
Scalable distributed traffic monitoring for enterprise networks with Spark Streaming
Andrés F. Ocampo, Tim Wauters, Bruno Volckaert, Filip De Turck
Ghent University - imec - IDLab
andres.ocampo@ugent.be
tim.wauters@ugent.be
bruno.volckaert@ugent.be
filip.deturck@ugent.be

Abstract: In this paper we present an architecture for traffic monitoring in enterprise networks based on big
data technology allowing both streaming and batch processing. Through our streaming processing approach,
we can monitor user network activity by analysing parameters like active sessions, used ports, and bandwidth
usage per session. Both streaming and batch analysis will form the basis of mechanisms for the detection and
identification of anomalous or malignant behaviour as well as mis-configured services. For validation purposes,
our prototype has been deployed on the iLab.t Virtual Wall facility. Evaluations are conducted to analyse user
behaviour under different traffic types and workloads. Furthermore, we evaluate the scalability of this
architecture by analysing the performance when incrementing the number of users in the network, as well as
the impact of distributing the big data processing nodes on the responsiveness and performance of the
system. Our numerical results show that the proposed architecture scales linearly with respect to the number
of users.

Keywords​​: Network Traffic Monitoring, Network Security, Big Data, Data Streaming Processing, Spark
Streaming.

1. Introduction
Network traffic monitoring and analysis represents a key component for network security as it allows the
development of detection and identification mechanisms for networks threats and anomalies. Traffic
monitoring systems can be classified as active and passive monitoring. Active approaches inject traffic into a
network to collect measurements and perform analysis. On the other hand, passive approaches collect traffic
observed by a measurement point for being analysed (Hofstede, 2014). Packet capture and flow export are
common implementations of passive monitoring. In the former case, complete packets are captured providing
deep insight into the network traffic unlike flow export in which packets are aggregated into flows and
exported for storage and analysis. The system presented in this paper is based on passive monitoring approach
based on packet capture.

Nowadays, modern distributed big data stream processing systems have evolved drastically, in that they have
become a feasible technology choice for real time network traffic processing, and then for being considered as
tools for passive network monitoring (Jirsik, 2017). Moreover, most of those frameworks implement data
science libraries like machine learning that may be integrated and used for network security. A suitable system
deployment must be able to ingest and process data in real time, requires storage capabilities for the huge
amount of data generated by network monitors, must be able to query and analyse historical data in order to
detect anomalies based on captured traffic that are not based on fingerprints of known anomalies, and must
have availability of traffic data analysis algorithms (Casas, 2017).

We are focused on the implementation of a traffic monitoring system based on big data technology for
enterprise networks. The system presented in this paper first captures user traffic on the network switches
using the pcap library (libpcap) (Jacobson, 2016) and then publishes each packet into a data pipeline based on
Apache Kafka (Kafka, 2017) responsible for streaming captured network data. Those packets are then fed into
a distributed stream processing engine based on the Apache Spark Streaming library for data processing
(SparkStreaming, 2017). A second Kafka consumer is used for storing captured network data into a datastore,
prototyped using MongoDB (MongoDB, 2018) and integrated with Apache Spark for batch processing. Through
our streaming processing approach, we can monitor user network activity by analysing parameters like active
sessions, used ports, and bandwidth usage per session. This analysis is performed in a configurable time
window allowing to keep track of user behaviour over various time spans. Along with the streaming analysis,
batch processing of the stored user traffic aims to compare recent user activity on a meta data level versus
historical data. Both streaming and batch analysis will form the basis for anomaly detection mechanisms,
capable of identifying anomalous or malignant behaviour as well as mis-configured services.

mailto:andres.ocampo@ugent.be
mailto:tim.wauters@ugent.be
mailto:bruno.volckaert@ugent.be
mailto:filip.deturck@ugent.be

The reminder of the paper is organized as follows. Section 2 describes an overview on the related work about
network monitoring based on big data systems. In Section 3 describes the main characteristics of our
prototype. Section 4 presents the experimental results of the study. Finally, section 5 concludes the paper.

