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Abstract—We present in our work numerical results on the per-
formance of a 4 × 4 swirl-topology photonic reservoir integrated
on a silicon chip. Nonlinear microring resonators are used as nodes.
We analyze the performance of such a reservoir on a classical non-
linear Boolean task (the delayed XOR task) for: various designs of
the reservoir in terms of lengths of the waveguides between con-
secutive nodes, and various injection parameters (injected power
and optical detuning). From this analysis, we find that this kind
of reservoir can perform–for a large variety of parameters–the de-
layed XOR task at 20 Gb/s with bit error rates lower than 10−3

and an averaged injection power lower than 2.5 mW.

Index Terms—Reservoir computing, silicon photonics, ring
resonators.

I. INTRODUCTION

THE development of machine learning solutions in the phys-
ical layer appears as a promising approach to address the

new challenges brought by the increasing amount of data to pro- 
cess [1]. Compared to existing software-based solutions, dedi- 
cated hardware platforms allow to process data at higher speed 
and better energy efficiency [2], even enabling real-time compu- 
tation [3]. Amongst the existing machine-learning approaches, 
reservoir computing - a supervised learning technique that ap- 
peared a decade ago - has focused a lot of attention [4]–[6]. This 
is mainly due to its relatively straightforward implementation, 
both in software and hardware, and a simple training proce-

 

dure. As a result, this concept has displayed state-of-the-art
performance on various hardware platforms [7]–[9], including
photonics ([10] and references therein).

Photonics reservoir computing (PRC) is a candidate technol-
ogy that has attracted lots of attention in the last few years [11]–
[24], due to its ability to perform typical tasks of artificial
neural-networks: emulation of simple boolean operations [23],
pattern generation [24], chaotic time series prediction [17], or
bit-sequences recognition [20]. Multiple photonic implemen-
tations have been proposed and they include a single nonlin-
ear node with delayed feedback such as optoelectronic oscilla-
tors [11] and laser diode with optical feedback [12]; coupled
photonic crystal cavities [24], integrated photonic reservoirs us-
ing passive nodes made of delay lines and splitters [22], [23],
networks of semiconductor optical amplifiers [19], or networks
of InGaAsP/InP-based ring resonators [20].

In this work, we propose a novel photonics architecture
of reservoir computing integrated on a silicon chip, using
Silicon-on-Insulator (SOI) microring (MR) resonators as non-
linear nodes. This integrated element exhibits rich nonlinear
dynamical behaviors [25]–[31]. SOI microrings resonators are
mostly used as optical filters [32], but can also be integrated
in more complex architectures and perform other types of all-
optical information processing such as boolean functions [33],
thresholding [34], pulse restoration [35], or ASK-to-PSK
conversion [36].

We build here a 4 × 4 swirl reservoir topology using SOI mi-
croring resonators as nodes. We perform an in-depth numerical
analysis of the performance of such a reservoir and investi-
gate the impact of new degrees of freedom, namely the injected
power, the optical detuning, and possible resonance mismatches
between the microring resonators. The performance of the reser-
voir architecture is based on the typical delayed XOR task by
quantifying the bit-error rate (BER). We compare the perfor-
mance of our reservoir with those of a similar topology, but
using linear nodes made of waveguides, splitters, and combin-
ers [22], [23]. We demonstrate that our architecture can reach
BER level comparable to those of the passive reservoir (<10−3)
at data rate of 20 Gb/s, and over a wide range of design param-
eters. Furthermore, the power consumption required to reach
this level of performance using Return-to-Zero (RZ) input sig-
nal is only 2.4 mW (0.15 mW per node), which is in the same
order of magnitude than the power used in the previous design,
where Non-Return-to-Zero (NRZ) input signals were necessary
to perform at best.
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Fig. 1. Illustration the 4 × 4 swirl topology of the photonics reservoir under
investigation. Each node is a nonlinear microring resonator. Nodes are linked
by waveguides with typical losses of 3.0 dB/cm.

