compare the charac-
teristics of assuming a uniform-, unimodal- and multimodal
angular DMC assumption. The data processing parameters
are summarized in Table 3.

B. CHANNEL SOUNDING CAMPAIGN
MIMO channel measurements were conducted in the 11 GHz
band in an indoor hall environment to identify the angular-
polarization characteristics of the DMC in the X band. The
specifications of the MIMO channel sounder are summa-
rized in [29], and its main settings are listed in Table 2.
The antennas were dual-polarized patch antennas, so that the
12-element circular array at transmitter and receiver gives
rise to a 24-by-24 MIMO channel matrix (12 H-polarized
channels and 12 V-polarized channels). A photographs of the
11 GHz channel sounder with transmitter- and receiver unit
is shown in Figure 3.

VI. RESULTS
A. MEASURED ANGULAR SPECTRA
Figures 4a and 4b show the measured RSC power spec-
trum and its estimated PAPs for snapshot 140 at Tx and
Rx, respectively. At both the transmitter and the receiver,
our methodology resulted in the estimation of two clusters.
In these figures, the black line represents the RSC power
spectrum in the angular domain, summed over all time-delay
bins.
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FIGURE 3. Photograph of the 11 GHz channel sounder.

TABLE 3. Data processing parameters.

To obtain this angular spectrum, e.g. at Tx, we first perform
the following beamforming operation [42]:

ST(ϕT) =
1
NR

NR∑
nR=1

BT(ϕT)H√
BT(ϕT)HBT(ϕT)

YnR , (41)

in which YnR ∈ CNT×NF denotes the impulse response of all
Tx channels and the nthR Rx channel for the residual channel r
(i.e., measured minus SMC), and BT(ϕT) denotes the antenna
array responses of the transmitter for the angle ϕT. Equiva-
lently, the angular spectrum of the RSC at Rx is calculated as
follows:

SR(ϕR) =
1
NT

NT∑
nT=1

BR(ϕR)H√
BR(ϕR)HBR(ϕR)

YnT , (42)

in which YnT ∈ CNR×NF denotes the impulse response of all
Rx channels and the nthT Tx channel for the residual channel
r, and BR(ϕR) denotes the antenna array responses of the
receiver for the angle ϕR. Afterwards, an Inverse Fast Fourier
Transform (IFFT) operation is performed to get the time-
delay domain representation of these angular spectra, after
which we sum them over all time-delay bins.

In Figure 4, the red line corresponds with the PAPs of the
multimodal DMC assumption, whilst the green line is the
PAP of the unimodal DMC assumption, and the blue line
represents a uniform angular distribution of power. Figure 4a
is the RSC power spectrum at the transmitter, and figure 4b
is the RSC power spectrum at the receiver.

Figure 4a and 4b show that the multimodal angular DMC
assumption is a better representation of the RSC spectrum

FIGURE 4. PAPs of the measured RSC spectrum and the reconstructed
DMC spectra assuming a uniform-, unimodal- and multimodal
assumption for snapshot 140. (a) Transmitter. (b) Receiver.

than the unimodal- or the uniform angular DMC assumption.
Figure 4b clearly shows that the center locations of the mul-
timodal distribution are estimated better with the multimodal
assumption over the unimodal one, and lie closer to the peak
values in the angular RSC spectrum. However, there is still
room for improvement regarding the extent to which the
angular RSC spectrum can be reconstructed, which is largely
influenced by the amount of variation in this spectrum.

B. MEAN-SQUARE-ERRORS OF THE RSC
CHARACTERIZATION
Figure 5 presents the Mean-Square-Errors (MSEs) between
the RSC and its reconstructed spectrum using the uniform-
, unimodal- and multimodal angular DMC assumptions for
the 280 distinct Tx-Rx positions, shown as a function of their
traveled length along the measurement route (0 m to 20 m).

Figure 5 visually shows that theMSE between the RSC and
the different angular DMC assumption significantly lowers
when going from a uniform- to a unimodal- to a multimodal
angular DMC assumption. Table 4 lists the MSE between the
RSC and these three angular DMC assumptions using either
the total angular RSC spectrum, or the 95% strongest values
in it.

Table 4 shows that the MSE between the RSC and the
reconstructed spectrum assuming a uniform angular distri-
bution is about 7.65 dB at the transmitter, and 7.49 dB at
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FIGURE 5. MSE of the angular RSC spectrum with its reconstructed
spectrum using a uniform- (blue), unimodal- (green), or multimodal (red)
angular DMC assumption. (a) Transmitter. (b) Receiver.