2. Related work
The integration of big data system for network traffic monitoring is gaining even more attention in academia
and industry. One of the first approaches on network traffic monitoring using Big Data was proposed by Lee et
al. (Lee, 2011), through a traffic monitoring system that performs NetFlow (Cisco proprietary protocol for flow
aggregation (Cisco, 2018)) analysis employing a MapReduce algorithm capable of manipulating libpcap files. A
study for benchmarking stream processing frameworks such as Spark, Samza, and Storm, for real time traffic
monitoring based on IP flows is presented by Cermak et.al (Cermak, 2016). They demonstrated that those
systems can process at least 500,000 flows/s using 16 or 32 processor cores, which is enough for analyse
networks in real time.

Several open source tools have been launched and the development continues. For example, Apache Metron
is designed to ingests security telemetry data at high speed and then pushes it to computation and analytics
providing a centralized tool for security monitoring and analysis. It provides a set of Storm topologies (Storm,
2017) for streaming, enriching, and storing telemetry in Hadoop. ENTRADA is a Hadoop-based network traffic
analysis mainly focused on DNS application for network security, which use Impala query engine and Parquet
file format (Wullink, 2016) and is focused. BigDama (Casas, 2017) is big data analytic framework for network
traffic monitoring based on Apache Spark with both stream and batch processing and Cassandra as the
datastore technology. This framework implements several algorithms for anomaly detection and network
security using supervised and unsupervised machine learning models. This system is focused on internet traffic
analysis unlike the system presented here which is focused on enterprise networks.

Karimi et al. (Karimi, 2016) proposed a distributed network traffic feature extraction method with Spark for a
real time intrusion detection system. They capture packets from the switch and extract the required
information from packet headers, periodically according to a time window. Gupta et al. (Gupta, 2016) used
Spark Streaming for network monitoring using programmable switches to capture flow aggregation traffic and
perform analysis focused on port scan detection. The framework presented in this paper is focused on
non-programmable switches for enterprise networks.

3. Network traffic monitoring system: architecture
The system presented in this paper is designed to monitor and analyse user activity on enterprise networks,
which are composed of private Local Area Networks (LAN), a demilitarized zone (DMZ) with publicly accessible
servers such as DNS, FTP, Web, and e-mail, and an output segment to the internet. A network user is defined
as an element belonging to a LAN, and therefore has been granted an IP address into the addressing scheme. It
may represent a host of an employee or a service running on top of a server, for example (Stallings, 2015).
Figure 1 illustrates a typical enterprise network scenario including the architecture for traffic monitoring and
analysis proposed in this paper, which is composed basically of three stages as described below: packet
capture, streaming processing, and data storage and batch processing.

3.1 Traffic capturing
Packet capture takes place on network switches following the port mirroring approach, a packet capturing
technique used on a network switch that is based on sending a copy of packets seen on the desired ports or
even an entire sub network (depending on what was selected for analysis) to another port for data collection
and analysis. Moreover, in our prototype we use pycapa (OpenSOC, 2015), an open source tool under Apache
license which allows to capture packets from switches interfaces following the Libpcap library and, operating
as a Kafka producer, publishes captured data into a Kafa Topic. In effect, Apache Kafka is the technology used
for streaming the captured network data for being processed, as depicted in figure 1.

3.3 Stream processing
We use Apache Spark Streaming as the tool for real time processing of network traffic. Packets stored on Kafka
topics are ingested into Spark Streaming using the Kafka consumer API for Spark (Spark-Kafka), ​generating
input discretized streams (DStreams) composed of raw Libpcap data. Spark Streaming provides its own
high-level

Figure 1. Network scenario and traffic monitoring architecture

abstraction for continuous data stream called DStream, which processes data in micro batches depending on a
configured streaming interval (Spark-Streaming, 2017). Figure 2 depicts the data illustrates the pipeline
followed by this framework for processing the captured traffic.