This work is organised as follows. We first describe the theo-
retical reservoir model used in our numerical simulation, and the
physical model of a SOI nonlinear microring resonator, which
is the building block of the reservoir. Then after that, from an
analysis of the stability of a nonlinear ring resonator, we study
the optimum parameters of injection (power injected in each
node, and optical detuning) for the reservoir in order to get the
best performance. Then we present the simulated performance
of the new reservoir architecture studied in this work. Finally, a
last section is devoted to discussions and conclusions.

II. RESERVOIR MODEL

The photonic reservoir is a 16-node (4 × 4) swirl reservoir
in which each node is a nonlinear microring resonator (see [25],
[26] and the following section). The swirl topology - intro-
duced in [22] and [23] - allows sufficient mixing of the input
signals while satisfying to the planarity constraint of an inte-
grated implementation and minimizing the power losses in the
structure at each combiner. The connections between neighbour-
ing nodes are ensured by long waveguides, which introduce a
non-negligible inter-delay due to the finite-time propagation of
optical signals. We depict in Fig. 1 a schematic of the integrated
photonic reservoir studied in this work.

The reservoir model is given by (1)–(2):

x[k + 1] = f (x[k],Wresx[k] + Win (u[k + 1] + ubias)) ,
(1)

yout[k] = Woutxdetector [k]. (2)

Equation (1) is the reservoir state update equation, where x is
the state of the reservoir; f is a nonlinear vector field to account
for the nonlinear behaviour of the reservoir nodes and u is the
input signal to the reservoir. ubias is a bias signal applied to the
nodes of the reservoir, that can be non-zero in the case of NRZ
signals, or - as in our case - zero for RZ signals. Wres is the
interconnection matrix, that represents the connections between
the nodes of the reservoir, and taking into account splitting
ratios, losses, and random phase shifts uniformly distributed on
[−π, π]. Finally, Win is the input matrix, representing the input
weight on each node. In our architecture, we inject the same
power modulation in all the active nodes with random phase
shifts, hence Win is a 16 × 16 diagonal matrix with random
elements sampled from a uniform distribution over the interval
[−π, π].

Fig. 2. Illustration of a SOI microring resonator as a nonlineaer node of the
reservoir. The node is a two-ports photonics component integrated on silicon.

Equation (2) gives the output yout of the reservoir. xdetector
are the states of the reservoir after the detectors, and Wout is
the readout matrix comprising the output weights that need to
be determined through training by a ridge regression.

The detector used in our simulations is the same as the one
used in previous work [23] and its model is based on the Alpha-
las UPD-15-IR2-FC photodetector. This takes into account the
bandwidth limitation of the detector (modelled by a low-pass
filter with a 3 dB cutoff), the response-time limitations, the re-
sponsivity, and various noise contributions, including shot noise
and thermal noise. The total noise σ2

n is given by (3):

σ2
n = 2qB (〈I〉 + 〈Id〉) +

4kB TB

RL
, (3)

where B is the bandwidth (B = 25 GHz), 〈I〉 and 〈Id〉 are
respectively the mean value of the photocurrent and the dark
current (〈Id〉 = 0.1 nA), q is the elementary particle charge,
kB is Boltzmann’s constant, T is the temperature (in K), and
RL is the load impedance (RL = 50 Ω). The mean value
of the photocurrent is calculated from 〈I〉 = r · NEP · √B
and the values given in the datasheet of the photodetector:
the responsivity r = 0.5 A/W, and the noise equivalent power
(NEP = 10−15 W/

√
Hz).

III. SINGLE NODE OF THE RESERVOIR

A. Nonlinear Microring Resonator

We present in this section the detailed model of a nonlin-
ear microring resonator, used as one of the building blocks of
our reservoir architecture, and shown in Fig. 2. The theoretical
framework we use is based on the well-established coupled-
mode theory (CMT). The model described in our work has al-
ready been proposed and was able to correctly describe for the
SOI microrings a wide range of dynamical behaviors observed
experimentally [25], [26].

