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Summary
Annoyance caused by environmental noise intruding the private dwelling and perception of the sonic
environment in public spaces share a critical dependence on the detection of salient sound events.
During everyday activities, the probability of noticing a sound in the complex sonic environment
is proportional to how much this sound stands out of its context. Based on a thorough review of
human auditory processing, scene analysis and attention, we propose a computational model that
allows to identify salient sounds in a complex environment. The tonotopic model possesses a unique
capability to trace amplitude modulations and phase sweeps, which are features that the human
auditory system is highly sensitive to. The model is validated by exploring its response to sound
environments with known annoying characteristics such as short rise times and impulses and results
are contrasted against Zwicker loudness.
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1. Introduction

Soundscape research has shown that sounds which are
noticed influence the perception of soundscape [1].
While walking through an urban environment, peo-
ple generally pay little attention to details in the au-
diovisual environment when not asked to do so [2].
Most environmental sounds may therefore remain un-
noticed and hence would not contribute to the cog-
nitive appraisal of the sonic environment. However,
some sounds have intrinsic characteristics that sep-
arate them from their background. The measure of
separation is sound saliency—the degree of how much
a sound stands out in the sonic environment.
The two most important saliency traits are sensory

saliency, which is determined by the enhanced sen-
sitivity or tuning of the human hearing system for
specific sound features, and semantic saliency, which
requires recognition of the sound and incongruency
within the environment [3]. Sensory saliency has been
investigated by explicitly identifying features that in-
crease the behavioral response or by resemblance of
the spectrogram with visual saliency [4]. By associ-
ating sensory saliency to the tuning of the human
auditory system, brain imaging techniques can also
serve as a starting point for creating computational
sound saliency models. In [5] it was shown that topo-
graphically localized regions of the brain respond to
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specific spectrotemporal sound modulations, i.e. am-
plitude and frequency modulation ripples.

Several models for evaluating saliency based on
modulations have been proposed throughout the years
[6, 7, 8]. Building on that knowledge, a model for
sensory saliency that accounts for amplitude and fre-
quency modulations on top of a tonotopically orga-
nized representation of sounds in the auditory sys-
tem [9] was improved and evaluated. The model was
created with soundscape research in mind—it utilizes
techniques that enable a constant stream of input
while the simplification of the computationally ex-
pensive calculations enables it to run in real time on
a smaller device. Therefore, this biologically inspired
model would enable analysis of large amounts of data
available in soundscape studies thus bridging the gap
between highly complex auditory neuroscience models
and simple indicators used in soundscape research.

2. Computational models for notice-
ability evaluation

The stages of the computational model for auditory
saliency are presented on Figure 1. The acoustic input
is fed to an auditory periphery model [10] that sim-
ulates how the sound is represented up to the level
of the auditory brainstem. The model output at each
tonotopic regio is used as an input to the model of
higher band processing: auditory cortex and sensory
activation.

The auditory cortex stage is modeled using spec-
trotemporal modulation representations [11]. In this
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Figure 1. Stages of the computational model for auditory
saliency—output of auditory periphery is used as an input
to the simulation of higher brain processing [11].

stage, an input consisting of several frequency band
signals is passed through a series of resonator filters
with their resonance on different amplitude modula-
tions (AM). Afterwards, the signal on each frequency
band is delayed using the buffers with the length cor-
responding to the frequency modulation (FM) on the
exact frequency band. The next step includes overlap-
ping summation across several frequency bands, thus
reducing the number of output bands. Finally, to re-
move the rippling effect in the output, the maximum
is taken across buffers with the length related to the
amplitude modulations. Therefore, at each time step,
the output consists of three dimensions: AM, FM and
(a reduced number of) frequency bands. Sensory acti-
vation is modeled by excitation and inhibition integra-
tion with different rise and fall time constants [9, 11].
Finally, the overall saliency is calculated by summing
over all outputs of the sensory activation stage.
Several models for the auditory periphery have been

published previously [12, 13, 14]. Nevertheless, in this
paper we compared the two most distinct options: fast
implementation with Gammatone filterbank and com-
plex simulation of the physical processes that take
place in the auditory system [10]. On the one hand,
a fast implementation is necessary for being able to
use the model with large datasets usually available
in soundscape studies. On the other hand, complex
simulation of the auditory system is desired when the
model is used for simulating and evaluating more de-
tailed characteristics of human hearing.

In general, for determining noticeability of sound
events, soundscape studies apply simplified models us-
ing commonly established psychoacoustic indicators
[15]. Therefore, in this study, two additional models
based on such indicators were included: Zwicker loud-
ness according to the ISO 532-1 standard [16] and the
energy-equivalent continuous A-weighted sound pres-
sure level (LAeq). We evaluate our model against those
standard approaches to see if the biologically inspired
models perform better.