Figure 2. Streaming processing architecture

A set of MapReduce operations are applied to the input Dstream in order to establish a traffic monitoring
mechanism, as depicted in figure 3. A first processing stage involves parsing the input raw data which is
subsequently divided into incoming and outgoing Dstreams based on whether captured packets have users
from the monitored LAN as origin or destination. In other words, traffic arriving or leaving the LAN are
analysed separately. Thereafter, DStreams per user are obtained from such traffic streams. It is important to

note that this framework assumes that users from the monitored LAN are known. Then, a windowed analysis is
performed over the user Dstreams; based on a time interval with a configurable length we compute metrics
such as bandwidth usage of active sessions, bandwidth usage of used ports, most visited destination, most
used port, allowing to keep track of user behaviour over the time spans. A second and longer time window is
used for cumulative computation of such metrics, which are used as user profiles and updated inside a
collection of a database prototyped in MongoDB, as shown in figure 2. Those profiles will form the basis for
anomaly detection mechanism.

Figure 3. MapReduce programming model

3.4 Data Storage and Batch processing
A second Kafka consumer implemented in Spark Streaming is used for storing captured network data into a
datastore prototyped in MongoDB as well, as shown in figure 2. In effect, the input Dstream (as stated in
previous subsection follows a Libpcap format) is parsed in order to get the user involved, which is used to write
the stream data into a collection document of the form <​user, packets> ​of the database designated to store
users with all its captured packets. Furthermore, this database is integrated with Apache Spark for batch
processing; thus, one can query a specific user and perform processing over its historical traffic data. ​Along
with the streaming analysis, batch processing of the stored user traffic aims to compare recent user activity on
a meta data level versus historical data.

4. Evaluation
The outlined architecture was prototyped and deployed on the iLab.t Virtual Wall experimental testbeds (iLabt,
2018). For validation purposes, we set up a network scenario composed of a single LAN where users generate
traffic when accessing different services such as FTP, Web, Email, and DNS. We have devised a method to
emulate user traffic activity based on a Poisson process. Thus, once a user has finished a transmission, a new
service is launched after a waiting or interarrival time which is distributed as an exponential random variable
with mean of two minutes for this experiment. In other words, users wait a random time before starting a new
packet transmission established for one of the aforementioned services chosen randomly according to a
uniform distribution. Packets from the user side are build using Scapy, a Python-based interactive packet
manipulation library (Scapy 2016). It is important to note that this arrival process determines the beginning of
a service, whereas the traffic dynamics depends entirely on the nature of service being accessed.

We defined a stream processing cluster consisting of one Kafka node with one topic and four partitions (as
many as the available cores on the node), three Spark nodes operating in standalone mode and one MongoDB
node. All those nodes are deployed using 4 cores, 16GB memory, 100GB drive virtual machines, running on top
of 2x Quad core Intel E5520 (2.2GHz) CPU shared machines into the Virtual Wall. The following software and
distributed stream processing systems were installed on virtual nodes:

● Ubuntu 16.04 x64
● Python 2.7
● Apache Kafka 0.8.2.1
● Apache Spark 2.2.0
● MongoDB 3.6.2

4.1 Traffic monitoring and user profiling
The stream processing system receives network traffic data in time slots of one second length. Thereafter,
processing the stream data is performed based on MapReduce operations as illustrated in figure 3, in order to
compute user network activity over time windows of one minute. This in turn enable the online monitoring of
parameters like active sessions, used ports, and bandwidth usage per session. Figure 2 shows a 10 minutes
sample observation for a certain emulated user, as it exhibits a Web browsing operation during that period, it
depicts the measured protocol bandwidth usage.