The input/output relation is given in (4), in which sin is the
input signal (with Pin = |sin |2 the input power), sout the output
signal (with Pout = |sout |2 the output power), φc the phase
propagation in the bus waveguide, κ the coupling between the
bus waveguide and the microring, and a the complex amplitude
of the optical mode in the cavity (with |a|2 the energy in
the cavity).

sout = ejφc sin + κa. (4)

The state variables of the SOI nonlinear microring resonator
within the CMT-framework are: a the complex amplitude of
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the optical mode, ΔT the mode-averaged temperature differ-
ence between the circular waveguide of the microring and its
surroundings, and N the number of free carriers. These vari-
ables account for the physical effects taking place in a nonlinear
microring resonator: specifically, (i) the two-photon absorption
(TPA), which generates free carriers; (ii) the free carrier absorp-
tion (FCA) (i.e.) absorption of light by the free carriers; (iii) the
free carrier dispersion (FCD) and (iv) losses.

The nonlinear dynamical equations controlling the temporal
evolution of the three state variables are given in (5)–(7), with
typical time scales τa ≈ 21 ps, τth = 65 ns, and τf c = 5.3 ns.

da

dt
=

[
j (ωr + δωnl − ω) − γloss

2

]
a + κsin , (5)

dΔT

dt
= −ΔT

τth
+

Γthγabs |a|2
ρSicp,S iVth

, (6)

dN

dt
= − N

τf c
+

ΓF C AβSic
2 |a|4

2�ωV 2
F C An2

g

, (7)

where ω = 2πc/λ and ωr = 2πc/λr with λr = 1552.770 nm
are the frequency of the input light and the resonance frequency
of the ring, respectively. The relaxation times for the temper-
ature variations and the free carriers are respectively given by
τth and τf c . TPA in silicon is governed by the constant βSi .
nSi , cp,S i , and ρSi , which are the refractive index, the thermal
capacity, and the density of the bulk silicon, respectively. We
neglect dispersion, thus the group index ng is equal to nSi .
We also define the effective volumes and confinements for each
nonlinear effect: VF C A , ΓF C A , VT P A , and ΓT P A .

Losses also play an important role, as they introduce coupling
between the three state variables. The total loss γloss results
from the sum of absorption losses γabs , coupling losses into the
waveguide γcoup (with κ = j

√
γcoupejφc ), and radiation losses

γrad . The absorption losses in the ring are due to linear surface
absorption, TPA, and FCA, as presented in (8):

γabs = γabs,lin + ΓT P A
βSic

2 |a|2
n2

gVT P A
+ ΓF C A

σSic

ng
N, (8)

where γabs,lin is the linear absorption constant, and σSi is the
absorption cross section of FCA in silicon. In the case of a
critically coupled ring, we also have γcoup = γabs,lin + γrad .

Finally, we give in (9) the expression of the nonlinear detuning
δωnl , that is caused by the thermo-optic effect and FCD, while
the Kerr-effect is here neglected:

δωnl = −ωr

ng

(
dnSi

dT
ΔT +

dnSi

dN
N

)
. (9)

As for any optical injection study, the two parameters of
interest are the input power Pin = |sin |2 , and the wavelength
difference between the injected light and the resonance wave-
length of the nonlinear microring resonator, that is the optical
detuning δλ = λ − λr . For the other parameters of the model,
we use the typical numerical values listed in Table I [25], [26].
These values will be later used in all our numerical simulations.