TABLE 4. MSEs between the RSC and the uniform-, unimodal- and
multimodal angular DMC assumptions for the total angular RSC spectrum
and the 95% strongest values in it.

the receiver. When applying a unimodal angular DMC dis-
tribution, this error reduces to 5.20 dB at the transmitter,
and 5.49 dB at the receiver. Moreover, when we apply a
multimodal angular DMCdistribution, this error reduces even
further to 3.57 dB at the transmitter, and 3.38 dB at the
receiver. Looking at this MSE, the multimodal angular DMC
distribution outperforms the uniform assumption by up to
4.08 dB at the transmitter, and 4.11 dB at the receiver. In com-
parison with the unimodal assumption, the improvement is
1.63 dB at the transmitter, and 2.11 dB at the receiver. If we
limit ourselves to the 95% strongest values in the angular
RSC spectrum, the error between the RSC and themultimodal
DMC assumption can be as low as 2.65 dB at the transmitter,

TABLE 5. Percentage of all measurement snapshots resulting in a certain
number of angular DMC clusters (1, 2 or 3) at transmitter and receiver by
assuming the multimodal angular DMC assumption.

TABLE 6. Relative powers of the k-means SMC clusters and the angular
DMC clusters of each von-Mises distribution.

and 2.49 dB at the receiver. From these figures and this
table, we can conclude that the multimodal angular DMC
distribution fits the RSC spectrum better than when we apply
a uniform- or a unimodal angular DMC assumption.

C. NUMBER OF ANGULAR DMC CLUSTERS
AND THEIR POWERS
Table 5 lists how many clusters are estimated (i.e., how many
modes exist in the multimodal von-Mises distribution) when
evaluating the multimodal DMC assumption.

From Table 5, we can conclude that in the angular RSC
spectrum at the transmitter, a total of 2 clusters are modeled in
the multimodal DMC assumption in around 50% of all cases
(out of all measured snapshots). In the angular RSC spectrum
at the receiver, a total of 2 clusters are modeled in around 62%
of all cases. A total of 3 clusters are modeled at the transmitter
in around 49% of all cases, whilst this is only 38% at the
receiver. From this, we can conclude that the angular RSC
spectrum at transmitter contains, on average, more clusters
in our measurement scenario. This can be explained by the
fact that the receiver is located near a wall, resulting in two
relatively stronger clusters (direct path+ reflection on the
wall).

Table 6 lists the relative power of each cluster of the k-
means clustered SMC, and the angular DMC clusters of each
von-Mises distribution, for when 2 or 3 clusters are estimated.

From Table 6, we can conclude that the power of the
SMC is often concentrated in the strongest cluster, which
contains a larger percentage of the total power on average,
often with values around 80% ormore. Looking at the relative
percentage of the power in each angular DMC cluster, we can
state that these clusters are power-wise less concentrated than
their SMC counterparts. This means that the diffuse power in
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FIGURE 6. Center values of the von Mises distributions at transmitter.
(a) Unimodal assumption. (b) Multimodal assumption.

the angular RSC spectrum is distributed more equally over
different clusters, especially over the two strongest clusters.

D. CENTER VALUES OF THE VON MISES DISTRIBUTIONS
Figure 6 shows the center values µ of the unimodal- and
multimodal angular DMC distributions at the transmitter
for the 280 distinct Tx-Rx positions, shown as a function
of their traveled length along the measurement route (0 m
to 20 m). and Figure 7 shows these center values of the
unimodal- and multimodal angular DMC distributions at
the receiver. In these figures, the direct path is shown in
black, and the angles of the dominant reflections (on all four
walls) are shown in red, blue, green and magenta. ‘Reflected
path 1’ refers to a specular reflection of a path on a wall,
resulting in the shortest path length between transmitter and
receiver. ‘Reflected path 4’ refers to a specular reflection of
a path on a wall, resulting in the longest path length between
transmitter and receiver.

Figures 6b and 7b show that the center values of the multi-
modal DMC clusters follows those of the specularly reflected
paths in the environment quite well. The black dots denote
the strongest clusters, whilst the red- and blue dots denote
the weaker clusters. We can state that the stronger cluster
characterize the direct path between transmitter and receiver
better, and the weaker clusters characterize a reflection (more
specifically, the 3rd and 4th strongest) in the environment.