Figure 4. Measured protocol bandwidth usage for one emulated user

Under the assumption that users are habitual when using network services, we can compute and update their
behaviour into the user profiles collection in MongoDB. The idea behind user profiling is to provide the basis
for further mechanism that can compute outliers on user network usage that allows to detect anomalies such
as potentially malignant behaviour from a potentially infected machine or malign user. As an example,
consider that at certain point abnormal behaviour might happen with a usual Web browser user when many
new connections are being initiated to numerous destinations over the same port number. These are the kind
of issues we aim to catch and tackle into the scope of this research, and without the use of known exploit
malign behaviour fingerprints, to detect unknown threats propagating through the enterprise network.

We performed cumulative computation over one-hour time window of the following metrics: protocol
bandwidth usage, protocol count, port bandwidth usage, port count, destination count (based on IP address).
This computation is written into the collection for user profile in MongoDB as an update operation. Table 1
relates output operations performed over certain user profile after being query and processed from Spark.

Table 1: user profile query and processing

Top protocol bandwidth

usage Top used port

Top port

bandwidth usage Top visited IP

user 70% (http) 40780 63% 192.168.x.x

4.2 Performance evaluation
We evaluate the scalability of this architecture by analysing the mean execution time of the MapReduce
processing operations taken over the streaming data. This analysis was made by incrementing the number of
users by twenty up to a hundred, all of them accessing to network services as stated above for a period of five
hours. We observed the mean time execution when processing is performed by one, two, and three Spark
nodes into a cluster operating in standalone mode. Our numerical results show that the proposed architecture
scales linearly with respect to the number of users, as shown in figure 5. The highest execution time is reached
when processing is performed by one node into the cluster, just above 4 ms delay in performing MapReduce
operations. Then, with a batch interval of 1 s such delay is acceptable for processing the amount of user traffic
inside this kind of networks.

Figure 5. Distributed streaming processing execution time

5. Conclusions and future work
We have presented a framework for traffic monitoring in enterprise networks with Apache Spark as the
processing data streaming engine. The conducted experiments have shown that our system scales well under
different number of users and workloads. Through the streaming processing approach presented in this paper,
it is possible to monitor user network activity over various time spans, which allows to compare current user
behaviour with historical data, as well as to allow users to change behaviour without being flagged as malign.
Along with the streaming analysis, our system allows batch processing of the stored user traffic aiming to
further compare current user activity versus historical data. Both streaming and batch analysis will form the
basis for anomaly detection mechanisms, capable of identifying anomalous or malignant behaviour as well as
mis-configured services.

Further research is expected to be conducted over this architecture. In first place, it is necessary to design
algorithms to update user profiles that captures current and historical data, instead of fixed updating based on
windowed computation. On the other hand, bind both streaming and batch processing engines for automate
comparisons between current and historical data for those cases in which an anomaly detection alarm is
triggered is mandatory. Therefore, the development of anomaly detection mechanisms able to detect
potentially malignant behaviour, from a potentially infected machine or malign user is the target of this
research project.

References

Cardenas, A., Manadhata, P. and Rajan, S. (2013). ​Big Data Analytics for Security​. ​IEEE Security & Privacy​,
11(6), pp.74-76.

Casas, P., Soro, F., Vanerio, J., Settanni, G. and D'Alconzo, A. (2017). ​Network security and anomaly
detection with Big-DAMA, a big data analytics framework​. 2017 IEEE 6th International Conference
on Cloud Networking (CloudNet).

Cermak, M., Tovarnak, D., Lastovicka, M. and Celeda, P. (2016). A performance benchmark for NetFlow
data analysis on distributed stream processing systems. ​NOMS 2016 - 2016 IEEE/IFIP Network
Operations and Management Symposium​.

Cisco (2018). ​Cisco IOS NetFlow​. [online] Cisco. Available at:
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html [Accessed 14
Feb. 2018].