TABLE I
PARAMETERS VALUES USED IN THE SIMULATIONS OF THE MICRORING

MODEL, ADAPTED FROM [25] AND [26]

IV. OPERATING POINT OF THE RESERVOIR

It is necessary to choose an operating point of the reservoir to
achieve a good level of performance to solve complex tasks. It
was demonstrated that an adequate operating point for a reser-
voir is a fixed point, close to instabilities in order to maximize
the complexity of the transient to the steady-state [37]. We make
the simple assumption that the reservoir will be in a steady state
if a single node of the reservoir is on a fixed point. This is a
reasonable assumption because of the weak linear optical cou-
pling due to the losses induced by the waveguides (3 dB/cm),
the splitters (3 dB for each splitter), and the combiners (3 dB
for each combiner).

Hence, we first simulate a single, uncoupled, nonlinear mi-
croring resonator subjected to steps of optical power between
Pin0 = 0 mW and several maximum values Pin1 . The simu-
lations are performed as follow: we integrate the CMT-model
of the nonlinear microring resonator (see [25] and [26] for the
equations and the parameters values) over 2.5 μs with a power
step from Pin0 = 0 mW to the value of Pin1 at t = 100 ns. We use
an Euler integration method with a 1.0 ps integration time step,
and a 10.0 ps sampling time. These simulations are performed
using the Caphe software environment [38].

We then extract from the time series the consecutive extrema
for each value of the maximum input power, after deleting the
transients. We plot the extrema for each value of the maximum
input power at different values of the optical detuning, and obtain
the bifurcation diagrams shown in Fig. 3(a)–(c), for respectively
(a) δλ = 0 pm, (b) δλ = −50 pm, and (c) δλ = 50 pm.

Fig. 3(a) shows the output power of a microring resonator
with an optical detuning δλ = 0 pm, which is a fixed point for
Pin1 < 0.52 mW, and a self-pulsation (SP) for Pin1 > 0.54 mW.
For an optical detuning δλ = −50 pm (see Fig. 3(b)), the output
power is always a fixed point for Pin1 < 2.0 mW. Finally, we see
in Fig. 3(c) that, for an optical detuning δλ = 50 pm, the output
power is stationary for Pin1 < 0.38 mW, and a self-pulsating for
Pin1 > 0.40 mW.



Fig. 3. (a)–(c) Bifurcation diagrams of a single nonlinear microring resonator.
The bifurcation parameter is the injected power Pin (in mW), and we give
the diagrams for various values of the optical detuning. (a) δλ = 0 pm, (b)
δλ = −50 pm, and (c) δλ = 50 pm. (d) Stability map of a nonlinear microring
resonator in the (δλ, Pin ) plane. Figure adapted from [25] and [26], using
continuation techniques.

From these bifurcation diagrams, we identify an operating
point for the reservoir in terms of power amplitude modula-
tion, for each value of the optical detuning. For δλ = 0 pm,
we choose Pin1 = 0.5 mW (close to the SP bifurcation point).
For δλ = −50 pm, any value of the injected power is possi-
ble, but we also choose Pin1 = 0.5 mW to guarantee low levels
of energy consumption. Finally, for δλ = 50 pm, we choose
Pin1 = 0.3 mW.

Finally, in Fig. 3(d), we present a theoretically obtained sta-
bility map of a nonlinear microring resonator. This shows the
ring’s dynamical behavior in the optical detuning/injected power
plane, and for a given set of injection parameters. We find three
different regions associated to stable fixed points, self-pulsing,
and bistability when two different states can be reached de-
pending of the initial conditions. Each region is delimited by
bifurcation points: two saddle-node and a supercritical Hopf bi-
furcation for the bistable and self-pulsing region, respectively.
Note that this map was originally presented in a normalized
parameter plane [25], [26], but we have recomputed it with
continuation techniques and reformatted it with respect to our
parameters of interest.

With Fig. 3(d), it is possible to extract the information of
Fig. 3(a)–(c) for any optical detuning; thus finding the value
of injected power for which the microring is on a fixed point
close to self-pulsing. This allows to set an optimal operating
parameter conditions for the reservoir.

