
Fast Collision Detection for Nanosimulators
Pieter Stroobant∗, Luca Felicetti†, Wouter Tavernier∗, Didier Colle∗,

Mauro Femminella†, Gianluca Reali† and Mario Pickavet∗
∗ IDLab, Ghent University - imec, † Department of Engineering, University of Perugia

Email: pieter.stroobant@ugent.be, ing.luca.felicetti@gmail.com, wouter.tavernier@ugent.be,
didier.colle@ugent.be, mauro.femminella@unipg.it, gianluca.reali@unipg.it, mario.pickavet@ugent.be

Abstract—Particle-based nanosimulators are an indispens-
able tool for studying diffusion-based molecular communication
(DMC) processes in which the diffusion process is affected by
interactions among the involved particles. Efficiently finding
which particles are interacting is a computationally challenging
task and can easily become a bottleneck. This paper studies
different techniques that allow to detect which particles are
interacting/colliding. Recursive and hierarchical grid based ap-
proaches are proposed and a GPU and multithreaded CPU
implementation are evaluated and compared to an existing
nanosimulator.

Index Terms—collision detection, multi-level grids, nanocom-
munication

I. INTRODUCTION

Within the context of diffusion-based molecular commu-
nication, there are cases in which the impact of interactions
between emitted particles cannot be ignored. For example,
when the density of the transmitted molecules is high, the
collective diffusion behaviour may be affected [1].

Particle-based nanosimulators, such as BiNS2 [2] [3] and
N3Sim [4], take the effect of these interactions into account
by tracking of the positions of all particles that may interact.
Nano-objects are enclosed by a bounding volume, such that
interaction between the objects may occur only if the bounding
volumes are overlapping.

Starting from a typical nanonetwork setting, this work pro-
poses several algorithms that allow to find collisions between
these bounding volumes. Realistic nanonetworks feature a
large number of transceivers, possibly resulting in millions
of nano-objects. With this in mind, we pay attention to
parallelism and aim to significantly improve upon the detection
times of existing nanosimulators. The resulting algorithms are
compared to a collision detection algorithm that is imple-
mented in the BiNS2 simulator.

II. SETTING

Several properties of nanocommunication and -networks are
important to consider when designing a collision algorithm:

• the majority of the objects are moving: datastructures
must either allow fast updates, or efficient construction
(such that they can be rebuilt at each timestep);

• the object aspect ratio is typically small: nano-objects and
biological cells are usually not elongated and bounding
spheres allow for a reasonably tight fit;

• object types can be of widely varying sizes: for example,
transceivers can exceed the size of the emitted particles
by several orders of magnitude;

• the number of objects greatly outnumbers the number of
different object types and size variation within a single
object type is limited: a simulation may contain several
types of nanomachines/cells, but machines of the same
type are similar in size;

• objects may be evenly distributed through the environ-
ment, but they might also be concentrated in certain areas

III. ALGORITHMS

Based on the requirements concerning update/build costs
and the object shapes, partitioning the environment with uni-
form grids is straightforward approach. The simulated space
is overlaid with a grid and each object is mapped to all
overlapping grid cells. Colliding object pairs can be found
by iterating over all cells and verifying the whether there is
a collision between objects that are mapped to the same cell.
Grids have very low construction times and combine well with
spherical object shapes [5].

However, uniform grids are inefficient in handling object of
varying sizes. Recursive grids solve this problem by mapping
all objects to a grid with a size corresponding to the largest
object size. This grid is used for finding collisions that involve
at least one large object. Collisions between small objects
that are mapped the same grid cell are found by recursively
constructing a smaller grid.

Since objects may be spread out over a large environment,
we cannot use a dense array to store the cells, as such
an approach might cause unlimited memory consumption.
Therefore, the rastercell coordinates are hashed. We implement
two flavours of our recursive grid algorithm: one in which
a hashtable stores objects that are mapped to the same cell
(HashGrid), and another approach in which an array is filled
with pairs of (cellId, objectId)s (ArrayGrid). By sorting this
array on cellId, the objects with the same cellId are stored
after each other, and any cellId can quickly be retrieved by
employing a binary search. This array-based approach is a
well-known technique for grid construction in GPUs [6], [7],
but we are unaware of any multi-core CPU implementations.

Both algorithms can easily be parallelized: the size of the
hashtable can be precalculated and objects that are mapped to
the same slot can be efficiently chained by employing a lock-



free linked lists. The array representation can be efficiently
sorted using a parallel radix sort [8].