Gupta, A., Birkner, R., Canini, M., Feamster, N., Mac-Stoker, C. and Willinger, W. (2016). ​Network
Monitoring as a Streaming Analytics Problem​. Proceedings of the 15th ACM Workshop on Hot
Topics in Networks - HotNets '16.

ilabt (2018). ​Virtual Wall — iLab-t testbeds 1.0.0 documentation​. [online] Available at:
http://doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html [Accessed 7 Feb. 2018].

Hofstede, R., Celeda, P., Trammell, B., Drago, I., Sadre, R., Sperotto, A. and Pras, A. (2014). ​Flow
Monitoring Explained: From Packet Capture to Data Analysis With NetFlow and IPFIX​. ​IEEE
Communications Surveys & Tutorials​, 16(4), pp.2037-2064.

Jacobson, V., Leres, C., McCanne, S. (2016). ​The libpcap packet capture library​. Lawrence Berkeley
Laboratory, Berkeley, CA, [online] Available at: http://www.tcpdump.org/ [Accessed 12 Feb. 2018].

Jirsik, T., Cermak, M., Tovarnak, D., and Celeda, P. (2017). ​Toward Stream-Based IP Flow Analysis​. ​IEEE
Communications Magazine​, 55(7), pp.70-76.

Kafka (2017). ​Apache Kafka​. [online] Available at: https://kafka.apache.org/intro [Accessed 12 Feb.
2018].

Karimi, A., Niyaz, Q., Weiqing Sun, Javaid, A. and Devabhaktuni, V. (2016). Distributed network traffic
feature extraction for a real-time IDS. ​2016 IEEE International Conference on Electro Information
Technology (EIT)​.

Lee, Y. and Lee, Y. (2012). ​Toward scalable internet traffic measurement and analysis with Hadoop​. ​ACM
SIGCOMM Computer Communication Review​, 43(1), p.5.

Lee, Y., Kang, W. and Lee, Y. (2011). A Hadoop-Based Packet Trace Processing Tool. ​Traffic Monitoring
and Analysis​, pp.51-63.

Platfora. ​Big Data Discovery | Big Data Analytics | Platfora​. [online] Available at:
https://www.platfora.com/ [Accessed 9 Feb. 2018].

Metron. ​Apache Metron Documentation​. [online] Available at:
http://metron.apache.org/documentation/ [Accessed 9 Feb. 2018].

MongoDB. ​MongoDB for GIANT Ideas​. [online] Available at: https://www.mongodb.com/ [Accessed 12
Feb. 2018].

OpenSOC (2016). ​Pycapa​. [online] Available at: https://github.com/OpenSOC/pycapa [Accessed 13 Feb.
2018].

Scapy (2016). ​Scapy​. [online] Available at: http://www.secdev.org/projects/scapy/ [Accessed 14 Feb.
2018].

Spark-Streaming. ​Spark Streaming - Spark 2.2.1 Documentation​. [online] Available at:
https://spark.apache.org/docs/latest/streaming-programming-guide.html [Accessed 13 Feb. 2018].

Spark-Kafka. ​Spark Streaming + Kafka Integration Guide - Spark 2.2.0 Documentation​. [online] Available
at: https://spark.apache.org/docs/2.2.0/streaming-kafka-integration.html [Accessed 13 Feb. 2018].

Stallings, W. and Brown, L. (2015). ​Computer security​. Boston: Pearson Prentice Hill.

Storm (2017). ​Apache Storm​. [online] Available at: http://storm.apache.org/ [Accessed 14 Feb. 2018].

Terzi D. S., Terzi R. and Sagiroglu S. (2017) “​Big data analytics for network anomaly detection from
netflow data” ​2017 International Conference on Computer Science and Engineering (UBMK),
Antalya, 2017, pp. 592-597.

Wullink M., Moura G., Muller M. and Hesselman C. (2016). ENTRADA: A high-performance network
traffic data streaming warehouse. ​NOMS 2016 - 2016 IEEE/IFIP Network Operations and
Management Symposium​.