V. NUMERICAL SIMULATIONS: METHODS & PERFORMANCE

A. Simulation Methods

We obtain the reservoir states through the simulation, using
the Caphe photonic circuit simulator [38], of the 4 × 4 (16
nodes) swirl reservoir, described by (1) and (2), using nonlinear
microring resonators as nodes.

The performance of the reservoir is measured on the delayed
XOR task, as defined in (10). The current output bit y[n] for this
task is the Boolean XOR operation between the current input
bit x[n] with the bit that is ndelay bits in the past x[n − ndelay ].
This task is considered as the most difficult two-bits binary

delayed task, due to the nonlinear separability in machine
learning terms [23]. In our simulations, we always assume
ndelay = 1.

y[n] = x[n] ⊕ x[n − ndelay ]. (10)

The bit stream fed into the reservoir consists of 20 000 ran-
domly chosen bits. The training of the linear readouts is per-
formed using regularized ridge regression on 16 000 bits, using
the scikit-learn library [39]. The testing is done on the 4 000
remaining bits, for a regularization parameter chosen using the
best case from a five-fold cross-validation. We report the error
rates on the test data, hence the minimum measurable error rate
is 2.5 × 10−4 . Multiple-input simulations are performed with
the same bit stream injected simultaneously with the same in-
put power weights on all 16-nodes. For the readout layer, we
also use the discrete states xdetector of all 16-nodes to perform
the training and the testing of the reservoir. We use in all our
performance simulations a sampling rate of 160 Gb/s.

In this work, we investigate the optimal design of the reservoir
in terms of interconnection lengths, for a fixed data rate. Hence,
we will plot the reservoir performance as a function of the
reservoir inter-delay, that is the time the light needs to travel in
the waveguide from one node to the next. The length L of the bus
waveguide between two consecutive nodes can then be obtained
through (11), where nSi = 3.476 is the refractive index of the
bulk silicon, and tdelay is the reservoir inter-delay.

L =
c × tdelay

nSi
. (11)

The section is organised as follows: we present the perfor-
mance of the 16-nodes reservoir when focusing alternatively on
the influence of the bit rate, the optical detuning and the power
modulation.

B. Performance: Influence of the Bit Rate

The reservoir performance is plotted in Fig. 4. We focus on
the influence of the data rate, and give the performance as a
function of the reservoir inter-delay at 10 Gb/s (black dots),
15 Gb/s (red squares), 20 Gb/s (blue triangles), and 30 Gb/s
(green diamonds), respectively. In order to compare with pre-
vious work, we give in Fig. 4(a) the performance of the fully
passive reservoir of [22] and [23], and in Fig. 4(b) the perfor-
mance of the reservoir using nonlinear microring resonators as
nodes (called MR-reservoir for clarity purposes).

In the case of the passive reservoir (Fig. 4(a)), the bit stream
is fed on all nodes through a power modulation from Pin0 =
0.1 mW and Pin1 = 0.2 mW. In the MR-reservoir (Fig. 4(b)),
we fix the optical detuning at δλ = 50.0 pm, and we modulate
the injected power between Pin0 = 0.0 mW and Pin1 = 0.3 mW,
according to the optimal injection parameter conditions deter-
mined previously. In this reservoir, all microrings have the same
resonance frequency, and we have used the photodetector model
previously described.

The results presented in this figure suggest that the reservoir
with nonlinear microrings as nodes can perform the typical
delayed XOR task with error rates about 2.5 × 10−4 (lowest
achievable value with the number of bit used in testing) for



Fig. 4. Error rate - for the XOR task - as a function of the reservoir inter-
delay for various bit rates: 10 Gb/s (black dots), 15 Gb/s (red squares), 20 Gb/s
(blue triangles), and 30 Gb/s (green diamonds). Comparison between (a) the
passive reservoir of [22] and [23], and (b) the dynamically active reservoir. (a)
We modulate the injected power between Pin0 = 0.1 mW and Pin1 = 0.2 mW.
(b) The optical detuning is δλ = 50.0 pm, and we modulate the injected power
between Pin0 = 0.0 mW and Pin1 = 0.3 mW. The minimum acceptable error
rate is 2.5 × 10−4 .