FIGURE 7. Center values of the von Mises distributions at receiver.
(a) Unimodal assumption. (b) Multimodal assumption.

Visually, Figure 7b shows the multimodal assumption at the
receiver is a better fit for the direct path than the unimodal
assumption (which is shown in Figure 7a), since it follows
the direct path between transmitter and receiver better.

Table 7 lists the average differences between the center
values of the unimodal- and multimodal von Mises distribu-
tions with the angle of the closest (in angular space) physical
path in the environment. Before performing this analysis,
all 5 possible paths between transmitter and receiver were
calculated, together with their corresponding AoD and AoA
values. These 5 paths are the direct path and the four per-
fectly specular reflections in the environment (on the top
wall, the bottom wall, the left wall and the right wall). The
closest path was then the path correspondingwith the smallest
difference between each of these 5 paths and the center values
of the unimodal- and multimodal von Mises distributions.
The unimodal von Mises distribution results in only one
such difference, whilst the multimodal vonMises distribution
results in up to 3 such differences.

From Table 7, we can conclude that the angular differences
between the center values of the von Mises distributions with
the closest physical path in the environment increases from a
difference of about 6.40◦ at transmitter and 8.21◦ at receiver
when applying a unimodal DMC assumption (which only
characterizes the direct path), to about 8.91◦ at transmitter
and 10.55◦ at receiver when applying a multimodal DMC
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TABLE 7. Differences of the center values µT and µR of the unimodal-
and multimodal von Mises distributions with the AoD and the AoA of the
closest physical path in the environment.

TABLE 8. Differences of the center values µT and µR of the unimodal-
and multimodal von Mises distributions with the AoD and the AoA center
values of the clustered SMC in the environment.

assumption (which characterizes the direct path better for
Tx-Rx travel lengths up to 13 m, and also characterizes a
reflection in the environment). Moreover, we can observe that
the weaker clusters of the multimodal von Mises distribution
characterizes reflected paths in the environment, with a dif-
ference of about 10.64◦ at transmitter, and 8.89◦ at receiver
for the 2nd strongest cluster, and 18.75◦ at transmitter, and
12.47◦ at receiver for the weakest cluster. These differences
indicate a strong correlation between the center values of
the multimodal von Mises distributions with the expected
propagation phenomena (direct path and reflections) in the
environment.

Table 8 lists the average differences between the center
valuesµT andµR of the unimodal- andmultimodal vonMises
distributions with the center values of the clustered SMC in
the environment, in angular space. The SMC were clustered
using the k-means algorithm, using the same number of clus-
ters as there are in the multimodal von Mises distribution at
transmitter and receiver.

Figure 8 shows the map of the environment with the center
values of the multimodal von Mises distributions at trans-
mitter and receiver. The green lines denote the center values
of the multimodal distributions at the transmitter, whilst the
magenta lines denote the center values of the multimodal
distributions at the receiver.

Figure 8 shows that especially at the receiver, the center
values of the multimodal vonMises distributions characterize
both the direct path between transmitter and receiver, and the
reflection on the left wall. This leads us to believe that in this
measurement environment, the multimodal von Mises distri-
butions characterizes the diffuse scattering which is linked

FIGURE 8. Map of the environment with the center values of the
multimodal von Mises distributions at transmitter and receiver for
snapshot 140.

with a physical reflection in the environment. This observa-
tion is in agreement with the findings in [22] and [23], who
both model the DMC as clusters around the most dominant
SMC in the environment.

E. ANGULAR SPREADS OF THE VON MISES
DISTRIBUTIONS
Figure 9a shows the angular spreads κ (converted to ◦) of the
SMC clusters, and the unimodal- and multimodal von Mises
distributions at the transmitter, and Figure 9b shows these at
the receiver. The sizes of the dots represents the relative power
of the SMC- or the multimodal clusters. Obviously, there is
only one dot for the unimodal distribution, which contains
only a single cluster.

Figure 9a shows that the angular spread of the stronger
cluster of the multimodal von Mises distribution at the trans-
mitter and receiver (larger dots) is lower than the angular
spread of the single cluster of the unimodal von Mises distri-
bution. This finding is in agreement with our previous work
on synthetic radio channels, where we found that a multi-
modal DMC assumption models the angular spreads of an
RSC spectrum better than a unimodal assumption [28]. More-
over, Figure 9a shows that roughly 95% of all multimodal
von Mises distributions result in a lower angular spread than
the unimodal von Mises distribution, of which the stronger
cluster follows the angular spread of the SMC.