Additionally, we optimized the array-based recursive al-
gorithms for efficient GPU execution. This approach uses
a hierachical grid, rather than a recursive grid: instead of
creating a smaller grained grid for each rastercell separately,
all the smaller sized objects are bundled when constructing the
smaller grid (EagerGrid). We also implemented an opportunis-
tic/lazy version of this algorithm (LazyGrid). In this variant,
smaller sized objects that are mapped to the same rastercell
are not passed to the smaller level grid, if their number is
limited. In that case, a brute force approach is used to detect
the collisions between the smaller sized objects. This technique
allows avoiding the construction of smaller grained grids if the
concentration of the small sized objects is limited.

IV. RESULTS

To evaluate the performance of the proposed algorithms for
varying numbers of same-sized objects, we randomly generate
scenarios with the required number of spherical objects, uni-
formly distributed in a spherical environment. The radius of
the sphere is selected to maintain a constant density of 5% (i.e.
a fraction 5% of the volume is filled with nano-objects). The
resulting measurements, for an Intel Xeon E5645 processor,
connected to an Nvidia Geforce GTX 580 are reported in Fig.
1a. The collision times for performing naive all-pairs collision
detection are provided for comparison purposes.

All the proposed algorithms have a linearly increasing
detection time and therefore outperform the BiNS2 sort-and-
sweep algorithm. Furthermore, the arraygrid algorithm clearly
outperforms the hashgrid algorithm. This is due to the memory
access pattern of the hashgrid algorithm: during construction,
it requires random memory accesses to a very large hash table.
For equisized objects, both GPU algorithms behave identically,
and thus achieve the same performance.

We also measured the collision detection time for sce-
narios with 5, equally frequent, object types of radius
1/20, 1/21, ..., 1/24. Figure 1b compares the average com-
puting time for 5 object types to the measurements with
one object type. We notice that the collision detection time
decreases for the recursive grid algorithms and the GPU lazy
grid algorithm. This is because smaller sized objects are
mapped to fewer rastercells, speeding up the raster building
process. Additionally, these algorithms are able to avoid the
construction of small grained grids. This is in contrast to the
eager grid algorithm, which always needs to build as many
grid levels as there are object sizes.

V. CONCLUSION

We proposed, implemented and evaluated several varieties
of multi-level grid collision detection algorithms for nanocom-
mmunication simulations, both on CPU and on GPU. The
proposed algorithms outperform the existing solutions by
a significant margin, and have potential to accelerate the
nanosimulators, allowing for more complex simulations and
faster results.

(a) Equisized objects

(b) Equisized objects (full line) vs. 5 object sizes (dashed line)

Fig. 1: Average collision detection time for varying numbers
of objects

ACKNOWLEDGEMENTS

Pieter Stroobant is funded by a Ph.D. grant of Ghent
University, Special Research Fund (BOF).

REFERENCES

[1] A. J. C. Ladd, H. Gang, J. X. Zhu, and D. A. Weitz, “Time-dependent
collective diffusion of colloidal particles,” Phys. Rev. Lett., vol. 74,
pp. 318–321, Jan 1995.

[2] L. Felicetti, M. Femminella, and G. Reali, “A simulation tool for
nanoscale biological networks,” Nano Communication Networks, vol. 3,
no. 1, pp. 2–18, 2012.

[3] L. Felicetti, M. Femminella, and G. Reali, “Simulation of molecular sig-
naling in blood vessels: Software design and application to atherogenesis,”
Nano Communication Networks, vol. 4, no. 3, 2013.

[4] I. Llatser, D. Demiray, A. Cabellos-Aparicio, D. T. Altilar, and E. Alarcón,
“N3sim: Simulation framework for diffusion-based molecular communi-
cation nanonetworks,” Simulation Modelling Practice and Theory, vol. 42,
pp. 210 – 222, 2014.

[5] C. Ericson, Real-Time Collision Detection. Boca Raton, FL, USA: CRC
Press, Inc., 2004.

[6] J. Kalojanov and P. Slusallek, “A parallel algorithm for construction of
uniform grids,” in Proceedings of the Conference on High Performance
Graphics 2009, HPG ’09, (New York, NY, USA), pp. 23–28, ACM, 2009.

[7] J. Kalojanov, M. Billeter, and P. Slusallek, “Two-Level Grids for Ray
Tracing on GPUs,” in EG 2011 - Full Papers (O. D. Min Chen, ed.),
(Llandudno, UK), pp. 307–314, Eurographics Association, 2011.

[8] J. Wassenberg and P. Sanders, “Engineering a multi-core radix sort.,” in
Euro-Par (2) (E. Jeannot, R. Namyst, and J. Roman, eds.), vol. 6853 of
Lecture Notes in Computer Science, pp. 160–169, Springer, 2011.


	Introduction 
	Setting 
	Algorithms 
	Results 
	Conclusion 
	References