Fig. 5. (a) Time series of four different nodes of the reservoir for the following
injection conditions (black line): an optical detuning δλ = 50.0 pm, a power
modulation between Pin0 = 0.0 mW and Pin1 = 0.3 mW at 20 Gb/s, and an
inter-delay tinterdelay = 18.75 ps. (b) Desired output (green curve), trained
output of the reservoir (blue curve), and decision threshold (red line) for the
same injection parameters. These parameters correspond to an optimal value of
the error rate of Fig. 4.

various values of the inter-delay at high bit rates. We also see
that the range of inter-delay values, where the reservoir performs
at its best, is slightly greater for lower bit rates. This is similar
to the passive reservoir (Fig. 4), but our architecture can achieve
lower error rates. We notice also a reduced range of inter-delay
values for the best performance compared to a passive reservoir.
This is most likely due to the internal time scale of the optical
mode τa ≈ 20 ps in the microring resonator model. This time
scale is close to the optimal value of inter-delay in term of
reservoir performance.

We present also in Fig. 5(a) normalized time series generated
by four nodes of the reservoir, along with the input power in
each node. These time series are obtained for the simulation

Fig. 6. Error rate - for the XOR task - as a function of the reservoir inter-delay
for various values of the optical detuning at 20 Gb/s. The power modulation
is chosen so that a microring alone is in a stationary state, but close to the
instabilities, with Pin0 = 0.0 mW. δλ = −50 pm and Pin1 = 0.5 mW (red
squares), δλ = 0.0 pm and Pin1 = 0.5 mW (blue triangles), δλ = 50 pm and
Pin1 = 0.3 mW (black dots), and δλ = 100 pm and Pin1 = 0.5 mW (green
diamonds). In (a), the microrings are all identical, and in (b), each microring
has a different value of the resonance frequency. The minimum acceptable error
rate is 2.5 × 10−4 .

of the MR-reservoir for an optical detuning δλ = 50.0 pm,
a power modulation comprised between Pin0 = 0.0 mW and
Pin1 = 0.3 mW, and an inter-delay tinterdelay = 18.75 ps. This
injection point corresponds to a optimal of the error rate in
Fig. 4(b). Finally, in Fig. 5(b), we show the output of the trained
reservoir for the same injection parameters as in Fig. 5(a). The
green curve is the desired output, the blue curve is the output of
the trained reservoir, and the red line is the decision threshold.
For both Fig. 4(a) and (b), the time is normalized so that one
bit is equal to one unit of time.

C. Performance: Influence of the Optical Detuning

In this part, we focus on the influence of the optical de-
tuning on the MR-reservoir performance. Fig. 6(a) gives the
performance of the reservoir as a function of the inter-delay
for four different values of the optical detuning: δλ = −50 pm
(red squares), δλ = 0.0 pm (blue triangles), δλ = 50 pm (black
dots), and δλ = 100 pm (green diamonds). The RZ power
modulation is chosen so that a microring alone is in a stationary
state, but close to a bifurcation point. Referring to Fig. 3(a)–(c),
the high value of the power modulation is Pin1 = 0.3 mW for
δλ = 50 pm, and Pin1 = 0.5 mW for δλ = 0 pm, δλ = 100 pm,
and δλ = −50 pm.

In this figure, we have considered that the microrings are
strictly the same, meaning that all 16 nonlinear microring res-
onators have the same resonance frequency. For more realistic
simulations, we give in Fig. 6(b) - and for the same input condi-
tions - the performance of the MR-reservoir when the resonance
frequencies of the microrings are different. The resonance fre-
quencies of the 16 microring resonators follow a Gaussian dis-
tribution centred on respectively δλ ∈ {−50, 0.0, 50, 100} pm,
with a 10 pm standard deviation, that is a rather pessimistic
value with regard to the current technology.