Table 9 lists the average angular spreads of the SMC, and
of the unimodal- and multimodal von Mises distributions in
the environment.

Table 9 shows that the angular spread of the SMC is
lower than those of the unimodal- and multimodal von Mises
distributions, both at the transmitter and receiver. The average
value of the angular spread of the SMC at the transmitter is
11.65◦ for the stronger cluster, and increases up to 16.60◦

for the weaker cluster. At the receiver, the angular spread
is 15.78◦ for the stronger cluster, and 15.11◦ for the weaker
cluster. The angular spreads of the unimodal von Mises dis-
tributions are 77.59◦ at the transmitter and 83.73◦ at the
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FIGURE 9. Angular spreads of the SMC clusters, and the unimodal- and
multimodal von Mises distributions. The sizes of the dots represents the
relative powers of the different clusters. (a) Transmitter. (b) Receiver.

TABLE 9. Average values of the angular spreads of the SMC, and of the
unimodal- and multimodal von Mises distributions (κT and κR) in the
environment.

receiver, which are higher values than the ones reported for
the SMC. Finally, for the multimodal vonMises distributions,
we can observe that the angular spreads of the stronger cluster
lie somewhere between those of the angular spreads of the
SMC, and those of the unimodal vonMises distributions. The
average value of the angular spread of the multimodal von
Mises distribution at the transmitter is 36.65◦ for the stronger
cluster (87% of all measured postions), and increases up to
46.96◦ for the weaker cluster (3% of all measured postions).
At the receiver, the angular spread is 40.90◦ for the stronger

TABLE 10. Required number of eigenvalues to reconstruct 90%, 95% and
99% of the power in the covariance matrix R(θd) of the measured radio
channel.

cluster (49% of all measured postions), and 39.68◦ for the
weaker cluster (17% of all measured postions).

We can conclude that the stronger cluster is more compact
than the other clusters, both for the SMC and the multimodal
von Mises distributions. By analyzing the center values of
the SMC and of the multimodal von Mises distributions,
we know that this stronger cluster characterizes the direct
path between transmitter and receiver. It can be expected that
this power is more concentrated in angular space. In contrast,
we know that the weaker cluster of the SMC and of the
multimodal von Mises distributions characterizes a reflection
in the environment. The increase in angular spread for this
weaker cluster implies that the diffuse scattering occurs at a
wider range of angles in the environment.

F. RECONSTRUCTION OF EIGENVALUES
To evaluate the accuracy of the reconstruction of the mea-
sured eigenvalues with the multimodal approach, we will first
look into how many eigenvalues are to be considered relevant
to do so. We define the k th relative eigenvalue as follows:

λk,rel =
λk
N∑
n=1

λn

, (43)

in which the relative eigenvalues are normalized with respect
to the sum of all eigenvalues of the covariance matrix of the
measured channel. This means that each relative eigenvalue
can be interpreted as a fraction of the total measured power in
the radio channel. Whilst most studies such as [26], [31], and
[43] will only look at the four strongest eigenvalues, we have
first calculated the number of eigenvalues that are required to
reconstruct 90%, 95% and 99% of the power in the covariance
matrix of the measured channel. The results of this can be
found in Table 10.

Table 10 shows that we can reconstruct 90% of the power
in the covariance matrix of the measured channel with a
mean number of 2.66 eigenvalues, 95% can be reconstructed
with a mean number of 3.47 eigenvalues, and 99% can be
reconstructed with a mean number of 6.38 eigenvalues. Note
that our measurement scenario results in a total of 24 eigen-
values. If we would only consider the 4 strongest eigenval-
ues, we could still underestimate the MIMO transmission
performance by up to 10%. On average, we can state that
we can reconstruct 99% of the power with the strongest
7 eigenvalues.
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TABLE 11. Differences between the power of the eigenvalues of the total
measured covariance matrix, and the eigenvalues of the total
reconstructed covariance matrix, either from the SMC, SMC+DMC
(uniform), SMC+DMC (unimodal) or SMC+DMC (multimodal).

FIGURE 10. Eigenvalues CDFs of space MIMO matrices of the total
channel.