3. Evaluation of environmental sounds

The models were compared using two groups of sound
signals. A first batch was created by combining back-
ground traffic noise with a 1000 Hz pure tone beep
at five different levels (”Peak in noise”). It should

Figure 2. Response of the computational saliency model
based on spectrotemporal modulations with fast Gamma-
tone periphery on different levels of beep in traffic noise.

be noted that the sound was created with random-
ized time of the beep start, to remove the influence
of traffic noise characteristics in the output detection.
In turn, such signals would determine at which input
level the signal-to-noise ratio (SNR) of the beep to
background noise in the input would enable a clear de-
tectability in the output. Furthermore, a second batch
of sounds was created by varying the rise time (”Slope
change”) of a particular segment of industrial noise,
which would demonstrate if and how much the rise in
the input influences the magnitude of the output [17].

3.1. Changing the level of a beep in traffic
noise

The response of the saliency model based on spec-
trotemporal modulations with Gammatone auditory
periphery on different levels of the 1000 Hz beep is
displayed on Figure 2. As it can be seen, the peaks
corresponding to the onset of the beep are clearly de-
tected up to 20 dB(A) of the lowest level of the beep.
On the other hand, for the same auditory saliency im-
plementation but with complex ear model periphery
only the highest two peaks are detected (Figure 3)
which is due to the masking implemented in the ear
periphery.

Furthermore, although the same parameters were
used for the higher brain processing stage, the saliency
output with the ear periphery exhibits a faster decline
from the peak (i.e. shorter fall time). This trait stems
from the inhibition already included in the response of
the auditory nerve fiber. At the same time, the loud-
ness model (Figure 4) as well as the amplitude of the
equivalent level (Figure 5) exhibit no decrease of the
output for the duration of the tone. Finally, for the 30
dB(A) beep, the amplitude calculated from equivalent
continuous A-weighted level demonstrates better de-
tectability of the onset peak than the loudness model
output.



Figure 3. Response of the computational saliency model
based on spectrotemporal modulations with complex ear
model periphery on different levels of beep in traffic noise.

Figure 4. Zwicker loudness on different levels of beep in
traffic noise.

Figure 5. Equivalent continuous A-weighted sound ampli-
tude on different levels of beep in traffic noise.

3.2. Changing onset slope of the industrial
noise

The output of the four models in relation to rise time
was checked using the industrial noise with varying

Figure 6. Response of the computational saliency model
based on spectrotemporal modulations with fast Gamma-
tone periphery on different rise times of the industrial
noise.

Figure 7. Response of the computational saliency model
based on spectrotemporal modulations with complex ear
model periphery on different rise times of the industrial
noise.

onset slopes (from the fastest rise of 20 dB/s down to
the slowest 4 dB/s). The saliency model with Gam-
matone periphery (Figure 6) displays an increase in
saliency magnitude for the steepest onset, therefore
showing the influence of the higher onsets on the
saliency output.

Furthermore, for the saliency model with ear pe-
riphery (Figure 7) the change was detected in the la-
tency difference with relation to different rise times
corresponding to the fact that the ear reacts faster
for steeper rises.

Finally, the loudness and sound amplitude (Figures
8 and 9) were found not to be dependent on the slope,
but their outputs were instead following the rise up
to a steady signal proportionally to the onset.



Figure 8. Zwicker loudness on different rise times of the
industrial noise.

Figure 9. Equivalent continuous A-weighted sound ampli-
tude on different rise times of the industrial noise.

4. Conclusions

In this paper we presented the assessment of notice-
ability of representative sound events that might oc-
cur in environmental sound context. The comparison
included four models appropriate for evaluation of
sound events in soundscape research: saliency based
on spectrotemporal modulations with Gammatone
periphery, saliency based on spectrotemporal modula-
tions with ear periphery, Zwicker loudness and finally
energy-equivalent continuous A-weighted sound pres-
sure level.
It was shown that the biologically inspired auditory

saliency model based on spectrotemporal modulations
with Gammatone auditory periphery had clear detec-
tion of the beep signal inside the traffic noise even for
low signal-to-noise ratios. Moreover, the same model
had a higher response for the fastest rise time in com-
parison to other models. Consequently, the shown ex-
amples indicate that the computational model of au-
ditory saliency based on spectrotemporal modulations
adds valuable information for evaluation of noticeable
events occurring in a sonic environment.

To further investigate the appropriateness of the
proposed model, future studies will include evaluation
of the stimuli used in auditory neuroscience experi-
ments as well as the artificially created sound signals
relevant for soundscape studies. Finally, the model
will be validated with experimental data obtained
through a continuous evaluation of sound saliency
during walking trips through urban environments.
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