Fig. 7. Error rate - for the XOR task - as a function of the optical detuning for
a power modulation between Pin0 = 0.0 mW and Pin1 = 0.5 mW, an inter-
delay of 18.75 ps, and a bitrate 20 Gb/s. Error bars are given for seven series of
simulations. The minimum acceptable error rate is 2.5 × 10−4 .

Fig. 6 shows that the reservoir performs better when the
value of the optical frequency of the injected light is detuned
with respect to the resonance frequency of the nonlinear node
(typically in our study δλ ∈ {−50, 50, 100} pm), than when
the light is injected at the resonance frequency of the micror-
ing resonator (i.e. δλ = 0 pm). Note that the performance is
similar for those three different values of the optical detuning
(δλ ∈ {−50, 50, 100} pm). Intuitively, this can be understood
by the filtering properties of microrings: they absorb more opti-
cal power if the frequency of the injected light is close to their
resonance. As a result, the wave-mixing between the nodes in
the network is reduced, thus impeding the reservoir computer
performance. Fig. 6(b) shows a good robustness of the reser-
voir with regards to heterogeneities in the frequency resonance
between the nodes, providing that the detuning of the injected
light is larger than the standard deviation of the heterogeneities
in resonance.

In order to corroborate the results of Fig. 6, we plot in
Fig. 7 the performance of the reservoir as a function of the
optical detuning. More specifically, we have set the inter-delay
(18.75 ps), the power modulation between Pin0 = 0.0 mW and
Pin1 = 0.5 mW, and we have followed the horizontal dashed
line of Fig. 3(d). This value of inter-delay corresponds to the
best choice in terms of interconnection length, as it ensures rel-
atively small connection waveguides, while the mismatches in
the frequency resonance of the rings does not affect the perfor-
mance of the reservoir (see Fig. 6(b)). Similarly to Fig. 6(b),
we have introduced mismatches in the resonance frequency be-
tween the rings. We realize seven experiments for each optical
detuning; the results are averaged and we give the error bars.

Fig. 7 unveils a better level of performance when the fre-
quency of the injected light is far from the frequency resonance
of the nonlinear microring resonators. We see also that the per-
formance are better for negative values of the frequency detun-
ing. This can be understood by looking at the stability map of
Fig. 3(d), and the horizontal dashed line that we have followed.
For positive values of the optical detuning from 0 pm and 75 pm,
a nonlinear microring resonator is self-pulsing for an injected
power of 0.5 mW, thus meaning the reservoir is not on a steady
state and consequently reducing its performance.

D. Performance: Influence of the Injection Power

In this section, we focus on the power budget considera-
tions. More specifically, we fix the optical detuning between

Fig. 8. Error rate - for the XOR task - as a function of the high value of
the power modulation for an optical detuning δλ = 50 pm, an inter-delay of
18.75 ps, and a bitrate 20 Gb/s. The low value of the power modulation is
Pin0 = 0.0 mW. Error bars are given for seven series of simulations. The
minimum acceptable error rate is 2.5 × 10−4 .

the injected light and the resonance frequency of the rings
(δλ = 50 pm), we fix again the interconnection delay at 18.75 ps,
and we plot the performance of the reservoir for various values
of the power modulation. This is always a return-to-zero (RZ)
modulation, and we plot the error rate as a function of the high
value of the power modulation, following the vertical dashed
line of Fig. 3(d). Note that we have also introduced mismatches
in the resonance frequency between the rings, similarly to pre-
vious studies. We give the average and the error bars for seven
series of simulations.