Table 11 lists the differences between the power of the
eigenvalues of the total measured covariance matrix, with
the eigenvalues of the total covariance matrix reconstructed
based on either the SMC, the SMC and a unimodal DMC
assumption, or the SMC and a multimodal DMC assumption,
and this for the strongest seven eigenvalues.

From Table 11, we can state that we are able to
reconstruct the measured channel better with a multimodal
assumption than with a uniform- or a unimodal assumption,
since all eigenvalues lie consistently closer to the measured
ones. Although the improvement of our approach over the
uniform- and the unimodal assumption are less than 1 dB
by considering the eigenvalues, it results in a more accurate
reconstruction of the angular RSC spectrum. Figure 10 shows
the CDFs for the four strongest eigenvalues (we have limited
this figure to the strongest four, for visual purposes).

Figure 10 shows a modest improvement for the reconstruc-
tion of the eigenvalues when applying a multimodal angular
DMC assumption over a unimodal- or a uniform angular
DMC assumption. However, from Figure 5, we know that
the uniform- or the unimodal angular DMC assumption will
add extra power to the reconstructed channel, which helps the
reconstruction of the eigenvalues, but at the cost of ignoring
the underlying structure of the angular RSC spectrum.

VII. CONCLUSIONS
In this chapter, we have performed a channel sounding mea-
surement campaign at 11 GHz in an indoor environment.

We have analyzed the Power Angular Profile (PAP) of the
Residual Signal Components (RSC), which can be obtained
after removal of the SMC from the measured radio channel,
by estimating them with the SAGE algorithm. We found that
the RSC in the angular domain should be modeled by taking
into account multiple angular clusters, to better characterize
the diffuse scattering between transmitter and receiver, origi-
nating frommultiple reflections which occur in an indoor hall
environment. The RSC is assumed to largely consist of contri-
butions by Dense Multipath Components (DMC), originating
from distributed diffuse scattering of the electromagnetic
waves on rough surfaces. Therefore, we proposed to extend
the ML estimation of the DMC parameters in the RiMAX
algorithm from a unimodal to a multimodal assumption in
the angular domain. By doing so, we are able to model the
angular spectrum of the RSC by a multimodal von Mises
distribution (a combination of several von Mises distribu-
tions), to account for multiple clusters in this spectrum. This
allows us to better characterize the diffuse scattering between
transmitter and receiver, originating frommultiple reflections
in an environment.

We have applied our proposed method to the measured
data, which indicate that our approach leads to a better charac-
terization of the underlying structure of the angular spectrum
of the RSC. By applying our proposed method to reconstruct
this spectrum, we are able to reduce the Mean-Square-Error
(MSE) at the transmitter from about 7.65 dB with a uniform
assumption to 5.20 dB with a unimodal assumption, down
to 3.57 dB with a multimodal assumption. At the receiver,
the MSE of our method with the RSC reduces from 7.49 dB
with a uniform assumption to 5.49 dB with a unimodal
assumption, down to 3.38 dB with a multimodal assumption.
From this analysis, we can conclude that the multimodal
angular DMC assumption fits the RSC spectrum better than
when we would apply a uniform- or a unimodal assumption.
We have also found a correlation between the location of the
angular DMC clusters with the physical propagation paths
in the environment. Moreover, we have found that the mul-
timodal DMC assumption results in more compact angular
DMC clusters with a lower angular spread than when we
would apply a unimodal DMC assumption. We have also
shown that our approach is able to distinguish better between
the shadowed and the radiated regions in the RSC, of which
the multimodal DMC assumption characterizes the highs and
lows of the RSC spectrum better than the unimodal DMC
assumption.

We have also shown that our approach leads to a consis-
tently better reconstruction of the eigenvalues of themeasured
channel for this measurement scenario, and thus of the total
power in the channel. Since this is of importance to accu-
rately characterize the true Multiple-Input Multiple-Output
(MIMO) transmission performance, and to assess the channel
capacity of wireless communication systems, this highlights
the necessity of taking into account a multimodal DMC
assumption over a unimodal one. Although the obtained
improvements of our multimodal DMC assumption are
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modest when considering the reconstruction of the eigenval-
ues, we know that the improvements of assuming of uniform-
or a unimodal DMC assumption are flawed when looking at
their reconstructed angular DMC spectra. By analyzing these
spectra, we know that they either average the entire spectrum
with a uniform assumption, or result in faulty estimates of
their center locations and angular spreads with a unimodal
assumption.
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