Fig. 8 shows that values of the injected power lower than
10−4 W result in a degradation of the performance, due to a
reduction of total power on each node and wave-mixing be-
tween the nodes through losses in the other integrated elements
(waveguides, splitters, combiners). We also see that the perfor-
mance of the reservoir are low for high values of the modulation
(Pin1 > 10−3 W), due to the fact that each node is self-pulsing
for these injection parameters (see stability map, Fig. 3(d)).
Finally, the optimal operating condition at this particular op-
tical detuning is when the high value of the power modula-
tion leads a single microring resonator to be in a steady state,
but close to instabilities. However, we find a very good per-
formance obtained for the high value of the power modulation
Pin1 = 0.5 × 10−3 W, where a single microring resonator alone
is self-pulsing.

In the previous sections, we have perform most of our
simulations at δλ = 50 pm, with a power modulation from
Pin0 = 0.0 W to Pin1 = 0.3 mW, which is in the interval of
best performance at this particular detuning. Hence the total
power budget is very low. Indeed the chip is only powered by
the optical power using the same bit stream input on each node,
thus the averaged power needed for the reservoir to perform is
Nnodes × 0.5 × (Pin1 − Pin0 ) = 2.4 mW (with Nnodes = 16,
the number of nodes in the reservoir). Moreover, unlike the
purely passive reservoir, where a bias power was necessary to
perform optimally, the MR-reservoir has the best performance
when there is no power bias, thus reducing the mean power
consumption.

VI. CONCLUSION

To conclude, we have suggested a novel integrated reservoir
architecture using microring resonators as nonlinear nodes, that
can perform at state-of-the-art level of performance on a nonlin-



ear Boolean task for various operating parameter conditions. We
also have connected the performance of the reservoir computer
with the nonlinear properties of the nodes stability with respect
to injected power and frequency detuning between the injected
light and the resonance of the rings.

More specifically, we have studied the influence of the data
rate, and shown that the intrinsic presence of three distinct time
scales in the model of the nonlinear nodes leads to the need to
carefully design the reservoir in terms of the length of the inter-
connections between the nodes. We have also investigated the
influence of two critical operational parameters in the network
dynamics: (i) the injected power and (ii) the optical detuning. We
have found that a large variety of operating conditions can lead
to optimal performance of the reservoir on the typical delayed
XOR task, when some important conditions are fulfilled. First,
each node should be in a steady state, close to instabilities. This
condition, along with a stability map of a single node, allows
us to choose the operating condition of the complete reservoir
parameters for optimal performance. We have also found a good
robustness when we introduce heterogeneities in the properties
of the nonlinear nodes, for example in the frequency resonance
between the ring resonators.

We have demonstrated that this integrated reservoir can per-
form very well on a typical boolean task, with very low power
consumption. Considering the RZ power modulation between
Pin0 = 0.0 mW and Pin1 = 0.3 mW with the same bit stream
input on each node, the power budget is very good, and could
be further improved in future work by reducing the number of
injected nodes, for instance by injecting the data only on the
four central nodes, as suggested in previous work by some of
the authors [23]. Moreover, from an experimental point of view,
it is simpler to inject the data on fewer nodes, as it reduces the
routing density on the chip.

Contrary to the passive reservoir of [22], [23] in which the
nonlinearity is in the readout ((i.e.) the detector), we have inte-
grated nonlinear elements (the microring resonators) in the re-
currence of the network. This work shows that the performance
on this particular task in terms of BER and power consumption
are very similar with the previous design. This is mainly due to
the losses limiting the mixing in both architectures with or with-
out embedded nonlinear elements. A different internal architec-
ture with better losses management would probably enhance
our performance in presence of microring resonators. The cur-
rent results motivate further investigations on the performance
of this kind of structure, especially by studying the performance
on other tasks such as time series generation, chaos prediction,
or nonlinear channel equalization to see if the nonlinearities in
the recurrence of the network have a good impact on the perfor-
mance of the reservoir for these complex tasks [10]. This opens
new research venues aiming at integrated, high-speed, energy-
efficient, all-optical data processing for telecom applications.
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